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THE SCHWARTZ SPACE OF A GENERAL SEMISIMPLE LIE
GROUP V : SCHWARTZ CLASS WAVE PACKETS

REBECCA A. HERB

Suppose G is a connected semisimple Lie group. Then the
tempered spectrum of G consists of families of representations
induced unitarily from cuspidal parabolic subgroups. In the
case that G has finite center, Harish-Chandra used Eisenstein
integrals to construct wave packets of matrix coefficients for
each series of tempered representations. He showed that these
wave packets are Schwartz class functions and that each in-
finite Schwartz function is a finite sum of wave packets. Thus
he obtained a complete characterization of K-Rnite functions
in the Schwartz space in terms of their Fourier transforms.

Now suppose that G has infinite center. Then every in-
compact Schwartz function decomposes naturally as a finite
sum of wave packets. A new feature of the infinite center
case is that the wave packets into which it decomposes are
not necessarily Schwartz class functions. This is because of
interference between different series of representations when
a principal series representation decomposes as a sum of limits
of discrete series. There are matching conditions between the
wave packets which are necessary in order that the sum be
a Schwartz class function when the individual terms are not.
In this paper it is shown that these matching conditions are
also sufficient. This gives a complete characterization of K-
compact functions in the Schwartz space in terms of their
Fourier transforms.

1. Introduction.

Suppose G is a connected semisimple Lie group. Then the tempered spec-
trum of G consists of families of representations induced unitarily from cus-
pidal parabolic sub-groups. Each family is parameterized by the unitary
characters of a Cartan subgroup. The Plancherel theorem expands Schwartz
class functions on G in terms of the distribution characters of these tempered
representations. Very roughly, for / in the Schwartz space C(G), we can write

(1.1 a) / ( * ) =

if€Car(G)
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where Car(G) denotes a complete set of representatives for conjugacy classes
of Cartan subgroups of G and

(Lib) fH(x) = ίθ(H : χ)(R(x)f)m(H : χ)dχ.
JH

Here Θ(H : χ) denotes the distribution character of the representation
π(H : x) corresponding to χ G H, R(x)f is the right translate of / by x G G,
and m(H : χ)dχ is the Plancherel measure corresponding to π(H : χ).

Suppose that G has finite center and that / G C(G) is if-finite where K
is a maximal compact subgroup of G. Fix H € Car(G). In [HC1, 2, 3]
Harish-Chandra used Eisenstein integrals to construct wave packets of ma-
trix coefficients of the representations π(H : χ),χ G ff. He showed that
these wave packets are Schwartz class functions and that /# is a finite sum
of wave packets. Thus he obtained a complete characterization of if-finite
functions in the Schwartz space in terms of their Fourier transforms.

Now suppose that G has infinite center ZG. (For example, G could be
the universal covering group of one of the non-compact simple Lie groups of
hermitian type.) Let if be a maximal relatively compact subgroup. That
is, ZG C K and K/ZG is a maximal compact subgroup of G/ZG. Then
there are no if-finite functions in C(G). However the set C(G)κ °^J^~
compact functions, those with UT-types lying in a compact subset of K, is
dense in C(G) [HI]. Let H G Car(G). Then for every / G C{G)K, fH again
decomposes naturally as a finite sum of wave packets. A new feature of the
infinite center case is that for / G C(G)κ, /# and the wave packets into which
it decomposes are not necessarily Schwartz class functions. This is because
of interference between diflferent series of representations when a principal
series representation decomposes as a sum of limits of discrete series. When
G has infinite center, these limits of discrete series can be actual limits along
continuous families of relative discrete series representations, and so occur
in a non-trivial way in the Plancherel formula in the terms corresponding
to diflferent Cartan subgroups. This means that for / G C(G) there are
matching conditions between the terms /#, if G Car(G), which are necessary
in order that the sum be a Schwartz class function when the individual terms
are not. These matching conditions generalize those of H. Kraljevic and D.
Milicic for the universal covering group of 5X(2, R) [KM].

In order to obtain a complete characterization of the if-compact Schwartz
class functions in this case it is necessary to study elementary mixed wave
packets. These are finite sums of wave packets which patch together to form
Schwartz class functions. They should be thought of as the basic building
blocks from which Schwartz class functions are formed in the infinite center
case. Elementary mixed wave packets were defined in [H3] and it was shown
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that every / G C(G)κ is a finite sum of elementary mixed wave packets.
In this paper we will show that every elementary mixed wave packet is a
Schwartz class function. This completes the study of the Plancherel theorem
and Schwartz space for general reductive Lie groups which was initiated in
[HW1, 2, 3, 4, 5] and continued in [HI, 2, 3].

In order to explain the results of the paper more precisely and with a
minimum of technical notation, we will assume for the remainder of this
introduction that G is a simple, simply connected, non-compact real Lie
group of hermitian type. Let if be a maximal relatively compact subgroup
of G. Then K = KxxV where Kx = [K, K] is compact and V = R is a one-
dimensional vector group in the center of K. Then {eh : h G it)*} gives a one-
parameter family of one-dimensional characters of K. Now let P = MAN
be a cuspidal parabolic subgroup of G and H — TA a Cartan subgroup of
G with T C K a maximal relatively compact Cartan subgroup of M. The
characters eh,h G it)*, give characters of T by restriction. Thus each χ eT
lies in a continuous family of characters of T of the form {χ®eh:hE it)*}.
Each character in the family corresponds to a relative discrete series or limit
of discrete series representation π(M : h) of M. Note that τr(M : h) de-
pends only on the restriction of eh to T, so that these representations may
not all be distinct. Let \{h) G it* denote the Harish-Chandra parameter of
π(M : Λ), let C be a Weyl chamber of it*, and let V = {h € it)* : λ(h) G C}.
Then V is an open interval and is unbounded just in case the representations
π(M :/ ι ) ,/ ι6D, are holomorphic or anti-holomorphic relative discrete se-
ries. Now

{π(H :h:u)= Ind^AN{π(M : h) 0 e* ® 1) : h G 2>, v G α*}

is called a continuous family of representations of G corresponding to H.
Wave packets of Eisenstein integrals corresponding to a continuous family

{π(H : h : v) : h G £>, v G α*} are defined as follows. Fix Ti, r2 E K with the
same Z<s character as χ and let W be a finite-dimensional complex vector
space on which K acts on the left and right by (τi,τ2). For /ι G it)*, let
Ti,h = τ< <g) eΛ,i = 1,2. In [HW5] we defined Eisenstein integrals ϋ?(P) :
t)*3 x αJc x G -» W which are holomorphic in /ι and ι/ and are (τij/ι,r2,/ι)-
spherical functions of matrix coefficients of the representations π(H : h : v)
when /ι G £>, v G α*. Then we defined wave packets of the form

( 1 . 2 ) Φ(H :V:x)= f E(P :h:u: x)a(h : i / ) m ( £ Γ : h :

where m(H : /ι : v)dvάh is the Plancherel measure corresponding to
π(H : h : u) and a : P x α* -* C is a jointly smooth function of /ι and
v which extends smoothly to cl(P) x α* and is rapidly decaying at infinity



46 REBECCA A. HERB

in both variables. It was proven in [HI, 2, HW5] that every if-compact
Schwartz function is a finite sum of wave packets of this type and that an
individual wave packet Φ(H : V) is Schwartz class if and only if a(h : v)
has zeroes of infinite order at the finite endpoints of the interval V and if
a(h : v)m(H : h : v) is jointly smooth on P x α*. Finite endpoints of V
correspond to limits of discrete series and points (/ι, v) G T> x α* at which
m(H : h : v) fails to be jointly smooth correspond to reducible principal
series representations which decompose into limits of discrete series which
are actual limits along continuous families of relative discrete series repre-
sentations.

Let ΦM denote the set of roots for (me, tc) &nd choose a set Φ]^ of positive
roots so that there is a unique non-compact simple root β. We will use
h «-> (/?, h) to identify it)* ^ R. Fix χ G H and let

F 0 = {αGΦ+ :<α,λ(0))=0}

where as before, X(h) is the Harish-Chandra parameter of the relative dis-
crete series representation π(M : h) of M corresponding to χ®eh. If there is
a compact root a E Fo, then (λ(/i), a) = (λ(0), a) = 0 for all h G it)* so that
the Plancherel function m(H : h : v) corresponding to π(H : h : v) is zero
for all h G it)*, i/6α*. In this case the family plays no role in the Plancherel
formula or the Schwartz space analysis. Thus we assume that FQ contains
no compact roots. Then X(h) is regular for small h φ 0 and so there are
Weyl chambers C± of it* so that \{h) G C+ for small h > 0 and \{h) G C"
for small h < 0. Write V± = {h G it)* : λ(h) G C±}. (Of course if Fo = 0,
then 0eV+ = T>~.)

Now each F C Fo is a strongly orthogonal family of non-compact roots of
M and so corresponds to Cartan subgroups HM,F of M and ifj? = HM,FA =
TV.Air of G. We identify roots of HF with those of H via the Cayley trans-
form cF corresponding to F. Let PF = MFAFNF be a cuspidal parabolic
subgroup corresponding to HF. Then for each F C F0,Tp C T and we de-
fine Xi? G TV to be the restriction of χ. Let π(F : /ι) be the relative discrete
series representation of MF corresponding to χF ® eh and define

(1.3) π(F : h : uF) = I n d £ F Λ F N F ( π ( M F : Λ)

We call {π(F : /ι: i/̂ ) : F C Fo} a matching family of representations.
Now elementary mixed wave packets are defined roughly as follows. (See

(2.16) for the precise definition.) Fix a matching family {π(F : h : vF) :
F C Fo} as in (1.3) such that the Plancherel function m{H : h : v) is
jointly smooth on [0,α) x α* and (—α,0] x α* for some a > 0. Suppose for
each F C Fo we have Φ(F) : it)* x α*? x G -» W satisfying the following



SCHWARTZ CLASS WAVE PACKETS 47

conditions. First, let Φ±(F) denote the restriction of Φ(F) to V± x aF x G.
Then there are finitely many Eisenstein integrals Ef(PF) corresponding to
the family {π(F : h : vF) : h G V±, vF G a*F} and smooth, rapidly decreasing
functions af as in (1.2) so that for all h G X**, vF G α^, a; € G,

(1.4a) Φ±(F : Λ : i/F : a:) = £ α f (Λ : vF)Ef{PF :h:vF: x).

Second, there are a small neighborhood (7 of 0 G ifc* and a compact subset
ω C 17 so that

(1.4b) Φ(F :h:vF:x)=0 for all vF G α ^ E G , if Λ g ω.

U must be small enough that U C (-α,α) Π ( P + U D " U {0}). Finally, the
functions Φ(F) must satisfy the same matching conditions as the characters
of the representations TΓ(JF).

These matching conditions can be stated as follows. Fix E C FQ. For
every E C F C Fo,αjg? C αF and we can identify α£ = α^ θ R ' ^ l by
ẑiΓ <-> (ι/j5, (μα)α6F\J5) where ι/̂  is the restriction of vF to α^ and μa =
(I/JF , α), α G F\JB. Write (i/^, 0) for the element (z/ ,̂ (μa)aeF\E) with μα = 0
for all α G F \ J 5 and define a differential operator on iΌ* x α^ by DF\E —
d/dh - i Σa€F\ε 9/dμa. For F C F o, let F c = F 0 \ F .

Then for all k > 0,

l im(d/d/ι)*Φ(£ : Λ : vE : x) + ( - l ) l ^ c l + 1 \Mdldh)kΦ{E :h:vE:x)

clF\E{[limDk

FχEΦ(F : h : (vB,0) : x)

(1.4c) + (-1)IFCI BmJD^ΦίF : Λ : (uE,0) : x)]

[
EcFCFo

for all vE G o ^ G G. Here for allp > 0,cp = (d/dx) ί>tanh(rr/2)|x=0.
We say that

(1.4d) Φ(x) = 53 / / Φ(F : h : vF : x)m(F : h : vF)dhdvF

FCFo ^iϋ* **aF

is an elementary mixed wave packet. If w* G W* we say that

(1.4e) φ(x) = (Φ(x),w*)

is a scalar-valued elementary mixed wave packet.

Theorem 1.5 ([H3]). Every f G C(G)κ is the sum of finitely many scalar-
valued elementary mixed wave packets.

The main result of this paper is
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Theorem 1.6. Every elementary mixed wave packet is a Schwartz class
function.

The following results from [H3] will be used to prove Theorem 1.6. Let
Φ(x) be an elementary mixed wave packet as in (1.4) and write

(1.7) Φ(h:x) = Σ [ φ(F -h-VF' x)m(F : h : vF)dvF.
FCFo JaF

Theorem 1.8 ([H3]). Let Φ(x) be an elementary mixed wave packet. Then

(h,x) -» Φ(h : x)

is jointly smooth on iκ>* x G.

Proposition 1.9 ([H3]). Suppose F :iκ>* xG -±W is (rlih,τ2yh)-spherical
and define

F(x) = / F(h: x)dh.
J
/

Jit)*

Then F(x) is a Schwartz class function on G if and only if

(/ι, x) -» F(h : x) is jointly smooth on it)* x G

and

sup Ξ(α)- χ (l + σ(a))r(l + \h\)r\\F(h;D : Dt ;α;£>2)|| < oo

for all r > 0, constant coefficient differential operators D on id* and Dχ,D2 E

Thus to complete the proof that elementary mixed wave packets are
Schwartz functions we will need to prove the estimate in (1.9). In order
to do this we will need an alternate formula for elementary mixed wave
packets which was proven in [H3] by studying the Plancherel functions. For
h E ΐt)*, F C F o , vF e α*?, write

(1.10 a) pF(h:vF)

Then it was proven in [H3] that there are functions g(F : h : vF : x), F C F o ,
which are jointly smooth on cl(D±) x aF x G and satisfy matching conditions
similar to those satisfied by the Φ(F : h\vF : x), F C F o , so that

(1.10b) Φ(Λ : x) = Σ («)-'" /
FCFo
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Rather than explain how the estimate

sup H(a)-X(l + σ(α)) r(l + |ft|)r||Φ(ft;D : D1 \a;D2)\\ < oo

is proven in general, we will specialize further to the simplest example,
namely when G is the universal covering group of 5L(2, R). In this case
we will have non-trivial mixed wave packets just in the case that M —
G, H = T is the relatively compact Cartan subgroup, and λ(0) = 0 so
that Fo = Φ^f = {a}. In this case {π(T : ft) : ft > 0} is the set of holo-
morphic relative discrete series representations and {τr(T : ft) : ft < 0} is
the set of anti-holomorphic relative discrete series representations. Write
Ho = HFQ. It is the Cartan subgroup given by Ho = ZA0 where Z is the
center of G and AQ ~ R is a one-dimensional real vector group. The family
{π(H0 : ft : v) : h G R, v € αj ~ R} contains all unitary principal series rep-
resentations of G. Note that π(H0 : h + 2 : v) — π(H0 : h : u) for all ft, z/ G R
since e Λ | z = 1 for all ft G 2Z. The ones which factor through 51/(2, R) are
those corresponding to ft = 0 which in this parameterization are the non-
spherical principal series, and those corresponding to ft = 1 which are the
spherical principal series. Thus TΓ(HQ : 0 : 0) is the only reducible one, and
it is the direct sum of the two limits of discrete series π(T : ± : 0).

Now an elementary mixed wave packet will have the form

/•-foo

Φ(x)= / Φ(T : h : x)\h\dh
J—ooo

(1.11) + - / / Φ(H0:h:u:x)—, -dvdh.
2 y_oo J-oo cosh πv — cos πft

Here for each ft Φ 0, Φ(T : ft : x) is a matrix coefficient of the relative discrete
series representation π(Γ : ft) with ίf-types τlί/ι,r2)/ι. Further, for each
x G G, ft i-* Φ(Γ : ft : x) is compactly supported in a small neighborhood C/
of zero and is smooth except at ft = 0 where it and its derivatives have jump
discontinuities. For each ft, v, Φ(H0 : ft : ^) is a matrix coefficient of the
principal series representation π(H0 : ft : v) with UT-types TΊ^, τ2yh- For each
x £ G, (ft, i/) κ-» Φ(ϋΓ0 : ft : ̂  : x) is jointly smooth, an even Schwartz class
function of u, and is non-zero only when ft G U. The matching conditions
are that for all k > 0, x G G, we have

lhn(d/dft)*Φ(T : ft : x) + lιm{d/dh)kΦ(T : ft : x)

= (d/dh-id/dv)kΦ(T:0:0).

Write
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and

iπi/Φ(H0 : h : is : x)(v+ ih)smhπ(v
: h : v : x) =

J

Then formula (1.10b) in this case becomes

(1.12, i{h:l)=g{T:h:l) + ±Γή!!^L^d».

Now using (1.8) and (1.9), in order to prove that Φ is a Schwartz class
function it is sufficient to prove that for all fc,r > 0,Z?i,Z?2 G W(flc)? we
have

(1.13) sup E{a)'1{l + σ{a))τ\Φ{h\{dldh)k :DlWD2)\ < oo.
h€U,aec\(A+)

(Note that the term (1 + \h\)r is not needed since Φ is compactly supported
as a function of h.) The differential operators Dχ^D2 G U(dc) are handled
in the same way as for ordinary wave packets, so in this example we will just
look at the case where Dι = D2 = 1.

Let H E α0 such that a(H) — 1 and for t E R, define at = exp tH. Then
from the theory of constant terms in [HW5] we see that there are functions
c±(fl0

 : h : v) which are jointly smooth on U x R and Schwartz as functions
of v so that if we write d(H0 : h : v : at) =

(1.14a) g(HQ :h:v : at) - e&-1)lc+(H* : h : v) - e(-iv-l)tc~{HQ : h : v)

we have the following estimate. Given any D e £)(R2), the constant coef-
ficient differential operators in R2, there are constants C, r1 ? and e > 0, so
that for t > 0, h G 17, v G R,

(1.14b) |d(flo :h:v;D: at)\ < Ce"(1+€)t(l + ί ) r .

However, the theory of constant terms from [HW5] applied to the function
g(T : h : x) just says that given D G -D(R) there are constants C,Γi, and
e > 0 so that

\g(T :h;D: at)\ < Ce'^^^il + tγ.

This estimate will not be good enough since we are interested in behavior
at h = 0 where e\h\ = 0. In §3 of this paper we will modify the theory of
constant terms so that in this case we also obtain functions ^(T : h) which
are smooth in U except at h = 0 so that if we write

(1.15 a) d(T : h : at) = g(T : h : at) - e ( / ι-1 } ίc+(T : h) - e^-^c'iT : h)
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we have an estimate similar to the one above. That is, given any D G D(R)

there are constants C, r l 5 and e > 0, so that for allt > 0, h G £/,

(1.15b) \d(T :h;D: at)\ < Ce~(1+e)t(l+ t)r.

Because of the growth conditions satisfied by g(T), c+(T : h) = 0 if h > 0
and c~(T : h) = 0 if h< 0. The constant terms c^Jϊo : h : v) and ^ ( T : Λ)
satisfy the same matching conditions as the original functions g(H0 : h : v)
and g(T : h).

Using these constant terms, the Schwartz estimates can be made as fol-
lows. Recall that we want to prove that

sup E{at)-ι{\ + t)τ\Φ{h (d/dh)k : at)\ < oo.
u>

Since Φ(h : x) is jointly smooth, it is enough to prove that for each of

= {h e U : ±h > 0} we have

sup Ξ(at)-ι(l + t)r\Φ(h; (d/θh)k : at)\ < oo.

We will do the case that h G U+ here. The other case is similar.

Recall that

Using (1.15) we have

sup Ξ(at)~ι(l + t)r \d(T : h; (d/dh)k : at)\
u+

t>o

But there are constants JD, q > 0 so that Ξ ^ ) " 1 < De^l + t)q for all t > 0.

Thus

s u p Ξ K ) " ^ ! + t ^ e - ( 1 + e ) ί < oo.

Using a calculus lemma from [H3, 7.6], there is a finite subset S of D(R2)

so that for all t > 0,

sup
heu+

/

-k f+°° d(H0 : h:u: at) dv
v

sup \d(H0:h:u;D':at)\.
+
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But using (1.14), for each D' E S there are C, r1 ? e > 0, so that

sup Ξ K ) - 1 ^ + t)r\d{H0 :h:v;D' : at)\

+

oo
t>0

as above.
Thus it suffices to estimate

sup n(
heu+,t>o

f :h:v)
du\

First, as above, the term e tΞ(αt)
 x is of polynomial growth in ί, and so it

is enough to estimate

sup (1 + ί)
heu+,t>o

:h:u)

> v + ih

First, recall that c+(T : h) — 0. Thus in this case we need to estimate

eivtc+{H0:h:v)

4

sup (1 + t)r

heu+,t>o
{d/dhf /

«/—c v + ih
-dv

Since c+(HQ : h : v) is Schwartz as a function of z/, and Λ, ί > 0, it can be
proved using elementary calculus and contour integrals (see (7.5)) that for
any r, k > 0,

sup (d/dh)k Γ
J—c

eivtc+{H0 :h:u)

v + ih
< (X).

This lemma does not hold for

ι:e-ivtc-{H0:h'.v)
v + ih

dv.

For this case we must look at the two constant terms together and use the
matching conditions.

It is easy to prove using a contour integral (see (7.1)) that for Λ, t > 0,

P. V. -—dv = — 2πie-ht

ih
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Thus we can write

= J_p v [
2πi ' ' J-oo v + ih

Now the matching conditions satisfied by the constant terms in this case are

Yιm{d/dh)kc-{T : h) = (d/θh - id/dv)k

C-(H0 : 0 : 0)

for all A; > 0 since c~ (T : h) = 0 for Λ < 0. Equivalently, we can write

lim ίdldh - id I dv)k[-c~ (T : h) + c~(H0 : h : i/)l = 0

for all fc > 0. But this implies (see [HI, 10.7]) that

-c-(T:h)+c-(Ho:h:v)
v + ih

extends to be smooth at (0,0) G c\{U+) x R. Now another calculus lemma
(see (7.6)) gives the required estimate for this term.

The organization of the paper is as follows.
In §2 we review definitions and theorems from [HI, 2, 3, HW5] and

derive a consequence of the matching conditions which will be needed in §5
and §6.

In §3 we extend Harish-Chandra's theory of the constant term to obtain
more exact asymptotic estimates near the walls of Weyl chambers. As in
[HW5], it is necessary to study constant terms for a class of functions gen-
eralizing Eisenstein integrals and for a class of functions which will contain
the functions g(F) used to express the elementary mixed wave packets in
(1.10). These new constant terms are a generalization of the constant terms
used for the case of relative discrete series matrix coefficients of the universal
cover of SX(2,R) in (1.15).

In §4 we use the Casselman-Milicic theory of asymptotics (see [CM]) to
obtain a meromorphic extension of the constant terms of Eisenstein integrals
defined in §3 and study their poles. D. Milicic sketched the theory of the
ordinary constant term in this context in a letter to J. Wolf in 1984.

In §5 we use the results of §4 to prove that all constant terms of the
functions g(F) are smooth.

In §6 we use the results on asymptotics and constant terms to prove that
the elementary mixed wave packets are Schwartz functions.

In §7 we prove some calculus lemmas which are needed for §6.
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2. Preliminaries.

Suppose G is a connected reductive Lie group. Fix a Cartan involution θ
as in [W] and let K denote the fixed point set of θ. Then the center ZQ of
G is contained in K, and K is the full inverse image of a maximal compact
subgroup of the linear group G/ZG. Write K = Kx x V as in [HW5] where
Kι is the unique maximal compact subgroup of K and V is a closed normal
vector subgroup of K such that Z — ZQ Π V is co-compact in both V and

Let g = 6 + p be the ±1 eigenspace decomposition under θ. (For any
Lie group G we will use the corresponding lower case German letter g to
denote the real Lie algebra of G.) Choose a maximal abelian subspace
α0 C p and a positive restricted root system Φ+ = Φ+(fj,α0). Let p =
1/2 ΣαGΦ+ rnia)a where ra(α) is the dimension of the root space of g cor-
responding to α. For x G G , define H(x) G o0 using the Iwasawa decom-
position, x G Kexp(H(x))N0. Then the zonal spherical function on G for
0 G αί is

(2.1a) Ξ(x)= ί
κ/z

Now decompose x £ G as x = υ(x)kι(x)expξ(x) where υ(x) G V,^i(^) G
if1? and ξ(α ) G p. Polynomial growth in G is determined by the function

(2.1 b) σ{x) = σv(x) + σ(x)

where σv(x) = ||v(a;)|| and σ(x) = ||ξ(a;)||. Let W be a Banach space and

/ G C°°{G : W). If DuD2e U(θc) and r > 0, define

(2.1c) ^11/11^=

The Schwartz space is

= {/ G C°°(G : W) :Dl | | / | | r Λ < oo

for all Di,D 2 € W(flC),r > 0}.

We write C(G)=C(G:C).
Let W = W(τ1 : τ2) be a, finite-dimensional vector space on which K acts

on the left and right by TΊ, r2 G K\ For any /ι G t)^, extend /ι to ϊ by making
it trivial on lλ. Then eΛ is a one-dimensional character of K which is unitary
just in case h G it)*. For any h G &£, w f i t e ri,/ι = r i ® eΛ. Then (ri^,T2,/i)
is a double unitary representation of i ί on W for all Λ G it)*. We will say
F : iΌ* x G -+W is (τ1)/l5 τ2,/ι)-spherical if for all kuk2 G K, x G G, h G it)*,

(2.2)
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For any finite-dimensional real vector space 2?, write D(E) for the constant

coefficient differential operators on E.

Proposition 2.3 [H3, 2.8]. Suppose F G C°°(iυ* x G : W) is (τi | Λ,τ2,Λ)-

spherical, and suppose for all r > 0, D G JD(it)*), Di, D2 G U(βc) that

sup Ξ-^αKl +σ(α)) r (l 4- |A|)r||F(/i;l? : A ;α;£>2)|| < oo.
h€it> +

TΛen z/

FeC{G: W).

a?) = / F(h: x)dh,
J
/

it>*

When K is non-compact there are no ϋΓ-finite functions in C(G). The

appropriate generalization in this case is the notion of a if-compact function

defined as follows. For r E ϋΓ, let

(2.4 a) δ(τ) = deg(τ*) trace(r*)

denote the normalized character of the contragredientjr* of r. We say j^G

C(G) is ϋf-compact if there is a compact subset Ω of K so that for r G K,

(2.4b) ί(r ) *κf = O = f*κ δ(r), r $ Ω.

It was proven in [HI, 2.12] that the space C(G)K of UΓ-compact functions
is dense in C(G).

Continuous families of tempered representations of G are defined as fol-
lows. Let H = TA be a 0-stable Cartan subgroup of G and let P — MAN
be a parabolic subgroup associated to H. Let ΦM = Φ(tnctc) denote the
roots of me with respect to tc, Φjĵ  a choice of positive roots. Let pu denote
the half sum over Φ^. For h G iύ* = {h G it* : h(tx) = 0}, set hM(h) = Λ|t.
Let

(2.5 a) Φ M f l = { α E Φ M : (α,ΛM(Λ)) = 0 for all Λ G id*}.

Let

(2.5 b) ΛM,i = {λ G it* : λ — PM is integral and λ is ΦM,I non-singular }.

For λ G ΛM,i set

(2.5 c) X(X) = {χeZM (M°) - : X\ZM0 is a multiple of ex~^ \ZM0 }
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and let

(2.5d) X(T) = {(λ,χ) G ΛM,i x ZM ( M 0 ) - : χ G

Then for (λ,χ) G X(Γ),Λ € id*, let λ(Λ) = λ + hM(h) and χ(Λ) = χ ®
eh|zM(Λ*°) Then if λ(Λ) is regular we will write π(h) for the relative discrete
series representation of M° with Harish-Chandra parameter \(h). For ^ in
α* we set

(2.5 e) π(H : λ : χ : h : i/) = Ind^ M ( M o ) M o Λ i V (χ(/ι) ® π(Λ) Θ e * ® 1)

and let

(2.5 f) 0 ( # : λ : χ : h : i/) be the character of π(H :\:χ:h:v).

Z is a central subgroup of ZM(M°) so that each χ £ ZM(M°y has a Z-

character C(x) Let

(2.5 g) K(χ) = [τeK: τ(kz) = ζ(x : )̂r(fc) for til k e K,z e

Then all ΐΓ-types of the representation π(H : λ : x : h : v) lie in i ί ( χ ® eΛ) =

}
Holomorphic families of Eisenstein integrals corresponding to a continuous

family of tempered representations are defined as follows. Fix (λ, χ) € X(T)
as above and Ti,τ2 G K(χ) acting on W = W(τχ : τ2) on the left and right.
Let P be a connected component of {h G ΪD* : (λ(/ι), α) ^ 0 for all α G Φ^} .
We first define holomorphic families of spherical functions of matrix coeffi-
cients of the representations {χ(h) ® π(h) :heV} of M + = ZM(M°)M°. A
construction of these holomorphic families is given in [HW3, 4]. For h G £>,
let 5(Af * : W : Λ) be the set of all Φ(ft) : M f -> W such that

(2.6 a) Φ(Λ : ^ a fe) = ^ ^ (

for all kuk2 e K]

M = K Π M^x e

and for each w* G W*,
(2.6 b)

x —)• (Φ(/ι : ίc),^*) is a finite sum of matrix coefficients of χ(h) ® π(/ι).

Now let 5 (Aft : W) = 5 (Mt : λ : χ : V : W) be the set of all
Φ G C°°(t>*c x Aft : WO such that

(2.7a) Φ(Λ) G S (M f : W : Λ) for all h€V,
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(2.7 b) h -» Φ(/ι: m) is holomorphic on t>*c for all ra G M f ,

and

(2.7 c) Φ satisfies a moderate growth condition.

(See [HI, 5.2] for the precise growth condition.)
Now for Φ G S (Mf : W), we extend Φ to G by

(2.8 a)
Φ(^) = rlfΛ(κ(α;))Φ(Λ : μ(a?)),a; = κ{x)μ(x)exp(HP(x))n(x) G

and define the Eisenstein integral E(P : Φ) : D^ x α£ x G -» W by

(2.8 b)

Let P(id* x α*) denote the set of all polynomial coefficient differential
operators on iu* x α*. For a e C7°°(cl(X>) x α*) and jD G P(iD* x α*) define

(2.9a) | | α | | ^ = sup \Da{h:u)\.

Then let
(2.9 b)

C(V x α*)0 = {ae C°°{c\(V) x a*) : Hαl^ < oo for all I> G P(it>* x α*)}.

Now for any Φ G 5(M f : W),a G C(U x α*)0, define

(2.9) Φ(χ) = / E{P : Φ : h : i/: x)α(Λ : i/JmCff : Λ : v)dvdh

where m(H : h : v)dvdh is the Plancherel measure corresponding to the
representation π(H : \ : χ : h : v). Φ is called a wave packet of Eisenstein
integrals.

Before we can define elementary mixed wave packets we must review the
definition of matching families of tempered representations from [H3, §3].
Let H = TA be a θ -stable Cartan subgroup of G, P = MAN a parabolic
subgroup associated to H. Fix (λ, χ) G X(T) as in (2.5). Let Fo — {a G
Φj} : (α, λ) = 0 } . Then any subset F of Fo is a strongly orthogonal system
of non-compact roots in ΦM Let HM,F denote the corresponding Cartan
subgroup of M. That is, the complexified Lie algebra of HMF is obtained
from that of T by Cayley transforms corresponding to the roots in F. Then
Hp = HM.FA — TpAp is a Cartan subgroup of G. Let Pp = MFAFNF be
a parabolic subgroup with split component Ap.
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Let F C Fo. Because TF C T, we can define data for tempered repre-
sentations of G corresponding to HF as follows. Let XF = λ| l F and let χF

be the restriction to ZMF(M°F) oίχ®ex~PM. Then (λF,χF) E X{TF). For
h E iΌ*, set λF(h) = λF + hMF(h),χF(h) = χF ® e\ Write

(2.10a) π ( F : h : is) = π(HF :χF:\F:h:v)

and let

(2.10 b) Θ(F : /ι : i/) be the character of π(F :h:v).

We call {Θ(F : h : v) : F C Fo} a family of matching characters correspond-

ing to (λ,χ). Fix Cayley transforms cF : f)c -> f)F,c We will use these

isomorphisms to identify linear functions on t)FyC for any F C Fo.

Given any chamber C of it* and a E Φ M , set ea(C) = sign (r, Qί),r E C.

Now let C E C(λ), the set of all chambers with λ E cl(C). Then for all
a ^ $ M \ ^ O , eα(C) = sign (λ, α). Thus there is a bijection between C(λ) and

(2.11 a) Σ = {(ea)aeFo : ea = ±1 for all a E Fo}

so that e E Σ «+ C = C(e) if eα = eα(C) for all α E FQ. Similarly for any

F C Fo there is a unique chamber CF(e) with AF E cl(Cir) and ea(CF) = ea

for all a E F 0 \ F . For e E Σ, write

(2.11 b) 2>(e) = {ftG iD* : λ(Λ) E C(e)}.

Let

(2.11c) Σ o = { e E Σ

For any e E Σ 0 , F C i^, set P F (e) = {/ι€ it
For any α G F 0 , define

Define an equivalence relation on F o by α ~ β if Ή α = Wp. Write F o =

F0

L U F0

2 U ... U F o

m where the FJ are the distinct equivalence classes. Define

ea{h) = sign (hM(h),a) E {1,-1,0}.

Then by [H3, 3.6], the positive system Φ ^ can be chosen so that ea(h)
is independent of a E Fo\ Write e;(/i) for this common value and define
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Fix hi G it)* such that a(hi) > 0 for all a G FJ. For any smooth function
/ on id*, define

(2.12 a) d/dhif(h) = d/dt\t==of(h + thi).

Now for all α G ί j , pick μa G aFo such that μa\a = 0, (μa,cFoa) = (Λ<,α),
(μα, CFO/9) = 0 for all /3 G F o , /? ̂  α. For any F we can consider μα G cφ by
restriction from aFo to aF. Now for any smooth function / on a*F, define

(2.12 b) d/dμaf{u) = d/dt\t=of(u + tμa).

Let e G Σ o, 1 <i <m. We will say that h0 G Ήi Π cl(X>(c)) is semiregular
in ho & % for 1 < j < m,j ψ i. We will say that Ui is a wall of Z>(e) if
there are semiregular elements in Ήi Π cl(X>(e)). Write Σj for the set of all
e G Σ o such that Hi is a wall of V(e). For any 1 < i < m,e G Σj, define
e±(i) G Σ* by

(2.13)

Now for any 1 < i < m and e G Σ i 7 both of e±(i) G Σ ,̂ € is equal to one of
e±(i), and D(e+(z)) and P(e~(i)) are separated only by the wall Hi-

Now the matching conditions corresponding to the family {π(F : h : v) :
F C Fo} can be stated as follows. Let W be a finite-dimensional vector
space and suppose for each F C Fo we have

j/(F) : it> x αj. -> W

such that for each e G Σo, the restriction g(F : e) of g(F) to I^F(^) X ^F

extends to be a smooth function on C1(£>F(€)) X cι̂ . Then we say that
{g{F) : F C Fo} is a matching family if it satifies the following identities.

Fix E C F o and 1 < i < m,e G Σ<. Write £?(») = JE U Fj. For
any ι/β G α^ and F such that E C F C E(i), define (^,0) G α^ by
(^,0) | α B = vE, ((I/JB?,O), cFα> = 0 for all α G F\J5. Write DF\E =
* Σα<EF\£ 5/aμΛ. Then for all k > 0,

(2.14)

e+(i) : Λo : (uE,0))+g(F : £-(i) : h0 :

for all uB G α^, /ι0 G Ui Π cl(PB(c)). Here for all

P > 0,cp =
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For any e G Σ o , F C F o , Θ(F : h : v : x) extends to a smooth function on

cl(2?jτ(e)) x α> x G. For (Λ,ι/,a;) G cl(£>F(e)) x a*F x G, write

(2.15a) Θ ( F : 6 : Λ : i/ : x ) = σF(e)Θ(F : h : u : x )

where

(2.15b) σF(e)= J J eβ.

Then by [H3, 3.11], for every x G G the family {g(F) : F C Fo} given by
g(F : e : h : v) = Θ(F : e : h : v : x) satisfies the matching conditions of
(2.14).

We are now ready to give the definition of elementary mixed wave packet.
Fix H = TAa, 0-stable Cartan subgroup and (λ,χ) G X(T),τuτ2 G K{χ).
Let U(0) be a neighborhood of 0 in iΌ* satisfying the conditions of [H3, 4.6]
and (3.18). We assume that the Plancherel function m(H : h : v) corre-
sponding to π(H : λ : χ : h : v) is jointly smooth as a function of (ft, v) G
(U(0)Γ\cl(V)) x α* for every connected component V of {h G iΌ* : (λ(/ι), a) ψ
0,α G Φ^}. As in (2.10) we define F o and £ΓF = TFAF, (\F,χF) G -Y(ΓF)
for every F C F o. Let ri,r 2 G ϋΓ(χ) and let W — W(rx : r 2). Suppose for
each F C Fo we have a function

Φ(F) :iϊ>* xa*FxG-^W.

Then we will say that
(2.16 a)

φ(α ) = ^ / / φ ( F :h: uF : x)m(HF : XF ' XF : h : vF)dvFdh

is a (W-valued) elementary mixed wave packet if the functions Φ(F) satisfy
the following conditions. First, there is a compact subset ω C Ϊ7(O) so that
for all F C F o, vF G α>, x G G, /ι G it)*,

(2.16b) Φ(F:h:vF : x) =0,h£ω.

Second, let WF{\χ) = {w e W(G,HF) : ^ λ F = XF,wχF = χF}. Then-for
all w G W>(λ, x), uF eaF,x eG.he it)*,

(2.16c) Φ(F : h : twi/F : re) = Φ(F :h:uF:x).

Third, for each F C F0,e G Σ o , let Φ(F : e) denote the restriction of

Φ(F) to VF(e) x α^ x G where Σ 0 , © F ( C ) are defined as in (2.11). Then,
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using the notation of (2.7), (2.8), there are finitely many functions Ψ; G
S(Ml : λF : χF : VF(e) : W),^ G C(VF(e) x α » 0 so that

(2.16d) Φ(F :e:h:uF:x) = Σai(h :
 "F)E(PF : ^i : h : UF : X)

i

for all (h,uF,x) G T>F(e) x a*F x G. Finally, we require that the functions
Φ(F : ft : vF : x) satisfy the same matching conditions as the characters
Θ(F :h:u: x). That is, for F CF0,eE Σ o , and (ft, v, x) G cl(VF(e)) x α> x
G, define

Φ(F : € : /i : v : x) = σ F (e)Φ(F : Λ : 1/ : ar).

Then for every x € G the functions

(2.16e) J Φ ( J F : e : ft : i/: a;)} satisfy the matching conditions of (2.14).

Finally, if Φ is a W-valued elementary mixed wave packet and w* E W*, we
say that

(2.16 f) φ(x)

is a scalar-valued elementary mixed wave packet.

T h e o r e m 2.17 [H3, 4.2]. Every f G C(G)κ is the sum of finitely many
scalar-valued elementary mixed wave packets.

The main theorem of this paper is

T h e o r e m 2.18. Suppose that Φ and φ are elementary mixed wave packets
defined as in (2.16a) and (2.16f) respectively. Then Φ e C(G : W) and

φeC(G)κ.

In order to prove (2.18) we will need (2.3) and the following results from
[H3]. Suppose Φ(x) is defined as in (2.16a) and for h G it* set

(2.19 a) Φ(ft : x) = ^ / Φ(F : h : uF : x)m(HF : λ F : χ F : h : vF)dvF.
FCFo α*F

Clearly Φ(ft : #) is (r1>/l,r2^)-spherical and

(2.19 b) Φ(x)= I Φ(h:x)dh.
Jiύ*

T h e o r e m 2.20 [H, 7.3]. Let Φ(x) be α W-valued elementary mixed wave
packet . Then (ft,z) H> Φ(ft : x) is jointly smooth on it)* x G.

For any F C F o , (ft, ̂ ) G it)* x cφ, define

(2.21a) PF(ft:^)
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where

(2.21 b) va = — — and ha — .
{a, a) (a, a)

Theorem 2.22 [H3, 5.3]. Suppose for each F C Fo we have functions

Φ(F) : id* x aTF x G -> W

satisfying (2.16b-e). Then for each F C FQ,

/
Φ(F \h\v\ x)m(HF : XF : χF : h : v)dv

-F

g(F:h:u:x).

where for any e G Σ o , h G T>F(e), using the notation of [H3, §5],

g(F : h:v :x) = cσ F (e)(π/2) | F | Φ(F : h : v : x)π(F : h : v)q(F : h : v)

ma(F : h : u)

Further, the functions g(F) have the following properties. For any e G Σ o ,

(/i, ^,rr) —> g(F : h : v : x) is jointly smooth on cl(VF(e)) x a*F x G.

For any D G .D(it>* x α^),r > 0,gι,g2 G W(βc) > ίΛere are constants C, s > 0

| |S(F :h:v;D:gi ;a : ; f t ) | | ( l + |z/|)r < CS(x)(l + σ(x))5

/or all x £ G,h ζ T>F(e),v G o^. Finally, for each x e G, the functions
{g(F : x) : F C Fo} satisfy the matching conditions of (2.14).

Suppose that for each F C Fo we have

: it)* x α^ -^ W

satisfying the matching conditions of (2.14). Fix e0 G Σ o . We may as
well assume that the ordering of Φ ^ was chosen so that (eo)i = 1 for all
1 < i < m. Now fix 1 < j < m. Then if e0 G Σ J 5 so that Hj is a wall
of £>(e0), we have matching conditions corresponding to crossing the wall
Wj satisfied at any h0 G cl(X>(e0)) Π Hj. However, we also need matching
conditions corresponding to crossing the hyperplane Hj when Hj is not a
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wall of T>(e0). These will be a consequence of the basic matching conditions
of (2.14). Let

(2.23) / = {1 < i < m : h0 G Hi for all h0 G Hό Π cl(2?(e0))}.

Then if we define Hi = ΠieJHucl(V(e0)) ΠUj = cl(V(e0)) Π «,-. We will say
/i0 € cl(P(e0)) Π %/ is I-semiregular if h0 & Hk for any 1 < k < ra, k # L
Because of our definition of/, the set of I-semiregular elements in cl(£>(e0)) Π
Hi is non-empty.

Fix /i/ E id* such that (α, /ij) > 0 for all a e F0

J = Ue/FJ. Then in (2.12)
we could have chosen hi = hi for all i € / . Define μ α ,α G JFO

J, as in (2.12).
Define ej(/) e Σ by

Then for any I-semiregular /ι0 € cl(V(eo))nHi, we have ho + thi G 2?(eJ(/))
and Λo - thi G D(eό(/)) for 0 < t sufficiently small. Note e$(I) = e0 G Σ o

because of our assumption about choice of positive roots, and €Q(I) G Σ O

because by the above, V{e^(/)) ^ 0. For any # C Fo, define £?(/)
and ΐoτ EQF <Z E(I), define . D ^ = d/dhi - i ΣaeF\E d/dμa.

Lemma 2.24. Fix E C Fo. Then for all k>0,

(d/dhi)k(g(E : €+(/) : Λo : ̂ ) - p(S : % (I) : Λo

= Σ q n ^ l ^ b ( F : €o+ (I) : Λo : (**, 0))

for all vE € α^, hoEΉiΠ cl(X>(e0)).

Proo/. Fix A; > 0, vB € oj,, hoeΉjf\ cl(£>(e0)), and for each ECFC E(I)
and e € Σ o such that h0 € cl(V(e)), write

d(F:e)=Dk

ΛEg(F:e:ho:(uE,0)).

Then using (2.25) below, it is enough to prove that for a l l ^ C f C E(I)
we have

d(F : e+(/)) =

and

d(F:eo-(/)) =
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We will prove only the first equality since the second is proved the same way.
For any i G /, e G Σ i ? define ŝ e G Σ* by Siβa = eQ if a £ F£ and Siβa = —eα

if a G Fo\ Assume for simplicity of notation that / = {1,..., r} and that the
indices are ordered so that e0 G Σi and for each 1 < i < r - 1 we have
βi = sisi_i...sieo G Σ i + 1 . Then 6Q(I) = er = srer_!.

Now since e0 = eo"(l) and €χ = Sιβ0 — 6^(1), by the matching conditions
and (2.25) we have for any E C F C E(/), j > 0,

FCFiCF(l)

But by differentiating with respect to iYjaeF\E^l^^oc and evaluating at
vF — (yE^ϋ) we see that

d(F : e0) =
FCFiCF(l)

Similarly, since e1 = ef(2) and e2 = ef(2), we have for each F C F j C

: e2).
FiCF2CFi(2)

Now by an easy induction argument we see that d(F : eo"(7)) = d(F : e0) =

Σ Σ ••• Σ

= Σ d(F>••
FCF'CE(I)

since er = e "̂(/) and each F C F1 C E(I) = JP(7) occurs exactly once in the
above sum corresponding to Fx = FU(FTlFj),F 2 = Ή U(F'ΠF0

2),...,F r =
Fr^U(F'ΠFζ). D

Lemma 2.25. Fix finite sets Eι C ,E2 and suppose for each Eλ C F C E2

we have complex numbers a±(F). Then the conditions (a) and (b) below are
equivalent
For each Eλ C F C J52,

(2.25a) α

.For each Ex Q F C. E2,
(2.25 b)

FCF'CJ52
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Proof. The proof that (b) implies (a) is given in [H3, 3.20] which is purely
combinatorial and hence valid in this general setting. Now assume (a). Using
[H3, 3.23], which is also purely combinatorial, we know that for all Ex C
Fι C E2 we have

,, = °
FiQF'CE2

Now add these equalities over all F C i*Ί C E2 to obtain

o= V Σ 2-iF'i((-
FCFιCE2F1CF'CE2

=

But

while

Σ
FCF'

Z-JF(

CE2

-,r,

. 1 =

Σ (
2\F'\F\

Flα+(i

} U
_1)IΓV1
. Thus

FCF' CJ52

U>

This proves the first part of (b). The second part is proved in the same
way using

0 = £ (_i)l*\*Ί Σ 2- |FΊ ((-iyF'Wa
FCF1CE2 FtCF'CE2

3. Growth estimates.

D

In this section we will modify the version of the theory of the constant term
given in [HW5] so that we can give sharper growth estimates near points
on the boundary of Weyl chambers.

Fix a minimal parabolic subgroup Po of G and let Φ+ = Δ(Pθ 5 A)) be the
roots of AQ in Po. Let TQ be a relatively compact Cartan subgroup of Mo so
that Ho = T0A0 is a 0-stable Cartan subgroup of G. Let P be a parabolic
subgroup of G with PQ C P so that AP C Ao and Δ(P,Λ0) C Φ+. Let
φ+ = {a G Φ+ : a\ap = 0}. Write L̂> = KPcl(A£)KP where Aj is the
positive Weyl chamber of Ao with respect to Φ+ and WP = W(lPici (l)o)c)
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Note that LQ = G, but that in general L*p is a closed subset of LP with
non-empty interior.

Let H = TA be a 0-stable Cartan subgroup of G and use the notation of
(2.5). Fix (λ,χ) G X(T), (τur2) G K(χ), W = W(n : r 2 ) , and a connected
component V of {ft G it>* : (λ(/ι)5/3) ^ 0 for all /? G Φ M } such that 0 G cl(D).
Let Ω be a relatively compact neighborhood of 0 in id* and define Vc —
{JiR+ihj : hR eD,/i/ G Ω}. Then for all (ft, z/) G D^xα*, \(h)+iv G l)c- Let
y be a Cayley transform such that \)y

c — ()o,c For 5 G VFG, (/i, v) G t)*̂  x α*,
define

Let ?7C be a (relatively open) neighborhood of 0 in cl(Dc)? U = i7cΠcl(X>).
As in [HW5, 7.5] we will write

J(UC : £p) = J{UC :L*P:s) for the set of all φ G C°°(UC xa* xL*P:W)

satisfying the following conditions. First, for all {y, x) G α* x Lp,

(3.1 a) h*-+ φ{h \v\x) is a holomorphic function on UQ Π VC

Next, for all (ft, i / ) e ί / c x α * ,

(3.1b) ^(ft : ẑ ) is a (τi>/ι|Λ:p,T2)/ι|JR:p)-spherical function on L*p

and

(3.1 c) zφ(h : v) = μp(z : Ah^^s)φ(h : ι/) for all ^ G >ZP.

Here Z P denotes the center of U(ίPic) and μP : ZP ^ 5f(()o,c)Wp i^

canonical isomorphism onto the WP invariants in S(t)0,c) Finally, let CP —

V 0 W(tp,c)(2) where P = P(dc x α*) is the set of polynomial coefficient

differential operators on ΌQ X α*. For D G Cp,r G R, define TD,r(φ) —

(3.1 d) sup ||ίty(Λ : v : ^l lΞpίa:)- 1 !^, !/,^)!"^-^^^

where for (ft, z/, x) G Uc x α* x i p ,

(3.1 e) |(Λ, i/,a;)| = (1 + |Λ|)(1 + \u\)(l+σ(x)).

Then we assume that

(3.1 f) for all D G £ P , there is r > 0 so that TD%r(φ) < oo.

As in [HW5, 7.5] we will write J°(U : L*P) = J°(U : L*P : s) for the
set of all φ G C°°(U x α* x L*P : W) satisfying the following two conditions.
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First, there is a finite set of functions φx,...,φk G J(Uc > L*P) so that for
each (/ι, v) G U x α* there exist dj(h : v) G C, 1 < j < fc, such that for all
x G Lp,

(3.2a) φ(h : v : x) = ^^(Λ- v)φj(h : u : x)

Second, for all J9 € £p, there is r > 0 so that

(3.2b) T°Dτ{φ)= sup
( 7 * x L

It was proven in [H3, 2.21] that the holomorphic families of Eisenstein
integrals defined in (2.8) are elements of J(cl(Dc) : G). Further, if C(D x α*)0

is defined as in (2.9), then for all φ G J(cl(Vc) : G) and a G C(V x α*)0, we
have^ αG J°{d(V) :G).

Assume that PQ Q Q Q P are parabolic subgroups of G. Since the results
of this section are a technical modification of results in [HW5, §7], we will
use much of the notation of that section without repeating the definitions.
Let *Q = Q Π LP and let A(*Q,AQ) denote the roots of AQ in *Q. Let
aQ — (αg)+ k e *^e positive chamber of OQ with respect to A(*Q,AQ) and
for H G αQ, let βQ(H) = inf{α(if) : a G Δ(*Q, AQ)}.

Let Si,l < i < w, be representatives for the cosets WQ\WP and fix a
complex Hubert space T of dimension w with orthonormal basis {βi,..., ew}.
For / G J(UC : L*p) U J°{U : L*P) and υ G 2 Q , define Φ(/) and Φv(/) taking
values in W ® Γ using the same definition as in [HW5, 7.8]. That is, for
any m G LQ C Lp,

it;

Φ(/ : h : v : m) = ^ dQ(m)f(h : ι/ : rn; υί) ® e»

and

Next, for 1 < i < w and any /, the functions Φi(/), Φv,i(/) are defined by

Φί(/ h : v : m) = JBX ίθiΛ^^J Φ(/ \h\v\ m)

and
Φ^iί/ : h : v : m) = Bλ (s^s) Φ v(/ : Λ : ι/ : m)

using the projections JBX defined in [HW5, 7.13].
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Lemma 3.3. (i) Fix D G VMM € ^(ϊp,c), and X G nQ Π lP. Then there

is a finite subset F of Cp and r 0 > 0 such that for all r > 0,

dQ(ma)(\\f(h :u;D: Z iX;mexp#;Z 2 ) | | + \\f(h lu Dih ;mexpH;θ(X)l2)\\)

{TlrU)ZQ(rn)e-WH\l + ?(mexptf)Γ+r°, if f € J°(C7 : LJ);
~ \τF,r(/)Ξg(m)e-^^)|(/ι,i/,m)r+ro(l 4- |fΓ|)Γ+r°e'fc' ^ < m \ i// G J(t/C : LJ);

/or α// m G L*Q, H G αQ Π cl(αj).
(ii) Λ'x D eV,v e ZQ, and bub2 G W(ίg)C) ^Λen there is a finite subset F

of Cp andr0 > 0 such that for all m G LQ^H G αgΠcl(αo"),r > 0,1 < i <iv,

| |Φ V ,*(/ :h:v;D:b! ;mexpϋ";6 2 ) | |

and

< ί3?fΓ(/)Ξg(m)(l + a?(mexpfO)r+ro, <// e J°(U :
\ if f G

Proo/. The proof is similar to that of [HW5, 7.11;7.12], using [HW5, 7.13c]
to pass from Φ and Φ v to Φ* and Φ V ) ί . Note that if m = kιaok2 G L Q , fci, fc2 €
KQ,CLO £ cl(̂ 4o~), a n d ffGαgίl cl(do~), then mexpH = kιa0expHk2 since
K Q centralizes AQ. NOW aoexpH G C1(AQ~) SO that mexpH G L Q . Also, in
the notation of [HW5, 7.11], Lg C L^ and αQ Π cl(α^) C cl(αj). D

Lemma 3.4. Let bub2 G U(lQyC),m G £ £ , # G aQ Π cl(αj). TΛen /or all

Φi(f : Λ : i/ : 6i m e x p Γ ί ί ; 62) = e

TaiAh""ΛH)φ.(f : h : u: 6i;m;

/
Jo

//,i(/ : Λ : i/ : 6i \mexptH;b2)dt

Proof. The proof is the same as that of [HW5, 7.10; 7.14]. D

For 1 < i < w, let

Xi(h) =RβSis\{h)y,he Uc,

and for H G OQ define

Uι

c{H) = {heUc: Xi(h : ff) + βQ(H) > 0}, C/^ίf) = Uι

c{H) Π C/.
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Lemma 3.5. Let D E VMM € ^(tg,c), 1 < * < w,H E α^Πcl(α^). Then

Γ |φjϊ f< (f:h:v\Do e-* . Λ*..,..W . bl ; m expt#;& 2 ) | | dt

converges uniformly for v and m in compact subsets of a* and LQ respec-
tively, and for h in compact subsets of

(U&H), if f € J(UC : LP);

[U^H), if f e J°(U : L P).

Proof. This follows directly from (3.3). Unlike [HW5, 7.17], it holds for all
1 < i < w because we restrict to m G LQ. D

Lemma 3.6. Let 1 < i < w, H € αj Π cl(α^"). Then

Φ<,oo(/ :h:u:m:H)= lim e - Γ « A *.-. .Wφ.(/ : h : v : mexpTH)
T—> -f-oo

exists and is C°° on

( x a* x L Q, iffeJ°(U:L*P);

x α* x L*Q and holomorphic for heU^(H), if f E J(UC : L*P).

Further, for all DeV,bub2e W([g,c),

Φ*,oo(/ : h : v\ D : bλ m; 62 : H) = Φ ^ / : Λ : i/; D : 6X m; 62)
/•OO

+ / Φ f f > i (/ :h:v;Do e-t^».»,AH) . bl -mexptH;^)^.
Jo

Proof. Combine (3.4) and (3.5). D

Let Hi, H2ea^Π cl(α^). For 1 < i < w and

h iU^(Hi) Π Uh{H3), iίfe J(UC : LP),

[WiHi) Π U\H2), if / € J°(C/ : L*P),

the argument in [HC1, §22; Lemma 8] shows that

Φt,oo(/ :h:v:m: Hλ) = Φ ί l O o(/ : h : v : m : H2).

Thus whenever there is an if E αj Πcl(θo") such that Xi(h : H)+βQ(H) > 0,
we can define

(3.7) Φί,oo(/ : h : v : m) = Φ i | O O(/ :h:v:m:H),
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and the definition does not depend on the choice of H.
Now as in [HW5, 7.15] we can define

(3.8a)

1° = {1 < * < w : λ,(Λ : H) = 0 for all h G U,H G o o } ;

(3.8b)
/+ = {1 < i < w : λi(h :H)>0 for some h€U,H e αj};

(3.8c)
/ - = {1 < i < w : λi(h :H)<0 for all h € U Π V, H G α£}.

Remark. If i G 1° U J + , the constant terms defined above are the same as
those defined in [HW5, 7.18].

Define

(3.9) 70(0) = i ° U { t G J - : λ i ( 0 : f Γ ) = 0 for all H G aQ}.

Fix H o 6 o j Π cl(αί) such that /3Q(H0) = l Then, for all i G /°(0),
λi(0 : Ho) + PQ(HO) = 1, SO that there is a (relatively open) neighborhood
U'c of 0 in C/c so that U'c C C/^(if0) for all t G /°(0). Thus for i G /°(0), Φ i i 0 O

is defined for all h G U'c. Redefine

Thus for all 1 < i < w, Φi<00 is defined for all h G U'c.

Lemma 3.10. Let 1 < i < w,h G U'c. Then

Φi,oo(/ : Λ : ^ : m υ) = μQ(υ : SiAhιV,s)Φi>0O(f : h : u : m)

for all v G 2 Q αnc?

Φ i > o o (/ : Λ : i/ : mexpH) = eSiAh">-Wφi>00(f : h : u : m)

for all m e L*Q,H e aQΠ cl(αj). Given bub2 G U(IQ,C) and D G V, there

exists a finite subset F C CP and r 0 > 0 such that for all r > 0 iAere is

C >0 so that

||Φ i,0o(/:/ι:i/;JD:61;m;fe2)||

ί if f € J°(U : L*P);

K if f G
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Proof. The proof is the same as that of [HW5, 7.20; 7.27] because for i G
I°(0)^CU^(Ho) Π

Lemma 3.11. Let ω be a compact subset of OQ Π C1(OQ"). There exist a
neighborhood U'c(ω) of 0 in U'c and 0 < δ0 < \ so that given D e V there
exists a finite subset F C. V and C,rχ > 0, so that for all f € J(Uc '•
L*P)UJ°(U : L*P),h e U^(ω),bub2 6W([Q,c),m € L*Q,H Eω, andT> 0,

\\Φi(f i h v D . b ! \ τ n e x p T H ; b 2 ) - Φ i ) 0 O ( / : h : u ; D : b x [ m e x p T H ; b 2 ) \ \

mexptfΓ;

for all 1 < i < w. Further, for each i G /"" Π /°(0) there is a continuous
piecewise affine function δi on U'c satisfying 0 < δi(h) < | for all h G U'c and
δi(h) = 0 if and only if
λi{h : H) = 0 for all H G aQ, so that

||Φi |Oo(/ ' h'.v D:bλ -mexpTH;b2)\\

lφ^(/ '.h'.v D' .b! ;m;62)||

t\\H\\Γdt\.

Proof. Suppose first that i G /° U /+. Then Φ i i 0 0 is the same as the con-
stant term defined in [HW5, §7], and the argument given in the proof of
[HW5, 7.21] shows that the inequality is satisfied for any 0 < δ0 < \ such
that, in the notation of [HW5, 7.25], δ0 < miniGy+ d{.

Now suppose that i G /" and i 0 /°(0). Then, in the notation of
[HW5, 7.23], di(0) > 0. Thus there are a neighborhood V of 0 in t)£
and an e > 0 so that di(h) > e for all h G V and all i G I~ such that
i 0 I°(0). Now \{h : H) < -eβQ{H) for all heV. Thus the argument in
Case II of [HW5, 7.21] works as long as h G U'c Π V, 0 < δ0 < | , and ί0 < e.

Finally, suppose that i G /" Π J°(0). Then λ^O : iί) = 0 for all H G aQ

and there is a neighborhood V^ω) of 0 in t)̂ . so that for all h G V(ω), H G
ω,0 < -λi(Λ : if) < ^ ^ . Then, using (3.8) as in Case I of [HW5, 7.21],
for all H G ω, Λ G F(ω) Π C/̂ ,

||Φ<(/ : Λ : I/ JD : 6i ;mexpT#;62) - ΦifOo(/ '.h w.D:^ ;mexpTH;62)||
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<c Σ Γ(i + (*-DPΓ|ir*

: h : ι / ; B Ό e - " - ^ ( f c H ) : 61 ;mexpί#;& 2

• W^πΛf h:u-D': 6

since 0 < δ0 < | . :

Finally, for i € Γ Π 7°(0), define rfj(Λ), h e ϋ*c, as in [HW5, 7.23]. Then
di(h) > 0 for all h G UΠV and for /λ G UΠd(V), di(h) = 0 if and only if λ;(/ι :
f ί) = 0 for all H € aQ. Now for h e Uc, set ^(Λ) = min{Re <£(/*), <50}
Then, as in Case II of [HW5, 7.21], we have

\\*H,i(f •h:v;D':b1 ;

Now, since ||Φi|| and ||Φi — Φ i j O O | | both satisfy the desired inequality, so does

ll*i,ool|. ' •

Recall Φ(/) and hence all Φj? 0 0(/) take values in W ® T where T has
a distinguished basis e1,...,ew. Further, Φ(/) = Σ™=1 dets . Φ<(/) where
det Si — ± 1 is defined by πP(siAh^s) = det 5< πP(Ah^iS). For each 1 < i < w
we write

(3.12a)
w

ij (/ : h : v : m) ® βj

and write

(3.12b)

:u:m)= ψf,SiS(
h '- v '• ™) = ^i,i(/ : h : ^ : m )

Choose e > 0 so that PQ{H) > 2e for all H E ω. Put e0 = eδ0 and
€i(h) = eδi(h),i E I~ Π /°(0), where δ0 and δi(h) are defined as in (3.11).
Then combining (3.11) with (3.3) and (3.10) we have the following theorem.
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Theorem 3.13. Given &i,62 € ZY([Q,C) and D G V, there exist a finite
subset F C Cp and an r± > 0 so that for all r > 0 there is a C > 0 so that
for all meL*Q,H G ω,T > 0,

dQ(mexpTH)πP(AhtUiS)f(h :v;D: b[ ; mexpT#;&' 2 )

H)φf,Sia(h : v\Ό \b\ ;mexpTϋΓ;δ2)

C O Γ Ξ Q (m)(l + σ(m exp TH))r+ri, iff e J°(U : LJ,),

and /or i G J~ Π J°(0), ft G E/c(ω),

| | ^ / , 5 i 5 ( / ι : u\D : 61 ; m e x p T f ί ; 6 2 ) | |

< I k i F ) Γ ( / ) e r ,Q(m)(l + o

^C/TiΓjr \f)€ C* ΞQ(?7I)J(/I, P', 771βxp ΓJuΓ)! l g l J l V H ŷ  ^f f ^ J\JJQ '. Lp).

Further, for all 1 <i <w,

U(U'C : L£ : s<5), iff G J(17C = ^ P : θ);
/>s<s \j°(ί/' : L*Q : 5^), ί// G J°(U : L^ : 5).

Given D £ CQ, there are a finite subset F C CP and an rλ > 0 such that for
all r > 0 JΛere is a C > 0 so that

ί τ o , r + r i ( φ f t S i S ) < cτFtΓ(f), if f
: LP).

Corollary 3.14. Let H G OQ. Then there are e > 0 and a neighborhood
U'C(H) of 0 in t/£, so Λ̂â  /or allmeL*Q,h€ U^(H) (respectively U'C{H) Π

),i/ G a*,/ G J(t/ C : ij>) [respectively J°{U : LJ,)),

lim dQ(mexptH)πP(Ah^s)f(h : z/ : mexptH)

Sj Φf,Sis(h '- v '• mexptH)
2 = 1

- 0 .

Assume that Po C Q1 C Q C P. Let s<, 1 < i < w, denote coset
representatives for WQ\WP and let Uj,l < j < p, denote coset represen-
tatives for WQ'\WQ. Then we can take UjSi,l < i < w,l < j < p,
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as coset representatives for WQ>\WP. Let / E J(UC : LP : s) (respec-
tively J°(U : L*p : s)) and 1 < i < w. Then, as in [HW5, 7.3.2],
g*{h : v) = TTQ{Ah,u,Sis)'^f,siS(h : v) E J(ί7^ : L£ : s^) (respectively
J^E/7 : LQ : Sis)). Now there is a neighborhood UQ of 0 in U'c so that for
each 1 < j < p we can define

^c :
 £Q'

 : ^j5i5)( respectively J°(ί7" : LQ, : Ϊ / ^ ^ ) ) .

Write

Ψfw e J ( ^ : L^ : u ^ ^ ί respectively J 0 ([/ m : UQI : ^ 5 , 5 ) )

for the constant term of / with respect to Q' corresponding to the coset
representative UjSi.

L e m m a 3.15. There is a neighborhood UQ of 0 in U£ Π U£ so that for all
(h,ι>,m) e UQ x α* x LQ, (respectively U x α* x LQ,),

Ψ'f,ujSis(h v.m)= ψ9i,UjSis{h ' v : m).

Proof. Suppose / E J(UQ : L*p : s) and use the notation above. (If / G
J°(U : Lp : s), the proof is the same.) For any pair Q C P o f parabolic

subgroups we will write (CIQ) for the positive Weyl chamber of αg with

respect to the roots A(LP ΠQ,AQ) and write d^ma) = ep(α), m e MQ,a E

AQ, where p = l /2Σ)m(α)α,α E Δ ( L P Π Q, A Q ) . Now for Q' C Q C P

as above, choose Fx E ίαξ) Π cl(αj) and ίίs € (α^,) Π cl(α^). Then

Ho = Hλ + H2 E (α£,) Π cl(αj) and every ίίo € (<*£>) Π cl(αj) can be

decomposed in this way. Now, using the fact that for all m E LQ, we have

ψf,8is(h :v:m) = ΈQ^h^s^g^h : v : m) and dg,(m) = d£(m)d^,(m), for

all (/i, z/, m) E i7c x α* x Lg, we have

dQ,(mexp(tH0))πP(Ah)l/iS)f(h : v : mexp(tH0))

iSi)ψgi^UjSiS(h : v : mexp(tH0))

< d%,(mexΌ(tHf\)) dq(mexp(tH0))πP(Ah^^s)f(h : v : mexp(tH0))

Ψf,Sis{h : ^ :
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+ Σ
Ki<w

(&,(mexp(tHo))πQ(Ahil,tai8)gi(h : v : mexp(tH0))

j ψgi,uj8is{h : v : mexp(tH0))

ι<j<p

Now by applying Theorem 3.13 to the pair (P, Q) with H — Hλ we see
that there are a neighborhood Vx of 0 in UQ, ex > 0,r > 0, and a constant
C so that for all (Λ, v, m) € Vi x α* x Lg, ί > 0,

ci^,(mexp(tΰo)) dQ(mexp(tH0))πp(Ahil/yS)f(h : z/ : mexp(tiϊo))

^ Ψf,SiS{h : z/ : raexp(ίiϊo))

<Ce-e i ίd^(mexp(ίJyo))Ξg(mexp(ίF2))|(Λ,^mexp(tiίo))Γe | Λ l k^

Now as in [HW5, 7.11], there are constants c > 0,r0 > 0 so that

dQ,(mexp(tH0))ΞQ(mexp(tH2)) < cΞg/(m)(l + σ(mexp(tH0)))r°.

Thus for fixed m, z/, Λ there is a polynomial p(t) so that

: v : mexp(tH0))

f ψf,8iS(h : ι/ :

KKω

< \p(t)\e -at

for all ί > 0. Thus for any 0 < e < eλ we have

lim : z/ : mexp(tH0))

det 5f ψf,sis(h> : ^ : = 0.

Next, applying Theorem 3.13 to the pair (Q, Q1) with H — iJ2 we see that
there are a neighborhood F2 of 0 in E/g, e2 > 0, r > 0, and a constant C so
that for all (Λ, z/, m) G V2 x α* x Lg,, 1 <i <w,

d^t(mexp(tH0))πQ(Ah^SiS)gi(h : z/ : mexp(tH0))
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ψgi,UjSis{h : v : raexp(ίiJ0))

Thus if 0 < e < e2 we have

lim eet\ ^SiS)gι(h : v : mexp(tH0))

j ψgi,UjSiS(h : ^ : mexp(ίίfo)) - 0 .

Combining the above, we see that there is e > 0 so that for all (Λ, v, m) G

Vϊ Π V̂2 x α* x L*Qf

lim : i/ : mexp(tH0))

ujSi)φgiiU.ai8(h : v : mexp(tH0)) = 0.

But we also have e' > 0 and a neighborhood F ; of 0 so that for all (Λ, ι̂ , m) G

lim ec'* do/(mexp(ίflo))πp(ΛΛ|I/ϊβ)/(Λ : i/ : mexp(ίflo))

det(ujSi)ij^UjSiS(h : i/ : mexp(tiϊo)) = 0.

J

Thus we have a neighborhood V of Λo

 i n ^ c a n d 6 > 0 so that for all

(Λ,i/,m) G V x α* x LQ,,

lime c ί

But for each i,j we have

Ψg^ujSisih ' v ' mexp(tH0)) =

: v : mexp(tH0))

i/ : mexp(tH0)) = 0.

sis(h ' v m) exp(tUjSisAhjJ/(H0))
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and

Ψ'f,ujSis(h : v '• mexp(tH0)) = Ψ'f)UjSiS(h : v : m

Let S — {(i,i) : ψg^ujSis or ψrf^UjS.s is not identically zero}. Then for
all (z,j) G 5 we have ReujSisAh^(H0) < 0 for all (h,v) G V x α*, and
Re^5i5Λo^(iίo) — 0 for all v G α*. By shrinking V if necessary we can
assume that for all non-zero terms we have —e < KeUjSisAhyl/(Ho) < 0 for
all (/ι, v) G V x α*. Further, there is a dense subset W of V" x α* so that for
(/ι, ̂ ) G W the complex numbers tt;^ = UjSisAhiί/(H0) are all distinct. Thus
for fixed (/ι, ẑ , m) G PF x ig, there are distinct complex numbers wiyj with
0 < Re Wij < e and complex numbers

ciyj — aet{ujSi)(^gi,UjSis(h : v : m) — φ'fu.SiS(h : v : m))

so that

UjSi)ψgi,UjSiS{h : v : mexp(tH0))

detiujSiWf^s.sih : v : mexp(tH0)) =

It now follows from (3.16) below that cid = 0 for all (i,j) G 5. Thus
Φg^ujSisih : i/ : m) = φff^UjSiS(h \v : m) for all (h,v,m) G Ĥ  x Lg/. But since
the constant terms are continuous functions we have φgi)Ujs1s{fι : v '• m ) —
^/,n sis{h : ^ : r n ) f°r a^l (h,v,m) G V x α* x LQ,. D

Lemma 3.16. Suppose e > 0,tϋl5 ...,tϋfc are distinct complex numbers with
0 < Re Wi < e for 1 < i < k,pi(t), 1 < i < k, are polynomials, and

k

lim e

Then pi — ... = pk = 0.

Proof. The proof is by induction on the number of elements in the sum.
Suppose that k = 1 and that Wι — x + iy, x, y G R. Then 0 < x < e implies
that

0 = lim ext

Pl(t)e-Wlt = lim pi(ί)e~i2/t.

This implies that pλ = 0.
Now suppose that A; > 2 and that the result is true for sums with less that

k terms. Let x = min{iϊe Wi : 1 < i < k}. Then

k k

0= lim extYpΛt)e-tWi = lim YpΛt)e"^Wi"x)
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But for all i such that Re Wi > x,\imt^+oopi(t)e-t( Wi-χ) = 0. Thus

Σ Pi(t)e-U ^^=0
l<i<k,Re Wi-x

so that as in [HC1, 21.3], p{ = 0 for all ί such that Re Wi = x. But now

>eί Y^ Pi(t)e~tWi = 0
l<ι</b,jRe iϋi>x

and by the induction hypothesis, pi = 0 for all such i also. D

ix i ϊ = TA a 0-stable Cartan subgroup and (λ,χ) E X(T),Ti,τ2 G
), W = Win : r 2). As in (2.10) we define Fo and # F = TFAF, (λF, χF) e

X{TF) for every F C Fo. Fix a Cay ley transform y with ίj^ = f)0,c Then
for each 5 G VF(gc> ^o,c)? ̂  ^ -Fo? (Λ, i/) G OJc x αF, we can define

Let C/c be a neighborhood of 0 in &£. and for each F C F0,e G Σ o, let

Ϊ/Ffc(c) - C/c Π cl(2?FfC(€)), UF{e) = C/>,c(c) Π it)*.

Let P o Q -P be a standard parabolic subgroup of G. Then for all F C

F o , e G Σ o , 5 € W^flo ίlo,c) we can define the subset

(3.17 a) JF{UC :e:L*P:s) = J{UF,c{e) : L*P : s)

of C°°(UF^{e) x a*F x L*P : W) as in (3.1) using Kζvs. Similarly, we define
the subset

(3.17b) J°F(U :e:L*P:s) = J°(UF(e) : UP : s)

of C°°(UF{e) x a*F x VP : W) as in (3.2). Now assume that P o C Q C P.
Then for each fixed F C F o, e G Σo, 1 < i < w, we can define the constant
term ψfiSiS(F : e) of / ( F : e) as in the first part of this section.

Let θ be the set of simple roots in A(P0,A0). Then there is a bijection
between standard parabolic subgroups of G and subsets of θ so that P «-> ΘP

if aP = {H E α0 : OL{H) — 0 for all a G θp} . Since we assume that our
Cartan involution is chosen so that ZG C If, we have α^ = {0}. Given
Po Q Q Q P Q G, define .ff = H(P,Q) G cl(αj) by a(H) = 0 for all
a G ΘQ U (Θ\ΘP) and α(£Γ) = 1 for all a G Θ P \ Θ Q . Then H(P,Q) G
(αg)+ = {£Γ G αQ : α(ff) > 0 for all a G

Lemma 3.18. ΓΛere is α neighborhood U of 0 in ΐt)* so £Λα£ /or
F C F0,e E Σ 0 ,s G W(βc, f)o,c),Po C Q C P C G , i / / G J^(C/ : c : L^
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then all constant terms ψf,Sis E JF(U : e : LQ : Sis) and the estimates of
Theorem 3.13 hold for all h G UF(e) when H = H(P, Q).

Proof. For fixed F, e, s, P, Q as above, how small U' CU has to be to make
Theorem 3.13 valid depends on XF and H = l f(P, Q), but is independent of
/. Since there are only finitely many possibilities for F, e, s,P, ζ), a neigh-
borhood U can be found which works for all. D

Fix a neighborhood U of 0 in id* as in (3.18). We will define

Jι

F(U : c : L*P : s) to be the set of all / G J°F{U : e : L*P : s) such that

there is a compact subset ω of UF{^) SO that supp/ C ω and such that for

all Po C Q C P we have

fQ,8is(h :v:m) = πP ( Λ ^ ? S ) Φf,Sis(h ' v : m)

extends to a C°° function on Up(e) x α^ x LQ for all i.

Let P o C Q C P and F C F o , e € Σ o . Define e0 and e<(/ι), ϊ G / " Π /°(0)

as in (3.13) for ω = { # - ί ί ( P , Q)}.

Theorem 3.19. Given 61 ?62 £ W(IQ,C) o,nd D E V, there exist a finite
subset E C Cp and an rx > 0 so that for all r > 0 £Λere is a C > 0 so that
for all meL*Q,he UF(e),T > 0,/ G J>(?7 : e : Z^ : 5),

dQ(mexpTH)f(h \v,D \ b[ ;mexpTff;6 2)

i)fQ,sis{h \v\Ό \ bι\mexpTH]b2)

and for each i G / " Π /°(0),

i S i S(/ι :v\D:bx ;mexpT J f f ;δ 2 ) | |

Further, for all 1 <i <w,

Given D £ £Q, there are a finite subset E C Cp and an rλ > 0 5ί/cΛ ίΛαί for
all r > 0 ίΛere is a C > 0 so that
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Proof. All the estimates and the fact that /g,5ίS G JF(U : e : LQ : Sis) follow
from (3.13), using [H2, 6.8]. Further, supp/g i5iS C supp/ C ω. Finally,
for Po C Qf C ζ), using (3.15) we see that (fQiSis)Q\ujsis = fQ'yujSis for all j .
Thus {fQ,sis)Q',ujsis extends to be smooth. D

Now suppose for each F C Fo, e G Σo, we have

/ ( F : β) 6 W e :e:L*P:s)

(or in Jp(ί7 : e : Lp : 5)) satisfying the matching conditions of (2.14) for
each x <Ξ L*P. Let PoQQQP.

Theorem 3.21. Suppose {f(F : e)} is a matching collection of functions
in JF(UC - e : L*p : s). Then for each 1 < i < w, the collection

satisfies the matching conditions of (2.14) for each x G LQ. If {f(F : e)}
is a matching collection of functions in J}?(U : e : L*P : s), then for each
1 < i < w, the collection

satisfies the matching conditions of (2.14) for each x G LQ.

In order to prove (3.21) we will need the following lemma. Recall for each
s e W(gc, l)o,c), F C Fo, (Λ, v) eυ*cx a*F, we have defined Aζ^s G fĵ c For
each l<i<m,ECFC E{i), define DF\E = d/dhi - i Σ«eF\E d/dμa.

Lemma 3.22. Let E C F 0 , l < i < m,uE G a*E,h0 G Hi. Then for any
ECFCE(i),k>0,H Gϊ)o,c,

Proof. F o r (h,v) E Ό ^ x a*F,H € f ) 0 , c ,

ζ l = (λF(Λ)

where (s~1H)y G f|0,c Now in [H3, 5.16] it was proven that for every
β e Φ(0c,f>0,c),& > 0, Dk

FχE(\F{ho) + i(vE,0),βCF) is independent of E C
F C E(i). Using exactly the same proof as that in [H3, 5.16] we see that
for all Ex € f)fl,c, A: > 0,
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- 1

is independent ofECFC E(i). Now take Hx = (s~ιH)y to see that for
all k > 0, Dk

ΛEAζo {VE 0 ) s ( # ) is independent of E C F C £?(<). D

Proof o/ Theorem 3.21. We start with the family of functions {f(F : e)}
satisfying the matching conditions of (2.14). The first step in defining the
constant terms is to define associated functions Φ(f(F : e)), Φ V (/(F : e)), v G
ZQ, taking values in W®T. Recall that for any /, Φ(/) and Φυ(/) are defined
by

w

Φ(f : h : v : m) = ]Γ dQ(m)f(h : 2/ : m; vj) ® e*
t = l

and

Φυ(/ : /i : ẑ  : m) = J ^ dQ(m)f(h \v : m; ̂ (v : Λ : z/)') ® e*

where ^(v : Λ : i/) = EJ=i MPQ ( ^ j ~ MP (^ϋ : Λ ί , ^ ) ) î? t h e ^ €
^Qj ^vii G ̂ p? and ei,..., e^ is a basis for T.

Now since the f(F:e:h:v:m) satisfy the matching conditions for
all m 6 L*p, the functions f(F : e : h : u : m υ) will satisfy the matching
conditions for any m G LQ,V G ZQ. Thus it is clear that the functions
Φ(f(F : e)) satisfy the matching conditions. But using (3.22), for all u G
S(f)ofc)ik ^ °> ϋF\^Λfo,(^,o),s(w) i s independent of jBCFC £?(*). Thus for
all k > 0, Dk

ΛEμP (zvij : Λ£f(l/J5f0)fβ) is independent o f f i C F C F o . Thus
the functions ΦV(/(F : e)) also satisfy the matching conditions of (2.14).

Next, for 1 < i < w and any /, the functions Φΐ(/), Φυ,ΐ(/) are defined by

Φi(/ : Λ : 1/ : m) = Bi ( ^ Λ ^ s ) Φ(/ : h : i/ : m)

and

Φ V | i (/ : Λ : i/: m) = B! (θ<A^ |β) Φ,(/ : h : i/ : m)

where J?i is an r x r matrix with entries in S(t)0,c)WQ> Thus again using
(3.22), if b is any matrix entry of Bu for all k > 0, D^Eb(siAζo {VE 0 ) s )
is independent of JS C F C JF0. Thus the functions Φi(f(F : e)) and
Φ υ > i ( / ( F : e)) also satisfy the matching conditions of (2.14).

By (3.6), for any /, D we have

Φt,oo(/ h : v D : m) = Φ 4(/ : Λ : i/ D : m)
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I Φjfo,< [f h:w,Do e-
tSiA^Ho) : mexptH0) dt.

But for all k > 0, Dk

F^E (θtA£O t ( v j l | O ) f β) (JEΓ0) is independent o f £ C F C
Fo. Thus, using the matching conditions for the functions Φi(f(F : e))
and Φ v i ( / ( F : e)), we obtain the matching conditions for the functions
Φ i ) O O (/(F : e)) and hence φftBi8{F : e).

Finally, in the case that / € Jp{U : e : L*p : 5), we have

φ f i 8 i S ( F : e : h : v ) = π P ( Λ ^ S ) f Q y S i S ( F : e : h : v ) .

Fix E C F0,l < i < m, e E Σu x e L*Q, vE e a*E, h0 eUiΠ UE{e), and for
each ECFC E(i),k > 0, write

α±(fc : F) = Dk

ΛEfQiSiS(F : £±(i) : Λo : ( ^ , 0 ) : x);

b±(k : F) = Dk

ΛE<ψf,SiS(F : e^ i ) : Λo : (i/s,0) : x);

c(fc : F) = J

As in (3.22), c(k : F) = c(k : F) is independent of F. Further, since

DE\E — d/dhi and πp (Λjf)I/Jg s ) is a polynomial in h and z/#, there is fc0 so

that c(k0 : E) φ 0 as long as */# is in a dense subset of regular elements.

Assume that vE is regular.

Now for any k > 0 we have

b±(k : F) =

Thus using the fact that the φf<SiS(F : e) satisfy the matching conditions,
we have for all E C F C £( ϊ ) , A; > 0,

Σ (*) c(fc - j : E) \a+(k :E)-a-(k: E)

\ \ \ ( k :F)+a-(k: F))\ = 0.
ECFCE(i) J

Now as in [HI, 10.10], it is easy to use the fact that c(k0 : E) φ 0 and
induction to prove that

a+(k : E) - a-(k : E) - £ cιnm(a+(k : F) + α"(fc : F)) = 0

for all jfe.
Now since the matching conditions are satisfied for vE in the dense subset

of regular elements, and the functions fQj8iS(F : e±(i) : h : v : x) are jointly
smooth, the matching conditions will be satisfied for any vE. D
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4. Asymptotic expansions.

In this section we will obtain the constant terms of §3 in a different way, via
the Casselman-Milicic theory of asymptotic expansions. Prom this point of
view it is easy to show that the constant terms have meromorphic continua-
tions and get some information on possible poles which will be needed in §5.
In [HW4] we used the theory of asymptotic expansions to study holomor-
phic families of matrix coefficients of relative discrete series representations.
We considered only the case in which the group G is simple, simply con-
nected, with infinite center so that ΌQ == C. In order to do this we had to
extend the Casselman-Milicic theory of [CM] to include dependence on a
complex parameter ft G t>c = C. The results proven in [HW4, §7] extend
easily to the general case when ft G β£. == C n . Thus we will use these re-
sults without reproving them for this case. We will change the notation used
in [CM, HW4] slightly so that we study asympotics in the positive Weyl
chamber rather than the negative Weyl chamber. This is so that the con-
stant terms obtained from the asymptotic expansions can be easily compared
with those obtained in §3 using the techniques of Harish-Chandra.

H = TA be a 0-stable Cartan subgroup of <3, (λ,χ) G X(T),τur2 G
W = W(τι : r2). Let V be a connected component of {ft G it)* :

(λ(ft), a) φ 0 for all a G Φ^} such that 0 G cl(P). Let

F G C°°(Ό*C x a*c x G : W)

such that for all a EG,

(4.1 a) (ft, v) -> F(h : v : x) is a holomorphic function on 0^ x α ^

for all (ft, v) G ϊ**c x α^,

(4.1 b) F(h \v) is a ( r ^ , τ2ih) ~ spherical function on G;

for all (ft, v) G ΌQ X αC5 u s i n g the notation of (3.1),

(4.1 c) zF(h : v) = μG{z : AhtV)F(h : v) for all z G ZG-,

and for all (ft, v) G V x α*, glig2 G W(flc)j there is an r > 0 so that

(4.1 d) sup | |F(f t :u:9l χx; g2)\\Ξ(x)-1 (I + σ(x))~r < oo.
x€G

Let α0 be a maximal abelian subspace of p such that A C Ao and let
AQ be the positive Weyl chamber of Ao with respect to a choice ΦJO —
Φ+(fl5 flo) of positive restricted roots, so that G = K cl(AQ)K is the Cartan
decomposition of G. Let Δ be the set of simple (multiplicative) roots for
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the negative roots of Ao. Thus Δ = {eβ : β E Δα o} where Δα o is the
set of simple roots in Φ~o = — Φ+. Note that although G is not necessarily
semisimple, our Cartan involution θ is chosen so that ZG C K where ZG

is the center of G. Thus Δα o is a basis for α .̂ Let a : Ao -> C Δ be the
embedding given by

(4.2 a) a(a) = (a(a) : ae Δ),α G A)

In these coordinates Aj corresponds to (0,1)Δ and and cl(AQ) corresponds
to (0, l] Δ .

For s E C Δ , m E Z Δ , and z E C Δ , set

(4.2 b) z = Π <α» l Q g m ^ = Π

For θ C Δ we regard C Δ \ Θ as a subset of C Δ , and we say s,ί G C Δ \ Θ are
(Δ\θ)-integrally equivalent if t - s e Z Δ \ Θ . Let C(θ) be the domain in C Δ

containing [0,1)Δ\Θ x (0,1]Θ which is defined in [CM, pp. 895-896]. Then
for each (Λ,i/) G t)^ x etc, there exists a finite set S&\e(h : i/) of mutually
(Δ\Θ)-integrally inequivalent elements of C Δ ^ Θ satisfying the following. For
each s E SA\θ(h : v) there is a finite set F^θ(h : i/),m E Z + V θ , of holo-
morphic functions on C(θ) such that on each of the coordinate hyperplanes
%a — [z E C(Θ) : za =0},a G Δ\Θ, at least one of them is not identically
zero, so that for all a E A£(θ) = {α E A) α(α) < l , α G θ α(α) < l ,α G
Δ\Θ},

(4.2 c) F(Λ : v : α) = £ Σ ^ θ ( Λ : ^ : a(a))as(a) logm a(a).

We will define a uniform asymptotic expansion as follows. Let {μa :

a E Δ} be the dual basis in αj to {logα : a E Δ}. Let W be the Weyl

group of Φ(flc, (We) and let pao = l/2J2βeΦ+ β. For each w e W define

s(w :h:u) eCA by

(4.3a) s(w : h : i/)α = (tϋΛΛϊl/ - p α o , μ α ) , α E Δ

so that

(4.3b) as(w:h:ι/)(a) = ew A | k --p"o(α), α E Λ

For ^ E VF, define b(^), a(w : h : u) E C Δ by

(4.3 c) b(w)Q = (tϋΛo,o - pα0,
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and

(4.3 d) a(w:h: v)a = (w(hM(h) + iv)y,μa), <* G Δ,(Λ,i/) e t>*c x a*c,

so that each a(w)a is a linear functional on κ>*c x α£. and

(4.3e) s(w : h : v) — b(w) + a(w \h\v).

Fix Θ C Δ. We will define an equivalence relation on W by w ^ Δ \ Θ W' if
and only if

(4.4 a) s(w : h : v)a-s{w' :h:v)aeZ for all a G Δ\θ,(Λ, i/) G Ό*cxa*c.

Thus w ~ Δ \ Θ w1 if and only if

(4.4 b) b(w)a - b(w')a € Z and α(ti;)α = 0(1/;% for all α G Δ \ θ .

For each a G Δ \ θ , w,w' eW such that w T^Δ\Θ tϋ;, define

(4.4c) Lα.ti .ti;' = {(Λ, ^) 6 1 ) ^ ^ : s(tϋ : h:v)a- s(wf : Λ : v)a G Z}

and set

(4.4 d)

Then L is a closed subset of &£ x CIQ which is a countable union of affine
subspaces of co-dimension at least one. For (h, v) G (&£ x ac)\^^wτwt €
W,s(ιy : Λ : 1/) is Δ\θ-integrally equivalent to s(u/ : /ι : ẑ ) if and only if
w ~ Δ \ Θ w' Further, for each (Λ, z/) G (ϋj^ x αjc)\i and 5 G SA\θ(h : v)
there is an equivalence class U of VΓ so that sa e {s(w : h : v)a : w € U} for
all a G Δ \ θ . Let U be an equivalence class of W and for α G Δ \ θ define
• (̂C)a = {w 6 ί/ : θ(ι^ : /ι : i/)a = sa for some s G S Δ \ Θ ( ^ v),{h,v) G
(t)c x a^)\L}. Let [/ be an equivalence class of W such that I(U)a Φ 0 for
all a G Δ \ θ . Then for a G Δ \ θ , (Λ, 1/) G dj, x αc, define

(4.4e) α(ϊ7 : h : z/)α = α(iί; : h : u)a^w G U\

(4.4f) 6(C/)α = min{6(tί;)α : w G /(t7)α};

(4.4g) s(U:h: u)a = a(U : h : u)a + b(U)a.

Write 5 Δ \ Θ for the set of all s(U) : υ*c x α^ -> C Δ \ Θ defined above. The
elements of SΔ\Θ are Δ \ θ - mutually inequivalent for (Λ, v) $ L.

For each (Λ,i/) G (υj. x c£)\L,s(*7) G 5 Δ \ Θ , m G Z + N θ , * G C ( θ ) , define

(4.5a)
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. v . ^ i f t h e r e i s s e sA\Θ(h : v) with s - s(U : h : v) <Ξ Z + χ θ ;

\θ, otherwise.

Each F^ηm(h : v) is holomorphic on C(θ) and for each s(U) G SA\Θ,θί £

Δ\θ, there are an m G Z+ χ θ , (Λ,i/) G (dfc x α*c)\L, so that F^m(h : i/) is
not identically zero on Ή α . For (Λ, */) G (d^ x αc)\L we now have a uniform
asymptotic expansion for α G AQ"(Θ) given by

(4.5b) F(h:u:α)= ^ Σ Fs^
θ (h : u : α(α))α*(α) logm α(α).

Now that we have the uniform asymtotic expansions the following two
results can be proven in the same way as the corresponding results in [HW4,

8.5, 8.6]. For each s G SA\Θ, let M(s) = [m G Z ^ χ θ : Fffi(h : u) is not

i d e n t i c a l l y z e r o f o r s o m e (Λ, v ) G D ^ x α c

Lemma 4.6. [M(s)] < oo for all s G SΔ\Θ

Theorem 4.7. For each s G SA\e,m G M(s),F^^(h : v : z) is jointly
holomorphic on (ΌQ X cic)\L x C(θ) and jointly meromorphic on ΌQ X α^ x
C(θ). In fact, there is a holomorphic function g on t)£. x α^ so £Λα£ p has
no zeroes on (D^ X CLQ)\L and (h,v,z) -> g(h : u)F^^(h \ v \ z) is jointly
holomorphic on ΌQ X α£. x C(θ) /or αZZ s G (

Lemma 4.8. For α// 5 G SΔ\Θ, α G Δ\θ and (h, v) G 2? x α*,

Ite5(Λ:ι/)tt > -<pβ 0,μα).

Proo/. Suppose there are ί G 5Δ\Θ?# G Δ\θ, and (/loĵ o) G P x α* such
that Re^(/ι0 : ^o)« < —(Pao^a)- Then there is a non-empty open subset
U oίV x a* such that Ret(/ι : v)a < -(ρao1μa) for all (Λ,i/) G Z7. Let
ί7' = {(Λ,i/) G t/ : (Λ,i/) 0 L} and fix (Λ,i/) G i/;. Since F(h : v) satisfies
the weak inequality of (4.1d), using [CM, 7.5] we have Resa > —(pαo,μα)
for all 5 G SA\Θ(h : z/). Thus Resa -Ret(h :v)a>0 for all s G SA\e(h : i/).
In particular, if there is 5 G SA\e(h : ι/) with s — t(h : v) E Z ^ θ , then
sα — ί(/ι : i/)α = n for some n > 0 in Z. We now see from (4.5a) that
Ft

Amθ{h ' v ' z) = 0 for all m G M(ί),z G Ή α . But this holds for all
(h, v) G U' and (h, v) -Λ Ff^θ(h : u : z) is meromorphic for (/ι, v) G t)̂ . x α^
by Theorem (4.7). Thus Ft

A^θ(h : v : z) is identically zero for z G Ua for
all m G M(t),(/ι,ι/) G (o^ x a*c)\L. This contradicts the remark following
(4.5a). D
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Let

(4.9a) S°A\e = {se SA\Θ : s{0 : 0) β = - ( A * , μ t t) for all a G Δ\Θ}.

For all a G d{A$), define α θ (α) e C Δ by

(4.9b) α"(α)β = H * * '
V ^ ~ \θ, i f α € Δ \ θ .

Note that for all a G cl(A£),aΘ(a) G C(θ). We now define the constant
term of F with respect to Θ for a G cl(Λj) by

(4.9c) Fθ{h:u:a)

Theorem 4.10. Suppose Ho € α0 such that loga(H0) = 0 /or all a e θ
and logα(Uo) < 0 for all a € Δ\θ. Then there exists an e > 0 and a
neighborhood U{0) ofO in d{V) such that for all (h, v, a) 6 ί/(0) x a* x c l ( ^ )
such that (hj v) $ L,

lim e€t {epa°(aexptH0)F{h : v : aexptH0) - Fe(h : i/: aexpίiϊo)) = 0.

/. Fix a G C1(AQ") and write aexptH0 = α ί ?t > 0. Note that α(α4) G
C(θ). For each α G Δ\Θ, write ea = - logα(iϊo) > 0. Then

and

θ = ae(a) = ((α(α))β € θ, (0)α€Δ\θ).

Thus
lim α(αt) = αθ(α)

and for all s G 5Λ\Θ? W G M ( S ) , (/ι, i/) ^ L,

: i/: a(at)) = ί

For 5 G SA\e,oι G Δ\θ, define 5;(/ι : u)a = s(Λ : i/)α + (ρfloJMα) Then, for
all s G 5Λ\Θ»^ 6 M(s),

α6Δ\θ
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and

logm a(at)= Π (logα(α)-teβ)
ro«.

α6Δ\θ

Note that using (4.7) we have a(a)s>ih:^ < 1 for all a G cl(A£) and

*cββ'(Λ:ι,)β| < ! for a U α g Δ\θ,ί > 0.

Now use (4.5b) to write

ePa° (at)F(h : i/ : αt) - FΘ(Λ : ι/ : at)

Σ Σ
Λ\θ>

+ Σ Σ

: v : a(at).

First fix s G (5'Δ\Θ)\(S f^χθ). Then there is as G Δ \ θ so that β'(0 : 0)α5 ^
0. But 5x(/i : 0)ββ = Re5

;(/i : z^)αa > 0 for all (Λ,i/) G cl(2?) x α* by (4.7).
Thus s'(0 : 0)αa = c5 > 0 and there is a neighborhood 17,(0) of 0 in cl(P) so
that Res'{h : i/)Oβ = s'(h : 0)as > cs/2 for all (Λ,i/) G 17,(0) x α*. Now for
aH(Λ,i/)et7,(0)xα*,

JJφt)s>{h:ι/)

Thus for any 0 < e < eaacaj2 and (/ι, z/, α) G C7,(0) x α* x cl(A£), (Λ, i/) 0 L,
we have

t hm^ e^αία*)'^*-) log"1 a (a t )F^ e (/ i : 1/ : 0(0,)) = 0.

Now fix s € SΔ\Θ>
 m € -W(s) Then for any (h, v) 0 L,

G{h:v:z)= F^{h : v : z) - F$*{h : */ : ( z Q ) α € θ , (0) α 6 Δ \ θ )

is a holomorphic function of z G C(θ) which is zero if zα = 0 for all α G Δ\θ.
Thus for each α G Δ \ θ there is a holomorphic function Gα(h \ v \ z) of
z G C(θ) so that

zαGα(h:v:z).
αGΔ\θ
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Now

&e : v : a(at)) - Fs^
e(h : v : aθ(at)) =

α€Δ\θ

where
lim Gα(Λ : v : a(at)) = Gα(Λ : 1/ : αθ(α)).

t—f+oo

Thus if 0 < e < minα G Δ\θ eα and (Λ, i/, α) G cl(2?) x α* x C1(J4O"), (Λ, V) 0 L,
then

^ (F^θ(h fo)) F$?(h : u : αθ(

Thus
lim e€t (epa° (at)F(h : v : at) - FΘ(h : v : at)) = 0

if 0 < e < min{{eα : α G Δ\θ} U {eαsc5/2 : s G (5 f

Δ\Θ)\(^\Θ)}} and
Λ G t/(0) = ΠC (̂O), 5 G S Δ \ Θ \ S V D

Our next task is to compare the constant term of F with respect to Θ
defined above to the constant terms defined in §3. Suppose that in addition
to satisfying the conditions of (4.1), the restriction of F to cl(X>c) x α* x G
is an element of J(cl(Vc) ' G). For example, F could be a holomorphic
family of Eisenstein integrals. Let PQ be the minimal parabolic subgroup
corresponding to Φ+o and let Po C Q be the standard parabolic subgroup
with αQ = {H G α0 °: loga{H) = 0 for all a G Θ}. Then α^ = {H G aQ :
logα(iί) < 0 for all a G Δ\Θ}. Define the constant terms ΦF,SH 1 < i < ^ 5

of F with respect to Q as in (3.12b). Recall that ψFjSi = 0 unless i G /°(0)
and that the constant terms φFi8t are only defined in some neighborhood Uc
of 0 incl(Dc). Define

d e t S ί ^ ^ *

Theorem 4.11. For α// (Λ, i/, o ) G ί / c x α * x cl(Af),

FQ(/ι : i/ : o) = πσ(Λ : i/)Fθ(Λ : v : α).

Proo/. Choose Ho as in (4.10). Then HQ G αg so that combining (4.10) and
(3.14) we see that there are an e > 0 and a neighborhood U(0) of 0 in cl(£>)
such that for all (Λ,i/,α) G C/(0) x α* x cl(A$) such that (/ι,ι/) 0 L,

Jim e€ί (Fg(Λ : i/ : αt) - πG(Λ : u)Fθ(h : i/ : α*)) = 0



90 REBECCA A. HERB

where at = aexp(tH0).
Prom the proof of (4.10) we know that

Fθ(h:u:at)= £ Σ F%*(h : v : a*(a))a°'^(a)

exp(-t 53 eas'(h : u)a 1 fj (logα(α) - tea)
\ α€Δ\θ / α€Δ\θ

where ea = -α(i7o) > 0 for all α G Δ \ θ and

Re s'(Λ : i/)β = Res(Λ : i/)β + <pβ 0,μβ) > 0,Res'(0 : i/)β = 0

for all (Λ, i/) G C/(0) x α*, s G 5^ V Θ , a G Δ \ θ .
Similarly, using (3.10),

FQ(h:u:at)= ^ det 5, ψFtSi{h : i/ : α ) e ί S ΐ Λ ^
t€/°(0)

where ReSiAKj/(H0) < 0 and ReSiAOyi/(Ho) = 0 for (Λ,i/) G ί/(0) x α*.
Thus we can assume that U(0) is small enough that for all (Λ, z/) G U(0) x

0 < Re 53 e « 5 ' ( Λ : ^)e < c
αGΔ\θ

and 0 < — Res^A^^^o) < 6. Thus for fixed (/ι, ι̂ ,α) as above there are
finitely many distinct complex numbers Wι,...,Wk with 0 < Re Wi < e and
polynomials Pi(ί), 1 < i < A;, so that

F Q (Λ :u:at)- πG(h : u)Fθ(h : v : at) =

for all t > 0. It now follows from (3.16) that FQ(h : z/ : a) =
πG(h : v)Fe(h : v : a) for all (Λ,i/,o) G C/(0) x α* x cl(i4j). But both
sides are meromorphic functions of h G E/c so the equality extends to
( M , α ) E ί / C xα* xcl(A+). D

Corollary 4.12. There is a bisection between the set of all i G /°(0) such
that ψF,Si Φ 0 and S\\β such that if i corresponds to s,

eSiAh>»(a)=epao(a)a(a)8(h:ι/)

for all (Λ, ί/, a) G d c x α* x AQ and

det 5 i ^F,.,(Λ : v : a) = πσ(Λ : i/)e' o (a)F s

Δ

o

χ θ (Λ : i/ : a θ ( a ) ) a(a)
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for all (h, v, a) € Uc x α* x cl(A£). Further, for all s G S Δ \ Θ , m € M(s), m φ

0,

for all (h,ιs,a) E VQ X α c x

Proof. Let ax E cl(A$) such that logα(αi) = 0 for all α E Δ \ θ . Then for

all (/ι,i/,α2) E ί7c x &* χ -4Q5 using (4.11) and the notation in the proof of

(4.10),

FQ(h : v : aλa2) = ^ dets; ipF,Si(h ' v ' a1)eSiAh^(a2)
t€/°(0)

") Σ Σ

.α(α 2 ) 5 ' ( / ι : l / ) log m α(α 2 ) .

Let I/' be the set of all (Λ, z/) E t) .̂ x α* such that there are i φ j in /°(0) with

eSiAh^(a2) = esiAh>»(a2) for all α2 E AQ. Then (oj, x α*)\(L U L') is a dense

open subset of t)^ x α* and the set of functions α2 -> eS i Λ^^ (α2), i E /°(0), and

«2 —>• ^(^Y^'^^og171 a(a2)^s E S'AXΘ'771 ^ ^ ( s ) i a r e linearly independent

on A2 for (/ι, ι/) 0 LUL' except that we can have pairs i E /°(0) and 5 E £Λ\Θ

such that eSiAh^{a) = α(α)β'(Λ:l/) for all (Λ,i/,α) E o c x α* x AQ. D

Corollary 4.13. For all i E J°(0),

(Λ, i/) -^ ̂ F,s t (h:v:a)

has a meromorphic extension to (/i, i/) G Dc x &Q /or α// a E C1(ΛQ~). For α/ί

( h , i / ) - > π σ ( Λ : i / ) ^

is smooth for (/i, z/) E £/c x α*.

Proo/. This follows from combining (4.12) with (4.7) and (3.13). D

Fix 50 E S°Aχθ and write (5 Δ \ θ ) \{s0} = 5'US'" where S' = ( s ^ χ θ ) \{50}

and 5" = (5 Δ \ Θ ) \ ( S Δ \ Θ )
 F o r e a c h s e S'> d e f i n e

(4.14 a)

Leo,* = {(Λ, ^) E t)c x α^ : 50(Λ : ι/)α ~ s{h : z^)α = 0 for all α E Δ\Θ}

and set

(4.14 b) LSa
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L e m m a 4.15. There is a neighborhood U of (0,0) in t)^ x α^ so that

is holomorphic in U\(U Π LSo) for all a G C\(AQ).

Proof. For each s E S', define

L ' S Q S = {(/*, v) G Ό*c x a*c : so(h : v ) a - s(h :ιs)aeZ for a l l a G Δ \ θ }

and set L'SQ — UsGs'Lf

So 5. We will show that there is a neighborhood U:oί
(0,0) in X)*c x cic so that

is holomorphic in U\(U Π L'SQ) for all α G c l ( ^ ) . But for all s G S",
50(0 : 0)α = θ(0 : 0)α = 0. Thus by shrinking U if necessary, we can
guarantee that U ΠLSo = U Π L'SQ.

The proof uses monodromy transformations as in [CM, A. 1.7] and
[HW4, 8.6]. For each a0 G Δ \ θ , define e(α0) G C Δ \ Θ by

ί l , ifc* = c*o;

[0, otherwise.

Now for a G Δ \ θ , let T* be the monodromy transformation satisfying
Γα*(log^) = log* - 2πΐe(α). Thus for any 5 G C Δ \ θ , m G Z + χ θ ,

T*« logm(z) = e-2πis<"zs ^ I " ! α I (-2πi) r o°~' ! logm-* e ( α ) z.
k=o\k /

Fix (/io,i/o) ^ L'So and s € 5". Then there is a = as e Δ \ θ so that
s(h0 : uo)a - so(ho : vo)a £ Z. Pick ns > maxm€M(«) ma. Then for all
(h,v) €t>*cx oj;,

^ z (*:") b g m {z)Fs

A\θ {h:u:z)=0
m€M(s)

for all z € C Δ \ Θ . Now,

^ y
Write

T(s0) = J ] (T^ - e-
a*i ( fc:1')-)n'.
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Then if M'(s0) = {m G M(sQ) such that m φ 0}, we have

T(so)F(h :v:z)= J j( e -
2 π i 5 o ( Λ : l / ) - - e ^ N α . j V l M ^ ^ . v . z)

s€S'

T(so)z
s^ logm(z)Fs

A\θ(h :u:z).

seS",meM(s)

Write

a(s0 : h : u ) = J J n

It is a holomophic function on t)£. x α^ and there is a neighborhood U(h0, u0)
of (/i0, ^o) € t)c x αJc so that α(s 0 : h : z/) ̂  0 for all (h, v) G U(h0, u0).

Fix i i 0 G α0 satisfying the conditions of Theorem 4.10. For a G C1(AQ~),

t > 0, write at — aexp(tH0). Now for 5 G S"',

\ α€Δ\Θ

Now there is as G Δ\Θ so that

5 (0 : 0)aa - 50(0 : 0)Q a = s(0 : 0) α s + (pβ 0,μ t t j> > 0.

Further, for all α G Δ\Θ,

5(0 : 0)α - 50(0 : 0) β = s(0 : 0) β + (p«0,μα) > 0.

Thus

α€Δ\Θ

so that there is a neighborhood Us of (0,0) in t)£ x α£. so that

Re Σ eβ(s(Λ : z^)α - 50(Λ : i/)α) > 0
α€Δ\θ

for all (h,v) G Us. Let C/ = Πs€s"C/s and let g(h : z/) be a holomorphic
function on d£ x α .̂ so that (/i, υ, z) -> p(/ι : v)F^®{h : v : z) is holomorphic
on ΌQ x α£. x C ( θ ) for all 5 G S&\e,m G M(s). Such a function exists by
Theorem 4.7.

Let D G -D(t)^ x αfc). Then for all (Λ, i/) G !7,

lim O (α(θ0 : h : i/
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= D (o(ί 0 : h : v)g[h : ̂ ( Λ : 1/: α θ ( α ) ) ) .

Further, for any s G S&\e->m £ M(s), there are finitely many 772' G Z+ ~
and holomorphic functions cβ |m,m/ (ft : 1/) on &£, x α .̂ so that

^ : v : z)

Now as in [HW4, 8.8],

D (g{h : v)z-s°^T(s0)z<h^ \ogm(z)Fs

A^Θ(h : 1/ : z))

is a finite sum of terms of the form

d(h : lήz**™)-*^) \ogm" {z)D" (g{h : v)F$?{h : v : z))

where d is a holomophic function on ΌQ X a*c,D" G D(Ϊ)Q X α£) and m" G

Z + V Θ . Now D"(g(h : u)Fs

A^Θ(h : 1/ : *)) is holomorphic on υ*c x α^ x C(θ)

so that using the argument of Theorem 4.10, if s G 5",m G M(s), for all

(ft, ẑ ) G £/, since

^ ^ eα(5(ft : v)a - so(h : v)a) > 0,
αGΔ\θ

we have

(g(h : i/)α(

Further, if m e M'(β 0), by (4.12) F£}%(h : 1/: aθ(a)) = 0 for all (h,u,a).
Thus

O (ί,(Λ : ̂ aia^o^TisoMatY0^ logm a(at)F*}%(h : Ϊ/ : a(at)))

can be written as a finite sum of terms of the form

d(h : v) logm" a{at)D"

: v :

so again as in (4.10),
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•\ogmφt)F^(h:u:φt)))=0.

Thus

lim D (g(h : v)a(at)-soih:v)T(so)F(h : v : at))
t—•-f-OO \ /

= D (a(s0 : h : u)g(h : f/)F£)®(Λ : v : α θ (<*)))

for all ( M ) eEΛ
If gf(/ι0 ^o) 7̂  0, then of course F£\®(h : v : z) is holomorphic at

(^o5^o) for all z £ C(θ). Thus we may as well assume that (/io?̂ o) is on
hyperplanes L l 5...,Ln such that jLf C L. Then there are linear functional
μι and integers r̂  > 0 so that Li = {(Λ, z/) : μi(/ι — /io5^ -~ ̂ o) — 0} and
g(/ι : v) = Π?=iA*Γ(Λ : )̂ffi(Λ : ^) where 5i(/ι : v) ψ 0 for (Λ,i/) in a
neighborhood Ur of {ho,vo). Let 1?̂  be the directional derivative in the
direction μ^ Then a holomorphic function φ(h : v) on 17' is divisible by
g(h : v) if for all 1 < % < n we have D^φ(h : v) = 0 for all 0 < k < r* and
( M ) e Li n U'.

But αίαtJ^^^^Γ^oίFί/i : ̂  : at) is holomorphic in Uf, so that for any
D = D* ,0 < k < n and (Λ,z/) e L< Π ί7',

D (5(Λ : z/)α(αt)-So(Λ:^T(5O)F(/ι : i/: α t)) = 0

for alH > 0 so that

lim D (g(h : u)a{at)-So{h'v)T{sQ)F{h : v : α t)) = 0.

Thus for all such D and (Λ, ι/),

i> (o(βo : Λ : i/)̂ (Λ : i/)i^,oθ (Λ : 1/: «θ(α))) = 0.

But a(s0 : h : v)g{h : ̂ )JPSO}) (h : u : αθ(α)) is holomorphic in i7. Thus

a(s0 : Λ : u)g(h : i/)F^o

θ (Λ : u : aθ(a))

is divisible by g(h : v) so that

a(s0 : λ : u)F£f (h : u : αθ(α))

is holomorphic in U Γ)U'. Finally, a(s0 : h : i/) Φ 0 in a neighborhood of
(̂ o? ̂ o) so that F^)®(h : z/: αθ(β)) is holomorphic at (/ι0, ^o) Π
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We now need to vary the chamber V. Recall that as in (2.11) the set of
all chambers V with 0 G cl(D) can be parameterized by Σ o . As before we
let Sj,l < i < ι u , be coset representatives for WQ\WQ- Let

1° = {1 < i < w : SiAht0(H) = 0 for all h G t>c, H G αQ}

and for each e G Σ o , let

7°(0 : e) = {1 < i < w : for all if G α j , S ;Λ M (#) < 0

for all Λ G cl(£>(e)) and SiA0,0(H) = 0}.:

Now 7° C 7°(0 : e) for all e G Σ o . For 1 < i ^ j < w, define

^<j = {(hiu) G ^c x α c : SiAhtV(H) = SjAhjV(H) for all i ϊ G αQ}

and for i E / ° , e E Σ o , set

Recall that πG(h : v) — Π/?GΦ+
 πβ(^ : ^) w h e r e π/?(^ : v) — (λ(Λ) + ii/,/3).

For each /3 G Φ, write 7/^ = {(Λ,^) G ϋjj x α c : π/?(^ : ^) = °} F o r

i G 7°,e G Σo,/3 G Φ, write H'β(i : e) = {(Λ,i/) G ̂  : (Λ,i/) ^Li(e)}.

L e m m a 4.16. Suppose that i G 7° such that S^CLQ C α. Ze^ 7 G Φ +

that τr7(0 : 0) = 0, and

/ι »->> π τ (/ι : 0) and v »->• π 7 ( 0 : z/)

are non-trivial linear functionals on ΌQ and a^ respectively. Then there is

e G Σ o swcΛ /Λaί ?^7(i : e) is a dense open subset ofUΊ.

Proof. Assume that H'Ί{i : e) is not a dense open subset of HΊ for any e G Σ o .
Since π 7(0 : 0) = 0 and πΊ(h : 0) is not identically zero, there are e^ G Σ o so
that πΊ(h : 0) > 0 for some h G £>(e+) and πΊ(h : 0) < 0 for some h G V(e").
Write

% = « 7 , ^ = H'Ί(i : e*), J± - {j G 7°(0 : 6^) : j φ ϊ).

Then since π τ(0 : 0) = 0, Ή is the co-dimension one subspace of &£. x α£.
which is the kernel of the linear functional πy(h : v). Further, for each
j G J*1, Lij = Πa(ΞΔ\θLij(a) where each Lij(a) is the kernel of the linear
functional gj,a(h ' v) — (siAh,u — SjAh^^μa). Thus there are j± G J±

 >ot± G
Δ\Θ such that U C Liyj±(a) for all α G Δ\Θ and U = L ί J ± ( α ± ) . Thus
there are complex numbers c± Φ 0 so that

: 1/) = 9j±ia±(h : 1/) = c±π7(/ι : v)



SCHWARTZ CLASS WAVE PACKETS 97

for all (Λ, v) G t>c x α^.
Since i G 1° we have (siAh,0,μa) = 0 for all /ι G D^. Since j-t G /°(0 : e*)

and the μa are dual to the negative simple roots, we have (sj±Ahi0,μa) > 0
for all h G V{e±),a G Δ\Θ. Thus g±(h : 0) < 0 for all Λ G £>(€*). Further, if
one or both of g±(h : 0) = 0 for all h G Ό*c, then π7(Λ : 0) = 0 for all h G Ό*c.
This contradicts one of the hypotheses of the lemma. Thus g±(h : 0) < 0 for
all h eV(e±). Thus by our choice of e^ we must have c+ < 0 and c_ > 0 so
that c = c+cl 1 < 0.

But now for all i^Go^,

#+(0 : i/) = c+τr7(0 : v) = cp_(0 : i/).

Thus we will have a contradiction if we can show that there is z/0 £ &£. such
that both of #±(0 : i/0) > 0.

Let z/0 = (—is~ ιμa+)y . Since we assume that s~λaQ C α we have z/0 ^ t̂ c
Now

3+(0 : i/0) = (μa+,μa+) ~ (sj+s^μ^μ^).

Thus 3+(0 : u0) > 0 and if g+(0 : ι/0) = 0, then sj+s~1μa+ = μα + . But this

would imply that $ΓVα+ = 57+Vα+ s o *^a* ̂ +(^ : u) = ^ ^ o r a ^ i^u) ^
t)c x α^. Thus 5+(0 : z/o) > 0. Now suppose that a+ = α_. Then by the
same argument as above, g^(0 : u0) > 0 and we are done.

Now we can take α+ = α_ unless Li?J_ (α + ) = d^ x α .̂. In this case

for all (Λ, ι/) G 0^ x αj,, so in particular, at (hyv) = (0, ̂ 0)> we have

Thus sj_s'[1μa+ = /iα + so that 0 = #_(0 : ι/0) = cg+(0 : u0). This contradicts
the fact that g+(0 : u0) > 0. Thus we can assume that a+ = a-. D

Lemma 4.17. Let i G 7° and 7 G Φ4* sucft £Λα£ π 7(0 : 0) = 07 and

h ι-> π7(/i : 0) and ẑ  κ-»- π 7 (0 : u)

are non-trivial linear functionals on d^ and a^ respectively. Suppose that
V = V(e) for e G Σ o sucΛ ίΛaί Ή 7 (t : e) ώ a den^e open subset ofΊίΊ. Then
for any F G J(cl(X>c) : G) such that F has an extension to ΌQ X a£. x G
satisfying (4.1) we have

ψFySi (ho :uo:a) = 0
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for all (ho,iΌ,a) G D^ x α*j x C1(̂ 4Q") such that πΊ(h0 : z/0) = 0.

Proof. If ψFy8i — 0 there is nothing to prove. Thus we assume that ψF,Si is

not identically zero. Thus by [HW5, 7.28] we have S^CLQ C α. Further, by

(4.12) there is s0 G «SΔ\Θ such that

detSi φFiSi(h : i/ : α) = irG(h : !/)*£}? (h w : α θ (α)) α(α) °<Λ:I/>.

Now by (4.15), there is a neighborhood U of (0,0) so that F8O}Q (h : v : aΘ(a))

is holomorphic for (/&, v) G U\(U Π LSo). Thus πG(h : v)

F^f(h - v ' QLθ{a)) = 0 for all (Λ, v) G (W7 ΠU)\{HΊ ΠUΠLSo). But LSo C

Li(e) so that «;(i : e) C UΊ\{UΊ^LSo). Thus πσ(Λ : v)F^ (h : i/ : αΘ(α)) =
0foraU(Λ,i/) G ^ 7 . ' D

5. Poles of the constant term.

Fix H = TA a 0-stable Cartan subgroup and (λ,χ) G X(T),τ i ,τ 2 G i f (χ) .
Let f/(0) be a neighborhood of 0 in it)* satisfying the conditions of [H3, 4.6]
and (3.18). We assume that the Plancherel function m(H : h : v) corre-
sponding to π(H : λ : χ : h : v) is jointly smooth as a function of (/Ϊ, V) G
(t/(0)ΓΊcl(2})) x α* for every connected component V of {h G it)* : (λ(Λ), α> ^
0,α G Φ^}. As in (2.10) we define FQ and HF = TFAF, (λF,χF) G X{TF)
for every F C Fo.

Suppose for each F C Fo we have a function

: τ2)

satisfying the conditions of (2.16) so that

( 5 . 1 ) Φ{x) = Σ / / Φ ^ F : h : v F ' x ) m ( H F : X F : χ F : h : v F ) d v F d h
FCFo Jit>* JaF

is an elementary mixed wave packet.

For each F C F0,e e Σ o , let Φ(F : e) denote the restriction of Φ(F) to

UF{e) xa*FxG. Then each Φ(F : e) G J£(Ϊ7 : e : G). Thus for each standard

parabolic subgroup Q of G and 5 G WG representing a coset of WQ\WQ we

can define constant terms Φ Q S ( F : e) = φφ{F .e),s ^s in (3.12). By (3.18)

ΦQtS(F : e) e C7~(ϋ>(c) x αj. x L^).
Recall that for any F C Fo, e G Σ o , we can write as in [H3, 5.3]

L Φ(F : e : h : v : x)m(HF : XF : χF : h : u)du
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g(F : e : h : v : x)
pF(h : v)

where g(F : e) G JF(U : e : G) is defined as in (2.22). In order to carry
out the estimates needed to prove that the elementary mixed wave packet
defined by (5.1) is a Schwartz function we will need to know that g(F : e) G
JX

F{U : e : G ) .

Theorem 5.2. For any F C F 0 , e G Σo,

(Λ, v, x) —» gQ,s{F '- e : h : u : x) = π(F : h : v)~lίψg(F:e),s{h : v ' χ)

extends to a C°° function on UF(e) x a*F x G. That is, g(F : e) G
Jι

F{U:e:G).

The remainder of this section is devoted to the proof of (5.2). Recall from
(2.22) that for fixed F, e there is a constant c so that

(5.3a)
g ( F : e : h : v : x ) = cπ(F : h : u)Φ(F : e : h : v : x)q(F \ h \ v )

• Π ma(F:h:u

Thus

(5.3b) g Q i S ( F : e : h : v : x ) = Φ Q y S ( F : e : h : v : x ) g ' { F : h : v)

where
(5.3 c)

g'(F:h:u) = cq{F:h:u) JJ ma{F : h : v) ^ e(ψ)t(F : φ : h : i/).
α€Φ' F Λ ^ € T F

Now it is proven in [H3, 5.8; 5.9], that

(h,v) -> π(F : h : v)g'(F : h : v)

is jointly smooth on £7(0) x a*F. Recall that

π{F : h : v) = JJ πα(F : h : ύ)

where

πa{F : /ι: i/) = (α, λF(/ι) + tV>, (Λ, i/) G id* x α^.
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In order to prove Theorem 5.2 we will show that there is a subset Φ^ o of
φ£ so that if we define

πo(F:h:v)= f j πa(F : h : i/),

then

(Λ, v) -> π o (F : Λ : 1%'CF : Λ : v)

and

(Λ, i/,x) -> π o (F : Λ : u)'ιΦQi8(F : e : h : u : x)

are both jointly smooth.
The subset ΦF}0 needed consists of three types of roots. We will use the

notation of [H3, §4; §5]. Let Φ"pR denote the real roots in Φ^. For every
a G Φj ) j R, we have the Plancherel factor

* / T-. , x T T / -r-, i N s i n h πιsa

m*a(F : Λ : i/) = TT πβ(F : h : v)— " ..
λ \ μ coshπva - ea(F : h)

defined as in [H3, 4.5]. First, define Φλ

F to be the set of all a E Φ£ jΛ

such that ea(F : h) — 1 for all h. Second, suppose α G Φ^)JR\Φ]? such that
ea(F : 0) = 1. Then €α(F : h) = cosπha as in [HI, 10.4]. Suppose further
that m*a(F : h : i/) is jointly smooth at (0,0). Then as in [H3, 4.7] there
are 7,7' G Φ£ and non-zero constants c, d so that

π 7 ( F \ h \ v ) — c ( h a + i i / α ) , π y ( F \ h \ v ) — c'(ha — i i / α ) .

Define Φ^ to be the set of all 7,7' obtained in this way. (There could be
more that one pair {7,7'} which satisfy this condition for a given a G ΦF,^-
The set Φ2

F should consist of just one pair for each a.) Finally, suppose in
the notation of [H3, 4.12] that a e F,β G [α],Φ(α) φ Φ(β). Define 7,7 as
in [H3, 4.12]. Then as in [H3, 5.8], π 7 ( F : h : v) is a multiple of (iu,β-a).
Let Φ3

F be the set of all 7 G ΦF of this form. (We choose only one of each
pair {7,7} for Φ^.) Now we define

(5.4a) Φ F , 0 = Φλ

F U Φ2

F U Φ3

F

and set

(5.4b) 7Γ0(F:Λ:i/)= J ] π - ( F : Λ : ^
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L e m m a 5.5. Let {7(0) be a neighborhood ofO in it)* defined as in [H3, 4.6].
Define g'(F : h : u) as in (5.3c). Then

(ft, u) -> π o ( F : ft : v)g'{F : h : u)

is jointly smooth on U(0) x a*F.

Proof. It is proven in [H3, 5.8; 5.9], that

(ft, v) ->π(F:h : u)q{F : ft : v) J J m α ( F : ft : u) ] Γ c(^) ί(F : φ : h : u)

is jointly smooth on U(0) x a*F. In fact, from the proof of [H3, 5.8; 5.9] we

see the following.

First, as in [H3, 5.9], if a E Φi?)jR, then

m*a(F :h:v) = j ] πβ{F : ft : u)ma{F : ft : v)

is jointly smooth in t/(0) x ctjr. Now

/m r \ sinhπz/^
m α ( F \h\v) — coshτπ/Q — ea(F : ft)

is jointly smooth unless e α ( F : 0) = 1. Now if e α ( F : ft) = 1 for all ft, then
a E Φ]r and πa(F : h : v)ma(F : ft : z/) is jointly smooth. If e α ( F : 0) = 1,
but ea(F : ft) is not identically one, then there are 7,7' E Φ2

F Π Φ + so that

τr 7(F : ft : i/)τr7/(F : ft : v)ma(F \h\v)

is jointly smooth for (ft, v) E C/(0) x α£.
Second, as in [H3, 5.8],

Π {yβ-Va)q{F:h:v)

is jointly smooth on [7(0) xa*F. Nowforα E $ ^ ( ^ ^ ( 0 ) ^ i fc α (F : ft) = 1
for all ft, then a E Φ^ and va + iftα is a non-zero multiple of πa(F : h : v).
If eα(i7' : ft) is not identically 1, then as above there is 7 E Φ2

F Π Φ j so that
πΊ(F : ft : 1/) is a non-zero multiple of î α + iha. Further, for a E F and
/? E [α] with Φ(β) φ Φ(α), there is 7 E Φ^ so that πΊ(F : ft : v) is a non-zero
multiple of 1/̂  — z/α. D
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Lemma 5.6. Let F C F o , e E Σ o . TΛen

(Λ, i/, a;) -> π o ( F : Λ : Z / ^ Φ Q ^ F : e : h : u : x)

extends to a C°° function on UF(e) x α^ x LQ.

Proof. By definition, there are finitely many

Φi E 5 ( M £ : λ F : χ F : ©F(e) : w ) ,α, E C{VF(e) x α^)o

so that

Φ(F : e : Λ : i/ : α;) = J ] α ^ f t : v)E(PF : Φ, : Λ : i/ : a;).

Thus it suffices to prove that each

τro(F : Λ : v)~ιEQ,s(PF : Φ< : Λ : v : x)

is jointly smooth. This follows from Theorem 5.7 below. D

Theorem 5.7. Let F C F o , e E Σ o , Φ G S [M^ : λ F : χF : P F (e) : V^). Leΐ

α E ΦF.O Then

(Λ,i/,x) -> π α ( F : Λ : V^EQ^PF : Φ : h : i/ : x)

is jointly smooth on UF(e) x aF x L Q .

The remainder of this section is devoted to the proof of Theorem 5.7. Re-
call Φ F ) 0 = ΦF U Φ^ U Φ3

F. Now for roots a E ΦF U Φ^,
πα(.F : h : v) — {iv,a) is independent of /ι, and showing that
πa(F : h : U)~1EQ)S(PF : Φ : h : v : x) extends to a smooth function
will use Harish-Chandra's theory of the c-function when EQ,S is an ordinary
constant term. For roots a E Φ ^ , π α ( F : h : v) depends on both h and v
and showing that πa(F : h : V)~1EQ,S{PF \^\h:u:x) extends to a smooth
function will use results from [H2] and §4 in the case that EQiS is an ordinary
constant term. In both cases, we will use matching conditions to extend the
results from ordinary constant terms to all constant terms. Thus the first
step is to show that any holomorphic family of Eisenstein integrals is con-
tained in a matching family of holomorphic families of Eisenstein integrals.
We will do this first in the case that P = M = G so that E(P : Φ) = Φ.

Assume for now that G is a connected reductive group with rank G —
rank K and that H = T is a relatively compact Cart an subgroup of G.
Fix (λ,χ) E X(T). Define F o - {a E Φ£ : (λ,α> = 0}. Then as in (2.10)
we define HFi (λF,χF) E X(TF),F C F 0 , Σ 0 , and the corresponding family
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{Θ(HF : h : ^F)}FCF 0 of matching characters. For e G Σ o , let Θ(HF : e)
denote the restriction of σF(e)Θ(HF) to VF(e) x aF x G. It is clear from
the character formulas [HW1, 2.10, HW4, 2.6] that for each x G G',
(/ι, v) -> θ(HF : e : h : u : x) extends to a holomorphic function on o^ x aFC.

Suppose for each F C F0,e C Σ o, we have a holomorphic function
f(F : e : h : v) of (/ι, z/) G 0Q X α^c Then we say the collection {f(F : e)}
satisfies the same matching conditions as the characters if, in the notation
of (2.14), we have for any 1 < i < m, e G Σu E C F o, A; > 0,

(5.8)

(d/dhi)k[f{E : 6+(z) : Λo : i/ )̂ - f(E : €"(<) : h0 : i/β)]

- Σ c\F\E\Dk

FχE[f{F : e+(i) : Λo : (vE,0)) +f(F : e~(i) : h0 : (^,0))]
sci ? c^(i)

for all i/jB G a*E, hQeUi^ cl{VE(e)). Here D n £ ; = d/dhi - i ΣaeF\E d/dμa.
For each F C Fo, e G Σ o, (Λ, i/) G cl(DF(c)) x αj,, let

(5.9a) (π(F :e:h: v),H(F : c : h : u))

denote the representation with character Θ(HF : e : h : v) and the space on

which it acts. For r G if (χ), let

(5.9b) H{F:e:τ:h:v)

denote the r^-isotypic subspace oi%(F : e : h : v). For ruτ2 G K(χ), let

(5.9c) ^ ( F i e i T ! : r2 : Λ : v)

be the linear span in C°°(G) of the matrix coefficients

(π(F : e : h : i/)(a;)w2?Wi)jWj G 7ί(F : e : Tj : h : u),

and for any open subset 17 of t)£. let

(5.9 d) FiFie .Uin : r 2)

be the set of all functions / G C°°{U x aFC x G) such that (Λ,i/) ->
/(Λ : i/ : rr) is holomorphic on U x α ^ c for all x G G and f(h:u)e
V(F : e : τi : r2 : Λ : Ϊ/) when (Λ, ι/) G cl(PF(e)) Π ί / x α ^ . We call elements
/ of T'(F : e : ί7 : T\ : r 2) holomorphic families of matrix coefficients.

Lemma 5.10. Let U be a neighborhood of 0 in t)£.,e0 € Σ o , and let
φ G T'^b : e0 : ί7 : τx : r 2 ) . TΛen £Λere are a neighborhood U' of Q in U
and for each F C F o , e G Σ o , a function φ(F : e) G ̂ ' ( F : e : Uf : τx : r 2) so
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that </>(0 : e0) = φ and the collection {φ(F : e)} satisfies the same matching
conditions as the characters for h G £/'.

Proof. We will carry out the construction of [HW4, §3; §5] simultaneously
for the matching family of characters Θ(HF : e), F C Fo, e G Σ o .

Fix τ G K(χ) and for (Λ, k) G Ό*c x K define

ί(Λ : fc) = e-h(k)degτee(τ)tracer*(A;)

where r* is the contragredient of r. For each / G C^°(G)^x G G, we can

define

S(h) ** f(x) = [ δ(h : k)f{k~1x)dk.

Now for each F C F o , e G Σ o we define

Θ{HF : e : τ : h : p : f)

= / Θ ( # F : e : Λ : v : a;)(ί(Λ) */^ f)(x)d(xZG), f G CC°°(G).

As in [HW4, 3.7] we see that Θ(HF : e : τ : f) is holomorphic on d^ x a*FC

and that for each (Λ, i/) G d^ x αF c ,

/ —> Θ(HF : e : τ : h : v : f)

defines a distribution on G. As in [HW4, 3.7], we can differentiate under

the integrals, so that for every / G C™(G), lθ(HF : e : r : f)\ satisfies the

same matching conditions as the characters.

Now as in [HW4, 3.11] there are real analytic functions T(HF : e : r ) on

^c x αF,c x G s o ^ a t for every / G C£°(G), (/i, v) G d£ x

Θ(HF :e:τ:h:v:f)= ί f(HF : e : r : h : v : x)f(x)dx.
JG

As in [HW4, 3.12] we can differentiate under the integral and see that for

each x G G the functions T(HF : e : r : x) are holomorphic on d^ x aFC and

that the collection

{f(HF:e:τ:x)\

satisfies the same matching conditions as the characters.

Now fix e0 G Σ o and let r 0 be the lowest AT-type of the relative discrete
series (or limit of relative discrete series) representation of G with character
θ(i?0 : e0 : 0). Let μ G iί* be the highest weight of r 0. For each F C F 0 , e G
Σ o , (Λ, v, x) G ok x dp c x G we define

:e:h:v:x)= ί f(HF : e : τ0 : h : u : tx)e-
μ-h(t)d(tZ).

Jτ/zG
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Again, differentiating under the integrals, we see that for each x G G the
functions ψ(HF : e : x) are holomorphic on t)£. x a*FC and that the collection

{ψ(HF : e : x)}FcF0^eΣ0

satisfies the same matching conditions as the characters.
Finally, for DuD2e U(gc),n,r2 G K(χ), we define

ψ(HF : e : Dι : D2 : Tι : τ2 : h : v : x)

= δ(τ* : h) *κ/z Ψ(HF :e:h:u:D{ α; D2) *κ/z δ(r2 : h).

As in [HW4, 5.12] we see that for each x G G the functions
ψ(HF : e : Dι : D2 : Tι : τ2 : x) are holomorphic on t)^ x a*FC and that
the collection

{ψ(HF : e : D 1 : D 2 : τ ι : τ 2 : x)}FcFQ,eeΈ0

satisfies the same matching conditions as the characters. Further, as in
[HW4, J).10; 5.12] we see that for each F C F0,e G Σ o , Ό U D 2 G U{QC),

φ(HF :e:D1:D2:τι:τ2)e T'{F : e : t>*c : n : r 2 ) .

Now, as in [HW4, 5.14], there are a neighborhood J of 0 in cl(X>0(eo))

and Du D] G W(flC), so that \ψ (T : 60 : A : ^ : rx : r2 : /ι) } is a basis of

F(0 : €0 : 7i : r2 : h) for all h e J. In fact the argument shows that there is

a neighborhood PF of 0 in t>£. so that the collection

:τ2
: h)}

is linearly independent for all h G W. Let ?7; = UΠW. As in [HW4, 5.17],
when we expand φ G J*;(0 : e0 : τx : r 2) in terms of this basis as

: Co : A : ̂  : ̂  : r2 : h) ,

the coefficient functions βij(h) are holomorphic on 17'. Now for any F C
F o , e G Σ o , (/ι, v) eUf x aFC, set

: e : h : u) = Σ&ΛW fa : e : D{ : D'j : n : τ2 : h : v) .

D
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Now we return to the general case that G is an arbitrary connected
reductive Lie group and H = TA is any 0-stable Cart an subgroup. Let
(λ,χ) G X(T),τuτ2 G K(χ), W = W(τλ : r 2). Let V be a connected compo-
nent of {h G 0* : (λ(Λ),α) ψ 0 for all a G ΦM} such that 0 G cl(£>). Define
F o , 1ΓF, (λF, Λ>), F C F O , Σ O , as in (2.10) and fix e0 G Σ o so that £>0(eo) = V.
Recall that for (Λ, i/) G 2?F(C) X &F, Θ(HF : e : h : is) is the character of the
representation

(5.11 a) π(F : e : h : v) =

Let P | = P F n M f = M]

FAFMNFM where ^ F , M = AF Π M°,NFM =
TVF Π M°. AS in [HI, 10.16], using induction by stages, for u e aF with

(5.11 b) π(F : e : Λ : v) = lnd^AN (π (M f : F : e : h : vx) ® eίί/2 ® 1)

where
(5.11c)

π (Aft : F : € : Λ : i^) =

Now the characters Θ (M f : F : e : h : VΊ) of the representations
π(Mt : F : e : h : Uι) satisfy the same matching conditions as the char-
acters θ ( F : e : h : v) if we extend θ (M+ : F : e : h : ι/χ) to v G α ^ c by
θ (M f : F : e : h : i/) = θ (M f : F : e : Λ : i/i) , vx = v\aFM as above. Thus
we will not distinguish between the matching conditions satisfied by the
characters corresponding to M+ and G.

For each F C F o, e G Σ o , and neighborhood C/ of 0 in d^ we can define

(5.12a) 5 ( M f :F:e:U : W)

to be the set of all Φ G C°° (u x α > M C x M f : w ) such that

(5.12b) Φ(Λ : zy : k1xk2) = TifΛ(fci)Φ(Λ : i/ : ar)τ2,Λ(fc2)

for all (Λ,i/) E ί / x α > M C , x E M ^ i , ^ ίfj^,

(5.12 c) (Λ, ι/) —>« Φ(/ι : v : rr) is holomorphic on C7 x α ^ M c

for all x G M^, and

(5.12d) s-» (Φ(Λ:i/:a;),tι; >

is a finite sum of matrix coefficients of π (M+ : F : e : h : is) for all (/ι, z/) G
C/ Π C1(£>F(C)) x α^ M . We will not require any growth condition on these



SCHWARTZ CLASS WAVE PACKETS 107

spaces since we will only need to use these holomorphic families to study
Eisenstein integrals in a neighborhood of some fixed point.

L e m m a 5.13. Let U be a neighborhood of 0 in d£. and let Φ G
5 ( M f : 0 : e0 : U : W). Then there are a neighborhood U' of 0 in U
and for each F C F o , e G Σ o , a function Φ(F : e) E S (Aft :F :e\U' :W)
so that Φ(0 : e0) = Φ|c/'χMt and the collection {Φ(F : e)} satisfies the same
matching conditions as the characters for h £U'.

Proof Write K°M = K Π M 0 , ^ = K Π MK For F C F 0 ,e G Σ o , le t :

π (M° : F : e : h : i/χ) be the representation of M° so that

π (M+ : F : € : Λ : * Ί ) = χ(Λ) ® π (M° : F : e : h : vx) .

For Z7 a neighborhood of 0 in &£., write J 7 ' (M° : F : e : 17 : rx : r 2) for the
holomorphic families of matrix coefficients of the representations
π(M° : F : e) defined as above with if^-types ^ 1 ^ . Similarly we could
define holomorphic families T1 (M f : F : e : U : τλ : r 2) of matrix coefficients
of the representations π (M f : F : e : h : ux) of M f . (See [HI, §5].) Now
every φ E T (M* : 0 : e0 : ί7 : T\ : τ2) is a finite sum of terms of the form

φ(h : zm) = ψ(h : z)φ°(h :m),ze ZM(M°),m e M°

where ^(0) is a matrix coefficient of χ(0),ψ(h) = ψ(0) ® eh,h G ϋ^, and
0° G f ( M ° : 0 : β0 : U : rx : τ 2 ). Now if 0° is embedded in a matching family
{<£°(F : e)} of elements of JF(M° : F : e : U' : τλ : r 2) as in (5.10), φ = ψ φ°
can be embedded in the matching family {<^(JF : e)} defined by

φ(F:e:h:zm)= φ(h : z)φ°(F : e : h : m),z e ZM

Thus every φ E J7 (M f : 0 : e0 U ' Ti : r 2) can be embedded in a matching
family.

Now corresponding to any φ G T (M^ : F : e : U1 : TΊ : r 2 ) , the procedure
in [HW5, §5] gives a canonical way of constructing a spherical function
F(φ) G 5 (Aft :F:e:U' :W). If a family {φ(F : e)} satifies matching
conditions, so will the corresponding functions F(φ(F : e)). Finally, for any
5 G EndκiM{W),φ G ̂  (M* : F : e : I71 : n : r 2 ) , we can define

v : x)),(Λ,i/,x) G 17' x α^

Then SF(φ) G 5(Af t : F : e : C/' : W), and again, if a family {0(F : e)}
satifies matching conditions, so will the corresponding family {SF(φ(F :
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Now using the argument of [HI, §5], given Φ G 5(M+ : 0 : e0 : U : W)
there are a neighborhood J7" of 0 in U' and elements ^ G
^(Mt : 0 : €0 : CΓ' : τx : r 2 ) , # G Endκ^{W), so that

φ(Λ : x) = ΣSiF(φi){h : x),(h,x) G U" x M+.
i

Now embedding each φi in a matching family φi(F : e), we can embed Φ in
the matching family given by

:e:h:u:x) = ΣSiF(φi(F : e))(h : i/ : a:).
i

D

For each F C F 0 , e E Σ 0 , and neighborhood C/ of 0 in t)^ we can define

(5.14a) S(G:F:e:U: W)

to be the set of all Φ G C°°(U x α > c x G : f ) such that

(5.14b) Φ(/ι : ι̂  : k1xk2) = τ1)/ι(A:1)Φ(/ι : ι/ : x)τ2^(k2)

for all (Λ,z/) G i7 x α > c , x eG,kuk2eK,

(5.14 c) (/ι, z/) -> Φ(/ι \v \ x) is holomorphic on C/ x α ^ c

for all a GG, and

(5.14d) x

is a finite sum of matrix coefficients of π(F \ e : h : v) for all (/i, z/) G
C/ Π cl(2>F(e)) x α>. For each Φ G 5 (M t : F : e : U : W), we extend Φ from
U x αJ.tAffC x M f to 17 x a^ M c x G by
(5.15aj

Φ(/i : v : fcmαn) = τ1Λ(k)^(h : v : m),k e K,m e M*,a e A,n e N.

Then we define
(5.15b)

E{P : Φ : Λ : v : rr) = / Φ(Λ : z/χ : xk)τ2 h
Jκ/zG

where for v G CI£C,ZΊ = ^|αF,

Lemma 5.16. Let F C F0,e G Σ o . For eαcΛ Φ G 5(M f : F : e : U :
W),E(P : Φ) G 5 ( G : F : e:U : W). Further, there are a neighborhood Uf
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ofOinU and finitely many Φj G <S (MF : \F : χF : VF(e) : Wj so for every

ΦeS(G:F:e:U':W), (h,v,x) G U'Γ)cl(VF(e)) xa*FxG,

Φ(h:ι/:x) = ^a^h : u)E(PF : Φ, : h : v : x)
i

where a^h : v) G C for all (h, v) G U' Π cl(DF(e)) x a*F.

Proof. As in [HI, §4] we see that if σ is a unitary representation of M* and Φ

is any m ^ l ^ t , τ2)/ι|i<:t )-spherical function of matrix coefficients of σ, then

E(P : Φ : h : v2) is a (τi)/ι,r2)/ι)-spherical function of matrix coefficients of

lnά%AN(σ ® eiU2 ® 1) for all v2 ^ α*. The first part of the lemma follows

since we know that

π(F : e : h : v) = Ind^tAwί71^ (-W - F : e : h : V\) ® e1"2 ® 1).

As in [HI, §5] we know that there are a neighborhood U' of 0 in U and

finitely many Φ; G 5 ( M J , : λ F : χ F : 2M<0 : W\ so that for all h € U' Π

cl(X>F(e)),{Φi(/ι)} is a basis for the space of (τ1)/ι,r2,/ι)-spherical functions

of matrix coefficients of the relative discrete series representation χF(h) ®
πλF(/i) of MF. Now the Eisenstein integrals E(PF : Φ^ : h : v : x) can be de-

fined as in (5.15) relative to the parabolic subgroup Pp, and for each (/i, v) G

U' Πcl(VF(e)) x a*F, they will span the space of ( T Ϊ ^ , T2,/!)-spherical functions

of matrix coefficients of the representations π(F : e : h : v). Thus, given Φ G

<S(G : F : e : Uf : W) there are complex numbers α^/i : z/) so that for all

(h,vux) G l7'ncl(2>F(e)) x a*F x G,

: i/ : a;) = V ] <*.(/* : v)E{PF iΦi'.hivix).

D

L e m m a 5.17. Let U be a neighborhood of 0 in ΌQ and let Φ G
5 ( M t : 0 : e0 : ί7 : W). Then there are a neighborhood U' of 0 in U
and for each F C F0,e G Σ o ? α function Φ(F : e) G <S(G : F : e : [/' : W)
so that Φ(0 : e0) = E(P : Φ)|t/'xG «^^ the collection {Φ(F : e)} satisfies the
same matching conditions as the characters for h G U'.

Proof. Using (5.13), there is U' so that for each F C F 0 ,e G Σ o , we have
Φ(F : e) G <S (M f : F : e : U' : W) so that Φ(0 : e0) = Φ|c/'χMt and the
collection {Φ(F : e)} satisfies the same matching conditions as the char-
acters for h G Uf. Now by differentiating under the integrals we see that
the collection {E(P : Φ(F : e))} also satisfies the same matching con-
ditions as the characters. Now using (5.16), each E(P : Φ ( F : e)) G
S{G:F:e:U':W). D
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Suppose that U is a neighborhood of 0 in 0^ and for each F C JF0, e G Σo,
we have Φ(F : e) G S(G : F : e : U : W) such that {Φ(F : c)} satisfy
the same matching conditions as the characters. Then given a standard
parabolic subgroup Q of G and 5 G WQ representing a coset of WQ\WQ we
have constant terms ΦQJS(F : e) which by (3.21) also satisfy the matching
conditions. Further, by (4.13), each constant term Φ Q ) 5 ( F : e) is a meromor-
phic function on U x α^c which is holomorphic in a complex neighborhood
of UF{e) x o?F where UF(e) = UΓ)cl(VF(e)). For each h e Ό*C,E C F C Fo,
since aF = aE Θ Σα€F\£7 R#cFa, we can define uF\E(h) G α £ c by

= 0, uΛE(h)(Hera) = -i(hM(h), α>, α G

For /ι G t)c,^£ G α ^ c , we also write ( ^ , ^ F \ £ ; ( ^ ) ) = (^,0) +

Lemma 5.18. Let I < i < m,e e ΣUE C Fo. Then for all (h,vE,x) G
U x αJ.fC x L*Q,

ΦQiS(E : e+(ί) :h:vE:x)~ ΦQ,S(
E : «"(*) ' h : uE : x)

: ft : { y E , v F \ E \ ) i ) ) \ x)\~

Proof. Note that Ίfl<i<m,ECFC E(i), and /i0 G % , then vF\E(hQ) =
0. Also, if / is a function on ϋcXθJ. c and g is the function on D£ defined by
ff(ft) = /(ft : *(ft)), then d/dhi9(h0) = (5/5^ - f Σ β e F χ s d/βμ β )/( f to : 0)
for all hoeHi.

Now fix (i/£, x) E α^ x G and for any £ C F C F 0 , e E Σo> ft G £/, define

f(F:e:h) = ΦQtS(F : 6 : ft :

By the above, for all A; > 0, ft0 G Ήi Π U we have

(d/dh^fiF :e:ho) = Dk

ΛEΦ(F : e : ft0 :

Fix 1 < i < m and e G Σ ,̂ and write

g(h)=f(E:e+(i):h)-f(E:e-(i):h)

~ Σ c | iW/(^ : C+W : M + f(F : e-(i) : h)].
EcFCE(i)

Then the matching conditions can be rephrased as saying that (d/dhi)kg(h0)
= 0 for all k > 0, ft0 G % Π ί7. But since g is a meromorphic function of
ft G ?7 we can conclude that #(ft) = 0 for all h eU. D
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We are now ready to return to the proof of Theorem 5.7. We will first
look at the case that a G Φλ

F U Φ3

F. For every F C F o we can identify
φ+ = Φ+(gc, ()F,C) with Φ+ = Φ+(flc5 he) via the Cayley transform cF as in
(2.10). Thus for every a G Φ + , F C Fo, we can write

πa(F : h:v) = (λF(/ι) + iι/, α), (Λ, v) G t>c x α ^ c .

Lemma 5.19. Lei # C Fo. Suppose a G Φ^ Then for all E C F C F o,
c* G Φ]r, α^d /or α// (Λ, v) G D^ x αJ.|C,

π α ( F :h:u) = πa(E : h : i/jp)

where vE is the restriction of v to α#.

Proo/. We always have Φ\R C Φ+Λ. Now by [H3, 5.5], eα(F : Λ) =
ea(E : /ι) for all h except possibly in the case that a is a long root in
a simple factor of G which is isomorphic to the universal covering group
of Sp(n,H) for some n. But in this case ea(E : h) is not independent of
/i, so a £ Φ^. Finally, since a G Φ ^ , α is orthogonal to F0\E so that
πa(F : h : v) = 7rα(£ : h : uE) for all (Λ, i/) G D^ x α> jC. D

Lemma 5.20. ie^ E C Fo and suppose 7 G Φ%. Then for all E C F C
F o , 7 G Φ J , C P X

 rarf π 7 ( ^ :h:v) = πΊ(E : h : vE) for all (Λ, 1/) G t>£. x α J , j C ,
where vE is the restriction of v to α#.

Proof. We may as well assume that G is simple. We know from [H3, 4.12]
that 7 - y is orthogonal to λE(h) for all h. Thus sΊsγ(FQ\E) C ±(F0\E).
Suppose that F0\E — δ consists of only one root. If sΊsΊ'δ = —5, then
7 — 7' is a multiple of ί. But this cannot be so since 7 — 7' is orthogonal
to λ#(ft) for all h while J is orthogonal to λ(0), but not to X(h) for some
h φ 0. Thus s7s7/£ = + ί so that 7 — 7' is orthogonal to δ. Thus in this
case 7 and 7' are both orthogonal to F0\E. In | F 0 \ J E | > 2, then G has
real rank at least four, and as in [H3, 5.12] we see by looking at the three
possible cases that we have 7,7' orthogonal to F0\E. Thus in any case we
have 7,7' orthogonal to F0\E so that for all E C F C Fo,7 G Φ^CPX

 a n d

πΊ(F : h:v)= πΊ(E : h : vE). ' G

Lemma 5.21. Let E C F0,e G Σ0,Φ G 5(M^ : λ^ : χ β : ^ ( e ) : W). Let
a G Φ ^ U Φ | . Then

(Λ, 1/, x) -> π α ( F : Λ : V^EQ^PE : Φ : h : 1/ : x)

is jointly smooth on UE(e) x a*E x LQ.

Proof. Fix F o C Fo. For every Eo C F C Fo we can identify Φ+ (gc, f)F,c)
with Φ+(0c,flc) via the Cayley transform cF. We will prove by induction
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on F0\F that if ι/0 G α F C such that πa(F : h : ι/0) = 0 where α G Φ#o U Φ|;o,

and if Φ F G S [M]

F : λ F : χF : 2?F(c) : VF) , e G Σ o , then

for all (/ι,a;) G UF(e) x G. In particular, the case of F = Eo will show that
EQ,S{PEQ : Φ : h : v0 : x) = 0. Now, since EQ,S(PEO : Φ) is jointly smooth on
UEO(^) x βjs0 x J>Q and πa(E0 : h \ v) — π(X(E0 : 0 : */) is a real linear form
on α^0, if follows that

(Λ,i/,a;) ~> πa(E0 : Λ : iy)~ιEQ^(PEo : Φ : Λ : ι/ : re)

is smooth.
Suppose first that F = Fo,€ G Σ o . Then 0 G ΈVo^) is regular so that

s = Si for some i G 7°. Thus

^ Q , s ( P F o : Φ F o : Λ : i/ : x) = π(F0 : h : v)EQ,s(PFo : ΨFo : h : v : x)

is an ordinary constant term. Then if Q — PFo we know from an easy
extension of Harish-Chandra's result (see [H2, 5.4]) that there is a constant
c(AFo) > 0 so that

= c(AFo)
2 \π(F0 : h : ufm{HFo : h : is)-1] \\*Fo(h)\\h{MFo/z)

for all (/i, v) G cl(DFo(e)) x aFo. As in [H3, 4.5], there is a constant c(F0 : e)
so that

π(F 0 : h : u)2m{HFo : h : i/)"1

= c(F0 : e)-1 JJ π^(F 0 : Λ : u)

: h : z^)(coshπι/Q - e α (F 0 : h))

Now (h,u) —> π(F0 : h : u)2m(HFo : /ι : i/)"1 is a smooth function on
cl(£>Fo(e)) x a*Fo since for a G Φ£(β, fjFo), π α ( F 0 : Λ : v) = iva/2.

Fix h G cl(ϋF o(€)). Suppose α G Φ^o. Then α G Φ1^ by (5.19). Thus

π(F 0 : h : uo)
2m{HFo : Λ : Ϊ/Q)"1 = 0

for any ι/0 G αFo such that πa(F0 : /ι : v0) = 0. Thus

EQ,S(PF0

 :
 Φ F 0

 : Λ : i/0) = 0 for any i/0 G αFo such that π α ( F 0 : Λ : i/0) = 0.
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Similarly, if a G Φ | o , then by (5.20) a G Φ+(fl c, &Fo,c)\Φ£(fl, tab)- Thus

we again have π(F 0 : /ι : uo)
2rn(HFo : /ι : UQ)"1 = 0 for any i/0 G αj.o such

that πa(F0 : h : i/0) = 0. Thus EQyS(PFo : Φ F o : Λ : i/0) = 0 for any

*Ό 6 &F0

 s u c ^ *^a* π α(^o : Λ : IΌ) = 0. The case of general Q follows as

in [HW5, 9.16]. Now, since EQIS(PFO : Φ F o ) is a meromorphic function, it

follows that EQ^(PFo : Φ F o : h : i/0) — 0 for any ft, G ϋ£. and i/0 £ αF 0,c s u c h

that πα(jP0 : h : z/0) = 0.
Now suppose Eo C E C Fo and assume the result is proven for all F such

that E C F CF0. Let e' G Σ o , Φ G 5 ( Λ 4 = λ^ : χE : ^ ( e ' ) : W). If for
some e0 G Σ o , 5 = 5j for some i G /°, then i £ J° with respect to any e G Σ o ,
and the result follows exactly as above since EQ}S is an ordinary constant
term. Now suppose that there is e0 G Σ o so that s = s^ i G /°(0) Π / " . That
is, for all i ϊ G α j , λ^Λ : jff) < 0 for all h G ̂ ( e 0 ) and λ^O : H) =0. Since
λi is a linear functional, there must be e'o G Σ o so that λi(h : H) > 0 for
some heVE{el

Q),H G α j .
Apply (5.17) to the case when if = # # , λ = \E,V = VE(ef). Then there

are a neighborhood [/ of 0 in t)£ and for each J S C F C F 0 , e G Σ 0 , a function
Φ(F : e) G <S(G : F : e : [/ : W) so that Φ(E : e') = E(PE : Φ) |C/ X G and the
collection {Φ(F : e) ' E C F C Fo} satisfies the same matching conditions as
the characters for h eU. Hence the constant terms J Φ Q J S ( F : e ) | satisfy the
matching conditions (5.18). That is, fix x G LQ and for (h,vE) G U x d ^ c ,
write f(F : e : Λ : vE) = Φ Q , S ( F : e : Λ : {yE,vF\E(K)) : re). By (5.18) we
know that for all 1 < i < m, e G Σj, (Λ, z/£;) eU x aEC,

f(E:e+(i):h:vE)-f(E:e-(i):h:vE)

Σ + 6"(z) : h : ̂ ) ] .

Write aF — aE Θ f)F\# where (ĵ y^ = Σα € jP\ jE ;R-ffcFα Then every vF G
α^c c a n t>e written as i//τ = {VE^1) where vE — uF\aE and v1 — y\^F^E

Now suppose vE$ G α^ c satisfies πa(E : h : vEi0) = 0 where a G Φ^o U
Φ%0. Then by (5.19), (5.20), every z/Fj0 = {vE^)^' € WF\E& satisfies
πa(F : /ι : vF$) = 0 for all /i G D -̂ Thus for all h E U we have
π α ( F : h : (ι^Eto^F\E(h))) — 0. Thus by the induction hypothesis and
(5.16),

f(F : e±(ι) : h : uE,0) = 0

for all h EU. NOW using the matching conditions we have for all h EU,

f(E : e+(i) : h : uBfi) = f(E : e~{ί) : h : uEfi).

But now this is the case for every 1 < i < m and e G Σ;. Thus
f(E : e : h : vE$),h € t7, is independent of e G Σ o . But as above
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there is an e'o E Σ o so that s = s^i E J + with respect to e'o. Thus
f(E : e'o : h : vE) = 0 for all {h,vE) eUxa*EC. Now for all e E Σ0,/ι <E *7,
f ( E : e : h : v E , 0 ) = f ( E : e ' Q : h : v E # ) = 0. D

Lemma 5.22. Lei £ C F0,e E Σ 0,Φ E 5 (M% : XE : χE : VE(e) :
Then

(Λ, ι/, x) -> π7(£? : h : v)-λEQ,s(PE : Φ : h : v : x)

extends to a smooth function on UE(e) x a*E x LQ for any 7 E Φ#.

Proo/. The proof is by induction on |F0\i£|. Suppose that E = F o . Then
£/(0) C Ί)Fo(e) consists entirely of regular elements so that

EQAPE : Φ : Λ : v : x) = π(J5 : Λ : u)EQiS{PE : Φ : /i : v : x)

is an ordinary constant term. But in this case the lemma follows from
[H2, 5.1], since for 7 E Φ^o, π 7(F 0 : h : v) is not independent of h.

Now suppose that E C F o. Let 7 E Φ^ Π Φ£,α E Φ^> β, so that
π7(J5 : h : v) — c(ha ± iva). We can assume by induction that the
theorem is true for all F such that E C F C Fo. Let e0 E Σ 0 ,Φ E
5 ίMg : λE : χ β : ϋ^(e0) : Wj. In order to show that τr7 divides

EQ,S(PE : Φ : /i: v : x) it suffices to show that for every (/i0? ^0) E t)^ x α^ c

such that πy(E : h0 : ZΌ) = 0 we have

As in (5.21), for each E C F C F0,e E Σo, we can find a function
Φ(F : e) E <S(G : F : e : C/ : W) so that Φ(F : e0) = ^ ( P ^ : Φ)|t/χG and the
collection {ΦQS(F : e) : E C F C FO} satisfies the matching conditions of
(5.18). Fix x E LQ and for (h,vE) E U x α ^ c , write

f(F:e:h: v E ) = ΦQ,S(F : e : h : ( u E , u F \ E ( h ) ) : x ) .

Then by the matching conditions we know that for all 1 < i < m, e E
E J7xαJ. fC,

= Σ c\F\E\[f(F : β+(i) : λ : vE) + / ( F : €"(<) : Λ : ^ )
EcFCE(i)

FΊxE CF C E(i). If 7 is orthogonal to F\E, then 7 E Φ|̂  and

π 7 ( F : h : ( v E , v F \ E { h ) ) ) = π 7 ( F : h : v E )
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for all (h,vE). Thus by the induction hypothesis and (5.16),

f(F : €*(*) : h0 : uE%0) = 0

for all (fto,̂ #,o) such that πΊ(E : ft0 : vEi0) = 0.
If 7 is not orthogonal to F\E for any 7 G Φ# α with πΊ(E : ft : v) —

c(ha ± i^α), then there is no 7 G Φ F α such that πΊ(F : ft : v) = c(ha ± iva)
Thus if ea(F : ft) = ea(E : ft) = cosπftα, then ra* (F : ft : v) is not jointly
smooth. Thus there is /3 G F\J5 so that a G [/3], Φ(α) ^ Φ(β), and we have
7 G Φfp. If eα(F : h) φ ea(E : /ι), then by [H3, 5.5] there is β G F\E so that
α, /5 are both long roots in a simple factor of G isomorphic to the universal
covering group of Sp(n, R) for some n. In this case 7 = (a ± β)/2 G Φ}r. In
either case we have πΊ(E : h : vE) — πΊ(F : h : (uEi VF\E{h))) for all (/&, uE).
Thus in either case, using (5.21), we know that

f(F : €±(i) : ho : vE,o) = 0

for all (/iOj £̂7,0) such that πΊ(E : h0 : vE$) = 0.
Thus as in (5.21) we have now proven that

f(E:e:h0: vE,o) = / ( ^ : e': h0 : vE)0)

for all e, e' G Σo,(/iθϊ^,o) such that πΊ(E : /ι0 : ^,0) = 0. Again, if s —
Si,i G /°(0) Π /" with respect to some e0 G Σo, then i G / + with respect to
some other e'Q G Σo, so that f(E : ej, : h : uE) = 0 for all (Λ, i/^). If i G /°,
then using (4.16) and (4.17) there is e'o G Σ o so that f{E\e'Q\h0\ vEi0) = 0
for all (/ι0, ^,0) such that πΊ(E : h0 : vEi0) = 0. Thus in either case we know
that for all e G Σ o we have f(E : e : h0 : z/#}0) = 0 for all (h0, uEi0) such that
πΊ{E : h0 : vE,0) = 0. D

6. Elementary mixed wave packets.

Let H =JΓA be a 0-stable Cartan subgroup of G and let (λ,χ) G X(T),
τi,τ2 G K(χ),W = W{n : r2). As in (2.10) we define Fo and HF =
Γ F A F , (λ F ,χ F ) G X(TF) for every F C F o . Let ί7 be a neighborhood of
0 in id* satisfying the conditions of [H3, 4.6] and (3.18). We assume that
the Plancherel function m(H : h : v) corresponding to π(H : λ : χ : h : v) is
jointly smooth as a function of (ft, v) G (U Π cl(D)) x α* for every connected
component V of {ft G id* : (λ(ft),α) φ 0,α G Φj,}.

Let Po be a minimal parabolic subgroup of G and ίix Po Q P,s £
W (̂flcjf)o,c) such that 5~xαp C αFo. Assume that for each F C F o, we
have

J{F) : id* x α ^ x L ^ l f
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satisfying the following conditions. For each e G Σo, let f(F : e) denote
the restriction of f(F) to Up(e) x α^ x Lp. Then we assume that each
f(F : e) G Jp(U : e : L*P : s) and that f = {f(F : e)} satisfies the matching
conditions of (2.14) for each x G Lp. We will say that f is a matching
collection of functions in Jι(U : LP : s). For each F, e we have seminorms
Tg |Γ defined on J%{U : e : LJ, : 5) as in (3.2b). Define

(6.1a) T^r(f)--

For each {h,x) G ΐt)* x Lp, define

(6.1 b) Φ(f:h:x)=Σ (πi)" | F | ί
T? Γ~ X? ** Cί r-,

Theorem 6.2. Let Po C P, 5 G W(0c?l)o,c) ?̂/cΛ £Λα£ 5 Xαp C α ^ . Given
r > 0,D G D(iϋ*),Zi,Z2 ^ W([p5c); ^Λere is a finite subset E C Cp so that
given any r' > 0 ίΛere z*5 C > 0

sup Ξ?(a)(l + σ(a))r\\Φ(f : h;D : h W 12)\\ < C

/or α// matching collections f of functions in Jλ{U : Lp : 5).

Theorem 6.3. Let Φ fee an elementary mixed wave packet as in (2.16).
Then

ΦeC(G:W).

Proof. It follows from [H3, 7.2] that {h,x) \-+ Φ(h : x) is jointly smooth on
iΌ* x G. Thus using [H3, 2.8] it suffices to prove that for all r > 0,D G

sup Ξ-^αXl + σ(α))r(l + |/i |) r |^(/i;P : Λ ; α ; Λ ) | | < 00.

In fact, since Φ(h : x) has compact support ω C ί7, the term (1 + |/i|)r is
not needed and it suffices to take the sup over h G U. Thus, using (2.22)
and (5.2), the result follows from the special case P — G, s = 1, of Theorem
6.2. D

The remainder of this section will be devoted to the proof of Theorem
6.2. Since the proof is long, it will be divided up into a series of lemmas. A
number of calculus lemmas which will be needed in the course of the proof
will be deferred to the next section.
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L e m m a 6.4. It is enough to prove (6.2) in the case that / 1 ? / 2 G W(m P ) c)

Proof. It is clear from [H3, §7] that we can differentiate under the integrals

so that for Zl5Z2

Φ(f : h : /, α; l2) = £ ( ) - ' F " / l !

Write U(lPtc) = W(mP,c)Sr(βp,c)> where S(α P | C ) C 2 P . Then if Z< =
πiiU^mi G W(mPjc)5^» € 5(αP )c),« — 1,2, and if a G C1(AQ~), then for each
F C F o ,

f{F \h\v\ m1u1 α; m2u2) = uιu2{Klvs)f(F : h : v : m1 α; ra2).

Using (3.22) and the fact that uλu2 (Aζusj is a polynomial in (Λ, 1/), we see

that for any matching family f in Jι(U : L*P : 5), F = |iiiw2 (AfϊI/jSJ / ( F : e) \

is also a matching family in J 1 (ί7 : L*p : 5). Further, given D1 E Cp there
is D" E £ P so that Tg, r (Γ) < Tg. r (f). Thus we may as well assume that
Uι = u2 = 1. D

Let Θ be the set of simple roots in Δ(P θ 5 A)) For each a G Θ pick
Ha e α0 so that a(Ha) = l,β(Ha) = 0 , / ? G θ , ^ α Then each # E α0

can be written uniquely as H = ^ α € θ a(H)Ha. Now i ϊ E cl(αj) just in case
α(fΓ) > 0 for all α € θ and H e aP just in case a(H) = 0, α G Θ P . Write
a P = Σαeθp R ^ α Q Oo F o r e a c h ^ € αo, write ί ί P - Σαeθ\θ P a(H)Ha G
α P . Write Hp = H - HP = ΣaeeP a(H)Ha G α p . Note that H G cl(αj)
if and only if both of HPiH

p G cl(θo~) and H G at if and only if HP G
α+ = {Hp G α P : a(H) > 0 for all a G Θ\ΘP} and F p E α ^ {Hp G α p :
α( i ί ) > 0 for all a G Θ P } . Now for each α G Aj we will write α = axa2 where
if α = expOH^αi = exp(Hp) e Ap C cl(A+),α2 = exp(iϊ P ) G A% C cl(A+).

We are assuming that 5 - 1 α P C αPo = α0 + Σ α € F o "RΉ*F a so that for any

α2 G A P we can write 5 - 1 α 2 = α0exp feαGjFo taH*FQθc) for some α0 G A0

where ία = ta(s~ιa2) = 5cF oα(logα2)/2. We will write F o = Fo' U F£ where
i^' = {α G F o : t α ( s " 1 α 2 ) = 0 for all α2 G AP} and F^ - F 0\F (;

/. Then
we have 5 - 1 α P C aF^. For each F C F o we will write F ; = F Π Fό and
F" = FΠF£.

Since J7 = U€€ΣoC/(e) where U(e) = U Γ\ cl(P(e)) and Σ o is a finite set, it
suffices in Theorem 6.2 to estimate the sup over h G U(e) for each e G Σ o .
Further, since Φ(f : h : x) is jointly smooth on C7(e) x cl(>lo"), it suffices
to estimate the sup over U°(e) x A% where U°(e) = U Π ϋ(e). Fix e G
Σ o . We may as well assume that the ordering on Φ^ was chosen so that
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a(hM(h)) > 0 for all a G Fo, h G V(e). That is, ea = 1 for all a G F o . Define

Lemma 6.5. For all F C Fo we have f(F : e) = 0 wn/ess F^s) C F.

Proof. Fix F C Fo. Then for all (Λ, z/, α = θiα2) G 17°(e) x α> x A% we have

/ ( F : € : Λ : i/ : aλa2) = exp (Λ^ s (logα 2 )) / ( F : e : Λ : v : a2).

Now for all α2 € Ap we have

exp (Λf)I/)5(logα2)) = exp((λF(Λ) + iv)^\s'x logα2))

ei"ata Π eΛttία

where ha and z/α are defined as in (2.21b).
Now because of the growth condition, and because we assume the root

ordering was chosen so that ha > 0 for all a G F0,/ι € V{e), f(F:e) = 0
unless ta = ̂ ( s " 1 ^ ) < 0 for all α2 6 i4j,α G F^\F'. But ^ ( s " 1 ^ ) > 0 for
all α2 G Ap if α G s ~ ^ + and ta(s~1a2) < 0 for all α2 G Ap if α G s~ 1 Φ".
Further, for a G FQ D S " ^ + , there is α2 G A% such that ία(s""1θ2) > 0. Thus
f(F : c) = 0 unless Fo'XF1 C F^\F^(5). D

Lemma 6.6. Fix F C F o 5Ϊ/CΛ ίΛαί F^θ) C F . TΛen /or α/ί (/ι,o) G
U°(e) x i4j ^

(l) eVo,)/^:^!/:^)

0

Proof. Write

= αFexp

where
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as before. Then using the normalizations of Haar measures in [H3, 7.8], we
have

p v
όuί"Ί

PF^UF" (h v)

Γ f>

W.

Now since FQ(S) C F', we have hata < 0 and ta < 0 for all /ι G V(e),a e
AQ,CX E FQ\F'. Thus using (7.1), for each a G FQ\F\ we have

(-l/2πΐ)P V.

Thus

Ja'F pF(h
-rfi^

since

= f(F : h : vF :

Ώ

For any F" C FQ write I)/?// = Ί2aeF" ^Hcpa. Combining the above we
have

Lemma 6.7. For all a = a1a2 £ A^h E U°(e) we have

Φ{ΐ:h:a) = {πi)-^P.V.
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Fix a E F£\F£(s) and define / C {l,2,...,m} as in (2.23) corresponding
to e and Ha.

Lemma 6.8. Fix E C Fo such that F£(s) C E and E' φ E(I)'. Then for
all ax E A%, vE E a*E, hoeUϊΠ U(e), k > 0,

(F:e:h0: (uE,0) : aλ) = 0.

DE(I)\E = djdhi - i ΣaeE(i)\E 9/dμa.

Proof. Fix E,aχ,vE,h0,k as in the lemma. For E C F C ^(7) we write

Thus by (2.24), (2.25) we know that

a~{E)=
ECFCE(I)

Since F^(s) C ^ we have tαΛα < 0 for all a E F(\E',h G 2?(e),α G Aj.
Thus ίαΛβ > 0 for all a E E{I)'\E',h€ V(e~(I)),a E -Aj. Thus, as in (6.5),
a~(E) = 0 since by assumption E(I)'\E' φQ. D

Lemma 6.9. Fώ a E FQ\FQ(S) and de/ίne / as before. Let E C Fo so that
FQ(S) CEC F£\{a}. Write E(a) = EU {a}. Then for any aλ E Aζ, k > 0,

- id/dμa)
k

ECFCE(a)

for all (ho,vQ) E U(e) x a£0 such that (ho)a = (^o)a — 0.

Proof Write s(E) = \E(I)\E\ > 1. The proof is by induction on s(E).
Suppose s(E) = 1. Thus E(I) = E(a) and DE{I)\E = Da = d/dhτ-id/dμa.
The result follows from (6.8) in the case that vE = (vo)E is the restriction
of u0 to aE since (vo)a = 0 implies that ((^o)^50) is the restriction of v0 to

()
Now suppose s(E) > 2. Again, by (6.8) we can write

0 =

Now as above, if ^ = (^o)^ and F E {£?, J5(α)}, then

) : Oχ) = DkJ(F : h0 : u0 : at).
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Thus it suffices to prove that for any E C E C E(I)\{a} we have

(F : e : Λo : K , 0 ) : Oχ) = 0.

But for such an E we have 5 (EJ < s(E) so that by the induction hypothesis
we have _

ECFCE(a)

for all v0 such that (i/0)β = 0, Λ > 0. Now D%mE = £ * = 0 (J)£>> Z>£~J' where
A) = ~ΐΣβeE(i)\Efa) d/dPβ Now w e c a n differentiate the above equation
with respect to Do and evaluate at ((^o)#,O) to obtain

(l>* ( / ) V B/) (F : e : h0 : (uB,0) : ax) = 0.

D

Lemma 6.10. Fix F" C i^'. TΛe mapping (h.u'.a^ ι->

is smooth on U(e) x α̂ / x Aζ.

Proof. Each of the functions (Λ, ι/;, ι//;, αi) -> / ( F ; U F ; / : h : i/' + u" : o j is
jointly smooth on ί7(e) x α|r/ x \)*F,, x A^ by definition. Now using [H3, 7.5]
we see that

fiF'υF'Ίh .v' + i/ΊaJ. „

is jointly smooth for all F£(s) C F' C F^. Fix α G FoΛ^oί5) a n d d e f i n e »̂ ̂ α
as above. It suffices to prove that for each k > 0, we have

for all ho G U(e) Π Ή/ semiregular and u'o € αF, such that (vo)a = 0. Of
course the limit is taken through h € U°(e).

But using an easy extension of [H3, 7.10], if we write F" = F"C\FQ there
are constants C{E"),E" C F'j, so that
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βEE" < / R P

u F" :h°:uό + K , (*fr W » , 0) =

Here DF./(a) = d/dhj - id/dμa - Σ ^ , , d/dμβ.
Since we have assumed that h0 is semiregular, PF"\F" {ho : V'Q) φ 0 for all

u'o'. Of course it is also independent of FQ(S) C F C FJ. Thus it is enough
to prove that for all k > 0 we have

F" : h0 : i/0 + K, ( ^ ^ ^ , 0 ) : αx) = 0.

But {F = F'UF" : ^(5) C F C J ^ J } can be written as the disjoint union
of sets {F, F(a)} where F runs over all subsets of Fo such that FQ(S) U F " C
F C Fό\{α} U F / ;. Thus it is enough to prove that for any such F and for
any E" C F/' we have

(-lfXFlDk

F,,{a)f(F : Λo : i/i + K, ( ^ ^ ^ , 0 ) : aλ) = 0.
FCFCF(α)

But for all such F, using (6.9) we know that

FCFCF(α)

for all £Ό G α ô such that (̂ o)α = 0. But if we write v — (v',v"), then
va — v'a is independent of v". Thus we can differentiate with respect to the
d/dμβ, β e F'j and evaluate at v" = (i#, (iz/jj^e^,0). D

We now return to the proof of Theorem 6.2. Let {α1?..., ad} = Θp be the
simple roots of (LP,A0). The proof of (6.2) will be by induction on d, the
number of simple roots.

Assume that d = 0. Then Ao is central in Lp so that P = Po. Since
we assume that s~xap C αp0 C α0, this occurs only when ap0 = α0 and

Lemma 6.11. In the case that d = 0 it is enough to prove (6.2) in the case
that l\—\2 — \.

Proof. By (6.4) it suffices to prove the theorem in the case t h a t Z1?Z2 £

W(mp 0 ) C ). But M o = Mp0 C i f and each f(F) is ifp0-spherical so t h a t

f(F:h:u: lx α; l2) = dτhh(h)f(F : h : u: a)dτ2§h(l2).
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Now since dτ^h{li),i = 1,2, are polynomials in h and f(F) is compactly
supported as a function of /&, for any D G D(iϋ*), ||Φ(f : h D : lx α; Z2)|| can
be bounded by a finite number of terms of the form ||Φ(f : h] D' : o)| | , Df G
D(iΌ*). Thus we may as well assume that U = l , i = 1,2. D

Lemma 6.12. Theorem 6.2 is £rae wΛen d = 0.

Proof. In the case that P = Po we have Ξp0 = 1 and AQ = ^4po so that the
decomposition α = aλa2 is just given by a = α 2 j α i = 1. Using Lemma 6.11
and the fact that ΞPQ = 1, it is enough to estimate

sup ( l + σ ( α ) ) r | | Φ ( f : Λ ; D : α ) | | .
/ιGC/°(c),α6A+

Use (6.7) to write

r e%v{s~ιa) ΣF>(S)CF>CF'
Φ(f : h : a) = P. V. / — o( ^ f ς ^

where

" : Λ : i/)

Fix F = F' U F" as above. Then since f(F : e) e Jλ

F(U : e : L*P : s)
we know that f(F : e : 1) G C(i7(e) x αj.). Now using [H3, 7.6] we see
that g(F') G C(C/(e) x a*F,) for each F ' . By (6.10), the functions g{F')
satisfy the hypotheses for Theorem 7.7. Thus using (7.7) we see that given
D G JD(id*),r > 0, there are t > 0 and a finite subset Eλ of D(iD* x a*F,) so
that

sup (l + σ(α)) r | |Φ(f :Λ;I>:α) | |

Σ S U P
(M)€^(

But, again using [H3, 7.6], there is a finite subset E2 of D(iυ* x a*Fo) so
that for all t > 0,

SUP (l + M
^F')eί/(e)xα^;

Σ Σ S U P (l + WF\)W]FΊ\\f(F:e:h:is D 2 : l ) \ \ .
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Thus there is a finite subset E C Cp so that

sup (l + σ(α))Γ | |Φ(f :h]D:a)\\

< Σ Σ
D'ζEFCFo (h^F)eU(e)xa*F D'GE

for any r' > 0. D

Fix d > 1 and assume inductively that Theorem 6.2 is true when d! < d.
For 1 < i < d, let α* = {H G α0 : OLJ(H) = 0 for 1 < j φ i < d},

and let Po Q Qi = LtNi C P be the corresponding standard parabolic
subgroup. For H G α0 let p ι (ϋ0 = 1/2 trace ad if on n i ? pp(H) —
l/2Σm{a)a{H),a G Δ + ( L P , A)), f t ( ί f ) = pP(H) - p^H). For 6 > 0,1 <
z < cί, let ^4+(i : b) = {a e AQ : a^loga) > bρP(loga)} and A+(i : 6) =
{αi E Aζ : α^logα) > fcpp(logα)}. Fix b small enough that AQ C uf=1

i : b). Then if we write o G i j as α = aλa2 where aλ G Aζ,a2 G Ap,we
see that a G ̂ 4+(i : 6) if and only if αx G A£(i : b) since pp(logα) =
and αi(logα) = α^logαi).

Let m 1 , m 2 G W(mP, c),r > 0 , ΰ G D(iΌ*). Since ^4j C Uf= 1A
+(i : 6), to

complete the proof of (6.2) we must show that for each 1 < i < d there is
Eι C Cp so that given any r' > 0 there is C > 0 so that
(6.13)

sup Ξp1(a)(l + σ(a))r\\Φ(f:h;D:mlWm2)\\<C
heU°(e),aeA+(i:b) D, e E .

for every matching collection f of functions in Jλ(U : L*p : s). Fix an i and

drop it from the notations so that Q = LN — Q{, A
+(b) = A+(i :b).

Write

Given mum2 G ZY(mp?c) there exist 6i G W(tp)c)W(([Πmp)c),ί>2 G
W(([ Π tτip)c)W(tp,c) and mi G W(rrip5c)n,m2 G θ(n)U(mP,c) such that m^ =
bi + m^i = 1,2. Thus

Φ(f \ h:m1 α; m 2) = Φ(f : Λ : mi α; m 2 ) + Φ(f : Λ : bλ α; m 2 )

(6.14) + Φ ( f :h:blWb2).

We will estimate each of these terms separately.

Lemma 6.15. There is a finite subset E C Cp so that given any r' > 0

there is C > 0 so that

s u p Ξp1(a)(l + σ ( a ) Y \ \ ( 1 j 2
heU°(t),a€A+(b) D,€E
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The same is true for Φ ( f : h\D :bχ α; m ^ ) .

Proof. Combining (6.7), (6.10), (7.7), and [H3, 7.6] as in (6.12), there are
a constant C and a finite subset jFi of P(iϋ* x a*Fo) so that

SUp I—IP ( ^ l ) ( l ~̂~ ̂ "(^l)) (1 ~^~ ^"(^2//

||Φ(f : h,D :m'1\aιa2',m2)\\

<C Σ S U P
Dl€Fl

\\f{F:h:u Dι:m'1'xaι]m2)\\.
FCFo

But now using (3.3) there are a finite subset E C £P and r0 > 0 so that for
all r' > 0 this is bounded by

T°r,(f) sup
Aζ

But there are constants D,q > 0 so that ΞQ(αx) < D e " ' " 0 0 8 0 1 ^ ! + σia^y.
Further, ^ ( α x ) = e-^1 0 8"1* ande""^ 0 0 8 0 1 ) = e - α i ( l o g α i ) < e-

bpp{λθί ai) since
oi G ̂ ( 6 ) . Thus

so that

sup (1 +

sup

But for all aλ = exp(^) € ^ , Ξ P ( α ! ) 6 < D ' e - ^ ^ ^ ί l + σ(αi))«' as
above. But there are ra > 0, a E Θp, with 6pP = ΣαGθP

 r « α s o ^ a t

bpp(dι) = Σ α G θ p

 r<χa(Hi)' Further, there is a constant C" so that σ(αχ) <
C (ΣαGθp «(if x)

2)1 / 2. Now for αi G A£ we have α(jffi) > 0 for all a e ΘP

so that

sup jDΞP(α!)6(l + a ( a ! ) ) r + r / + r o + 9 - Cr' < ex).

D
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Lemma 6.16. When d > 1 it is enough to prove (6.2) in the case that
li = β'i = dg1 oβiodQ where β{ G U{(mP Π ί) c), i = 1,2.

Proof. Because of (6.4) and (6.15) it is enough to consider terms of the form
Φ(f : h,D : bλ α; b2) where

Π Π

Write 6i = κλβ[,b2 = β'2κ2, where «< G U{lP^),βi € ZY((mP Π I)c),i =
1,2, $ = cίg1 oβiθdQ. Since each /(F) is ifp-spherical, the result follows as
in (6.11) for the d = 0 case. D

Fix $ G ZY((mP Π ί) c), i — 1,2, as above and for each F C Fo, (Λ, i/, αi) G
C/°(e) x αj. x Aζ., write

d(F : e : h : u : at) = f(F : e : h : u : β[ ;αi;/3^

: e : h : is : βλ αi;

where the constant terms fQySiS(F ' e) a r e defined as in (3.19).

Lemma 6.17. There is a finite subset E C Up so that given any r' > 0
there is C > 0 so

+ σ(αχ))r(l + σ(α2)) r

sup

D p.v. - | F " 1

Proo/. By (3.21) all of the constant terms {/Q,SiS(F : e)} satisfy the same
matching conditions as the original family {/(F : e)}. Further, since f G
J^C/ : Lp : s), each cί(F : e) is jointly smooth on U(e) x α^ Thus we have
the smoothness result of (6.10) with the terms f(F : e) replaced by d(F : e).
Now cis in (6.15) we can apply (7.7) to obtain a constant C and a finite
subset Fi of P(it>* x α^0) so that

sup + σ(αχ))r(l + σ(α2)) r
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DP.V.

L PF»(h:v")

<C

FCFo

Write aλ = αiexptTif) where H = Hai = H(P,Q),T = a^logai), and
αi = exp(Σ α € θ Q α(logαi)ffβ). Then αj G L^. Then using (3.19) we have

a finite subset E C £ p , n > 0, and e0 > 0 so that for all r' > 0 there is a
C > 0 so that

sup : € : h : i/;
FCF0

sup

But as in (6.15), this last sup over aλ is finite since e~e°τ = e~
€oOCi{losa^ <

e-eobpP (log ai) ^ [—|

Lemma 6.18. Fix 1 < i < w such that S^S^CIQ C α^. TΛen ίΛere is a
finite subset E C Cp so that given any r' > 0 ίΛere is C > 0 so

sup σ(a2))r

pF..(h:v")
dv du

Proof. First, as in (6.7) we can rewrite
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)-^Ί
Jti*..

FCFo

pF,,(h:v")

ΪQ,8is\F : h : v : βi \Q>ιQ>2\β2)

Now Ξp
Thus

pF(h : v)

and A+(b) C A%.

dv"dv'

dv.

sup

D p.v.
\-\F"\

I, pF,,(h:v")

< C sup i
heU°{e),aeA+

D
pF(h : ι/)

Now by the induction hypothesis and (3.19) there is E1 C CQ such that for
any r' > 0 there is C so that the above is bounded by C Σo'eE' ^D'y (^Q,siS)
Finally, using (3.19) there is a finite subset E of CP and rx > 0 so that for
all r' > 0 there is C > 0 so that

^',.'+n( fQ,-)<^ Σ T£",r'(f)

D

Finally, to complete the proof of Theorem 6.2, we must deal with constant
terms /Q ) S S , 1 < i < w, for which S~1S~1CLQ % α̂ o- Fix such an i. Recall that
Q is the standard parabolic subgroup of G corresponding to some simple root
aeθp and αQ = αP + RHa. Now S^S^OQ = s ' ^ p + s^s^RH01. Since
we have assumed that s~xap C α^, it must be the case that s"1 s~1RHa %
ap0. Let Go be the simple factor of G containing the root a. For any
subalgebra b of g, we will write b0 = b Π g0. Fix F C Fo. Then we say that
i G Iξ if Xi(h : H) =0 for all h e iK)*,H G αQ,0 and i G /0~ if λ<(Λ : ί ί) < 0

Lemma 6.19. Zeί F C F o . TΛen fQ,SiS(
F '• e) = ° unZe** i G /0~

Proo/. First, by definition fQi8i8(F : e) = 0 unless i G 7°(0) C/°U I~. Now
if i G 1°, then iE/0° since αQj0 <Ξ CIQ. If i G J", then iE/ 0

0 U/ 0 " since OQ0 C
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cl(αg). Suppose i e /£. Then the restriction of fQySiS(F : e) to the simple
factor Go is the ordinary constant term of the restriction of f(F : e) to Go as
defined as in [HW5]. Thus by [HW5, 7.28] we know that fQiSis(F : e) = 0
unless s^s^OQβ C aF <Ξ βF0 But 5~1s~1Rίία C S^S^OQ^ so this is not
the case. D

Let JFO)O Q FO be the roots in JP0 coming from the simple factor Go- If
ô,o = 0> then λF is regular in the simple factor Go for all F C Fo so that

i G I°(0) implies that i e IQ. Thus we may as well assume that F 0 ) 0 Φ 0
Let FQ , 1 < j < m be the equivalence class of Fo containing Fo,o

Lemma 6.20. Let F C Fo, h0 € U(e)ΠHj. Then for any D e D(iΌ* x a*F)
we have

fQtsia(F:e:ho:v;D:m)=0

for all (i/,m) e a*F x LQ.

Proof. Define I as in (2.23) corresponding to Hj and 6. The proof is by
induction on n = |F(/)\F| . When n = 0, then XF = XF(I) is regular in the
Go factor, so that i & IQ. Thus by (6.19), fQ,Sis{F : e) = 0 in this case.
Now fix n > 1 and assume that the lemma is true for F C Fo such that
\F(I)\F\ < n.

Fix E C Fo such that \E(I)\E\ = n. Because of (6.19) we may as well
assume that i € IQ with respect to E and e. Since fQiSiS(E : e) is jointly
smooth on U(e), it is enough to show that for any choice of hi as in (2.24),
(d/dh!)kfQtSiS(E :e:ho:u) = O for all k > 0,(ho,v) <Ξ {Uj Π tΓ(e)) x a%.

But combining the matching conditions of (2.24) and (2.25) we can write

fQ^iβ :e:ho:u:m)- {d/dhjf fQt,t.(E : e~(I) : Λo : u : m)

= Σ (-l)lFχm+1Dk

ΛEfQ,SiS(F:e:ho:(u,0):m).
ECFCE(I)

Fix E C F C E{I). Then by the induction hypothesis we have that

Thus we have

rffa.ΛE :e:ho:u:m)- (d/dhj)kfQ^SiS(E : €"(/) : h0 : 1/ : m) = 0.

Fix ^o € F0)0. Then since λ^O : Ha) = 0, but λ<(Λ : ίί01) is not identically
zero, there is a constant c0 ^ 0 so that λ;(/i : Ha) — SiShMF(h)y(Ha) =
c0 < hM(h),β0 > for all /ι G it)*. In particular we see that λi(h : Ha)
changes sign as we cross the wall Ήj. Thus since i G IQ with respect to e,
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we must have i G / + with respect to e~(J). Thus /Q ) S . 5(J5 : e~(/)) = 0 so
that we also have (d/dhi)kfQiSi$(E : e : h0 : v : m) = 0. D

For h G U(e), let dj(h) be the Euclidean distance from h to Hj. For # G
J°F{U :e: L*Q: Sis),D G £g,r,t > 0, define

sup \\Dg(h : i/ : ^ l l Ξ g ^ - ^ l + σ ^ ) ) - ^ ! ^ ^ ) - 1 ) ^ .

Note that T^0(g)=T^r(g).

Lemma 6.21. For all D G CQ,r, t > 0, there is a finite subset S C CQ SO

that T^rt(g) < ΣD'esTD'A9) for everV 9 £ JF(U ' 6 : LQ '• sis) satisfying
g(h0 : v\D : m) = 0 for all D G D(iΌ* x α^), (ho^u,m) G U(e) x a*F x LQ
such that ho G Hj.

Proof. This is proved in the same way as [HI, 7.12]. D

Lemma 6.22. Fix 1 < i < w so that S^S^CLQ % α^. Then there is a
finite subset E C Cp so that given any r' > 0 there is C > 0 so that

sup + σ(α!)) r(l + σ(α2)) r

Σ (-

Proof. By (3.21) all of the constant terms {fQ,SiS(F : e)} satisfy the same
matching conditions as the original family {/(F : e)}. Further, since f G
J^C/ : Lp : s), each fQiSiS(F : e) is jointly smooth on Ϊ7(e) x α^. Thus we
have the smoothness result of (6.10) with the terms f(F : e) replaced by
fQ,sis(F •' c). Now as in (6.15) we can apply (7.7) to obtain a constant C
and a finite subset Eγ of D(id* x a*Fo) so that

sup σ(a2))r

DP.v.
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<C ]Γ sup
ft€t/()64?

FCFo

Fix F C Fo. If % £ /0-Π/°(0), then by (6.19) we know that fQ,SiS(
F : e) = °

Thus we assume that i G IQ Π /°(0).
Write ax = oi expίTfί) as in (6.17). Then using (3.19), for each Dλ G £?i

we have a finite subset S C ίp^τx > 0, and ei(/ι) so that for all ί,r' > 0
there is a C > 0 so that

\\fQ,8iS(F:e:h:v;D1:β1;a1;β2)\\

< C Σ TLr>AfQ,sΛF : €)) sup (1
Λ € £ / ( ) e ^ ( 6 )

But as before, for all h G C/(e),αi G A+

for some constants D,q>0. But as in [HW5, 8.7], since e<(Λ) > 0 for h G

[/(e) and e^/io) = 0 for h0 G U(e) only when ^ 0 ε Hj so that dj(h0) = 0 also,

there exist C, ί > 0 so that supΛ G t / ( € ) ) α i G ΛP ( 6 )(l+σ(α 1)) r + r '- f r i + < ?ΞP(α 1) 6 € i( / ι) <

C(l + djίΛ)""1)*. Now use (6.21) to obtain an estimate involving terms of

the form T£, r ,(/ Q ) S . 5 (F : e)). Finally, as in (6.18), we use (3.19) to obtain

estimates with terms of the form Tp,,y(f(F : e)). D

7. Calculus lemmas.

If / is a locally integrable function on R, define

P.V. / f(x) dx= lim / f(x) dx
Jn M->+OO J_M

whenever the limit exists. Let S± = {(Λ,t) G R 2 : ±ht > 0}.

Lemma 7.1. Suppose (h,t) G S~. Then

P.V. / -dx = 2πi{sgn t)eht.
Jn x + ιtι
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If (Λ, t) e S+ then for all integers r, k with 0 < r < k,

P.V. / j -
Jn (x

eixtxr

Proof. We will prove the formula when £ > 0. The result for £ < 0 follows
by making the change of variables x \-+ —x.

Fix t > 0,Λ ̂  0,0 < r < fc, and define /(z) - e*zV. For M > 2|Λ|, let
CM be the contour in the complex plane which is the union of the four line
segments C;, 1 < i < 4, where C\ runs from — M to M, (72 runs from M to
M + iM, C3 runs from M + iM to — M + iM, and C4 runs from — M + iM
to —M. Then it is easy to calculate that for 2 < i < 4,

lim = 0.

Now if h > 0, then — ih is outside the contour CM so that

dx = 0.
" ' Jn (x + ih)^1

If h < 0, then —iΛ. is inside the contour CM SO that

P.V.
x + ih

dx = 2πieht.

D

Lemma 7.2.

sup
(h,t)es-

1 eixt

J-i X
—dx
ih

< oo.

For allθ<r <k,

1 gixί^r

-dx < oo.

Proof. Use the contour CM with M = 1 to estimate the integrals as in
(7.1). D

Lemma 7.3. For every integer k > 0,

sup
(h,t)es-

P.V.
oixt

-dx
x\>l

< oo.
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Proof. Suppose k > 1. Then for all (Λ,ί) G S~,

< α P^cte < oo.

Now if jb = 0, using (7.1), (7.2),

sup P. V. -dx < sup
(h,t)es-

+ sup

P.
Ίκ(x + ih)
1 pixt

dx

dx

- \J-i ih
< oo.

D

Let a > 0 and write J+(0, a] = (0, α], /" (0, o] = [-α, 0), /=*= [0, a] = /^(O, o]U
{0}. Define R^ = {α; G R : ±x > 0}. For any Banach space W define

{g G C°°(I^a] x R : W) : \\g\\Dtr < oo for all D G D(R2),r > 0}

where
||^||£>,r = SUp (1 + \x\

Lemma 7.4 Suppose f G C^jtyα] x R : W),fc > 0. Then there are
C > 0 and a finite subset F of D(R2) so that

sup
(/ι,t)G/±(0,a]xR± L f(h : oixt

(x + ih)k+ι dx 11/lb.a

Proof. First, for all (Λ,t),

R (a: + i
-dx

f(h : x)eixt

\>i (x + i

Now
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Fix h and expand / in its Taylor series at x — 0 as

/(A:, ϊ-
r = 0

where the remainder term R(h : x) satisfies

\(d/dx)k^f(h:x)\

ft,!
: x)x k *| < sup

ft,X

Now

Γ1 f(h : x)eixt
I /-1 f(h : :
17-1 (a? + ihy

(k + iy.

k (d/dχyf(h: 0)11^

r = 0
r\

1 eixtR(h : a;)

_i (a; + i/
-dx

/-1 etxtR(
7-1 (a; + ih)k+1

dx

Using (7.2), for each 0 < r < k there are C r > 0 and Dr = (d/dx)r so
that for every (Λ,t) E

{dldxyf{h:ϋ)\\f e^x

r!
-dx

Finally,

I ί1 eixtR(h : x)

17-1 (x + iΛ)^1 < 2 sup

_i (a: + ih)k+ι

\(d/dx)k^f(h:x)\

< Cr\\f\\Dr,o.

D

L e m m a 7 5. Suppose f G C^fOjα] x R : W). Then given s,k > 0
are C > 0 and a /mz'te subset F of D(R2) so that

sup (l + \t\γ
(li,t)eί±(0,o]xR±

Proof. Since h ̂  0, we can differentiate under the integral so that

(0/aΛ)* / ^ : y * ^ = / eixt(d/dh)k(f(h : a;)(aj + ih)~l)dx.
JB. {X + in) 7R

But there are £>r G D(R),0 < r < k, so that

(d/dh)k(f(h:x)(x
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Further, for each r and each integer s > 0 we can integrate by parts to write

f(h- D - τ)pixt

r f(h- D - dx={it L
But again, there are Dj G .D(R),0 < j < s, so that

(d/dx)s(f(h;Dr :x){x

j=o

Now the result follows from (7.4).

Lemma 7.6. Suppose that f G
), a) : W) such that

(h,x) ι-> φ(h : x) =

D

>,α] x R : W) and g G

f(h:x)+g(h)

x + ih

is jointly smooth for {h,x) G 1^0, a] x R . Then given s,k > 0 there are

t > 0 ; and a finite subset F of Z?(R 2) so that

sup (l + \t\y
(Λ,t)6J±(0,α]xR:F

D e F

(d/dh)kP.V. ί eixtφ(h:x)dx
Jn

P \
Λ€/±[O,αJ

\Dg(h)\).

Proof As in (7.5) it is enough to estimate terms of the form

P. V. / eixtφ(h : x]D)dx where D G D(R2).
Jn

Now

sup
(M) \x\<l

eίxtφ{h:x;D)dx <2 sup

Now, for each D G D(R2) it follows from [H2, 6.7] that there is a finite
subset F of D(R2) so that

sup \φ(h:x;D)\<
hel±[O,a]y\x\<l

sup \f(h:x;D')+g(h;D')\

sup
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Now there are finitely many k > 0,Dk G £)(R2), so that

φ(h : x; D) =

For each such k > 0,

P.V.

|x|>l

\f(h:χ Dk)\dx P.V.
oixt

-dx

Thus using (7.3) there are Ck > 0 so that

sup
(M)

P.V. / eixtφ(h : a DJΛc < \\f\\Dkt2 + sup

D

We now turn to the notation of §6, in particular (6.7) and (6.10). For any
Fl(s) C F ' C F{» define C(U(e) x αj.,) =

{g e C°°(U(e) x αj.,) : | | ^ | | A r < oo for all D e D(iυ* x **F,),r > 0}

where
\\g\\Dir= sup (l + \v\y\\g(h:v D)\\.

(htv)eU(e)xa*F,

Given g G C(U(e) x ajr,), extend g to [/(e) x a*F, by g(/ι : i/pj) = g(h : i/F/)
where for vp> G a^/, vFι is the restriction of vF> to a/?/.

Theorem 7.7. Suppose for F£(s) C F' C F£ there are g(F') G C(ϊ7(e) x a*F,)
such that

: I/)" 1

' : h : u )

is jointly smooth on U(e) x a*F,. Then given D G JD(id*),r > 0 ; ίΛere are
ί > 0 and a /ϊniέe subset E of D(it>* x a^') θ

sup (1 + σ(a))r D P.V. /
Ja* pκ{h:u)

-dv

< Σ Σ
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Proof. As in (6.5) we write s~xa = α0exp \ΣaeF' taH*F A . Now there is
Ci > 0 so that

σ(a))r < σ(a,))r
\ta\)r.

Write

V / -dv

Π P V / *»*<„ ,-h λΣ,9(F' : Λ : i/).

Now since each ^(F' : Λ : f) is Schwartz as a function of i^, we have <i > 0
and a finite subset Ex of D(iθ* x αj) so that

sup (1 + σ(α0))Γ

(

D1

For each α G FQ(S) we have taha > 0 for all α G ̂ 4p, Λ G ί7°(c). Further,
each p(F' : h : v) is Schwartz as a function of va. Thus applying (7.5), there
are t2 > 0 and a finite subset E2 of D(it>* x α^(s)) so that

βupίl

+ K,,,

P V
\f ^ i \

Finally, for each a E Fj\F£(s) we have taha < 0 for all aeA%,he U°{e),
and (/i, v) H-> (i/α + iha)~ι ΣF, g(F' : /ι : v) is jointly smooth on C/(e) x α̂ /
by hypothesis. Let Sa be the set of all F' such that F£(s) C F ' C F ^ and
ttGf and let Sa be the set of all F' such that F^s) Q Fι C F^ and α ^ f .
Then we can write

: fc : i/) = : i/) ' : Λ : i/)
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where Σ F / e 5 α g(F' : h : v) is Schwartz as a function of va and ΣF'<ΞSΛ

g(F' : h : v) is independent of va. Thus applying (7.6) to each a G FQ\FQ(S)

we have £ > 0 and a finite subset I? of DUΌ* X at/) so that

Σ SUD (1 + IVFΊSΪIY2

p V / J

< ])P ^ SUp (1 + I^F'l

D

References

[CM] W. Casselman and D. Milicic, Asymptotic behavior of matrix coefficients of admis-
sible representations, Duke Math. J., 49 (1982), 869-930.

[HC1] Harish-Chandra, Harmonic analysis on real reductive groups I, J. Funct. Anal., 19
(1975), 104 -204.

[HC2] , Harmonic analysis on real reductive groups II, Inv. Math., 36 (1976), 1-55.

[HC3] , Harmonic analysis on real reductive groups III, Annals of Math., 104
(1976), 117-201.

[HI] R. Herb, The Schwartz space of a general semisimple Lie group II, Wave packets

associated to Schwartz functions, Trans. AMS., 327 (1991), 1-69.

[H2] , The Schwartz space of a general semisimple Lie group III, c-functions,
Advances in Math., 99 (1993), 1-25.

[H3] , The Schwartz space of a general semisimple Lie group IV, Elementary
mixed wave packets, Compositio Math., 84 (1992), 115-209.

[HW1] R. Herb and J. Wolf, The Plancherel theorem for general semisimple groups, Com-
positio Math., 57 (1986), 271-355.

[HW2] , Rapidly decreasing functions on general semisimple groups, Compositio

Math., 58 (1986), 73-110.

[HW3] , Wave packets for the relative discrete series I: The holomorphic case, J.
Funct. Anal., 73 (1987), 1-37.

[HW4] , Wave packets for the relative discrete series II: The non-holomorphic case,
J. Funct. Anal., 73 (1987), 38-106.

[HW5] , The Schwartz space of a general semisimple group I, Wave packets of Eisen-
stein integrals, Advances in Math., 80 (1990), 164-224.

[KM] H. Kraljevic and D. Milicic, The C*-algebra of the universal covering group of
5L(2,R), Glasnik Mat. Ser. Ill, 7(27) (1972), 35-48.

[S] W. Schmid, Two character identities for semisimple Lie groups, (Proc. Marseille
Conf., 1976) Lecture Notes in Math., Vol. 587, Springer-Verlag, Berlin and New
York, 1977.



SCHWARTZ CLASS WAVE PACKETS 139

[W] J. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem-
oirs A.M.S., 138 (1974).

Received October 22, 1993. Partially supported by NSF Grant DMS 9007459.

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
E-mail address: rah@math.umd.edu






