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THE SCHWARTZ SPACE OF A GENERAL SEMISIMPLE LIE
GROUP V : SCHWARTZ CLASS WAVE PACKETS

REBEcCcA A. HERB

Suppose G is a connected semisimple Lie group. Then the
tempered spectrum of G consists of families of representations
induced unitarily from cuspidal parabolic subgroups. In the
case that G has finite center, Harish-Chandra used Eisenstein
integrals to construct wave packets of matrix coefficients for
each series of tempered representations. He showed that these
wave packets are Schwartz class functions and that each K-
finite Schwartz function is a finite sum of wave packets. Thus
he obtained a complete characterization of K-finite functions
in the Schwartz space in terms of their Fourier transforms.

Now suppose that G has infinite center. Then every K-
compact Schwartz function decomposes naturally as a finite
sum of wave packets. A new feature of the infinite center
case is that the wave packets into which it decomposes are
not necessarily Schwartz class functions. This is because of
interference between different series of representations when
a principal series representation decomposes as a sum of limits
of discrete series. There are matching conditions between the
wave packets which are necessary in order that the sum be
a Schwartz class function when the individual terms are not.
In this paper it is shown that these matching conditions are
also sufficient. This gives a complete characterization of K-
compact functions in the Schwartz space in terms of their
Fourier transforms.

1. Introduction.

Suppose G is a connected semisimple Lie group. Then the tempered spec-
trum of G consists of families of representations induced unitarily from cus-
pidal parabolic sub-groups. Each family is parameterized by the unitary
characters of a Cartan subgroup. The Plancherel theorem expands Schwartz
class functions on G in terms of the distribution characters of these tempered
representations. Very roughly, for f in the Schwartz space C(G), we can write

(1.1a) flz) = Z fu(z),z € G

HeCar(G)
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where Car(G) denotes a complete set of representatives for conjugacy classes
of Cartan subgroups of G and

(L1b) fr(z) = /}7@(H=x)(R(w)f)m(H:x)dx-

Here ©(H : x) denotes the distribution character of the representation
7(H : x) corresponding to x € H, R(z)f is the right translate of f by z € G,
and m(H : x)dy is the Plancherel measure corresponding to 7(H : x).

Suppose that G has finite center and that f € C(G) is K-finite where-K
is a maximal compact subgroup of G. Fix H € Car(G). In [HC1, 2, 3]
Harish-Chandra used Eisenstein integrals to construct wave packets of ma-
trix coefficients of the representations w(H : x),x € H. He showed that
these wave packets are Schwartz class functions and that fy is a finite sum
of wave packets. Thus he obtained a complete characterization of K-finite
functions in the Schwartz space in terms of their Fourier transforms.

Now suppose that G has infinite center Zg. (For example, G could be
the universal covering group of one of the non-compact simple Lie groups of
hermitian type.) Let K be a maximal relatively compact subgroup. That
is, Zg C K and K/Z; is a maximal compact subgroup of G/Zs. Then
there are no K-finite functions in C(G). However the set C(G)x of K-
compact functions, those with K-types lying in a compact subset of K, is
dense in C(G) [H1]. Let H € Car(G). Then for every f € C(G)k, fu again
decomposes naturally as a finite sum of wave packets. A new feature of the
infinite center case is that for f € C(G)k, fu and the wave packets into which
it decomposes are not necessarily Schwartz class functions. This is because
of interference between different series of representations when a principal
series representation decomposes as a sum of limits of discrete series. When
G has infinite center, these limits of discrete series can be actual limits along
continuous families of relative discrete series representations, and so occur
in a non-trivial way in the Plancherel formula in the terms corresponding
to different Cartan subgroups. This means that for f € C(G) there are
matching conditions between the terms fy, H € Car(G), which are necessary
in order that the sum be a Schwartz class function when the individual terms
are not. These matching conditions generalize those of H. Kraljevi¢ and D.
Mili¢i¢ for the universal covering group of SL(2,R) [KM].

In order to obtain a complete characterization of the K-compact Schwartz
class functions in this case it is necessary to study elementary mixed wave
packets. These are finite sums of wave packets which patch together to form
Schwartz class functions. They should be thought of as the basic building
blocks from which Schwartz class functions are formed in the infinite center
case. Elementary mixed wave packets were defined in [H3] and it was shown
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that every f € C(G)k is a finite sum of elementary mixed wave packets.
In this paper we will show that every elementary mixed wave packet is a
Schwartz class function. This completes the study of the Plancherel theorem
and Schwartz space for general reductive Lie groups which was initiated in
[HW1, 2, 3, 4, 5] and continued in [H1, 2, 3].

In order to explain the results of the paper more precisely and with a
minimum of technical notation, we will assume for the remainder of this
introduction that G is a simple, simply connected, non-compact real Lie
group of hermitian type. Let K be a maximal relatively compact subgroup
of G. Then K = K; xV where K, = [K, K] is compact and V = R is a one-
dimensional vector group in the center of K. Then {e" : h € ib*} gives a one-
parameter family of one-dimensional characters of K. Now let P = M AN
be a cuspidal parabolic subgroup of G and H = T'A a Cartan subgroup of
G with T C K a maximal relatively compact Cartan subgroup of M. The
characters e®, h € iv*, give characters of T by restriction. Thus each x € T
lies in a continuous family of characters of T of the form {x ® e" : h € ib*}.
Each character in the family corresponds to a relative discrete series or limit
of discrete series representation w(M : h) of M. Note that w(M : h) de-
pends only on the restriction of e® to T, so that these representations may
not all be distinct. Let A(h) € it* denote the Harish-Chandra parameter of
m(M : h), let C be a Weyl chamber of it*, and let D = {h € iv* : A(h) € C}.
Then D is an open interval and is unbounded just in case the representations
7(M : h),h € D, are holomorphic or anti-holomorphic relative discrete se-
ries. Now

{(m(H:h:v)=Ind$  ,n(7(M :h)®@e” ®1): h € D,v € a*}

is called a continuous family of representations of G corresponding to H.

Wave packets of Eisenstein integrals corresponding to a continuous family
{w(H :h:v):h€D,v € a*} are defined as follows. Fix 71,7, € K with the
same Zg character as x and let W be a finite-dimensional complex vector
space on which K acts on the left and right by (7;,7;). For h € iv*, let
min = Ti®el i =1,2. In [HWS5] we defined Eisenstein integrals E(P) :
bg X ag X G — W which are holomorphic in h and v and are (74, 721)-
spherical functions of matrix coefficients of the representations n(H : h : v)
when h € D,v € a*. Then we defined wave packets of the form

(1.2) ®H:D:z)= E(P:h:v:z)a(h:v)m(H : h:v)dvdh
Dxa*

where m(H : h : v)dvdh is the Plancherel measure corresponding to

w(H : h:v)and a: D xa* — C is a jointly smooth function of h and

v which extends smoothly to cl(D) x a* and is rapidly decaying at infinity
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in both variables. It was proven in [H1, 2, HWS5] that every K-compact
Schwartz function is a finite sum of wave packets of this type and that an
individual wave packet ®(H : D) is Schwartz class if and only if a(h : v)
has zeroes of infinite order at the finite endpoints of the interval D and if
a(h : v)m(H : h : v) is jointly smooth on D x a*. Finite endpoints of D
correspond to limits of discrete series and points (h,v) € D X a* at which
m(H : h : v) fails to be jointly smooth correspond to reducible principal
series representations which decompose into limits of discrete series which
are actual limits along continuous families of relative discrete series repre-
sentations. )

Let ®,, denote the set of roots for (mc, tc) and choose a set ®}, of positive
roots so that there is a unique non-compact simple root 5. We will use
h ¢ (B,h) to identify iv* = R. Fix x € H and let

Fy = {a € 8%, : (@, \0)) = 0}

where as before, A(h) is the Harish-Chandra parameter of the relative dis-
crete series representation (M : h) of M corresponding to x ® e®. If there is
a compact root a € Fp, then (A(h), @) = (A(0),a) = 0 for all h € 70* so that
the Plancherel function m(H : h : v) corresponding to w(H : h : v) is zero
for all h € i0*,v € a*. In this case the family plays no role in the Plancherel
formula or the Schwartz space analysis. Thus we assume that F, contains
no compact roots. Then A(h) is regular for small » # 0 and so there are
Weyl chambers C* of it* so that A(h) € C* for small h > 0 and A(h) € C~
for small h < 0. Write D* = {h € iv* : A(h) € C*}. (Of course if Fy = 0,
then 0 € D* =D".)

Now each F C F, is a strongly orthogonal family of non-compact roots of
M and so corresponds to Cartan subgroups Hy r of M and Hr = Hy,rA =
TrAr of G. We identify roots of Hr with those of H via the Cayley trans-
form cr corresponding to F. Let Pr = MpArNFp be a cuspidal parabolic
subgroup corresponding to Hr. Then for each F C F,,Tr C T and we de-
fine xr € Tr to be the restriction of x. Let 7(F : k) be the relative discrete
series representation of My corresponding to xr ® e" and define

(1.3) w(F:h:vp)=Ind5, 4N, (T(MF : h) ® e¥F ®1),h € ib*,vp € a}.

We call {n(F : h:vp): F C Fy} a matching family of representations.

Now elementary mixed wave packets are defined roughly as follows. (See
(2.16) for the precise definition.) Fix a matching family {n(F : h : vp) :
F C F,} as in (1.3) such that the Plancherel function m(H : h : v) is
jointly smooth on [0,a) x a* and (—a,0] x a* for some a > 0. Suppose for
each F' C Fy we have ®(F) : iv* X a x G — W satisfying the following
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conditions. First, let ®*(F) denote the restriction of ®(F) to D* x a} x G.
Then there are finitely many Eisenstein integrals E(Pr) corresponding to
the family {n(F : h: vF) : h € D%, vp € a}} and smooth, rapidly decreasing
functions o as in (1.2) so that for all h € D*,vp € a},z € G,

(14a) OE(F:h:vp:x) =Za§h(h:1/p)Ef(PF th:vp:z).

Second, there are a small neighborhood U of 0 € iv* and a compact subset
w C U so that

(1.4b) O(F:h:vp:z)=0 forallvp€ap,z€CG, ifh¢w.

U must be small enough that U C (—a,a) N (D U D~ U {0}). Finally, the
functions ®(F') must satisfy the same matching conditions as the characters
of the representations = (F).

These matching conditions can be stated as follows. Fix E C F,. For
every E C F C Fy,ag C ar and we can identify a} = a @ RIF\El by
vr < (Vg, (Ba)acr\g) Where vg is the restriction of vr to ag and p, =
(vr,a),a € F\E. Write (vg,0) for the element (Vg, (ka)acr\g) With o =0
for all @ € F\E and define a differential operator on iv* X a} by Dp\g =
0/0h — i} pep\g O/ Otta- For F C Fy, let F°© = Fy\F.

Then for all £ > 0,

gﬁl(a/ah)%w th:vg:z)+ (—1)EH m(a/ah)%(E th:vg:x)

= 3 gnm [1}3{511);\,34)(1«’ ‘h: (vg,0) : T)
ECFCFy
—_1NIFl 14 k B - .
(1.4c) +(-1) I’gﬁlDF\E@(F.h.(VE,O).x)]

for all vg € a};,z € G. Here for all p > 0, ¢, = (d/dz)? tanh(z/2)|;=0-
We say that

(14d) @)=Y / O(F:h:vp:z)m(F: h:vp)dhdvp
FQFO i0* ﬂ;,

is an elementary mixed wave packet. If w* € W* we say that

(1.4e) ¢(z) = (2(z),w")

is a scalar-valued elementary mixed wave packet.

Theorem 1.5 ([H3]). Ewvery f € C(G)k is the sum of finitely many scalar-
valued elementary mized wave packets.

The main result of this paper is
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Theorem 1.6. FEvery elementary mized wave packet is a Schwartz class
function.

The following results from [H3] will be used to prove Theorem 1.6. Let
®(z) be an elementary mixed wave packet as in (1.4) and write

(1.7) ®(h:z) = z/ O(F:h:vp:z)m(F :h:vp)dvp.

Theorem 1.8 ([H3]). Let ®(z) be an elementary mized wave packet. Then
(h,z) > @(h: x)
is jointly smooth on iv* x G.

Proposition 1.9 ([H3]). Suppose F :iv* x G = W is (71,1, T2,1)-spherical
and define

F(z) = /b* F(h : z)dh.
Then F(z) is a Schwartz class funcztion on G if and only if
(h,z) = F(h:z) is jointly smooth on i0* X G
and

sup Z(a)"'(1 + 0(a))" (1 + ||)"||F(h; D : Dy ;a; D5)|| < oo
heiv* accl(A)

for allT > 0, constant coefficient differential operators D on iv* and Dy, D, €
U(gc)-

Thus to complete the proof that elementary mixed wave packets are
Schwartz functions we will need to prove the estimate in (1.9). In order
to do this we will need an alternate formula for elementary mixed wave
packets which was proven in [H3] by studying the Plancherel functions. For
h € iv*, F C Fy,vr € a}, write

(1.10a) pr(h:ve) = [ ((vr,0) +ih).
a€EF

Then it was proven in [H3] that there are functions g(F : h: vp : z), F C Fy, .

which are jointly smooth on cl(D*) x a} X G and satisfy matching conditions

similar to those satisfied by the ®(F : h: vp : z), F C Fy, so that

—|F| g F h: 124 2B x)d]/F_

1.10b O(h:z ¢
(1.10b) (h:2) = 3 (ri s
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Rather than explain how the estimate

sup Z(a)"'(1+ o(a))"(1 + |h|)"||®(h; D : D;;a; D,)|| < oo
heiv* aecl(At)
is proven in general, we will specialize further to the simplest example,
namely when G is the universal covering group of SL(2,R). In this case
we will have non-trivial mixed wave packets just in the case that M =
G, H = T is the relatively compact Cartan subgroup, and A(0) = 0 so _
that F, = &}, = {a}. In this case {m(T : h) : h > 0} is the set of holo- -
morphic relative discrete series representations and {x(T : h) : h < 0} is
the set of anti-holomorphic relative discrete series representations. Write
H, = Hp,. It is the Cartan subgroup given by Hy, = ZA, where Z is the
center of G and Ay ~ R is a one-dimensional real vector group. The family
{w(Hy:h:v):h€R,v € aj ~ R} contains all unitary principal series rep-
resentations of G. Note that n(Hy: h+2:v) =n(Hy: h:v)forallh,v € R
since e*|z = 1 for all h € 2Z. The ones which factor through SL(2,R) are
those corresponding to h = 0 which in this parameterization are the non-
spherical principal series, and those corresponding to A = 1 which are the
spherical principal series. Thus 7(Hy : 0 : 0) is the only reducible one, and
it is the direct sum of the two limits of discrete series w(T : %+ : 0).
Now an elementary mixed wave packet will have the form
+o0

o(z) = ®(T : h: z)|h|dh

1 ftoo i vsinh v
(1.11) + 3 /_oo . O(Hy:h:v: m)coshm/ o5 whdydh'

Here for each h # 0,®(T : h : z) is a matrix coefficient of the relative discrete
series representation n(T : h) with K-types 7y s,72s. Further, for each
z € G, h+ ®(T : h: ) is compactly supported in a small neighborhood U
of zero and is smooth except at A = 0 where it and its derivatives have jump
discontinuities. For each h,v,®(H, : h : v) is a matrix coefficient of the
principal series representation 7(Hy : h : v) with K-types 7; p, 72 5. For each
z € G, (h,v) = ®(Hp : h: v : z) is jointly smooth, an even Schwartz class
function of v, and is non-zero only when A € U. The matching conditions
are that for all £ > 0,z € G, we have

I’H{)l(a/ah)ké(T th:z)+ l&g)l(a/ah)kQ(T th:x)
= (8/0h —i8/0v)*®(T : 0 : 0).
Write
9g(T :h:z)=9(T: h:z)|h|
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and

. _imv®(Hy: h:v:z)(v+ih)sinhw(v +ih)
9(Ho:h:v:z)= (coshm(v +ih) — 1)

Then formula (1.10b) in this case becomes

(1.12) ®h:z)=g(T:h:z)+ % /_:o g(H?V:ﬁ Z:) 7),

Now using (1.8) and (1.9), in order to prove that & is a Schwartz class
function it is sufficient to prove that for all k,» > 0,D;,D, € U(gc), we
have

(1.13) sup E(a)”'(1+ o(a))"|®(h; (8/0h)F : D, ;a; D;)| < o0o.

hEU,aEcl(A,'J")

(Note that the term (1 + |h|)" is not needed since @ is compactly supported
as a function of h.) The differential operators D;, D, € U(gc) are handled
in the same way as for ordinary wave packets, so in this example we will just
look at the case where D; = D, = 1.

Let H € ay such that a(H) =1 and for ¢ € R, define a; = exptH. Then
from the theory of constant terms in [HW5] we see that there are functions
ct(Hy : h : v) which are jointly smooth on U X R and Schwartz as functions
of v so that if we write d(Ho : h: v :a;) =

(1.14a) g(Ho:h:v:a,) —e™ Vict(Hy: h:v) — e Vi (Hy : h:v)

we have the following estimate. Given any D € D(R?), the constant coef-
ficient differential operators in R2, there are constants C,r;, and € > 0, so
that for t > 0,h e U,v € R,

(1.14Db) |d(Ho : h:v; D : a;)| < Ce= 91 4 1)".

However, the theory of constant terms from [HW5] applied to the function
g9(T : h : z) just says that given D € D(R) there are constants C,r;, and
€ > 0 so that

|9(T : h; D : a;)| < Ce(+elhDt(1 4 ¢),

This estimate will not be good enough since we are interested in behavior
at h = 0 where €/h] = 0. In §3 of this paper we will modify the theory of
constant terms so that in this case we also obtain functions ¢*(T : h) which
are smooth in U except at h = 0 so that if we write

(1.15a) d(T:h:a)=g(T:h:a;) - et~ VtcH(T : h) — e Dtc (T : )
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we have an estimate similar to the one above. That is, given any D € D(R)
there are constants C,r;, and € > 0, so that for all ¢ > 0,h € U,

(1.15b) |d(T : h; D : a,)| < Ce™ 91 +t)".

Because of the growth conditions satisfied by ¢g(T"), ¢t (T : h) =0if h > 0
and ¢~ (T : h) = 0 if h < 0. The constant terms c*(Hy : h: v) and ¢*(T : h)
satisfy the same matching conditions as the original functions g(Hp : h : v)
and g(T : h).

Using these constant terms, the Schwartz estimates can be made as fol-
lows. Recall that we want to prove that

sup E(ag) (1 +t)"|®(h; (8/0h)* : a,)| < oco.

REU,t>0

Since ®(h : z) is jointly smooth, it is enough to prove that for each of
U* ={h€U:+xh>0} we have

sup  Z(a;) (1 + 8)"|®(h; (0/OR)* : at)| < oco.
heU=%,t>0

We will do the case that A € UT here. The other case is similar.
Recall that

g(Ho: h:v:ay)

(v + ih) dv.

1 [t
@(h.at)—g(That)+%£m
Using (1.15) we have

sup E(a;) '(1+t)"|d(T : h; (8/0h)* : ay)]

heU+,t>0
< CsupE(a,) ™ (1 + )" e (I
t>0

But there are constants D,q > 0 so that Z(a;)™" < De(1+t)? for all t > 0.
Thus
supE(a;) " (1 +t)" e~ (19t < 0o,
£>0
Using a calculus lemma, from [H3, 7.6], there is a finite subset S of D(R?)
so that for all ¢ > 0,

sup (3/3h)’° /+°° d(Hy:h:v:ay) o

heU+ —00 v+ Zh

< Z sup |d(Hp: h:v;D':ay)l.
D'eS heU+ veR
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But using (1.14), for each D’ € S there are C,r;,e > 0, so that

sup  E(a;)"'(1+¢t)"|d(Ho : h:v; D' : ay)|
heU+,veR,t>0

< supZ(a;) 7 (1 +8) e 19t < o
£>0

as above.
Thus it suffices to estimate

sup Z(a) (1 +¢)
heU+,t>0

(8/0h)* [e&h—l)tci(T  h)

21 J o v+ th

1 +o0o ,(tiv—1)t .+ -h:
/ e ct(Hyp: h V)duJ .

First, as above, the term e *=(a;)™! is of polynomial growth in ¢, and so it
is enough to estimate

1 [+ ericE(Hy: h:v)
k +ht + .
(8/0h) [e (T ) + 5 /_ ) Lt du]

sup (1+1¢)"
heU+,t>0

First, recall that ¢* (T : h) = 0. Thus in this case we need to estimate

sup (1+1¢)"
heU+,t>0

(9/0R)* /+°° evtct(Hy: h:v)

- v +ih d”"

Since ¢t (Hy : h : v) is Schwartz as a function of v, and h,t > 0, it can be
proved using elementary calculus and contour integrals (see (7.5)) that for
any r,k >0,

dv| < oo.

sup (1+1¢)"
heU*,t>0

+o0 Livt .+ . .
k e”tct(Ho: h:v)
(9/0h) /;oo v+ih

This lemma does not hold for

dv.

/+°° e ™ic (Hy: h:v)
oo v+1ih
For this case we must look at the two constant terms together and use the

matching conditions.
It is easy to prove using a contour integral (see (7.1)) that for h,t > 0,

+o00 e—it/t
P.V./ —dv = —2mie M.
—00 V+ih
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Thus we can write

+o00 —wt . .
_.ht_.Th)+ / C(Ho‘.h.l/)d’/
v +ih
+00 —-wt
PV/ [~ (T :h)+c (Hp:h: 1/)]
27rz v+1ih

Now the matching conditions satisfied by the constant terms in this case are
l’gg(a/ah)"c_ (T : h) = (8/0h —i0/0v)*c(H, : 0: 0)
for all £ > 0 since ¢~ (T : h) =0 for h < 0. Equivalently, we can write

(0/0h —i0/Ov)¥[—c (T : h) +c (Ho : h:v)] =0

(h, u)—)(O 0),h>0
for all £ > 0. But this implies (see [H1, 10.7]) that

—c (T:h)+c (Ho:h:v)
v+ih

extends to be smooth at (0,0) € cl(U*) x R. Now another calculus lemma
(see (7.6)) gives the required estimate for this term.

The organization of the paper is as follows.

In §2 we review definitions and theorems from [H1, 2, 3, HW5] and
derive a consequence of the matching conditions which will be needed in §5
and §6.

In §3 we extend Harish-Chandra’s theory of the constant term to obtain
more exact asymptotic estimates near the walls of Weyl chambers. As in
[HWS5], it is necessary to study constant terms for a class of functions gen-
eralizing Eisenstein integrals and for a class of functions which will contain
the functions g(F) used to express the elementary mixed wave packets in
(1.10). These new constant terms are a generalization of the constant terms
used for the case of relative discrete series matrix coefficients of the universal
cover of SL(2,R) in (1.15).

In §4 we use the Casselman-Mili¢i¢ theory of asymptotics (see [CM]) to
obtain a meromorphic extension of the constant terms of Eisenstein integrals
defined in §3 and study their poles. D. Mili¢i¢ sketched the theory of the
ordinary constant term in this context in a letter to J. Wolf in 1984.

In §5 we use the results of §4 to prove that all constant terms of the
functions g(F') are smooth.

In §6 we use the results on asymptotics and constant terms to prove that
the elementary mixed wave packets are Schwartz functions.

In §7 we prove some calculus lemmas which are needed for §6.
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2. Preliminaries.

Suppose G is a connected reductive Lie group. Fix a Cartan involution 6
as in [W] and let K denote the fixed point set of §. Then the center Zg of
G is contained in K, and K is the full inverse image of a maximal compact
subgroup of the linear group G/Zg. Write K = K, x V as in [HW5] where
K, is the unique maximal compact subgroup of K and V is a closed normal
vector subgroup of K such that Z = Zg NV is co-compact in both V' and
Zg.

Let g = €+ p be the +1 eigenspace decomposition under 6. (For any
Lie group G we will use the corresponding lower case German letter g to
denote the real Lie algebra of G.) Choose a maximal abelian subspace
ao C p and a positive restricted root system &t = ®*(g,ay). Let p =
1/23 4ce+ m(a)a where m(a) is the dimension of the root space of g cor-
responding to a. For z € G , define H(z) € ay using the Iwasawa decom-
position, z € K exp(H(z))No. Then the zonal spherical function on G for
0€aqgis

(1]

(2.1a) () = /K L& (k).

Now decompose z € G as = v(z)k;(z) exp £(z) where v(z) € V, k() €
K, and £(z) € p. Polynomial growth in G is determined by the function

(2.1b) (z) = ov(z) + o(z)

where oy (z) = ||v(z)|| and o(z) = ||{(z)||. Let W be a Banach space and
fEC®(G:W). If D;,D, € U(gc) and r > 0, define

(2.1¢) pillflirp. = ilelg(l +35(2))"E(@) 71 f (D1 iz Do) llw-

The Schwartz space is

(2.1d) C(G:W)={feC®(G:W):p, [|fllsp, <00
for all Dy, D, € U(gc),r > 0}.

We write C(G) =C(G : C).

Let W = W (r, : 72) be a finite-dimensional vector space on which K acts
on the left and right by 7,72 € K. For any h € vg, extend h to € by making
it trivial on €,. Then e” is a one-dimensional character of K which is unitary -
just in case h € iv*. For any h € vy, write 7;, = 7; ® e*. Then (1, 4, T2.5)
is a double unitary representation of K on W for all h € iv*. We will say
F :iv* x G = W is (71,1, T2,n)-spherical if for all k1, k, € K,z € G, h € iv*,

(2.2) F(h: kyzks) = 1 n(k1)F(h : )T n(k2).
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For any finite-dimensional real vector space E, write D(FE) for the constant
coefficient differential operators on E.

Proposition 2.3 [H3, 2.8]. Suppose F € C®(iv* x G : W) is (T p, T2.p)-
spherical, and suppose for all r > 0,D € D(iv*), Dy, D, € U(gc) that

sup E Y a)(1 + 0(a))" (1 + |A)"||F(h; D : D; ;a; D,)|| < co.

heiv* aecl(A)

Then if
F(z) = /i;‘ F(h:z)dh

FecC(G:W).

When K is non-compact there are no K-finite functions in C(G). The
appropriate generalization in this case is the notion of a K-compact function
defined as follows. For 7 € K, let

(2.4a) 8(7) = deg(r") trace(7")

denote the normalized character of the contragredient 7* of 7. We say f €
C(G) is K-compact if there is a compact subset Q of K so that for 7 € K,

(2.4b) () *k f=0=fxg (1), 7 & Q.
It was proven in [H1, 2.12] that the space C(G)x of K-compact functions
is dense in C(G).

Continuous families of tempered representations of G are defined as fol-
lows. Let H = T A be a f-stable Cartan subgroup of G and let P = M AN
be a parabolic subgroup associated to H. Let ®,; = ®(mc, tc) denote the
roots of mg with respect to tc, @}, a choice of positive roots. Let pys denote

the half sum over ®3,. For h € i0* = {h € it* : h(t;) = 0}, set hp(h) = hls.
Let

(2.5a) Dp1 = {a € Py : (o, hpr(h)) =0 for all h € 407},

Let

(2.5b) Ap; = {A €it* : X — py is integral and ) is @, non-singular }.
For A € Ay set

(2.5¢) X(\) = {x € Zy (M°)": x|z,,, is a multiple of e*~#¥ IZMo}
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and let
(2.54) X(T) ={(\x) € Ama % Zu (M°)": x € X(N)}-

Then for (\,x) € X(T),h € iv*, let A(h) = A+ hy(h) and x(h) = x ®
€"| 2y (moy. Then if A(h) is regular we will write w(h) for the relative discrete
series representation of M° with Harish-Chandra parameter A(h). For v in
a* we set

(25¢)  m(H:A:x:hiv)=Tndg, aopean(x(h) @ (k) @ ¥ ® 1)
and let
(2.51) O(H : X: x: h:v) be the character of m(H : A: x : h:v).

Z is a central subgroup of Zy/(M°) so that each x € Zp(M°)" has a Z-
character ((x). Let

(258) K(x)={re€K:r(kz)=((x:2)7(k) forallk € K,z € Z}.

Then all K-types of the representation 7(H : A: x : b : v) liein K(x®e") =
{’Th =7Qe": 7€ f(\(x)}

Holomorphic families of Eisenstein integrals corresponding to a continuous
family of tempered representations are defined as follows. Fix (), x) € X(T)
as above and 7,7, € K(x) acting on W = W (7, : 73) on the left and right.
Let D be a connected component of {h € ib* : (A(h),a) # 0 for all « € ®};}.
We first define holomorphic families of spherical functions of matrix coeffi-
cients of the representations {x(h) @ w(h) : h € D} of Mt = Z)(M°)M°. A
construction of these holomorphic families is given in [HW3, 4]. For h € D,
let S(M': W : h) be the set of all ¥(h) : M' — W such that

(26 a) \I/(h H klxkz) = Tl’h(kl)q/(h : $)T2)h(k2)
for all k;,k, € K}, = KN M,z € M*

and for each w* € W*,
(2.6 b) .
z — (U(h: z),w") is a finite sum of matrix coefficients of x(h) ® w(h).

Now let S(M':W) = S(M!t:X:x:D:W) be the set of all
U € C*(bg; x Mt : W) such that

(2.7a) U(h)y e S(M!:W :h) for all h € D,
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(2.7b) h — U (h : m) is holomorphic on v for all m € M,
and
(2.7¢) U satisfies a moderate growth condition.

(See [H1, 5.2] for the precise growth condition.)
Now for ¥ € S (M': W), we extend ¥ to G by
(2.8a)
U(z) = 14 (6(x)) ¥ (h : p(z)), T = K(z)u(z) exp(Hp(z))n(z) € KMTAN

and define the Eisenstein integral E(P : ¥) : g x ag X G = W by

(2.8b) E(P:¥:h:v:z)= U(h : zk)Ty (k1) el —PP PR G| 7).
K/Z

Let P(iv* x a*) denote the set of all polynomial coefficient differential
operators on ib* x a*. For a € C*®(cl(D) x a*) and D € P(iv* x a*) define

(2.9a) lelp = sup |Da(h:v)|
(h,v)EDxa*

Then let

(2.9b)

C(D x a*)g = {a € C®(cl(D) x a*) : ||a|lp < oo for all D € P(iv* x a*)}.
Now for any ¥ € S(M' : W),a € C(D x a*), define

(2.9) O(z) = E(P:V:h:v:z)a(h:v)m(H : h:v)dvdh

Dxa*
where m(H : h : v)dvdh is the Plancherel measure corresponding to the
representation w(H : A : x : h: v). @ is called a wave packet of Eisenstein
integrals.

Before we can define elementary mixed wave packets we must review the
definition of matching families of tempered representations from [H3, §3].
Let H = T A be a 0 -stable Cartan subgroup of G, P = M AN a parabolic
subgroup associated to H. Fix (\,x) € X(T) as in (2.5). Let Fy = {a €
&}, : (@, A) = 0}. Then any subset F of F, is a strongly orthogonal system
of non-compact roots in ®,,. Let Hy r denote the corresponding Cartan
subgroup of M. That is, the complexified Lie algebra of H), r is obtained
from that of T' by Cayley transforms corresponding to the roots in . Then
Hp = Hy rA = TrAr is a Cartan subgroup of G. Let Pr = MpAp Ny be
a parabolic subgroup with split component Ap.
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Let F C Fy. Because Tr C T, we can define data for tempered repre-
sentations of G corresponding to Hr as follows. Let Ar = A|(, and let xp
be the restriction to Zs, (M2) of x ® e*#. Then (Ar,xr) € X(TFr). For
h € iv*, set Ap(h) = Ap + hare (B), xr(h) = xr ® e*. Write

(2.10a) 7(F:h:v)=n(Hp:xr:Arp:h:v)
and let
(2.10b) O(F : h: v) be the character of n(F : h: v).

We call {O(F : h:v): F C Fy} a family of matching characters correspond-
ing to (A, x). Fix Cayley transforms cr : hc — hprc. We will use these
isomorphisms to identify linear functions on hrc for any F C Fj.

Given any chamber C of it* and a € @y, set €,(C) = sign (7,a),7 € C.
Now let C € C()), the set of all chambers with A € cl(C). Then for all
a € &1\ Fy, e, (C) = sign (\, ). Thus there is a bijection between C()) and

(2.11a) Y = {(€a)ack, : €« = £1 for all @ € Fp}
so that e € & < C = C(e) if ¢, = €,(C) for all @ € F,. Similarly for any

F C F, there is a unique chamber Cr(e) with Ar € cl(Cr) and €,(Cr) = €,
for all @ € Fy\F. For € € X, write

(2.11b) D(e) = {h €iv* : A(h) € C(¢)}.
Let
(2.11¢) Yo = {e € Z: D(e) # 0}.

For any € € Xy, F C Fy, set Dp(e) = {h € iv* : Ap(h) € Cr(€)}.
For any a € Fy, define

Ho = {h € iv”: (hy(h),a) = 0}.

Define an equivalence relation on Fy by a ~ B if H, = Hz. Write Fy =
F}UF2U...U F{™ where the F; are the distinct equivalence classes. Define

ea(h) = Sign <hM(h')1a> € {la —1’0}’

Then by [H3, 3.6], the positive system ®}, can be chosen so that €,(h)
is independent of o € Fi. Write ¢;(h) for this common value and define
H,’ = Ha, a e F& .
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Fix h; € iv* such that a(h;) > 0 for all @ € Fj. For any smooth function
f on iv*, define

(2.12a) 8/0hf(h) = d/dt|seo f (h + ths).

Now for all o € F§, pick po € a}, such that p.|a = 0, (e, cra) = (hi, ),
(o, cr,B) = 0 for all B € Fy, 8 # a. For any F we can consider yu, € a} by
restriction from ag, to ap. Now for any smooth function f on a}, define

(2.12b) 0/0paf(v) = d/dt|i=of (v + tha).

Let € € Xy,1 <1 < m. We will say that hy € H; Ncl(D(e)) is semiregular
inhy @ H; for 1 < j < m,j # i We will say that #; is a wall of D(e) if
there are semiregular elements in H; N cl(D(e)). Write X; for the set of all
€ € Xy such that #; is a wall of D(¢). For any 1 < i < m,e € ¥, define
et(i) € Z; by
(213) € (i)a = {e"” if o € Fo\F;

+1, ifae€F.

Now for any 1 <7 < m and € € ;, both of e*(:) € Z;, € is equal to one of
€*(i), and D(e*(¢)) and D(e~(z)) are separated only by the wall #,.

Now the matching conditions corresponding to the family {w(F : h: v) :
F C F,} can be stated as follows. Let W be a finite-dimensional vector
space and suppose for each F C F we have

g(F) :i0" X ap = W

such that for each € € X, the restriction g(F : €) of g(F) to Dr(e) x ap
extends to be a smooth function on cl(Dr(e)) x a}. Then we say that
{9(F) : F C F,} is a matching family if it satifies the following identities.

Fix EC Foand 1 < i < m,e € &;. Write E(i) = E U F;{. For
any vg € a} and F such that E C F C E(i), define (vg,0) € a} by
(vE,0)|ax = VE, ((VE,0),cra) =0 for all o € F\E. Write Dp\g = 0/0h; —
1Y aer\E 0/Ouq. Then for all k > 0,

(2.14)  (8/0h;)* (g(E : €t (i) : ho : vE) — g(E : € (i) : ho : vE))

= Y oneDpe
ECFCE(i)

- (g(F : €t (3) s ho : (VE,0)) + g(F : € (3) : ho : (VE,0)))
for all vg € a}, ho € H; N cl(Dg(€)). Here for all

p > 0,¢, = (d/dz)? tanh(z/2)|,=0.
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For any e € £y, F C Fy, ©(F : h: v : ) extends to a smooth function on
cl(Dr(€)) x a} x G. For (h,v,z) € cl(Dr(€)) x a} x G, write

(2.15a) OF :e:h:v:z)=0p(e)O(F :h:v:x)
where
(2.15b) or(e)= J] e

a€Fo\F

Then by [H3, 3.11], for every z € G the family {g(F) : F C Fy} given by
g(F :€:h:v)=0O(F :€: h:v: z)satisfies the matching conditions of
(2.14).

We are now ready to give the definition of elementary mixed wave packet.
Fix H = T'A a f-stable Cartan subgroup and (A, x) € X(T), 7,72 € K (x)-
Let U(0) be a neighborhood of 0 in ib* satisfying the conditions of [H3, 4.6]
and (3.18). We assume that the Plancherel function m(H : h : v) corre-
sponding to w(H : A : x : h : v) is jointly smooth as a function of (h,v) €
(U(0)Ncl(D)) x a* for every connected component D of {h € i0* : (A(h),a) #
0, € ®3,}. As in (2.10) we define Fy and Hr = TrAp, (Ar, xr) € X(TF)
for every F C F,. Let 7,7, € K(x) and let W = W(r; : 7). Suppose for
each F' C F, we have a function

O(F):i0" xap X G = W.

Then we will say that
(2.16 a)

o(z) = Z / / O(F:h:vp:z)m(Hp: Ap: xr:h:vp)dvpdh
io* Jag

FCF,

is a (W-valued) elementary mixed wave packet if the functions ®(F') satisfy
the following conditions. First, there is a compact subset w C U(0) so that
for all F C Fy,vp € a},z € G, h € 107,

(2.16b) O(F:h:vp:z)=0,h ¢w.

Second, let Wr(\, x) = {w € W(G, Hr) : wAp = Ap,wxr = Xr}- Then for
all w € Wr(\, x),vr € a5,z € G, h € i0*, )

(2.16¢c) O(F:h:wvp:2)=8(F:h:vp:z).

Third, for each F C Fy,e € Xy, let ®(F : €) denote the restriction of
®(F) to Dr(e) x a} x G where Xy, Dp(e) are defined as in (2.11). Then,
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using the notation of (2.7), (2.8), there are finitely many functions ¥; €
S(M};. :Ap i XF : Dr(€) : W),a; € C(Dr(€) x a})o so that

(2.164d) O(F:e:h:vp:z)= Zai(h :vp)E(Pp : U, :h:vp:x)

for all (h,vr,z) € Dp(€) X a} X G. Finally, we require that the functions
®(F : h : vp : z) satisfy the sane matching conditions as the characters
O(F :h:v:z). Thatis, for F C Fy,e € 5y, and (h,v,z) € cl(Dp(€)) x a} X

G, define N
O(F:e:h:v:z)=0p(e)®(F :h:v:x).

Then for every z € G the functions
(2.16€) {$(F teth:v: x)} satisfy the matching conditions of (2.14).

Finally, if ® is a W-valued elementary mixed wave packet and w* € W*, we
say that

(2.161) P(z) = (B(x), w")
is a scalar-valued elementary mixed wave packet.

Theorem 2.17 [H3, 4.2]. Ewvery f € C(G)k is the sum of finitely many
scalar-valued elementary mized wave packets.

The main theorem of this paper is

Theorem 2.18. Suppose that ® and ¢ are elementary mized wave packets
defined as in (2.16a) and (2.16f) respectively. Then ® € C(G : W) and
¢ €C(G)k-

In order to prove (2.18) we will need (2.3) and the following results from
[H3]. Suppose ®(z) is defined as in (2.16a) and for h € i0* set

(2192) @(h:z)= 3 / O(F :h:ve: s)ym(Hp: Ap:xe: h: ve)dvs.

FCF, V¢

Clearly ®(h : z) is (71,4, T2,n)-spherical and
(2.19b) ®(z) = / &(h : z)dh.
i0*

Theorem 2.20 [H, 7.3]. Let ®(z) be a W-valued elementary mized wave
packet . Then (h,z) — ®(h : ) is jointly smooth on iv* x G.
For any F C F,, (h,v) € iv* X a}, define

(2.21a) pr(h:v) = [] (va +iha)

a€EF
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where

2(v, cra)
(a,a)

2has(h), @)

(2.21b) Vo = (@ o)

and h, =

Theorem 2.22 [H3, 5.3]. Suppose for each F C Fy we have functions
O(F):i0" xapxG > W

satisfying (2.16b-e). Then for each F C Fy,
/ O(F:h:v:z)ym(Hp: Ap:xr:h:v)dv
aF

7TZ |F|/ g(F h:v: :L‘)dV
pr(h:v)

where for any € € o, h € Dp(€), using the notation of [H3, §5],
g(F:h:v:xz)=cop(e)(n/2)FI®(F :h:v:z)n(F:h:v)q(F:h:v)
H me(F :h:v) Z e(P)t(F:¢:h:v).

a€PYy o YETF
Further, the functions g(F) have the following properties. For any € € %,
(hyv,2) = g(F : h: v :z) is jointly smooth on cl(Dr(€)) X af X G.

For any D € D(iv* x a}),r > 0,91,92 € U(gc) , there are constants C,s > 0
so that

lg(F :h:v;D:gi;3;0) (1 + |v])” < CE(z)(1 + &(2))°

for all x € G,h € Dr(e),v € ay. Finally, for each x € G, the functions
{9(F : z) : F C F,} satisfy the matching conditions of (2.14).

Suppose that for each F C F we have
g(F) :10" xafp = W

satisfying the matching conditions of (2.14). Fix ¢ € ¥,. We may as.
well assume that the ordering of ®}, was chosen so that (&); = 1 for all
1 <i¢<m. Now fix 1 < j < m. Then if ¢ € X, so that #; is a wall
of D(€y), we have matching conditions corresponding to crossing the wall
H; satisfied at any hy € cl(D(e)) N H;. However, we also need matching
conditions corresponding to crossing the hyperplane H; when #; is not a
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wall of D(ep). These will be a consequence of the basic matching conditions
of (2.14). Let

(2.23) I={1<i<m:hg€H,forall hy € H; Ncl(D(e))}.

Then if we define H; = NierHi, cl(D(eo)) NH = cl(D(eo)) NH,;. We will say
ho € cl(D(eo)) N H; is I-semiregular if hy & Hy for any 1 < k < m,k & I.
Because of our definition of I, the set of I-semiregular elements in cl(D(e)) N
‘H; is non-empty.

Fix hy € ib* such that (o, h;) > 0 for all a € FJ = U;crF§. Then in (2.12)
we could have chosen h; = h; for all i € I. Define u,, € FJ, as in (2.12).
Define € (I) € & by

. fid T
g, = {0 LD
+1, ifiel.

Then for any I-semiregular hy € cl(D(€p)) NHy, we have ho +thy € D(e (1))
and hy — th; € D(e5 (I)) for 0 < ¢ sufficiently small. Note ef (1) = ¢ €
because of our assumption about choice of positive roots, and ¢, (I) € %o
because by the above, D(e; (I)) # 0. For any E C Fy, define E(I) = EU Fy
and for E C F C E(I), define Dp\g = 0/0hr — i3 cmE 0/0pq,-

Lemma 2.24. Fiz E C Fy. Then for all k > 0,
(8/0h1)*(g(E : el (I) : ho : vg) — g(E : €5 (I) : ho : vE))
= Y oreDhglgF &) ho: (vE,0))

ECFCE(I)
+9(F: e (I) : ho : (v, 0))]
for all vg € a}, ho € HyNcl(D(e))-

Proof. Fix k > 0,vg € aj}, ho € Hr Ncl(D(e)), and for each E C F C E(I)
and € € L, such that hy € cl(D(e)), write

d(F:¢) = Df,«\Eg(F c€: hgy: (vg,0)).

Then using (2.25) below, it is enough to prove that for all E C F C E(J)
we have

dF:§I)= Y dF:eD)

FCF'CE(I)
and

dF:egD)= Y (-D)F\IA(F : et (D).

FCF'CE(I)
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We will prove only the first equality since the second is proved the same way.
For any i € I, € € 3;, define s;e € I; by s;€, = €, if @ € F§ and s;e, = —¢,
if @ € F{. Assume for simplicity of notation that I = {1,...,7} and that the
indices are ordered so that ¢, € X; and for each 1 < 7 < r — 1 we have
€ = SiSi_1---81€0 € L;41. Then €5 (I) = €, = 5,€,_;.
Now since €y = €3 (1) and €; = s,60 = €5 (1), by the matching conditions
and (2.25) we have for any EC F C E(I),7 >0,

(8/0h;) g(F : € : ho : vp) = Z D;}I\Fg(Fl 1€t ho ).
FCFCF(1)

But by differentiating with respect to i3 ,cp\p 0/0p, and evaluating at
vr = (vg,0) we see that

dF:e)= Y d(F:e).

FCFCF(1)
Similarly, since €; = €] (2) and €, = €] (2), we have for each F C F; C F(1),

dF )= Y  dF:e).

F1CFRCFi(2)

Now by an easy induction argument we see that d(F : g (I)) = d(F : ) =

E Z S Z d(F, : )

FCFCF(1) FiCFaCFi(2)  Fro1CF.CFaoq(r)
= Y dF:e)
FCF'CE(I)
since €, = €5 (I) and each F C F' C E(I) = F(I) occurs exactly once in the
above sum corresponding to F; = FU(F'NEF}),F> = FLU(F'NF}),...F, =
F._iU(F'NEY). a

Lemma 2.25. Fiz finite sets E; C E, and suppose for each E, C F C E,
we have complez numbers a*(F). Then the conditions (a) and (b) below are

equivalent.
For each E, CF C E,,
(2.25a) at(F)—a (F)= Y crri(a*(F') +a (F')). -

FCF'CE,

For each E, C F C FE,,
(2.25b)
at(F)= Y o (F) anda (F)= ) (—=1)F\Flg*(F.

FCF'CE> FCF'CE>
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Proof. The proof that (b) implies (a) is given in [H3, 3.20] which is purely
combinatorial and hence valid in this general setting. Now assume (a). Using
[H3, 3.23], which is also purely combinatorial, we know that for all E; C
F, C E, we have

> 27 ((-1)F\Rlet (FY) - o™ (FY)) = 0.

F1CF'CE;

Now add these equalities over all ' C F; C E, to obtain

1= T T () - o)

FCFCE; F1CF'CE>

= Z 2-IFl a+(F’)( Z (——1)'F’\F")—-a“(F)( Z 11)].

FCF'CE;
5 (_1)|F,\F1,={0, if F' # F;

-
FCF,CF' 1, if F/ = F,

while 3 pc g cpr 1 = 2FVFL Thus

But

27 1FlgH(F) = Z 2~ IFIQIF\Flg—(F).
FCF'CE,

This proves the first part of (b). The second part is proved in the same
way using

0= 3 (- S oI ((C)F\RIGH(FY) - 0™ (F))

FCFCE> FCF'CE,

3. Growth estimates.

In this section we will modify the version of the theory of the constant term
given in [HWS5] so that we can give sharper growth estimates near points
on the boundary of Weyl chambers.

Fix a minimal parabolic subgroup P, of G and let &+ = A(F,, Ao) be the
roots of Ay in Py. Let Tj, be a relatively compact Cartan subgroup of M, so
that Hy = Ty Ay is a f-stable Cartan subgroup of G. Let P be a parabolic
subgroup of G with P, C P so that Ap C Ay and A(P, 4y) C ®*. Let
oL = {a € &t : a|,, = 0}. Write L) = Kpcl(A$)Kp where A} is the
positive Weyl chamber of A, with respect to ®* and Wp = W (lpc, (ho)c)-
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Note that Ly, = G, but that in general L} is a closed subset of Lp with
non-empty interior.

Let H = T A be a 6-stable Cartan subgroup of G and use the notation of
(2.5). Fix (\,x) € X(T), (r1,72) € K(x), W = W(n, : 2), and a connected
component D of {h € iv* : (A(h), ) # 0 for all B € ®,,} such that 0 € cl(D).
Let Q be a relatively compact neighborhood of 0 in iv* and define Dc =
{hr+ih;: hg € D,h; € Q}. Then for all (h,v) € vgxa*, A(h)+iv € hg. Let
y be a Cayley transform such that h% = ho,c. For s € Wg, (h,v) € g X a*,
define

Any,s = s(A(h) +iv)? € (ho)c-

Let Uc be a (relatively open) neighborhood of 0 in cl(D¢), U = UcNcl(D).
As in [HW5, 7.5] we will write

J(Uc : Lp) = J(Uc : Ly : s) for the set of all ¢ € C*(Uc x a* x Ly : W)
satisfying the following conditions. First, for all (v,z) € a* x Lp,
(3.1a) hw ¢(h:v:z) is a holomorphic function on Uc N Dc.

Next, for all (h,v) € Uc x a*,

(3.1b) @(h : v) is a (71,4| ke 2,0k )-SPherical function on L}
and
(3.1¢) z2¢p(h:v) = pp(z: Ap,s)p(h:v) forall z € Zp.

Here Zp denotes the center of U(lpc) and pup : Zp — S(ho,c)"? is the
canonical isomorphism onto the Wp invariants in S(ho c). Finally, let Lp =
PU ([p,c)(z) where P = P(vg x a*) is the set of polynomial coefficient
differential operators on b x a*. For D € Zp,r € R, define Tp ,(¢) =

(3.14d) sup ||Dg(h: v : z)||Ep(z) Y| (R, v, z)| e IRilov (@)

Ucxa*xL}
where for (h,v,z) € Uc x a* x L},
(3.1e) (h, v, z)| = (1 + [B)(1 + [v])(1 + & ().
Then we assume that
(3.1f) forall D € Ep, there is 7 > 0 so that Tp ,(¢) < oo.

As in [HWS5, 7.5] we will write J°(U : L}) = J°(U : L} : s) for the
set of all p € C°(U x a* x L} : W) satisfying the following two conditions.
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First, there is a finite set of functions ¢y, ...,¢x € J(Uc : L}) so that for
each (h,v) € U x a* there exist a;(h : v) € C,1 < j < k, such that for all
z € Lp,

(3.2a) ¢(h:v:z) =Zaj(h:1/)¢j(h:1/:x).

Jj=1
Second, for all D € Zp, there is 7 > 0 so that

(32b)  Tp.(¢)= sup |IDé(h:v:3)|[Ep(z)7'(1+5(z))™" < oco.

* *
Uxa*xLp

It was proven in [H3, 2.21] that the holomorphic families of Eisenstein
integrals defined in (2.8) are elements of J(cl(D¢) : G). Further, if C(D xa*),
is defined as in (2.9), then for all ¢ € J(cl(D¢) : G) and a € C(D x a*),, we
have ¢ - a € J°(cI(D) : G).

Assume that Py C (Q C P are parabolic subgroups of G. Since the results
of this section are a technical modification of results in [HWS5, §7], we will
use much of the notation of that section without repeating the definitions.
Let *Q = QN Lp and let A(*Q, Ag) denote the roots of Ag in *(). Let
ag = (ag)t be the positive chamber of ag with respect to A(*@Q, Ag) and
for H € ag, let fo(H) = inf{a(H) : a € A(*Q, Ag)}-

Let s;,1 < i < w, be representatives for the cosets Wo\Wp and fix a
complex Hilbert space T' of dimension w with orthonormal basis {ey, ..., €, }.
For f € J(Ug : Lp)UJ(U : L) and v € 2, define ®(f) and ¥,(f) taking
values in W ® T using the same definition as in [HW5, 7.8]. That is, for
any m € Ly C L,

@(f:h:l/:m)=ZdQ(m)f(h:V:m;v§)®ei

and y
U, (f:h:v:m) =ZdQ(m)f(h:V:m;ui(v th:v))®e;.

Next, for 1 <1 < w and any f, the functions ®,(f), ¥, ;(f) are defined by

<I>i(f:h:u:m)=Bl(siAF )@(f:h:v:m)

h,v,s

and
\IJ,,,i(f:h:u:m)=Bl(siAF )\Ilv(f:hzu:m)

h,v,s

using the projections B; defined in [HW5, 7.13].
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Lemma 3.3. (i) Fiz P € P,l1,l; eU(lpc), and X € ng NIp. Then there
s a finite subset F of Lp and 1o > 0 such that for all v > 0,

do(ma)(|lf(h:v;D : i X ;mexp H;L)|| + ||f(h : v; D : I ;mexp H; 8(X)12)])

< [T2:(H)Ea(m)e™PetD(1 + G(mexp H))™+, if f€J°(U:Lp);
=\ Tr-(H)Eq(m)e P (h, v, m)[" 70 (1 + |H|) Froelrtlovim) - 4f f € J(Uc : Lp);

for allm € Ly, H € ag Ncl(ag).
(ii) Fiz D € P,v € Zg, and by,b, € U(lg,c). Then there is a finite subset F
of Lp and o > 0 such that for allm € L}, H € agNcl(ag),r > 0,1 < i <w,

1®y,:(f:h:v;D:by;mexpH;bs)||

< [TRr(HZ(m)e™P2™)(1 + G (mexp H))™*™, if f € J°(U: Lp);
= \Trr(f)E@(m)e P2 (h, v, m)[+7o (1 + [H|) Froeltlovim, - if f € J(Uc « Lp);

and

|@:(f : h:v;D:byymexpH; by

< [T8(NZam)(1 +(mexp B, if £ €I : L)
=\ T (f)Eq(m)|(h, v, m) |70 (1 + |H|)mHroeltrlovim - 4f f € J(Ug : Lp).

Proof. The proof is similar to that of [HW5, 7.11;7.12], using [HW5, 7.13c]
to pass from ® and ¥, to ®; and ¥, ;. Note that if m = kyaoks € Lg, k1, ks €
Kg,a € cl(A7), and H € ag Ncl(ad), then mexp H = kiaoexp Hk, since
K centralizes Ag. Now agexp H € cl(Ag) so that mexp H € L. Also, in
the notation of [HWS5, 7.11], L}, C L} and ag Ncl(ag) C cl(ad). a

Lemma 3.4. Let by,b, € U(lg,c),m € Ly, H € agNcl(ag). Then for all
T>0,1<i<w,

S(f:h:v:b;mexpTH;b,) = eTsibnws G (f 2 b 2y 2 by;m;by)

T
+/ e(T_t)s"A"'""(H)\IIH,i(f ch:v:b ;mexptH;b,)dt.
0

Proof. The proof is the same as that of [HWS5, 7.10; 7.14]. g
For 1 <:i<w,let
Ai(R) = ResisA(h)Y, h € Ug,
and for H € a}, define

Ui(H) = {h € Uc : \i(h : H) + Bo(H) > 0}, U'(H) = Us(H) N U.
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Lemma 3.5. Let D € P,by,b; €U(lgc),1 <i <w,H € ahNcl(ag). Then
/ ”\IfH,,- (f th:v;Doe ) . p mexptH; bz)“ dt
0

converges uniformly for v and m in compact subsets of a* and Ly, respec-
tively, and for h in compact subsets of

{Ué(H), if f € J(Uc: Lp);
U(H), if f € J°(U : L}).

Proof. This follows directly from (3.3). Unlike [HWS5, 7.17], it holds for all
1 <4 < w because we restrict to m € L. O
Lemma 3.6. Let1<i<w,H €afncl(af). Then

®ioo(f:h:v:m:H)= lim e 75w ,(f:h:v:mexpTH)

T—+o00

exists and is C*™ on

U'(H) x a* x L, if fe J°(U : Ly);
U&(H) x a* x Ly, and holomorphic for h € Us(H), if f € J(Uc : L)

Further, for all D € P,by,b, € U(lg,c),
D, o(f:h:v;D:byim;by : H) =®,(f : h:v;D:byym;by)

+/ Uy i(f:h:v;Doe ttmws®) . b -mexptH;by)dt.
0

Proof. Combine (3.4) and (3.5). O

Let Hy, H, € afNcl(ag). For 1 <i < w and

{Ué(Hl) NUL(Hy), if f € J(Uc: Lp),
Ui(H,) NU(H,), if f e J°U : L}),

the argument in [HC1, §22; Lemma 8] shows that
D(fih:vim:H)=®,(f:h:v:m: H).

Thus whenever there is an H € aj,Ncl(af) such that \;(h : H)+ Bo(H) > 0,
we can define

(3.7) D, (f:h:v:m)=®,(f:h:v:m: H),
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and the definition does not depend on the choice of H.
Now as in [HWS5, 7.15] we can define

(3.8a)

IP={1<i<w:MNh:H)=0 forallheU,H € ag};
(3.8b)

I"={1<i<w:X\(h:H)>0 forsomeheUH E€ ab};
(3.8¢c)

I"={1<i<w:Nh:H)<0 foralheUND,H € ab}.

Remark. Ifi e I°UIY, the constant terms defined above are the same as
those defined in [HWS5, 7.18).

Define
(3.9) I°00)=I°u{i eI : X\(0:H)=0 forall H€ag}.

Fix Hy € af Ncl(ag) such that Bo(Ho) = 1. Then, for all + € I°(0),
Xi(0 : Hp) + Bo(H,) = 1, so that there is a (relatively open) neighborhood
Ug of 0in Ug so that Ug C Ug(H,) for all ¢ € 1°(0). Thus for i € I°(0), ®; o
is defined for all h € U;. Redefine

®; 0o =0 ifi¢gI°0).
Thus for all 1 <1 < w, 9, , is defined for all h € Ug.
Lemma 3.10. Let1 <i<w,h € Us. Then
D o(fih:vimiv) =pov:8iAnys)Pico(f:h:v:m)
for allv € Z; and
D, o(f:h:v:mexpH) = es‘A""’-’(H)@,-m(f ch:v:m)

for allm € Ly, H € ag Ncl(ad). Given by,by € U(lgc) and D € P, there
exists a finite subset F C Ep and ro > 0 such that for all r > 0 there is
C >0 so that -

|1®ico(f : h:v;D by ymsby)l|

< {CT&,(f)EQ(m)(l +3(m))e, if f € J°(U: Lp);
= CTr (B (m)|(hy v, m)[+roelhilovim),if f € J(Ug : L)
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Proof. The proof is the same as that of [HW5, 7.20; 7.27] because for i €
19(0), Uy C U (Ho) 0

Lemma 3.11. Let w be a compact subset of afy, N cl(ag). There ezist a
neighborhood Ug(w) of 0 in Ug and 0 < § < 3 so that given D € P there
exists a finite subset F C P and C,r; > 0, so that for all f € J(Uc :

Lp)UJO(U : Lp), h € Ug(w),b1,b; €U(lgc),m € Ly, H € w, and T > 0,
|1@i(f:h:v;D:bysmexpTH;by) — @ 0o(f :h:v;D:by;mexpTH;b)||

< Ce Tt (1 + TN S {I8.(F k5w D' s by )|

D'eF

+/ 1Uni(f b vs D'« by smexptH; by)fle 252 (1+t[|Hl[)”dt}

for all 1 < i < w. Further, for each i € I~ N I°(0) there is a continuous
pzecewzse affine function &; on U satisfying 0 < 6;(h) < 3 for allh € Ug and

0;(h) = 0 if and only if
Ai(h: H) =0 for all H € ag, so that

|®i00(f : h:v;D: by ymexpTH;by)|

< CeTHMAUN(1 L TY|H|) Y {n@i(f Lhivi D' s by imiby)|

D'eF

+/ I Wgi(f:h:v;D' : b ;mexptH,; b2)||e 3 (1+t|]H||)“dt}

Proof. Suppose first that 1 € I° U I*. Then &, is the same as the con-
stant term defined in [HW5, §7], and the argument given in the proof of
[HW5, 7.21] shows that the inequality is satisfied for any 0 < §p < } such
that, in the notation of [HWS5, 7.25], § < min, 7, d;.

Now suppose that ¢ € I~ and 7 € I°(0). Then, in the notation of
[HWS5, 7.23], d;(0) > 0. Thus there are a neighborhood V of 0 in bg
and an € > 0 so that d;(h) > € for all h € V and all ¢ € I~ such that
i € I°(0). Now X;(h: H) < —efBg(H) for all h € V. Thus the argument in
Case II of [HW5, 7.21] works as long as h € UsNV,0 < § < 3, and d, < €.

Finally, suppose that ¢ € I~ N I°(0). Then X\;(0: H) =0 for all H € ag
and there is a neighborhood V' (w) of 0 in vg so that for all h € V(w),H €
w,0< =\(h: H) < ﬁ—‘?@. Then, using (3.8) as in Case I of HW5, 7.21],
for all H € w,h € V(w) NUg,

|1®:(f :h:v;D:byymexpTH;by) — D, 0o(f : h:v;D: by ymexpTH; b))l
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<CZ/ 1+ (t = T)|H|)"

D'eF
. “\I}Hz. (f th:v; D' oe tDXNMEE . by exptH; 62)“ dt

Q(H)
< Ce-TéobalH) Z/ (1+t|H|)"e

D'eF;
N¥yi(f:h:v;D" : b ;mexptH;b,)|dt

since 0 < &g < 2
Finally, for ¢ E I NI°(0), define d;(h), h € v, as in [HW5, 7.23]. Then
d;(h) > 0forall h € UND and for h € UNcl(D), d;(h) = 0 if and only if \;(h :
H) = 0 for all H € ag. Now for h € Ug, set §;(h) = min{Re d;(h), d}-
Then, as in Case II of [HWS5, 7.21], we have

1@:(f : h:v;D:byimexpTH; b))l

< et 1+ T 3 {I8(f s D' s byimsby)]

D'eF

+/ 1ma(f : h:v; D' by imexptH; by)lle”% dt}

Now, since ||®;|| and ||®; — ®; .|| both satisfy the desired inequality, so does
”q)i,oo”' O

Recall ®(f) and hence all ®; .,(f) take values in W @ T' where T' has
a distinguished basis ey, ...,e,. Further, ®(f) = Y., dets; @;(f) where
dets; = *1 is defined by mp(s;Ap,s) = dets; mp(Ap,s). Foreachl <i<w
we write

(3.12a)
D (f:h:v:m)= z¢”f h:v:m)®e;

]__
and write

(3.12b)
fosisth:vim)=vsash:vim)=¢i1(f:h:v:m).

Choose ¢ > 0 so that Bo(H) > 2¢ for all H € w. Put ¢, = €d and
€;(h) = €d;(h),1 € I~ N I°(0), where &, and §;(h) are defined as in (3.11).
Then combining (3.11) with (3.3) and (3.10) we have the following theorem.
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Theorem 3.13. Given by,b, € U(lgc) and D € P, there exist a finite

subset F C Zp and an ry > 0 so that for all r > 0 there is a C > 0 so that
forallme Ly, H € w,T >0,

do(mexpTH)nwp(Apy,s)f(h:v;D: by imexpTH;bb)

- Zdet(si)zl)f,,,.s(h :v; Dby ymexpTH;by)|| <

=1
CTR . (f)e °TEq(m)(1 + 5(mexp TH)) *™, ffe€J°(U:Lp),heU'(w);
CTr,(f)e” 0T Eq(m)|(h,v,mexp TH)|"*"1el1l7v(™)if f € J(Uc : Lp), h € Ug(w);

and for i € I~ NI°0),h € Ug(w),
l5,8:6(h : v; D : by ymexp TH; bo)||

< [CTh (e MW Eq(m)(1 + G(mexp TH))™*™, if f € J°(U : Lp);
- CTp,r(f)e""'(h)TEq(m)l(h, 1/,mexpTH)|’+"e'h"”V("‘), if fe€J(Uc : Lp).

Further, for all 1 <1 < w,

P J(Ug : Ly :si8), if f € J(Uc: Lp : s);
Tosis JOU' : L : sis), if fe€J°(U:Lp:s).

Giwen D € EQ, there are a finite subset F' C Zp and an vy > 0 such that for
all > 0 there is a C' > 0 so that

{TD,TM (Y5.:5) < CTro(f), if f € J(Uc:Lp);
TS rirs (100s) < CTE(f),  if f € JOU : L}).

Corollary 3.14. Let H € ag. Then there are € > 0 and a neighborhood
Ug(H) of 0 in Ug so that for all m € Ly, h € Ug(H) (respectively Ug(H) N
c(D)),v € a*, f € J(Uc : L}) (respectively J°(U : L})),

Jim et [dQ(mexp tH)mp(Ap,s)f(h:v:mexptH)

— Y dets; y5(h:v:mexptH)| =0.

i=1

Assume that P, € @' € Q € P. Let s;,1 < ¢ < w, denote coset
representatives for Wo\Wp and let u;,1 < j < p, denote coset represen-
tatives for Wo \Wyo. Then we can take u;s;,1 < i < w,1 < 5 < p,



74 REBECCA A. HERB

as coset representatives for Wo \Wp. Let f € J(Uc : L}y : s) (respec-
tively J°(U : Ly : s)) and 1 < i < w. Then, as in [HW5, 7.3.2],
g'(h : v) = mo(Anp,sis) s ss(h 2 v) € JWUG : LYy : s;s) (respectively
JO(U' : LY : s;5)). Now there is a neighborhood Ug of 0 in Ug so that for
each 1 < j < p we can define

Wi w.ss € J(UG : Ly : ujs;8)( respectively JO(U" : LY, : u;s;5)).
FARVITR c g U Q Uj
Write
fwss € J(UE : LYy - ujs;s)( respectively JO(U™ : LY, : ujs;s
frujsis C Q ] Q 7

for the constant term of f with respect to Q' corresponding to the coset
representative u;s;.

Lemma 3.15. There is a neighborhood Uc of 0 in UL NUY so that for all
(h,v,m) € Uc x a* x Ly, (respectively U x a* x L),

,(p},ujs;s(h v m) = 1/)9i,“jsis(h s m)

Proof. Suppose f € J(Ug : L} : s) and use the notation above. (If f €

J°(U : L} : s), the proof is the same.) For any pair Q@ C P of parabolic
+

subgroups we will write (ag) for the positive Weyl chamber of ag with

respect to the roots A(LpNQ, Ag) and write di;(ma) = e”(a),m € Mg,a €

Ag, where p = 1/2Y m(a)a,a € A(Lp N Q,Ag). Now for Q' € Q C P
+ +

as above, choose H; € (ag) Ncl(ad) and H, € (ag,) Ncl(ag). Then

+ +

Hy=H, +H, € (ag,) Ncl(ag) and every H, € (ag,) Ncl(af) can be

decomposed in this way. Now, using the fact that for all m € Ly, we have

Yiss(h:v:im) =mg(Apyss)g*(h:v:m)and d5, (m) = dg(m)dg, (m), for

all (h,v,m) € Ug x a* x Ly, we have

dg, (mexp(tHo))mp(Apus)f(h:v:mexp(tHy))

— Z det(u;s;)1gi u,s,s(h : v : mexp(tHy))

< dg, (mexp(tHy)) dg(m exp(tHo))mp(Anys)f(h:v:mexp(tHy))

— Z det s; ¥5s,s(h : v : mexp(tHy))

1<i<w
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dg' (m exP(tHU))ﬂ'Q(Ah,u,s;s)gi(h ‘v mexp(tHO))

1<i<w

- Z detuj g u;s:s(h : v : mexp(tHy))

1<5i<p

Now by applying Theorem 3.13 to the pair (P, Q) with H = H, we see
that there are a neighborhood V; of 0 in Ug, ¢, > 0,7 > 0, and a constant
C so that for all (h,v,m) € Vi x a* x L, t > 0,

dg, (mexp(tHy)) dg(m exp(tHo))mp(Anys)f(h : v : mexp(tHo))

- Z det s; ¥54,5(h : v : mexp(tHy))

1<i<w

< Ce™'d3, (mexp(tHo))Eq (m exp(tHy))|(h, v, m exp(tHy))|"e! 17V (™).

Now as in [HWS5, 7.11}, there are constants ¢ > 0,79 > 0 so that
dg, (mexp(tHy))Eqg(mexp(tH;)) < cEq (m)(1 + o(mexp(tH,)))™.

Thus for fixed m, v, h there is a polynomial p(¢) so that

d, (mexp(tHo)) | d6(m exp(tHo))mp(An,,0) f (h : v : mexp(tHo))

- Z det s; Py5.5(h : v : mexp(tHy))|| < |p(t)|e™*

1<i<w

for all t > 0. Thus for any 0 < € < ¢; we have

t—+4o00

lim e*d?, (mexp(tH,)) [dg(m exp(tHy))mp(Ap ) f(h : v : mexp(tHy))

- Z dets; Yy ss(h:v: mexp(tHo))] =0.

1<i<w

Next, applying Theorem 3.13 to the pair (Q, Q') with H = H, we see that
there are a neighborhood V, of 0 in U, €2 > 0,7 > 0, and a constant C' so
that for all (h,v,m) € V; x a* x L},,1 <i<w,

48, (m exp(tHo)) T (Anys)g' (h : v : mexp(tHy))
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- Z detu; Yy y;.5(h : v : mexp(tHy))

1<j<p
< Ce™2'B g (m)|(h, v, mexp(tHy) el 17V (.

Thus if 0 < € < €, we have

Jim_ e [d‘% (1 exp(Ho)) g (Anssis)g' (b s v : mexp(tHs)

— Z det u; yi u;es(h:v: mexp(tHo))} = 0.

1<5<p

Combining the above, we see that there is € > 0 so that for all (h,v,m) €
inV, xa* x Ly,

t—+o00

lim e [dg, (mexp(tHo))mp(Any ) f(h: v : mexp(tHy))

- E det(u;s;) i u;ss(h:v: mexp(tHo))] =0.

=t xWhi=J=

But we also have ¢ > 0 and a neighborhood V' of 0 so that for all (h,v,m) €
V! x a* x Ly,

t—+oco

lim et [dp, (mexp(tHo))mp(Any,s)f(h:v:mexp(tHy))

- Z det(u;8:)Y} 5 s(h Ve mexp(tHo))] =0.

1<i<w,1<5<p

Thus we have a neighborhood V' of hy in Ug and € > 0 so that for all
(h,v,m) €V x a* x L,

lime“[ > det(u;si) Yy w5 (B : v : mexp(tH))

t—0 . )
1<i<w,1<<p

— Z det(ujsi)z,b},ujsw(h (v mexp(tHo))] =0.

But for each 4,5 we have

WYoi u;sis(h 1 v i mexp(tHy)) = gi usis(h: v :m) exp(tu;s;sAp,(Ho))
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and

Viuys:s(h v mexp(tHo)) = Vi uy00s (1 v 2 m) exp(tu;sisAp,, (Ho)).

Let S = {(4,5) : Wgiusis OF P}, i Dot identically zero}. Then for
all (i,j) € S we have Reu;s;sAy,(Hp) < 0 for all (h,v) € V x a*, and
Rew;s;sAo,(Hy) = 0 for all v € a*. By shrinking V if necessary we can
assume that for all non-zero terms we have —e < Reu;s;sA;,,(Ho) < 0 for
all (h,v) € V x a*. Further, there is a dense subset W of V' x a* so that for
(h,v) € W the complex numbers w; ; = u;s;sA, ,(Hp) are all distinct. Thus
for fixed (h,v,m) € W x Ly, there are distinct complex numbers w; ; with
0 < Rew;; < € and complex numbers

cij = det(u;si)(Ygi,u;sis(h 1 v :m) — ’lplf,ujs,-s(h ivim))
so that
Z det(u;5;)%yi u;s;s(h : v : mexp(tHy))

=Wl

- Z det(u;8:)9} 5.5 (R : v : mexp(tH,)) Z c; et

1<i<w,1<5j<p (3,5)€S

It now follows from (3.16) below that c;; = 0 for all (¢,j) € S. Thus
Vi ussis(h 1 v im) =5, o (h:v:m)forall (h,v,m) € W x Lp,. But since

the constant terms are continuous functions we have g o 5.s(h : v : m) =
Vi u,5s(h v :im) for all (h,v,m) €V x a* x Lg,. O

Lemma 3.16. Suppose € > 0,w,,...,wy are distinct complex numbers with
0 < Rew; <e forl<i<k,pt),l <i<k, are polynomials, and

k
lim e pi(t)e™™ =0.
=1

t—+o00

Then p; = ... =p, = 0.

Proof. The proof is by induction on the number of elements in the sum.
Suppose that k£ = 1 and that w; = z + iy, z,y € R. Then 0 < z < € implies
that

-w1t —~iyt

= lim p,(t)e

— : xt
0= tlfinooe Pi(t)e t—+00
This implies that p, = 0.

Now suppose that k¥ > 2 and that the result is true for sums with less that

k terms. Let z = min{Re w; : 1 <i < k}. Then

k k
_ zt . —twi _ |3 . —t(wi—z)
0= lim e ; pi(t)e tl}_ir_noo ;pz(t)e .

t—+o00



78 REBECCA A. HERB

But for all 7 such that Re w; > z,lim,_,, o, pi(t)e**~=) = 0. Thus

lim E (t)e™ Im w =
t—+o0 pl( ) 0
1<i<k,Re wi=z

so that as in [HC1, 21.3], p; = 0 for all 7 such that Re w; = z. But now

lim e > pi(t)e™ ™™ =0

BPH0 i<k Re wisz
and by the induction hypothesis, p; = 0 for all such 7 also. a

__Fix H = TA a ¢-stable Cartan subgroup and (\,x) € X(T), 1,72 €
K(x),W = W (7 : 13). Asin (2.10) we define Fy and Hr = TrAfr, (Ap, Xr) €
X (TF) for every F C F,. Fix a Cayley transform y with h% = by c. Then
for each s € W(gc, ho,c), F C Fy, (h,v) € 0§ X af, we can define
Af,. = 5(Ap(h) +iv)F? € b} c.

Let Uc be a neighborhood of 0 in vy and for each FF C Fy,e € %, let
Upyc(ﬁ) =UcnN Cl('DF,C(E)), UF(G) = Up,c(e) Nio*.

Let Py, C P be a standard parabolic subgroup of G. Then for all F C
Fy,e € 34,5 € W(gc, ho,c) we can define the subset

(3.17a) Jr(Uc:€: Ly :s) = J({Upc(e) : Lp : s)

of C*(Ur,cl(e) x ay x Ly : W) as in (3.1) using Af , .. Similarly, we define
the subset '

(3.17b) JYU :€:Ly:8)=J°(Up(e) : L} : s)

of C*°(Up(e) x af x L} : W) as in (3.2). Now assume that P, C Q C P.
Then for each fixed F C Fy, e € ¥y,1 <1 < w, we can define the constant
term 9 .s(F : €) of f(F : €) as in the first part of this section.

Let © be the set of simple roots in A(FP,, Ag). Then there is a bijection
between standard parabolic subgroups of G and subsets of © so that P > ©p
ifap = {H € ap : a(H) = 0 for all @ € Op}. Since we assume that our
Cartan involution is chosen so that Zg C K, we have ag = {0}. Given
P, C Q C P C G, define H = H(P,Q) € cl(a) by a(H) = 0 for all
a € Og U (0\Op) and a(H) = 1 for all & € ©p\Og. Then H(P,Q) €
(a§)T ={H € ag: a(H) >0 for all « € ®}}.

Lemma 3.18. There is a neighborhood U of 0 in iv* so that for any
F C Fy,e € Zp,s € W(gc, 00c), P CQCPCG,if feJoa(U:e: Ly :s),
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then all constant terms %y, € Jp(U : € : Lf, : s;5) and the estimates of
Theorem 3.13 hold for all h € Up(e) when H = H(P, Q).

Proof. For fixed F,e¢,s, P, as above, how small U’ C U has to be to make
Theorem 3.13 valid depends on Ar and H = H(P, @), but is independent of
f. Since there are only finitely many possibilities for F)e, s, P, Q, a neigh-
borhood U can be found which works for all. |

Fix a neighborhood U of 0 in ib* as in (3.18). We will define
JE(U : € : Ly : s) to be the set of all f € JX(U : € : L}y : s) such that
there is a compact subset w of Ur(€) so that supp f C w and such that for
all Py C Q C P we have

-1
fosis(h:v:m)=mp (A,’:’u,s) Psss(h:v:m)

extends to a C* function on Ur(€) X aj x L, for all i.
Let P, C Q C P and F C Fy,e € %y. Define ¢ and ¢;(h),7 € I~ NI1°(0)
as in (3.13) for w = {H = H(P,Q)}.

Theorem 3.19. Given b;,b; € U(lg,c) and D € P, there ezist a finite
subset E C Lp and an ry > 0 so that for all 7 > 0 there is a C > 0 so that
for allm € L, h € Up(e), T >0,f € Jp(U:€: Ly : 5),

do(mexpTH)f(h:v;D : b ;mexpTH;bs;)

- Zdet )fa.ss(h:v; D : by imexpTH;by)
< CTg (fle™*"Eq(m)(1 + G(mexp TH))™*"
and for each i € I~ N I°(0),

”fQ,s;s(h g D:b im expTH; b2)”
< CTy, (f)e “MTEG(m)(1 + G(mexp TH))™+™.
Further, for all 1 <1 < w,
foes €EJp(U:e: Ly, : 5;5).

Given D € E,Q, there are a finite subset E C Lp and an r, > 0 such that for
all > 0 there is a C > 0 so that

Tg,r—}-rl (fQ,SiS) S CTI('Z,r(f)
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Proof. All the estimates and the fact that fg .., € Jp(U : €: L, : s;5) follow
from (3.13), using [H2, 6.8]. Further, supp fos.s C suppf C w. Finally,
for P, C Q' C Q, using (3.15) we see that (£, s.s)0" u;s:s = for,u;s:5 for all j.
Thus (fg,s:s)q",u;s:s €Xtends to be smooth. O

Now suppose for each F' C Fy, e € ¥y, we have
f(F:e)€Jp(Uc:€: Ly :s)

(or in JE(U : € : Lp : s)) satisfying the matching conditions of (2.14) for
eachz € Ly. Let P, CQ C P.

Theorem 3.21. Suppose {f(F : €)} is a matching collection of functions
in Jr(Uc : €: Lp : s). Then for each 1 < i < w, the collection

{¥1,5:5(F : ©}rcroceso

satisfies the matching conditions of (2.14) for each x € Ly,. If {f(F : €)}
is a matching collection of functions in Jp(U : € : L}y : s), then for each
1 <i < w, the collection

{fQ,SiS(F : e)}FQFo,eEEo
satisfies the matching conditions of (2.14) for each z € Lg,.

In order to prove (3.21) we will need the following lemma. Recall for each
s € W(gc,hoc), F C Fy, (h,v) € by X a}, we have defined Af, , € b§ . For
each 1 <i<m,E CF C E(i), define Dp\g = 0/0h; — i3 cp\g 0/ Otia-

Lemma 3.22. Let E C Fy,1 <i < m,vg € ay,ho € H;. Then for any
E g F g E(Z),k Z 07H € bO,C}

D?\EAfo,(uE,o),s(H) = DE\EAfO,uE,s(H)-

Proof. For (h,v) € bg X af, H € ho c,

AR, o(H) = s(Ap(h) + ) Y(H) = (Ap(h) +iv)((s H)Y ")

h,v,s

where (s"'H)Y"' € hyc. Now in [H3, 5.16] it was proven that for every
B € ®(gc,ho,c),k > 0, Di g{Ar(ho) +i(vg,0), 5°7) is independent of E C
F C E(i). Using exactly the same proof as that in [H3, 5.16] we see that
for all H; € hy,c,k > 0,

D;\E(’\F(ho) +1(vg, 0))(Hi")
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is independent of E C F C E(i). Now take H, = (s’lH)y"1 to see that for
all k > 0, Df,\ gAf, (. o),.(H) is independent of E C F C E(3). O

Proof of Theorem 3.21. We start with the family of functions {f(F : €)}
satisfying the matching conditions of (2.14). The first step in defining the
constant terms is to define associated functions ®(f(F : €)), U, (f(F : €)),v €
2Zg, taking values in WQT'. Recall that for any f, ®(f) and ¥,(f) are defined
by

<I>(f:h:v:m)=Zw:dQ(m)f(h:v:m;v§)®ei

=1

and

U, (f:h:v:m) =ZdQ(m)f(h:V:m;u,-(v:h:u)')@ei

i=1

where u;(v : h : v) = Z}":l KLPQ (zvij — pp (zm-j : Af,,,,s)) vj, the v; €
20, 2yij € Zp, and ey, ..., €, is a basis for T'.

Now since the f(F : € : h : v : m) satisfy the matching conditions for
all m € L}, the functions f(F : € : h : v : m;v) will satisfy the matching
conditions for any m € Lj,v € Zg. Thus it is clear that the functions
®(f(F : €)) satisfy the matching conditions. But using (3.22), for all u €
S(ho,c)sk > 0, Df\ g AL, (,,..0).5(w) is independent of E C F' C E(:). Thus for

allk > 0, Déx\E[J,p (z,,ij : Afo,(u,;,o),s) is independent of E C F C Fy. Thus

the functions ¥, (f(F : €)) also satisfy the matching conditions of (2.14).
Next, for 1 < i < w and any f, the functions ®;(f), ¥, ;(f) are defined by

S (f:h:v:m)=hB (sz-Af,,,’s)@(f:h:V:m)
and
U, (f:h:v:m)=hB (siAf;V’s) U, (f:h:v:m)
where B, is an r X r matrix with entries in S(oc)"?. Thus again using
(3.22), if b is any matrix entry of By, for all & > 0, D?\Eb(SiAfo,(VE,O),s)
is independent of E C F C Fy. Thus the functions ®;(f(F : €)) and

U, .:(f(F : €)) also satisfy the matching conditions of (2.14).
By (3.6), for any f, D we have

D, o(f:h:v;D:m)=®;(f:h:v;D:m)
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*° F
+/ VU Hy.i (f th:v;Doe il (Ho) mexptHo) dt.
0

But for all £ > 0, Df\p (s‘iAfo,(uE,O),s) (Hp) is independent of E C F C
F,. Thus, using the matching conditions for the functions ®;(f(F : €))
and ¥, ;(f(F : €)), we obtain the matching conditions for the functions
D, o (f(F : €)) and hence ¥y 4, 4(F : €).

Finally, in the case that f € J5(U : €: L} : s), we have

Yyss(F:eth:v)=mp (Af’u’s) fosis(F:e:h:v).
Fix EC Fy,1 <i<m,e€X; z€ Ly, vg € aj, hy € H; N Ug(e), and for
each E C F C E(i),k > 0, write

ai(k : F) = D;\EfQ,s;s(F : ei(i) : hO : (VEaO) : .’l));

b*(k : F) = Dy g¥s,0.s(F : €(5) : ho = (vg,0) : z);

ok : F) = D pp (AL, (1poys) -
As in (3.22), ¢(k : F) = ¢(k : E) is independent of F. Further, since
Dg\g = 0/0h; and 7p (Af ,,E,s) is a polynomial in h and vg, there is ky so
that c(ko : FE) # 0 as long as vg is in a dense subset of regular elements.
Assume that vg is regular.
Now for any k > 0 we have
k

bEk:F) =) (;?)c(k —j:E)a*(j: F).

j=0
Thus using the fact that the 97, ,(F : €) satisfy the matching conditions,
we have for all EC F C E(i),k > 0,
k

> (I;)c(k —j:E) [a+(k :E)—a (k:E)

Jj=0

- Z c|F\E|(a+(k:F)+a_(k:F)) =0.
ECFCE(i)
Now as in [H1, 10.10], it is easy to use the fact that c(ko : F) # 0 and
induction to prove that
at(k:E)—a (k:E)— Y  cornglat(k:F)+a (k:F))=0
ECFCE(i)
for all k.
Now since the matching conditions are satisfied for v in the dense subset
of regular elements, and the functions fq ...(F : €X(i) : h : v : z) are jointly
smooth, the matching conditions will be satisfied for any vg. a
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4. Asymptotic expansions.

In this section we will obtain the constant terms of §3 in a different way, via
the Casselman-Mili€i¢ theory of asymptotic expansions. From this point of
view it is easy to show that the constant terms have meromorphic continua-
tions and get some information on possible poles which will be needed in §5.
In [HW4] we used the theory of asymptotic expansions to study holomor-
phic families of matrix coeflicients of relative discrete series representations.
We considered only the case in which the group G is simple, simply con-
nected, with infinite center so that v, = C. In order to do this we had to
extend the Casselman-Mili¢i¢ theory of [CM] to include dependence on a
complex parameter h € vy = C. The results proven in [HW4, §7] extend
easily to the general case when h € by = C™. Thus we will use these re-
sults without reproving them for this case. We will change the notation used
in [CM, HW4] slightly so that we study asympotics in the positive Weyl
chamber rather than the negative Weyl chamber. This is so that the con-
stant terms obtained from the asymptotic expansions can be easily compared
with those obtained in §3 using the techniques of Harish-Chandra.

Let H = T A be a 6-stable Cartan subgroup of G, (A, x) € X(T), 71,72 €
K(x),W = W(n, : 7). Let D be a connected component of {h € iv* :
(A(h),a) # 0 for all @ € ®},} such that 0 € cl(D). Let

F € C®(vg x ag X G: W)
such that for all z € G,
(4.1a) (h,v) = F(h:v:z) is a holomorphic function on bg X ag;
for all (h,v) € b % ag,
(4.1b) F(h:v) isa (7,5, 72,n) — spherical function on Gj
for all (h,v) € by X ag, using the notation of (3.1),
(4.1¢c) zF(h:v)=pg(z : Ap,)F(h:v) forall z € Zg;
and for all (h,v) € D x a*,91,92 € U(gc), there is an r > 0 so that

(4.1d) sup IF(h:v:giiz; ) IE(2) (14 5(z)) ™" < oo.
x€E

Let a; be a maximal abelian subspace of p such that A C A, and let
A¢ be the positive Weyl chamber of A, with respect to a choice ®} =
®* (g, a0) of positive restricted roots, so that G = K cl(A¢)K is the Cartan
decomposition of G. Let A be the set of simple (multiplicative) roots for
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the negative roots of A4p. Thus A = {ef : B € A,,} where A, is the
set of simple roots in ®; = —®/ . Note that although G is not necessarily
semisimple, our Cartan involution € is chosen so that Zg C K where Zg
is the center of G. Thus A,, is a basis for aj. Let o : Agp — C2 be the
embedding given by

(4.2a) a(a) = (afa) : @ € A),a € A,.

In these coordinates A7 corresponds to (0,1)* and and cl(Ag) corresponds
to (0,1]4.
For s € CA,m € Z%, and z € C4, set

(4.2b) 2’ = H ze, log™ z = H (log zo)™=

a€A a€A

For © C A we regard C2\® as a subset of C2, and we say s,t € C*\® are
(A\©)-integrally equivalent if t — s € Z*\®. Let C(O) be the domain in C*
containing [0,1)2\® x (0,1]® which is defined in [CM, pp. 895-896]. Then
for each (h,v) € v X ag, there exists a finite set Sa\e(h : v) of mutually
(A\©)-integrally inequivalent elements of C4\® satisfying the followmg For
each 5 € Sa\o(h : v) there is a finite set FA\O(h : v),m € Z4'°, of holo-
morphic functions on C(0) such that on each of the coordinate hyperplanes
Ho = {2z € C(O): 2z, =0},a € A\O, at least one of them is not identically
zero, so that for all a € AJ(©) = {a € Ay : a(a) < 1,a € B;a(a) < 1,a €
A\6},

(42¢) F(h:v:a)= Z }:FA\8 (h:v:a(a))a’(a)log™ a(a).

s€Sa\e(hv) m

We will define a uniform asymptotic expansion as follows. Let {yu, :
a € A} be the dual basis in af to {loga : @ € A}. Let W be the Weyl
group of ®(gc, (ho)c) and let p,, = 1/2 Zﬁeq,:o B. For each w € W define

s(w:h:v) € CAby

(4.3a) s(w:h:v)e = (WALY — Pagr Ha), €A
so that
(4.3b) oWk (g) = e¥Mrv=Pao(q),  a € A.

For w € W, define b(w),a(w : h: v) € CA by

(43 C) b(w)a = ("UAO,O — Pags ll'a)
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and

(4.3d)  a(w:h:v)y = (wlhy(h) + i)Y, pa), a € A, (h,v) €05 X ag,
so that each a(w), is a linear functional on v§ X ag and

(4.3¢) s(w:h:v)=bw)+a(w:h:v).

Fix © C A. We will define an equivalence relation on W by w ~a\e w' if
and only if

(44a) s(w:h:v)y—s(w :h:v), €Z forall a € A\O, (h,v) € & xag.
Thus w ~a\e w' if and only if

(4.4b) b(w)e —b(w')a €Z and a(w), =a(w'), foralla € A\O.
For each o € A\O,w,w' € W such that w #a\e w', define

(44c) Lyww ={(h,v) €vgxag:s(w:h:v)y—s(w :h:v), €Z}
and set

(4.44d) Ly = NacareLa,ww L = Uy pow Lw,w-

Then L is a closed subset of by X ag which is a countable union of affine
subspaces of co-dimension at least one. For (h,v) € (vg X ag)\L,w,w' €
W,s(w : h : v) is A\O-integrally equivalent to s(w’ : h : v) if and only if
w ~a\e w'. Further, for each (h,v) € (vt x ag)\L and s € Sae(h : V)
there is an equivalence class U of W so that s, € {s(w: h:v), : w € U} for
all @ € A\O. Let U be an equivalence class of W and for o € A\© define
IU)y ={w eU:s(w:h:v), =s, for some s € Sa\e(h : v),(h,v) €
(o0& x ag)\L}. Let U be an equivalence class of W such that I(U), # 0 for
all @ € A\O. Then for a € A\O, (h,v) € v X ag, define

(4.4e) a(U:h:v)g=a(w:h:v),,weU;
(4.4f) b(U) = min{b(w), : w € I(U)a };
(4.4g) sU:h:v)og=a(U:h:v)y+bU),.

Write Sa\e for the set of all s(U) : b x a; — CA\® defined above. The
elements of Sa\e are A\O- mutually inequivalent for (h,v) & L.
For each (h,v) € (g x ap)\L,s(U) € Save,m € Z3'°, 2 € C(O), define

(4.5a)

FSA([\,)G,m(h wviz) =



86 REBECCA A. HERB

2SR ) FANO(h - ) 1 2), if thereis s € Save(h:v) withs—s(U:h:v) € Zﬁ\e;
0, otherwise.

Each FQ,}?m(h : v) is holomorphic on C(©) and for each s(U) € Sa\e,@ €
A\O, there are an m € Z2\°, (h,v) € (b% X ag)\L, so that Fﬁ,}?m(h (V) is
not identically zero on H,. For (h,v) € (vg % ag)\L we now have a uniform
asymptotic expansion for a € A (©) given by

(4.5b) F(h:v:a) Z z F2\°(h :v: a(a))a’(a) log™ afa).

SESA\e m

Now that we have the uniform asymtotic expansions the following two
results can be proven in the same way as the corresponding results in [HW4,

8.5, 8.6]. For each s € Sae, let M(s) = {m € Z3\° : FA°(h : v) is not

identically zero for some (h,v) € bg X aa\L}.
Lemma 4.6. [M(s)] < oo for all s € Sa\e-

Theorem 4.7. For each s € Sao,m € M(s),F5\°(h : v : 2) is jointly
holomorphic on (o X ag)\L x C(©) and jointly meromorphic on bg X af X
C(©). In fact, there is a holomorphic function g on bg X ag so that g has
no zeroes on (0% x ag)\L and (h,v,z) = g(h : V)F5\°(h : v : 2) is jointly
holomorphic on v x ag x C(O) for all s € Sa\e,m € M(s).

Lemma 4.8. For all s € Sa\e,@ € A\O and (h,v) € D x a*,

Res(h:v)a 2 —(Pags Ka)-

Proof. Suppose there are t € Sa\e,a € A\O, and (ho,) € D x a* such
that Ret(ho : 19)a < —(Pay, o). Then there is a non-empty open subset
U of D x a* such that Ret(h : )y < —(pag,pa) for all (h,v) € U. Let
U' = {(h,v) € U: (h,v) € L} and fix (h,v) € U'. Since F(h : v) satisfies
the weak inequality of (4.1d), using [CM, 7.5] we have Re sy > —(pay) Ha)
for all s € Sa\e(h : v). Thus Res, —Ret(h:v), > 0 for all s € Sa\e(h : v).
In particular, if there is s € Sa\e(h : v) with s —t(h : v) € Zﬁ\e, then
Sq¢ —t(h : V)g = n for some n > 0 in Z. We now see from (4.5a) that
FA°(h :v:2) =0foral m € M(t),z € H,. But this holds for all
(h,v) € U' and (h,v) — FA\e(h : v : 2) is meromorphic for (h,v) € vg X ag
by Theorem (4.7). Thus F, A\e(h v : z) is identically zero for z € H, for
all m € M(t), (h,v) € (vg x ag)\L. This contradicts the remark following
(4.5a). 0
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Let
(492) Sie={s€ Sae:5(0:0)s = —(pa,ta) for all a € A\O}.
For all a € cl(Ag), define o®(a) € C» by

(4.9b) ®(a), = {a(a), if o € ©;

0, ifaeA\O.
Note that for all a € cl(Af),a®(a) € C(O). We now define the constant
term of F with respect to © for a € cl(Ag) by
(4.9c) Feo(h:v:a)
= e”*(a) Z Z FA\e h:v:a®(a)a*® (a)log™ ala).

sESA\9 meM(s)

Theorem 4.10. Suppose H, € ay such that loga(Hy) = 0 for all a € ©
and loga(H,) < 0 for all € A\®. Then there ezists an € > 0 and a
neighborhood U(0) of 0 in cl(D) such that for all (h,v,a) € U(0)xa* xcl(AZ)
such that (h,v) € L,

lim e (e’*o(aexptHo)F(h:v:aexptHy) — Fo(h:v:aexptHy)) =0.

t—+00

Proof. Fix a € cl(A{) and write aexptHy = a;,t > 0. Note that a(a,) €
C(©). For each a € A\O, write €, = — log a(Hp) > 0. Then

a(a;) = ((a(a))sco, (@(a)e™)scare)
and

Q.e(at) = Q.e(a) = ((a(a))aee, (O)aeA\G)-

Thus
: — A0
Jim a(a,) = a®(a)

and for all s € Sa\e,m € M(s),(h,v) € L,
lim FA\O(h v:a(ay)) = Ff,}le(h v :a®(a)).

t—+00

For s € Sa\e,a € A\O, define s'(h : v)o = s(h : V)o + (Pa,, o). Then, for
all s € Save,m € M(s),

efeo (at)g(at)’(’“”) = g(at)"l(h”’) — g(a)s'(h:u) H e-—-teas'(h:u)u
a€A\O
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and

log"a(a) = [ (loga(a) — tes)™
a€EA\O

Note that using (4.7) we have lg(a)s'(’“")

Ie‘“ﬁ's'(’“")“l <1 for all @ € A\O,t > 0.
Now use (4.5b) to write

< 1 for all a € cl(Af) and

e’ (a))F(h:v:a;) — Fg(h:v:ay)
= X > FpP(h:v:ofar)e(a)” ™ log™ afa)

$€(Sa\e)\(536) MEM(s)

+ 3> % ( FAS(h:v: a(ay))

sGSA\e meM(s)

—FAP(h: v : a®(@))) afar)” ") log™ afar).

First fix s € (SA\e)\(Sg\e). Then there is a; € A\O so that s'(0 : 0),, #
0. But s'(h: 0),, = Res'(h : v),, > 0 for all (h,v) € cl(D) x a* by (4.7).
Thus s'(0 : 0),, = ¢, > 0 and there is a neighborhood U,(0) of 0 in cl(D) so
that Res'(h : v)a, = 8'(h : 0)a, > ¢5/2 for all (h,v) € U,(0) x a*. Now for
all (h,v) € U,(0) x a*,

lg(at)s’(h:u)

— g(a)s (h:v) H e—teas (h:v)a
aEA\O
< e—teass’(h:O)aa < e‘“tfaacas/2'

Thus for any 0 < € < €q4,¢a, /2 and (h,v,a) € Us(0) x a* x cl(AF), (h,v) € L,
we have

lim e“a(a,)® ®* log™ a(a)F5° (h:v:afa)) = 0.

t—+4oc0

Now fix s € S3\g,m € M(s). Then for any (h,v) ¢ L,
Gh:v:iz)=F5°Mh:v:z)— Ff,le(h 1V (Za)acos (0)acare)

is a holomorphic function of z € C(©) whichiszeroif z, = 0foralla € A\G. :
Thus for each a € A\O there is a holomorphic function G,(h : v : z) of
z € C(©) so that

Gh:v:2)= Z 26Go(h:v: 2).

a€EA\O
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Now
Ff,}le(h v afay)) — FSA,,,\,G(h v:a®(a)) = G(h:v:ala))
= > afa)e ™ Ga(h:v: ala))
a€A\O
where

lim Gu(h:v:a(a)) = Gulh:v:a®(a)).

t—-+o00
Thus if 0 < € < minyea\o €a and (k,v,a) € cl(D) x a* x cl(Ag), (h,v) & L,
then
t_ljgrnoo et (an\ze(h (v alay)) — Ff,}te(h s _qe(at)))
. g_(at)s'(h:u) lOgm _Ql_(at) = 0.

Thus
lim e (e’ (a;)F(h:v:a;) — Fo(h:v:ay)) =0

t—+o00
if 0 < e < min{{ey : @ € A\O} U {€4,¢,/2 : s € (Sare)\(Sa\e)}} and
h € U(O) = ﬂUs(O),s (S SA\@\Sg\e. O

Our next task is to compare the constant term of F' with respect to ©
defined above to the constant terms defined in §3. Suppose that in addition
to satisfying the conditions of (4.1), the restriction of F' to cl(D¢) x a* x G
is an element of J(cl(D¢) : G). For example, F' could be a holomorphic
family of Eisenstein integrals. Let F, be the minimal parabolic subgroup
corresponding to ®} and let Py C Q be the standard parabolic subgroup
with ag = {H € a : loga(H) =0 for all & € ©}. Then af, = {H € ag :
loga(H) < 0 for all « € A\O}. Define the constant terms 95,1 < i < w,
of F with respect to @ as in (3.12b). Recall that ¥p,, = 0 unless i € I°(0)
and that the constant terms 15 s, are only defined in some neighborhood Uc¢
of 0 in cl(Dg). Define

ﬁQ = Z detsi '(/)F,sw

i€1°(0)

Theorem 4.11. For all (h,v,a) € Ug x a* x cl(4g),

Fo(h:v:a)=7g(h:v)Fg(h:v:a).

Proof. Choose Hy as in (4.10). Then H, € af, so that combining (4.10) and
(3.14) we see that there are an € > 0 and a neighborhood U(0) of 0 in cl(D)
such that for all (h,v,a) € U(0) x a* x cl(A7) such that (h,v) € L,

lim e (F'Q(h :viay) —7wg(h:v)Fe(h:v: at)) =0

t—+00
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where a; = aexp(tH,).
From the proof of (4.10) we know that

Fo(h:v:a) Z z A\eh v:a®(a))a® ®")(a)

"’GSA\e meM(s)

-exp( —t Y €s'(h:v) ) II (oga(a) — tes)™

a€A\O acA\O
where ¢, = —a(Hy) > 0 for all o € A\© and
Re s'(h:v)q =Res(h:V)g + (Pag) ha) > 0,Res’'(0:v), =0

for all (h,v) € U(0) x a*,s € SR g, € A\O.
Similarly, using (3.10),
F’Q(h Tviay) = Z det s; Yp, (h: v : a)etdny(Ho)
i€I(0)
where Re s;Ay ,(Ho) < 0 and Res;Ag,(Ho) =0 for (h,v) e U(0) x a
Thus we can assume that U(0) is small enough that for all (h,v) € U(0) x
a*,s € S} e, € I°(0),

0<Re Z €as'(h:V) <e€
a€EA\O

and 0 < —Res;Ap,(Hp) < e. Thus for fixed (h,v,a) as above there are
finitely many distinct complex numbers w, ..., w; with 0 < Re w; < € and
polynomials p;(t),1 < i < k, so that

Fo(h:v:a) —mg(h:v)Fe(h:v:ay) sz e~
=1

for all ¢ > 0. It now follows from (3.16) that Fuo(h : v : a)

ng(h : v)Fo(h : v : a) for all (h,v,a) € U(0) x a* x cl(Af). But both
sides are meromorphic functions of h € Uc so the equality extends to
(h,v,a) € Uc x a* x cl(AF). a

Corollary 4.12. There is a bijection between the set of all i € I°(0) such
that 1r,s, # 0 and SR\e such that if i corresponds to s,

M (a) = e (a)ax(a) ")
for all (h,v,a) € bc X a* X Ag and

det s; Yrei(h: v a) = mg(h: v)er (@FS® (h: v a®(a)) a(a) ™)
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for all (h,v,a) € Ug xa* xcl(Ag). Further, for all s € S\, m € M(s),m #
0,
F2\ (h:v:a%@)) =0

for all (h,v,a) € bE x af x cl(AF).
Proof. Let a; € cl(Ag) such that loga(a;) = 0 for all a € A\©. Then for

all (h,v,a;) € Ug X a* x A}, using (4.11) and the notation in the proof of
(4.10),

F, o(h:v:aay) Z dets; Y, (h:v:ay)e ™ (ay)

1€19(0)

=nglh:v) Y, Y, FA° (h:v:a®(a))

SESA\O meM(s)

- a(as)* ®*) log™ a(ay).

Let L' be the set of all (h,v) € b x a* such that there are 7 # j in I°(0) with
eshrv (ay) = esihrv (ay) for all ay € Ag. Then (vg x a*)\(L U L') is a dense
open subset of b} x a* and the set of functions a; — 4+ (a,),1 € I°(0), and
ay = a(ay)® ") log™ a(a,), s € SA\e,m € M(s), are linearly independent
on A, for (h,v) ¢ LUL' except that we can have pairs i € I°(0) and s € S} ¢
such that e**»»(a) = a(a)* **) for all (h,v,a) € bc X a* X Ag. O

Corollary 4.13. For all i € I°(0),
(h,v) = Yps(h:v:a)

has a meromorphic eztension to (h,v) € by X ag for all a € cl(Af). For all
5 € S3\e @ € cl(47),

(h,v) = mg(h: V)Fp®(h: v : a®(a))
is smooth for (h,v) € Ug % a*.
Proof. This follows from combining (4.12) with (4.7) and (3.13). O

Fix so € S}\e and write (Sa\e) \{so} = §'US" where §' = (Sg\e) \{so}

and §" = (Sa\e) \(sg\e) . For each s € S, define
(4.14a)
L, ={(h,v) €vgxag:so(h:v)e—s(h:v)y=0forall « € A\O}

and set

(4.14b) Ly, = Uses Ly s-
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Lemma 4.15. There is a neighborhood U of (0,0) in vg X ag so that
(h,v) = Fa¥ (h:v:a®(a))
is holomorphic in U\(U N L,,) for all a € cl(AF).
Proof. For each s € S’, define
L . ={(h,v) evgxag:s0(h:v)y—s(h:v)y €Z forall a € A\O}

50,8

and set L, = Uses' L), ,. We will show that there is a neighborhood U-of
(0,0) in nC X ag so that

(h,v) = F5YY (h:v: a®(a))

is holomorphic in U\(U N L} ) for all a € cl(Af). But for all s € &,
50(0 : 0)g = s(0 : 0)y = 0. Thus by shrinking U if necessary, we can
guarantee that U N L,, = UN L, .

The proof uses monodromy transformations as in [CM, A.1.7] and
[HW4, 8.6]. For each ap € A\O, define e(ap) € C2\° by

(a0) 1, if o = ay;
e(a)o = .
0 0, otherwise.

Now for o € A\O, let T; be the monodromy transformation satisfying
T*(log z) = log z — 2mie(a). Thus for any s € CA\® m € ZA\e

T2 log™ (2) = e~ ™% 2* z <m°‘> —2mj)me—Fk logm"ke("‘) z.

Fix (ho,v) € L,, and s € S'. Then there is o = a, € A\O so that
s(ho : Yo)a — so(ho : U)o & Z. Pick n, > maxy,em(s)Ma- Then for all
(h, I/) S DC X ac,

(T; —21(1.s(h v) ) Z o 8(hv) log (Z)Fén\ze(h 7 2) =0
meM(s)

for all z € C2\®. Now,

800

(11 — em2mist0e)™ 2ot EAS (1 - - 2)

_ (e"2ﬂi80(h=V)a _ e—21n's(h:u)a)n’ so(h: u)FA\@(h Sy Z).

Write
T(so) = H Tz — e=2mis(hiv)a, s
ses’
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Then if M'(sq) = {m € M(s,) such that m # 0}, we have

T(So)F(h cp. Z) — H(e—27riso(hzu)a, _ 6_27ris(h:u)°’)n’zs(’(h:”)F:s,\oe(h Sy 2’)

seS’

+ Z T (50) 2" logm(z)Fs%,\,,?(h [V 2)
meM’ (sq)

+ Z T(s0)2* ") log™(2) FLNe (R : v - 2).
SES ,meM(s)

Write "
G,(S() - h: l/) — H (e—Zﬂiso(hzu)as _ e—27ris(h:u)aa) ‘ .
ses’

It is a holomophic function on vg X ag and there is a neighborhood U (hq, v)
of (ho, 1) € 0 X ag so that a(sg : h: v) # 0 for all (h,v) € U(hg, ).

Fix Hy € a, satisfying the conditions of Theorem 4.10. For a € cl(4f),
t > 0, write a; = aexp(tHy). Now for s € §”,

g(at)s(h:u)—so(h:V) — g(a‘).~3(h:u)—so(h:r/) exp (__t z ea(s(h (V) — So(h . V)a)) .

a€A\O
Now there is o, € A\O so that
5(0:0)a, = 50(0: 0)a, = 5(0: 0)q, + (Pag; Ha,) > 0.
Further, for all a € A\O,
5(0: 0)a = 50(0: 0)a = 5(0: 0), + {pagy 1) > 0.

Thus
Z €a(5(0:0), —50(0:0),) >0
a€A\O

so that there is a neighborhood U; of (0,0) in v X ag so that

Re Z €a(8(h:V)o —so(h: 1)) >0

a€A\O

for all (h,v) € U,. Let U = N4esnU, and let g(h : v) be a holomorphic
function on b§; x ag so that (h,v,2) = g(h : V)F2\(h : v : z) is holomorphic
on vg X ag X C(O) for all s € Sa\e,m € M(s). Such a function exists by
Theorem 4.7.

Let D € D(vg % ag). Then for all (h,v) € U,

lim D (a(so :h:v)g(h: V)F:;\oe(h 7 g(at)))

t—+o0
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=D (a(so: h:v)g(h: v)Fay (h:v:a®(a).
Further, for any s € Sa\e,m € M(s), there are finitely many m' € Zﬁ\e
and holomorphic functions ¢, m ./ (h : ¥) on v X ag so that

T(s0)2°"") logm(z)Ff)le(h (v :z)
= ch,m,m' (h : v)2°") log™ (z)an\ze(h (v z).

Now as in [HW4, 8.8],
D (g(h )20 BT (50) 2 ) log™(2) FANS (R 2 v z))
is a finite sum of terms of the form
d(h : v)z* (¥ =so(hv) 1og™” (1) D" (g(h :V)FA°(h:v: z))

where d is a holomophic function on vg X ag, D" € D(vg x ag) and m” €
Z3\®. Now D"(g(h : v)FA\P(h : v : 2)) is holomorphic on by x ag x C(O)
so that using the argument of Theorem 4.10, if s € S",m € M(s), for all
(h,v) € U, since

Re Z €a(s(h:V)a — So(h:V)s) >0,
a€EA\O

we have

lim D (g(h : y)g(at)—so(h:u)T(so)Q_(at)s(h:v)

t—-+o00

-log™ g_(at)Ff)le(h (v Q(at))) =0.

Further, if m € M'(so), by (4.12) F2\2(h : v : ¢®(a)) = 0 for all (h,v,a).
Thus

D (g(h : v)a(ay) " P IT (s0)a(ay) ™) log™ g_(at)Fsﬁ,\n?(h (v _a_(at)))
can be written as a finite sum of terms of the form
d(h: v)log™ a(a,)D"
(gh:v) [FAC(h: v : afar) — FAS(h: v : 0®(a))])

o again as in (4.10),

lim_D (g(k : v)ala)**T(so)alar) "

t—+o00
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log™ a(a)FA\(h : v : g(at))) =

s0,m

Thus
llm D(g(h v)a(a,) "I T (so)F(h: v : at))
=D (afso : b v)g(h: )ERP(h: v+ 2%(a)))

for all (h,v) € U.

If g(ho : n) # 0, then of course FA\°(h : v : z) is holomorphic at
(ho, o) for all z € C(©). Thus we may as well assume that (ho, 1) is on
hyperplanes L, ..., L, such that L; C L. Then there are linear functionals
u; and integers r; > 0 so that L; = {(h,v) : p;(h — ho,v — 1) = 0} and
gth : v) = [T, pi¥(h : v)gi(h : v) where g;(h : v) # 0 for (h,v) in a
neighborhood U’ of (hg,1p). Let D; be the directional derivative in the
direction p;. Then a holomorphic function ¢(h : v) on U’ is divisible by
g(h:v)ifforall 1 <i<n we have D¥¢(h : v) =0 for all 0 < k < r; and
(h,V) € L,‘ nu'.

But a(a;)~ ") T(s¢)F(h : v : a;) is holomorphic in U’, so that for any
D=Df,0 S k<7’i and (h,V) ELiﬂU’,

D (g(h V) a(a) 0PI (so)F(h: v at)) =0
for all £ > 0 so that

lim D (g(h v)a(ay) P T (so)F(h: v : at)) =0.

t—+400

Thus for all such D and (h,v),

D (a(so ch:v)g(h: V)F:;‘,\Oe (h:v: ge(a))) =0.

But a(so : h: v)g(h:v) ::\oe(h v : @®(a)) is holomorphic in U. Thus

a(so: h:v)g(h:v)Fay (h:v:a®(a))
is divisible by g(h : v) so that
a(so: h: 1/)Fs‘:,\0e (h:v:a®(a))

is holomorphic in U N U’. Finally, a(so : h : ) # 0 in a neighborhood of
(ho, o) so that Fsﬁ\(,e(h : v : @®(a)) is holomorphic at (ho, vp). O
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We now need to vary the chamber D. Recall that as in (2.11) the set of
all chambers D with 0 € cl(D) can be parameterized by X,. As before we
let s;,1 < i < w, be coset representatives for Wo\Wg. Let

PP={1<i<w:siAo(H)=0 forallhevy, HEag}
and for each € € %, let

I°0:¢) ={1<i<w: forall H € a},siAno(H) <0
for all h € cl(D(e)) and s;Ago(H) = 0}.C

Now I° C I°(0 : €) for all € € Xy. For 1 <17 # j < w, define
Li,j = {(h,l/) € 0*0 X a*c : SiAh’,,(H) = SjAh,,,(H) for all H € aQ}
and for 7 € I € € X, set
Li(e) = Ujero(o:e),j#ilsi,j-

Recall that ng(h : v) = [Igeq+ mp(h : v) where mg(h : v) = (A(h) + v, B).
For each B € ®, write Hg = {(h,v) € vg xag : mg(h : v) = 0}. For
i€I%e€ %o, € P, write Hjy(i: €) = {(h,v) € Hp: (h,v) € Li(e) }-

Lemma 4.16. Suppose that i € I° such that s;'ag C a. Let v € ®* such
that 7,(0:0) =0, and

h—ny,(h:0) and v m,(0:v)

are non-trivial linear functionals on v and ag respectively. Then there is
€ € To such that H! (i : €) is a dense open subset of H.,.

Proof. Assume that H! (i : €) is not a dense open subset of ., for any € € %,.
Since m,(0: 0) = 0 and . (h : 0) is not identically zero, there are e* € X, so
that 7., (h : 0) > 0 for some h € D(e*) and ., (h : 0) < 0 for some h € D(e™).
Write

H=H,HE=H(i:e¥),JE={j €I°(0:€*):j #i}.

Then since m,(0 : 0) = 0, H is the co-dimension one subspace of vy x ag
which is the kernel of the linear functional m,(h : v). Further, for each
j € J*, L;; = NaearoLi () where each L; ;(a) is the kernel of the linear
functional g; o (h : v) = (SiAh,, — SjApy, ta). Thus there are ji € J*, oy €
A\® such that H C L;j, (a) for all « € A\® and H = L;j, (ay). Thus
there are complex numbers c;. # 0 so that

9+(h: V) =9j; 0, (h: V) =cymy(h:v)
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for all (h,v) € 0§ X ag.

Since i € I° we have (s;Aj 0, o) = 0 for all A € vy,. Since j € I°(0 : e*)
and the p, are dual to the negative simple roots, we have (s;, Ap o, ta) >0
for all h € D(e*),a € A\O. Thus g+ (h : 0) < 0 for all h € D(e*). Further, if
one or both of g, (h: 0) = 0 for all h € vg, then 7, (h : 0) = 0 for all € vg.
This contradicts one of the hypotheses of the lemma. Thus g4 (h : 0) < 0 for
all h € D(e*). Thus by our choice of €& we must have ¢, < 0 and c_ > 0 so
that ¢ = c,cZ! < 0.

But now for all v € ag,

9+(0:v) =cymy(0:v) =¢cg_(0: ).

Thus we will have a contradiction if we can show that there is vy € ag such
that both of g4+ (0: 1) > 0.

Let vy = (—is,-‘l,uw)yﬂ. Since we assume that s; 'agp C a we have vy € ag.
Now

g+(0 : VO) = <”’a+a,u'a+) - (3j+3z'_1,u'a+,ﬂ'a+)-

Thus g, (0 : ) > 0 and if g, (0 : ) = 0, then s;, ] 'la, = fta,. But this
would imply that s;'p,, = Sj~+1/1'a+ so that g, (h : v) = 0 for all (h,v) €
vg x ag. Thus g4 (0 : 1) > 0. Now suppose that o = a_. Then by the
same argument as above, g_(0 : v5) > 0 and we are done.

Now we can take ay = a_ unless L; ;_(oy) = bg X ag. In this case

(sz’Ah,w l"a+) = (Sj— Ah,w ll'a+>
for all (h,v) € v X ag, so in particular, at (h,v) = (0,1,), we have
(l’l’a+7l‘l’a+> = (Sj— Si_lﬂa+,lia+)-

Thus s;_8; e, = pa, S0 that 0 = g_(0: 1) = cg4(0 : ). This contradicts
the fact that g, (0: v) > 0. Thus we can assume that o, = c_. g

Lemma 4.17. Leti € I° and y € ®* such that 7, (0:0) =0, and
h—n,(h:0) and v~ 7m,(0:v)

are non-trivial linear functionals on v and ag respectively. Suppose that
D = D(e) for € € Ly such that H! (i : €) is a dense open subset of H.,. Then
for any F € J(cl(Dc) : G) such that F has an extension to bg X ag X G
satisfying (4.1) we have

",bF,s,' (ho O a) =0
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for all (ho,vo,a) € bE X ag X cl(AF) such that m,(ho : 1vp) = 0.

Proof. If 9, = 0 there is nothing to prove. Thus we assume that 9p,, is
not identically zero. Thus by [HW5, 7.28] we have s; 'ag C a. Further, by
(4.12) there is so € S\g such that

dets; Yps(h:v:a)=mg(h: l/)I'ﬂ,IAO,\Oe (h:v:a®(a) a(a)®o®),

Now by (4.15), there is a neighborhood U of (0, 0) so that FL\‘\e (h:v:a®(a))

is holomorphic for (h,v) € U\(U N L,,). Thus na(h i V)
FAW(h:v:a®(a)) =0 for all (h,v) € (H,NU)\(H,NUNL,). But L, C

L;(e) so that H (i : €) € H,\(H,NL,,). Thusng(h: V)F2\9 (h:v: a®(a))

s0,0

0 for all (h,v) € H,. ad

5. Poles of the constant term.

Fix H = TA a 0#-stable Cartan subgroup and (), x) € X(T), 7,7 € K (x)-
Let U(0) be a neighborhood of 0 in iv* satisfying the conditions of [H3, 4.6]
and (3.18). We assume that the Plancherel function m(H : h : v) corre-
sponding to w(H : A : x : h : v) is jointly smooth as a function of (h,v) €
(U(0)Ncl(D)) x a* for every connected component D of {h € iv* : (A(h), ) #
0,a € ®},}. As in (2.10) we define Fy and Hr = TrAp, (Ar, xr) € X(TF)
for every F C Fj.
Suppose for each F' C F; we have a function

O(F):i0" Xap XG> W =W(r : 72)

satisfying the conditions of (2.16) so that

(51) o)=Y / / O(F :h:vp:zym(He: Ap: xp: b : vp)dvpdh

FCFo

is an elementary mixed wave packet.

For each F C Fy,e € Xy, let ®(F : €) denote the restriction of ®(F) to
Ur(€) X ay X G. Then each ®(F : €) € J° »(U : €: G). Thus for each standard
parabolic subgroup @ of G and s € W representing a coset of Wo\W¢ we
can define constant terms &)Q,S(F : €) = Pa(rie),s as in (3.12). By (3.18)
Bgo(F : €) € C=(Ur(e) x ap x LY).

Recall that for any F C Fy, e € ¥y, we can write as in [H3, 5.3]

/ ®(F:e:h:v:zym(Hp: Ap: xp:h:v)dv
af
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— (ri\=IFl g(F:e€:h:v:x)
(i) /;; pr(h:v) dv

where g(F : €) € J2(U : € : G) is defined as in (2.22). In order to carry
out the estimates needed to prove that the elementary mixed wave packet
defined by (5.1) is a Schwartz function we will need to know that g(F : €) €
JE(U :€:G).

Theorem 5.2. For any F C Fy,e € %,
(hyv,2) > gos(F:e:h:v:izg)=n(F:h:v) Yyres(h:v:z)

extends to a C*™ function on Up(e) x ap X G. That is, g(F : €) €
JE(U : €: G).
The remainder of this section is devoted to the proof of (5.2). Recall from
(2.22) that for fixed F, e there is a constant ¢ so that
(5.3a)
g(F:e:h:v:z)=cn(F:h:v)®(F:e:h:v:z)q(F:h:v)
. H me(F : h:v) Z e(P)t(F :¢p:h:v).

a€PL YETF
Thus
(5.3b) gos(F:e:h:v:z)=8g (F:e:h:v:z)g'(F:h:v)
where
(5.3¢)
g(F:h:v)=cq(F:h:v) H ma(F :h:v) Z e()t(F v : h:v).
Q€®L p YETF

Now it is proven in [H3, 5.8; 5.9], that
(hyv) > w(F:h:v)g'(F:h:v)
is jointly smooth on U(0) X a}. Recall that

n(F:h:v)= H To(F : h:v)

+
[-15
where

To(F : h:v) = (o, Ap(h) + i), (h,v) € i0™ X a}.



100 REBECCA A. HERB

In order to prove Theorem 5.2 we will show that there is a subset ®¢ of
@ so that if we define

mo(F:h:v)= H mo(F : h:v),

a€®r,o0
then
(h,v) = mo(F : h:v)g' (F:h:v)
and
(hyv,z) > g(F:h:v) '@ (F:e:h:v:zx)

are both jointly smooth.

The subset ®ro needed consists of three types of roots. We will use the
notation of [H3, §4; §5]. Let ®F , denote the real roots in ®Ff. For every
a € ®F p, we have the Plancherel factor

sinh v,
cosh Vo — €o(F : h)

w(Fihiv)= ] ng(F:h:v
pedd

defined as in [H3, 4.5]. First, define ®} to be the set of all a € ®f
such that e,(F : h) = 1 for all h. Second, suppose a € @} ;\®}, such that
€a(F : 0) = 1. Then €,(F : h) = cosh, as in [H1, 10.4]. Suppose further
that m*(F : h : v) is jointly smooth at (0,0). Then as in [H3, 4.7] there
are v, € ®} and non-zero constants c, ¢’ so that

Ty(F i h:v) =c(hg +iVs), Tp(F :h:v)=c'(hy —iv,).

Define ®% to be the set of all ,~' obtained in this way. (There could be
more that one pair {v,v'} which satisfy this condition for a given a € ®F 5.
The set ®2 should consist of just one pair for each .) Finally, suppose in
the notation of [H3, 4.12] that o € F,( € [a], ®(a) # ®(8). Define +,7 as
in [H3, 4.12]. Then as in [H3, 5.8, 7, (F : h: v) is a multiple of (iv, —a).
Let ®3. be the set of all ¥ € ®f of this form. (We choose only one of each
pair {v,%} for ®3..) Now we define

(5.4a) Bpo =L UBL UGS
and set
(5.4b) mo(F:h:v)= H To(F : h:v).

a€®Pr0
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Lemma 5.5. Let U(0) be a neighborhood of 0 in iv* defined as in [H3, 4.6].
Define g'(F : h: v) as in (5.3¢c). Then

(hyv) 5 mo(F:h:v)g'(F:h:v)
is jointly smooth on U(0) x a}.
Proof. 1t is proven in [H3, 5.8; 5.9], that

(hyv) > w(F:h:v)q(F :h:v) H muo(F : h:v) Ze(z[))t(F:zﬂ:h:V)

a€PyL p YETF

is jointly smooth on U(0) x a}. In fact, from the proof of [H3, 5.8; 5.9] we

see the following.
First, as in [H3, 5.9], if o € @ 5, then

my(F:h:v)= H 7g(F : h:v)my(F : h:v)
peal
is jointly smooth in U(0) x aj. Now

sinh 7y,

ma(F +h:v) = cosh v, — € (F : h)

is jointly smooth unless €,(F : 0) = 1. Now if €,(F : h) =1 for all h, then
a € @ and 74(F : h: v)my(F : h: v) is jointly smooth. If €, (F : 0) =1,
but €,(F : h) is not identically one, then there are 7,7 € ®% N ® so that

Ty (F :h:v)my(F :h:v)mg(F : h:v)

is jointly smooth for (h,v) € U(0) X aj.
Second, as in [H3, 5.8],

(h,v) = H (Va + thq) H H (vg —vo)g(F : h:v)

a€®y. n()\@F £(0) a€F BEla],8(8)£%(a)
: Z eP)(F :¢:h:v)
YETF

is jointly smooth on U (0) X a}.. Now for o € 9% p(1)\®F 5(0), if eo(F : h) =1
for all h, then o € ®% and v, + ih, is a non-zero multiple of 7w, (F : h : v).
If €o(F : h) is not identically 1, then as above there is v € % N &} so that
74(F : h : V) is a non-zero multiple of v, + ih,. Further, for @ € F and
B € [a] with ®(8) # ®(a), there is v € ®% so that 7, (F : h : v) is a non-zero
multiple of v — v,. O
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Lemma 5.6. Let F C Fy,e € 3. Then
(hyv,z) = m(F :h:v) ' ®g(F:e:h:v: 1)
extends to a C*™ function on Up(€) x a x Lg,.

Proof. By definition, there are finitely many
\I’i ) (M}v : AF CXF DF(E) : W) ,Q; € C(DF(E) X u})o
so that

@(F:e:h:u:m)=Za,»(h:1/)E’(PF:\I/i:h:V::c).

Thus it suffices to prove that each
mo(F : h: V)_IEQYS(PF WU, :h:v:x)
is jointly smooth. This follows from Theorem 5.7 below. O

Theorem 5.7. Let F C Fy,e € 50, € S (M} : Ap : Xr : Dp(e) : W). Let
o € ®po. Then

(hyv,z) = To(F :h:v) 'Eg(Pr:U:h:v: )
is jointly smooth on Ugp(e€) x aj X Lg,.

The remainder of this section is devoted to the proof of Theorem 5.7. Re-
call ®rp = &L U % U @}. Now for roots a € oL U 93,
mo(F : h : v) = (iv,a) is independent of h, and showing that
To(F : h : V) "Eg(Pr : ¥ : h : v : ) extends to a smooth function
will use Harish-Chandra’s theory of the c-function when Eq , is an ordinary
constant term. For roots a € %, 7,(F : h : v) depends on both h and v
and showing that o (F : h: v) " Eg ,(Pr : ¥ : b : v : z) extends to a smooth
function will use results from [H2] and §4 in the case that Ey , is an ordinary
constant term. In both cases, we will use matching conditions to extend the
results from ordinary constant terms to all constant terms. Thus the first
step is to show that any holomorphic family of Eisenstein integrals is con-
tained in a matching family of holomorphic families of Eisenstein integrals.
We will do this first in the case that P = M = G so that E(P : ¥) = V.

Assume for now that G is a connected reductive group with rank G =
rank K and that H = T is a relatively compact Cartan subgroup of G.
Fix (A\,x) € X(T). Define Fy = {a € ®f: (\,a) = 0}. Then as in (2.10)
we define Hp, (Ar,xr) € X(Tr),F C Fy, %y, and the corresponding family
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{©(Hp : h : vp)}rcr, of matching characters. For € € o, let O(Hy : ¢)
denote the restriction of or(e)O(HF) to Dr(e) X af X G. It is clear from
the character formulas [HW1, 2.10, HW4, 2.6] that for each z € G,
(h,v) = O(Hp : €: h: v : z) extends to a holomorphic function on b} X arc-

Suppose for each F C Fy,e C X,, we have a holomorphic function
f(F:e:h:v)of (h,v) € bg X ai c. Then we say the collection {f(F : €)}
satisfies the same matching conditions as the characters if, in the notation
of (2.14), we have for any 1 <i <m,e€ %;,,E C Fy,k > 0,

(5.8)
(0/0h)*[f(E : €7 (i) : ho 1 vg) — f(E: € (i) : ho : vg)]
= Z c|F\E|D§'\E[f(F : E+(’i) thy: (I/E,O)) +f(F : E—(’l:) thy: (I/E,O))]

ECFCE(i)

for all v € af, ho € HiNcl(Dg(€)). Here Dp\g = 0/0h; — i3 e p\g O/ Opta-
For each F C Fy, e € ¥y, (h,v) € cl(Dr(€)) X af, let

(5.9a) (7(F:e:h:v),H(F :€e:h:v))

denote the representation with character O(HF : €: h: v) and the space on
which it acts. For 7 € K(x), let

(5.9b) H(F:e:7:h:v)
denote the 75-isotypic subspace of H(F : €: h:v). For 7,75 € K (x), let
(5.9¢) V(Fie:nny:1:h:v)
be the linear span in C®(G) of the matrix coefficients
(n(F :€e:h:v)(z)ws,wr),w; EH(F:€e:7;:h:v),
and for any open subset U of bg let
(5.94) F(F:e:U:1:75)

be the set of all functions f € C®(U x a}c x G) such that (h,v) —
f(h : v : z) is holomorphic on U x aj ¢ for all z € G and f(h : v) €
V(F:€e:1 :7:h:v) when (h,v) € cl(Dp(€)) NU x a}. We call elements
fof F'(F :€e:U: 7 : 75) holomorphic families of matrix coefficients.

Lemma 5.10. Let U be a neighborhood of 0 in vg,e0 € X, and let
€ F®:€ :U:7 : 7). Then there are a neighborhood U' of 0 in U
and for each F C Fy, € € %o, a function ¢(F :€) € F'(F:e:U': 71 :73) s0
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that ¢(0 : €) = ¢ and the collection {¢(F : €)} satisfies the same matching
conditions as the characters for h € U'.

Proof. We will carry out the construction of [HW4, §3; §5] simultaneously
for the matching family of characters ©(Hp : €), F C Fy,e € Xy.
Fix 7 € K(x) and for (h,k) € vg x K define

6(h : k) = e (k) degree(r) trace 7*(k)

where 7* is the contragredient of 7. For each f € C®(G),z € G, we can
define ’

§(h) *x f(z) = /K 5(h : k)f (k™ ) dk.
Now for each F C Fy, e € ¥y we define
OHp:e:7:h:v:f)
= O(Hr : €: h:v:3)(5(h) *x f)(2)d(zZs), f € CX(G).

G/Zs
As in [HW4, 3.7] we see that O(Hp : € : 7 : f) is holomorphic on b} x a5 c
and that for each (h,v) € vg X a} ¢,

f—OHp:e:7:h:v:f)

defines a distribution on G. As in [HW4, 3.7], we can differentiate under
the integrals, so that for every f € C>(QG), {é(H pie:T:f )} satisfies the
same matching conditions as the characters. B

Now as in [HW4, 3.11] there are real analytic functions T(Hp : € : 7) on
bg X 6% ¢ X G so that for every f € C*(G), (h,v) € b3 X af c,

(:)(HF:e:’r:h:u:f)=LT(HF:6:T:h:V:x)f(x)dx.

As in [HW4, 3.12] we can differentiate under the integral and see that for
each = € @ the functions T(Hp : € : 7 : z) are holomorphic on b} x arc and
that the collection B
{T(HF TELT: x)}FgFo,eezo
satisfies the same matching conditions as the characters.

Now fix ¢y € Xy and let 7y be the lowest K-type of the relative discrete
series (or limit of relative discrete series) representation of G with character
O(Hp : € : 0). Let p € it* be the highest weight of 7o. For each F' C Fy, e €

2o, (h,v,z) € b5 X af ¢ X G we define

Y(Hp:€e:h:v:z)= /T/Z T(Hp:€:70: h:v:tx)e * Mt)d(tZ).
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Again, differentiating under the integrals, we see that for each z € G the
functions ¢(Hp : € : x) are holomorphic on vg; x af ¢ and that the collection

W’(HF c€: $)}FgFo,ee>:o

satisfies the same matching conditions as the characters.
Finally, for D,, D, € U(gc), 71,72 € K(x), we define

Y(Hp:€:Dy:Dy:7y:7T9:h:v:x)
=06(r{ : h) *k/z Y(Hp : € : h: v : D} x; D,) *kyz 6(72 : h).

As in [HW4, 5.12] we see that for each z € G the functions
Y(Hp : €: Dy : Dy : 7y : 75 : x) are holomorphic on b X aj ¢ and that
the collection

{$(Hp:€:Dy:Dy: 71 : T2 T)} PRy cess

satisfies the same matching conditions as the characters. Further, as in
[HW4, 5.10; 5.12] we see that for each F' C Fo,e € %o, D1,D; € U(gc),
71,72 € K(x),

Y(Hp:€:Dy:Dy:7 1) EF(F:ie:0g:7 1 Ta).

Now, as in [HW4, 5.14], there are a neighborhood J of 0 in cl(Dy(eo))
and D;, D; € U(gc), so that {¢ (T t€:D;:Dj:1 Ty h)} is a basis of
V(@:€:7 :7:h)forall h € J. In fact the argument shows that there is
a neighborhood W of 0 in b so that the collection

{1,1)(T:60:D,-:D;-:T1:72:h)}

is linearly independent for allh € W. Let U' = UNW. As in [HW4, 5.17],
when we expand ¢ € F'(D: ¢p : 71 : 72) in terms of this basis as

$(h) =3 By (hy (T:eo: Di: Djimyimy ),

the coefficient functions f; ;(h) are holomorphic on U’. Now for any F' C
Fy, e € X, (h,v) €U’ X afc, set

¢(F:€:h:l/)=zﬁi7j(h)'¢)(HF:€:Di:D;:Tl:Tg:h:v).
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Now we return to the general case that G is an arbitrary connected
reductive Lie group and H = TA is any f-stable Cartan subgroup. Let
(A x) € X(T), 11,72 € K(x),W = W(7, : 13). Let D be a connected compo-
nent of {h € v* : (A(h),a) # 0 for all & € @)} such that 0 € cl(D). Define
Fy,He,(Ar,xr), F C F,, %, as in (2.10) and fix ¢y € Xy so that Dy(ey) = D.
Recall that for (h,v) € Dp(€) X a},O(Hp : € : h : v) is the character of the
representation

(5.11a) wn(F:e:h:v)= IndgMF(Mg)MgAFNF (XF(h) Q3 n) ¥ ® 1)

Let P} = Pe N M' = M} ApyNpa where Apy = Ap N MO, Npy =
Np N M°. As in [H1, 10.16], using induction by stages, for v € a} with
V1 = Vlag > V2 = Vla, then

(511b) W(F:G:h:V)=IndflfAN(7r(M1;F;e:h:,/l)®eil/2®1)

where
(5.11¢)
t .
™ (Mf :F:e:h: Vl) = IndgMF(M%)MgAF,MNF.M (XF(h) ® ng(h) Re” ® 1) .

Now the characters © (M':F:e:h:v;) of the representations
7(M' : F : € : h: 1) satisfy the same matching conditions as the char-
acters O(F : € : h : v) if we extend © (M': F:e:h:v;) tov € ajc by
O(M!':F:e:h:v) =0 (M':F:e:h:1),1, = vy, as above. Thus
we will not distinguish between the matching conditions satisfied by the
characters corresponding to M’ and G.

For each F C Fy, € € 3, and neighborhood U of 0 in vy, we can define

(5.12a) S(M':F:e:U:W)

to be the set of all ¥ € C* (U X @ prc X M1 W) such that
(5.12b) T(h:v: kyaks) = Tun(k)U(h : v 2)on(ks)

for all (h,v) € U X af p ¢, T € MY, by, by € K},

(5.12¢) (h,v) = ¥(h: v : z) is holomorphic on U X a} y/ ¢
for all z € M, and

(5.124) z = (U(h:v:z),w")

is a finite sum of matrix coefficients of # (M': F:¢e: h:v) for all (h,v) €
U N cl(Dr(€)) x afp- We will not require any growth condition on these
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spaces since we will only need to use these holomorphic families to study
Eisenstein integrals in a neighborhood of some fixed point.

Lemma 5.13. Let U be a neighborhood of 0 in vy and let ¥ €
S(M' : 9 : e : U: W). Then there are a neighborhood U' of 0 in U
and for each F C Fy,e € %, a function U(F :e) e S(M': F:e:U': W)
so that (0 : €) = ¥|y xmt and the collection {¥(F : €)} satisfies the same
matching conditions as the characters for h € U'.

Proof. Write K = KN M°%K}, = KN M!. For F C Fy,e € 5, let-
7 (M°: F :€: h:v) be the representation of M° so that

a(M':F:e:h:vn)=xh)®@n(M°:F:e:h:vy).

For U a neighborhood of 0 in vy, write 7' (M°: F:€:U : 7y : 73) for the
holomorphic families of matrix coefficients of the representations
m(MP° : F : €) defined as above with K}/-types 7;|ko . Similarly we could
define holomorphic families 7' (M' : F : €: U : 7y : 75) of matrix coefficients
of the representations m (M': F:e: h:v;) of Mt. (See [H1, §5].) Now
every p € F (MY :0:¢€ :U : 7 : 73) is a finite sum of terms of the form

¢(h: zm) = Y(h: 2)¢°(h : m), 2 € Zp(M®),m € M°

where 1(0) is a matrix coefficient of x(0),%(h) = ¥(0) ® e*,h € vy, and
P EFM®:0:€6:U:7 :7). Now if ¢° is embedded in a matching family
{#°(F : €)} of elements of F(M°: F:e:U': 7, : 1) as in (5.10), ¢ =9 - ¢°
can be embedded in the matching family {¢(F : €)} defined by

H(F:e:h:zm)=1p(h:2)¢°(F:e: h:m),z € Zy (M®),m € M°.

Thus every ¢ € F (M :0:¢€ :U : 71 : 73) can be embedded in a matching
family.

Now corresponding to any ¢ € F (M!: F:€:U’': 7y : 1), the procedure
in [HW5, §5] gives a canonical way of constructing a spherical function
F(¢) € S(M':F:e:U":W). If a family {¢(F : €)} satifies matching
conditions, so will the corresponding functions F(¢(F : €)). Finally, for any
S € Endyy (W), ¢ € F (M': F:e:U': 7 : 73), we can define

(SF(@)(h:v:z)=SF(@)(h:v:x)),(hv,z) €U X af prc X Mt

Then SF(¢) € S(M' : F : € : U' : W), and again, if a family {¢(F : €)}
satifies matching conditions, so will the corresponding family {SF(¢(F :

)}
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Now using the argument of [H1, §5], given ¥ € S(M' : 0 : ¢ : U : W)
there are a neighborhood U” of 0 in U’ and elements ¢; €
FM' :0:6:U":1:7),5 € EndK]fw(W), so that

U(h:z) =) SiF(¢:)(h:z),(h,z) €U" x M*.
Now embedding each ¢; in a matching family ¢;(F : €), we can embed ¥ in
the matching family given by

U(F:e:h:v:z) =ZS,-F(¢i(F:e))(h:u::c).

d
For each F C Fy, € € %, and neighborhood U of 0 in vbg we can define
(5.14a) S(G:F:e:U:W)
to be the set of all ® € C*°(U x aj,¢ x G : W) such that
(5.14b) D(h:v:kizks) = 1 h(k)P(h: v : z)Top(K2)
for all (h,v) €U x ap ¢,z € G, ki, k; € K,
(5.14¢) (h,v) > ®(h:v:z) is holomorphicon U X af ¢
for all z € G, and
(5.14d) z— (®(h:v:z),w)

is a finite sum of matrix coefficients of n(F : € : h : v) for all (h,v) €
U Ncl(Dr(e)) x a}. Foreach T € S(M': F:e:U : W), we extend ¥ from
U X appc X M to U X a} ¢ X G by
(5.15a)

U(h:v:kman) =7 ,(k)¥(h:v:m),k€ K,me M' ae A,n € N.

Then we define
(5.15b)

B(P:U:h:v:z)= / U(h: vy : k) rap (kY0P He @R gk 7)),
K/Zg

where for v € a}, ¢, 11 = Vlap,, and v, = v,.

Lemma 5.16. Let F C Fy,e € %,. For each ¥ € S(M' : F : ¢ : U :
W),E(P:V)e S(G:F:e:U:W). Further, there are a neighborhood U’
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of 0 in U and finitely many ¥; € S (M}; :Ar: xF : Dr(e) : W) so for every
ecS(G:F:e:U :W),(hv,z) € U Ncl(Dr(e)) x a} x G,

@(h:u:x)zzai(h:u)E(PF:\Ili:hzl/:x)

where a;(h : v) € C for all (h,v) € U' Ncl(Dg(e)) x aj.

Proof. Asin [H1, §4] we see that if o is a unitary representation of MT and ¥
is any (Tl,hl Kl Ta,n] K, )-spherical function of matrix coefficients of o, then
E(P : VY : h:wv,)is a (T4, T2,n)-spherical function of matrix coefficients of
Ind$ 4n(0 ® €2 ® 1) for all v, € a*. The first part of the lemma, follows
since we know that

m(F:e:h:v)=Ind5i v (MY :F:e:h:1) @™ @1).

As in [H1, §5] we know that there are a neighborhood U’ of 0 in U and
finitely many ¥; € S (M} :Ar:xr: Drl(e): W) so that for all h € U' N
cl(Dr(€)), {¥:(h)} is a basis for the space of (71,72 ,)-spherical functions
of matrix coefficients of the relative discrete series representation xr(h) ®
73 (h) of M{}.. Now the Eisenstein integrals E(Pp : ¥; : h: v : ) can be de-
fined as in (5.15) relative to the parabolic subgroup Pr, and for each (h,v) €
U'Ncl(Dr(e)) X a}, they will span the space of (7, 72,5)-spherical functions
of matrix coefficients of the representations 7(F : € : h : v). Thus, given ® €
S(G: F :€:U': W) there are complex numbers «;(h : v) so that for all
(hyv1,z2) € U' Ncl(Dr(e)) X ay x G,

dh:v:z)=Y oh:v)E(Pp:Y;:h:v:z).

O

Lemma 5.17. Let U be a neighborhood of 0 in vy and let ¥ €
S(M' : 0 : € : U: W). Then there are a neighborhood U' of 0 in U
and for each F C Fy,e € Ly, a function ®(F :¢) e S(G: F:e: U : W)
so that ®(0 : ¢o) = E(P : U)|yxg and the collection {®(F : €)} satisfies the
same matching conditions as the characters for h € U'.

Proof. Using (5.13), there is U’ so that for each F C Fj,e € ¥,, we have
U(F :e) € S(M':F:e:U': W) so that U(0 : ) = ¥|pxmt and the
collection {U(F : €)} satisfies the same matching conditions as the char-
acters for h € U'. Now by differentiating under the integrals we see that
the collection {E(P : ¥(F : €))} also satisfies the same matching con-
ditions as the characters. Now using (5.16), each E(P : ¥(F : ¢€)) €
S(G:F:e:U :W). g
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Suppose that U is a neighborhood of 0 in bg and for each F C Fy, e € %,
we have ®(F : ¢) € S(G : F : € : U : W) such that {®(F : €)} satisfy
the same matching conditions as the characters. Then given a standard
parabolic subgroup @ of G and s € W representing a coset of Wo\W¢g we
have constant terms ®¢ ,(F : €) which by (3.21) also satisfy the matching
conditions. Further, by (4.13), each constant term 5Q,s (F : €) is a meromor-
phic function on U X af, ¢ which is holomorphic in a complex neighborhood
of Ur(€) x a} where Urp(e) = U Ncl(Dr(e)). For each h € vy, E C F C F,
since ar = ag ® ) ,ep\g RHcpo, We can define vp\g(h) € af ¢ by

vi\g(h)lag =0, vr\e(h)(Hcpo) = —i(hy(h),a),a € F\E.
For h € vg,vg € af ¢, we also write (vg,vp\g(h)) = (Vg,0) + vr\e(h).
Lemma 5.18. Let1 <i < m,e € X;,E C Fy. Then for all (h,vg,z) €
U x ap ¢ x Lp,
Bo.(E:€"(i):h:vp:a)—Bg.(E:e (3):h:vg:x)
= Z C|F\E| [‘i)q,s(F 1€7(3) 1 h: (ve,vm\e(h)) : T)

ECFCE(i)

+8gu(F: € (i) : h: (vp,vms(h)) : 7).

Proof. Note that if 1 <4 <m,E C F C E(i), and hy € H;, then vp\g(ho) =
0. Also, if f is a function on bg X af ¢ and g is the function on vg; defined by
g(h) = f(h : v(h)), then 8/0hig(ho) = (0/0h; — i3 4ep\g O/ Fpia) f (ho : 0)
for all hy € H;.

Now fix (vg,z) € ay X G and for any E C F C Fy, e € X9, h € U, define

f(F:e:h)=8q,(F:e€:h: (vg,vp\g(h)) : 7).
By the above, for all k > 0,ho € H; N U we have
(8/0h:)Ef(F : € ho) = Di\ g ®(F : €: ho : (vE,0) : z).
Fix 1 <i < m and € € 5;, and write
g(h) = f(E:€* (i) :h) — f(E: € (i) : h)
- Y oanmlf(F:e(@):h)+ f(F:e (i) : b))

ECFCE(i)

Then the matching conditions can be rephrased as saying that (8/8h;)*g(ho)
=0 for all kK > 0,hy € H; NU. But since g is a meromorphic function of
h € U we can conclude that g(h) =0 forall h € U. O
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We are now ready to return to the proof of Theorem 5.7. We will first
look at the case that & € ® U ®%. For every F C F, we can identify
ot = ®*(gc, hrc) with @+ = &+ (gc, he) via the Cayley transform cr as in
(2.10). Thus for every a € &+, F C F;, we can write

To(F : h:v) = (Ap(h) +iv,a), (h,v) € bg X af G-

Lemma 5.19. Let E C F,. Suppose oo € ®. Then for all E C F C Fy,
a € ¥}, and for all (h,v) € vg X af ¢,

To(F:h:v)=mn,(F:h:vg)
where vg is the restriction of v to ag.

Proof. We always have ®f p C ®f . Now by [H3, 5.5], e (F : h) =
€x(F : h) for all h except possibly in the case that « is a long root in
a simple factor of G which is isomorphic to the universal covering group
of Sp(n,R) for some n. But in this case €,(F : h) is not independent of
h, so a ¢ ®%. Finally, since a € <I>}§, Ry @ is orthogonal to Fu\E so that
To(F :h:v) =n4(E : h:vg) for all (h,v) € vg X af - a

Lemma 5.20. Let E C F, and suppose v € ®%,. Then for all E C F C
Fo,y € ®fcpx and wo(F : h:v) =, (E : h : vg) for all (h,v) € b5 X af ¢,
where vy is the restriction of v to ag.

Proof. We may as well assume that G is simple. We know from [H3, 4.12]
that v — v/ is orthogonal to Ag(h) for all h. Thus s,s. (Fo\E) C £(Fo\E).
Suppose that Fo\E = ¢ consists of only one root. If s,s,0 = —d, then
v — v is a multiple of §. But this cannot be so since v — v’ is orthogonal
to Ag(h) for all h while ¢ is orthogonal to A(0), but not to A(h) for some
h # 0. Thus s,s,6 = +6 so that v — ' is orthogonal to 6. Thus in this
case v and 7' are both orthogonal to Fy\E. In |Fo\E| > 2, then G has
real rank at least four, and as in [H3, 5.12] we see by looking at the three
possible cases that we have 7,7’ orthogonal to Fo\E. Thus in any case we
have v, orthogonal to Fy\E so that for all E C F C F,y € ®} opx and
my(F:h:v)=n,(F:h:vg). O

Lemma 5.21. Let E C Fy,e € 5,V € S(ML : Ag : x5 : De(e) : W). Let
a € DL U D, Then

(hyv,2) > To(E :h:v) '"Egy(Pg: ¥ :h:v:x)
is jointly smooth on Ug(e) x ay x L.

Proof. Fix E, C Fy. For every E, C F C F, we can identify ®*(gc, hr.c)
with ®*(gc, hc) via the Cayley transform cr. We will prove by induction
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on Fo\F that if 1 € a}, ¢ such that 7,(F : h: vp) = 0 where a € &, U P, ,
and if U € S (M} : Ar:xF : Dr(e€) : W) ,€ € X, then

E‘Q,‘,(PF:\IIF:h:VO:x)=O

for all (h,z) € Ur(€) x G. In particular, the case of F = FE, will show that
EQ s(Pg, : ¥:h:yy:z)=0. Now, since EQ s(Pg, : ¥) is jointly smooth on
Ug,(€) x ap, X L and 7o(Eq : h : v) = 74(Eq : 0 : v) is a real linear form
on ay, , if follows that

(h,v,2) = 7o(Eo: h: V) Ego(Pg, : W:h:v:x)

is smooth.
Suppose first that FF = Fy,e € Ly. Then 0 € Dpg,(€) is regular so that
s = s; for some i € I°. Thus

Eqo(Ps,: Vg :h:v:z)=n(Fy:h:v)Eqs(Pr : VYp :h:v: 1)

is an ordinary constant term. Then if @ = Pr, we know from an easy
extension of Harish-Chandra’s result (see [H2, 5.4]) that there is a constant
¢(Ar,) > 0 so that

~ 2
|Ba.s(Pr, : Wy i) S/

= C(AF°)2 |7T(F0 th: I/) (HFO h: l/) ll ”‘IIFO ”Lz(Mpo/Z)

for all (h,v) € cl(Dg,(€)) x a},. As in [H3, 4.5], there is a constant c(Fp : €)
so that

n(Fy: h:v)*m(Hp, : h:v)™!
=c(Fp:e)! H 7g(Fo: h:v)
BED+(gc,hry,c)\®F(a:hr,)
H To(Fo : h 1 v)(coshnv, — €4 (Fy : h))
sinh v, ’

UEQ;(B,IJFO)

Now (h,v) = =w(Fy : h : v)’m(Hp, : h : v)™! is a smooth function on
cl(Dp,(€)) x af, since for a € Df(g,br,), Ta(Fo : b : v) = ivy/2.
Fix h € cl(Dg,(€)). Suppose a € @}, . Then a € ®%, by (5.19). Thus

m(Fo:h:ve)’m(Hg, :h:y)™' =

for any vy € ajp such that mo(Fo : h : 1) = 0. Thus
Eq,s(Pr, : ¥g, : h: 1p) = 0 for any vy € af, such that 7,(Fp : h: 1p) = 0.
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Similarly, if @ € ®% , then by (5.20) a € ®*(gc, hr,,c)\P%(9, br,). Thus
we again have 7(Fp : h : vp)>’m(Hp, : h : 1p)™' = 0 for any v, € a}, such
that 7o(Fo : h : 1) = 0. Thus E’Q,s(PFO : Up : h:vy) = 0 for any
Vo € af, such that m(Fp : h : 1) = 0. The case of general Q follows as
in [HWS, 9.16]. Now, since Eq ,(Pg, : Ug,) is a meromorphic function, it
follows that Eq (Pr, : Up, : h: vp) = 0 for any h € vg and vy € af, ¢ such
that 7o (Fo : h:1vp) =0.

Now suppose Ey C E C Fy and assume the result is proven for all F' such
that EC F C Fy. Let € € 5o, U € S(ML : Mg : xg : De(€') : W). If for
some €y € Xg, s = s; for some i € I°, then 1 € I° with respect to any € € X,
and the result follows exactly as above since Eg , is an ordinary constant
term. Now suppose that there is €y € ¢ so that s = s;,42 € I°(0)NI~. That
is, for all H € afj, A\j(h : H) < 0 for all h € Dg(e) and X;(0 : H) = 0. Since
A; is a linear functional, there must be €, € X, so that A;(h : H) > 0 for
some h € Dg(ey), H € af.

Apply (5.17) to the case when H = Hg, A\ = Ag,D = Dg(€'). Then there
are a neighborhood U of 0 in vg and for each E C F C Fp, € € ¥y, a function
®(F:€)€eS(G:F:e:U:W)sothat ®(E : €') = E(Pg : ¥)|yxc and the
collection {®(F : €) : E C F C Fy} satisfies the same matching conditions as
the characters for h € U. Hence the constant terms {EIBQ,S(F : e)} satisfy the
matching conditions (5.18). That is, fix z € L, and for (h,vg) € U X ap ¢,
write f(F :e:h:vg) = g (F :e: h: (ve,vp\e(h)) : ). By (5.18) we
know that for all 1 <i <m,e € %, (h,vg) €U x ap ¢,

f(E:€t(@d):h:vg)— f(E:e (3): h:vg)
Z orelf(F:€ (@) :h:vg)+ f(F:e (i) : h:vg)).

ECFCE(i)

Write ap = ag @ hp\g where hp\p = ZaeF\E RH,.,.,. Then every vp €
ayc can be written as vp = (vg,V') where vg = vplo, and V' = vy, -
Now suppose vgo € aj ¢ satisfies To(E : h : vgo) = 0 where a € <I>}50 u
®%,- Then by (5.19), (5.20), every vro = (Vgo,V'),V' € bf\p o, satisfies
To(F : h : vpp) = 0 for all h € vg. Thus for all h € U we have
mo(F : h : (Vgo,vme(h))) = 0. Thus by the induction hypothesis and
(5.16),

f(F:ef(@):h:vgg) =0
for all h € U. Now using the matching conditions we have for all h € U,
f(E:et(i):h:vge) = f(E:e (i) : h:vgy).

But now this is the case for every 1 < i < m and € € ;. Thus
f(E : € : h:vgy),h € U, is independent of ¢ € ¥,. But as above
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there is an ¢, € Y, so that s = s;,4 € I with respect to ¢,. Thus
f(E:€:h:vg)=0forall (h,vg) €U x ap c. Now for all € € %y, h € U,
f(E:e:h:vgge)=f(E:€:h:vgp)=0. O

Lemma 5.22. Let B C Fy,e € 5, ¥ € S(M}: Ag: x5 : Du(e) : W).
Then N

(hyv,z) 5> 7 (E:h:v) 'Eg (Pe:V:h:v:x)
extends to a smooth function on Ug(e) x a x Ly, for any v € ®F.

Proof. The proof is by induction on |Fy\E|. Suppose that E = F,. Then
U(0) C Dr,(€) consists entirely of regular elements so that

Eg,Pg:V:h:v:z)=n(E:h:v)Eq,(Ps:V:h:v:zx)

is an ordinary constant term. But in this case the lemma follows from
[H2, 5.1], since for v € ®%, ,7,(Fp : h : v) is not independent of h.

Now suppose that E C Fy. Let v € @4 N ®}t,a € ®f 5, so that
m(E : h : v) = ¢(hy + 1v,). We can assume by induction that the
theorem is true for all F such that E C F C F,. Let ¢¢ € %,V €
S(ML:Xp:x5:Dp(e):W). In order to show that m, divides
EqQ(Pg: ¥ :h:v:z) it suffices to show that for every (ho, %) € g X 0 ¢
such that @, (E : ho : 1) = 0 we have

E’Q,,(PE:\I’:ho:uo:a:) = 0.

As in (5.21), for each E C F C Fy,e € %y, we can find a function
O(F:€)eS(G:F:e:U:W)sothat ®(E : ¢) = E(Pg : ¥)|uxe and the
collection {®¢ ,(F : €) : E C F C Fy} satisfies the matching conditions of
(5.18). Fix z € Ly, and for (h,vg) € U X aj ¢, write

f(F:e:h:vg)=8g (F:e:h: (ve,vr\e(h)) : ).

Then by the matching conditions we know that for all 1 <7 < m,e € ¥,
(h,vg) €U x ag ¢,

f(E:et(@):h:vg)—f(E:e (4):h:vg)
= Z ompelf(F:€ (@) :h:vg)+ f(F:e (3): h:vg).

ECFCE(i)
Fix E C F C E(3). If v is orthogonal to F\E, then v € ®% and

1(7(F th: (UE,I/F\E(h))) = 71'7(E th: I/E)
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for all (h,vg). Thus by the induction hypothesis and (5.16),
F(F:eE({):ho:vgo) =0

for all (ho,vEp) such that m,(E : hg : vgp) = 0.

If v is not orthogonal to F\E for any v € ®f , with n,(E : h : v) =
c(ha % 1,), then there is no y € ®F. , such that 7, (F : h: v) = c(ho * iv,).
Thus if €4 (F : h) = €o(E : h) = coswh,, then m2(F : h : v) is not jointly
smooth. Thus there is 8 € F\E so that a € [(], ®(a) # ®(8), and we have
v € ®%. Ifeo(F : h) # €a(E : h), then by [H3, 5.5] there is B € F\E so that
a, B are both long roots in a simple factor of G isomorphic to the universal
covering group of Sp(n,R) for some n. In this case v = (a £ 8)/2 € ®}.. In
either case we have m,(E : h : vg) = 7, (F : h: (vg,vr\g(h))) for all (h,vg).
Thus in either case, using (5.21), we know that

F(F:ef(@):hy:vEo) =0

for all (ho,VE,) such that 7, (E : ho : vgo) = 0.
Thus as in (5.21) we have now proven that

f(E:e:ho:vpo)=f(E:€:hy:vpy)

for all €,¢' € Xy, (ho,vp,) such that 7, (E : hy : vgo) = 0. Again, if s =
si,1 € I°(0) N I~ with respect to some €y € Xy, then i € I with respect to
some other €, € 3, so that f(E : € : h : vg) = 0 for all (h,vg). Ifi € I°,
then using (4.16) and (4.17) there is €} € Xy so that f(E : €, : ho : vgo) =0
for all (hy,vE ) such that 7, (E : ho : vgo) = 0. Thus in either case we know
that for all € € Xy we have f(E : €: hg : vgp) = 0 for all (hy,vgp) such that
7y (E : hy : vgp) = 0. O

6. Elementary mixed wave packets.

Let H = TA be a 6-stable Cartan subgroup of G and let (A, x) € X(T),
m,72 € K(x),W = W(r : 7). As in (2.10) we define F, and Hp =
TrAr,(Ar, xr) € X(Tr) for every F C F,. Let U be a neighborhood of
0 in 7v* satisfying the conditions of [H3, 4.6] and (3.18). We assume that
the Plancherel function m(H : h : v) corresponding to w(H : A: x: h:v) is
jointly smooth as a function of (h,v) € (U Ncl(D)) x a* for every connected
component D of {h € iv* : (A(h),a) # 0, € B}, }.

Let P, be a minimal parabolic subgroup of G and fix P, C P,s €
W (gc,bo,c) such that s~'ap C ap,. Assume that for each F C F,, we

have
f(F):i0" xap x Lp = W
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satisfying the following conditions. For each € € Xy, let f(F : €) denote
the restriction of f(F) to Ur(e) X aj x Lp. Then we assume that each
f(F:€) € Jh(U:€: Ly : s) and that f = {f(F : €)} satisfies the matching
conditions of (2.14) for each z € Ly. We Wlll say that f is a matching
collection of functions in J*(U : L} : s). For each F, e we have seminorms
TD , defined on J(U : €: L} : s) as in (3.2b). Define

(6.1a) Tp.(6)= Y. Tp.(f(F:e).

FCFo,e€%

For each (h,z) € iv* x L}, define

(6.1b) O(f:h:z)= (i)

FCFo

,Fl/thu:c)V

Theorem 6.2. Let Py C P,s € W(gc,ho,c) such that s~'ap C ap,. Given
r > 0,D € D(iv*),l;,ls € U(Ipc), there is a finite subset E C Lp so that
given any r' > 0 there is C > 0 such that

sup  Epi(a)(1+a(@)|@(F by D : lijas L) < C Y T .(F)

heU,a€cl(AT) D'eE
for all matching collections f of functions in J*(U : L} : s).

Theorem 6.3. Let ® be an elementary mized wave packet as in (2.16).
Then
®eC(G:W).

Proof. Tt follows from [H3, 7.2] that (h,z) — ®(h : z) is jointly smooth on
iv* x G. Thus using [H3, 2.8] it suffices to prove that for all » > 0,D €

D(ib*), 91,92 € u(gC)a

sup  E7N(a)(1+a(a)) (L + |R)"12(h; D : g1:a;9:)] < o0
heiv* a€cl(AT)

In fact, since ®(h : z) has compact support w C U, the term (1 + |h|)" is
not needed and it suffices to take the sup over h € U. Thus, using (2.22)

and (5.2), the result follows from the special case P = G, s = 1, of Theorem
6.2. 0 -

The remainder of this section will be devoted to the proof of Theorem
6.2. Since the proof is long, it will be divided up into a series of lemmas. A
number of calculus lemmas which will be needed in the course of the proof
will be deferred to the next section.
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Lemma 6.4. It is enough to prove (6.2) in the case that l;,l, € U(mpc).

Proof. 1t is clear from [H3, §7] that we can differentiate under the integrals
so that for l;,l, € U(Ipc),

O(f: h:lyia;l,) = Z (m;)_]p;/ f(F:h:v: ;a;lz)du

FCFo a% pp(h . I/)

Write u([P,C) = U(mp,c)S(ap,C), where S(ap,c) - Zp. Then if l,' =
miu;,m; € U(mpc),u; € S(apc),i = 1,2, and if a € cl(A7), then for each
F g F07

F(F :h:v:muugia;mots) = wus(Af, ) f(F : h:v:myia;ms).

Using (3.22) and the fact that u,u, (A{M
that for any matching family f in J*(U : L, : 5), £ = {u1u (Af,,,,s) f(F:e)}
is also a matching family in J*(U : L} : s). Further, given D' € Lp there
is D" € Lp so that T, .(f') < Tp. . (f). Thus we may as well assume that
Uy = Ug = 1. [:]

) is a polynomial in (h,v), we see

Let © be the set of simple roots in A(FPp, Ag). For each o € O pick
H" € q4 so that a(H*) = 1,5(H*) = 0,8 € ©,8 # a. Then each H € q,
can be written uniquely as H = ) .o a(H)H®*. Now H € cl(ag) just in case
a(H) > 0 for all @ € © and H € ap just in case a(H) = 0, € Op. Write
af =¥ co, RH® C ao. For each H € ay, write Hp = ¥ ,co\0, @(H)H* €
ap. Write HY = H — Hp = Y co, ®(H)H* € af. Note that H € cl(af)
if and only if both of Hp, HY € cl(al) and H € af if and only if Hp €
af ={Hp €ap:a(H) >0foral a € ©®\Op} and HF € af = {H? € a”:
a(H) > 0foralla € ©p}. Now for each a € A} we will write a = a,a, where
if a = exp(H),a, = exp(HF) € AY C cl(A}),as = exp(Hp) € A} C cl(AF).

We are assuming that s™'ap C ap, = ag + Y 4ep, RH;, , so that for any

ay, € Ap we can write s”'a; = agexp (ZQGFO taH:Foa) for some ay € Ay
where t, = t,(s7'a;) = scr,a(loga,)/2. We will write Fy = Fj U Fj' where
F) = {a € Fy : to(s™'ay) = 0 for all a; € Ap} and Fj = Fy,\Fy. Then
we have s7lap C ap;. For each F C Fy we will write F = F N Fy and
F'"=FNFy.

Since U = Ucex,U(€) where U(e) = U Ncl(D(e)) and X, is a finite set, it
suffices in Theorem 6.2 to estimate the sup over h € U(e) for each € € X,.
Further, since ®(f : h : z) is jointly smooth on U(e) x cl(Ad), it suffices
to estimate the sup over U°(e) x Af where U(e) = U N D(e). Fix € €
¥o. We may as well assume that the ordering on ®}, was chosen so that
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a(hp(h)) > 0 for all @ € Fy, h € D(€). That is, ¢, = 1 for all @ € Fy. Define
Fi(s) = FiNs~1®+,

Lemma 6.5. For all F C Fy we have f(F : €) =0 unless Fj(s) C F.

Proof. Fix F C F,. Then for all (h,v,a = a;a;) € U%(€) X a} x Af we have
f(F:e:h:v:aja;) =exp (Ah,,s(logaz)) f(F:e:h:v:a).
Now for all a; € Ap we have

exp (AL, (108 ) = exp((\e (h) + iv)F (s log 02))

=eiu(a0) H eiuata H ehata

a€EF'! a€FJ\F'

where h, and v, are defined as in (2.21b).

Now because of the growth condition, and because we assume the root
ordering was chosen so that h, > 0 for all & € Fo,h € D(e), f(F:¢) =0
unless t, = t,(s7'ay) <0 for all ay € A}, € F)\F'. But t,(s7'ay) > 0 for
all a;, € A} if o € s71®* and t,(s7'ay) <0 for all ay € A} if @ € 5710,
Further, for a € FjNs~1®*, there is a; € A} such that t,(s™'ay) > 0. Thus
f(F :€) =0 unless Fy\F' C Fj\F(s)- O

Lemma 6.6. Fiz F C F, such that Fy(s) C F. Then for all (h,a) €
U%(e) x A} we have
_|F| f (F:h:v: alaz)
pF h I/
_(=1) IFo\F' V/ e”(s7lay)f(F:h:v:ay)
a*

= '( )IFIUFul pFAUF” (h : l/)

dv

7rz

dv.

’ 1"
FOUF

Proof. Write

aEF\F

s'ay = apexp ( Z toH,, a)
where

aF—aoexp(Z toH CF a)

a€EF'!
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as before. Then using the normalizations of Haar measures in [H3, 7.8], we

have

w e’ (s a))f(F:h:v: al)dy

(ﬂi)lF(;UF”‘ u;"UF" pF’UF” (h . V)

= H (- 1/27rz)PV/ el ———dv,(mi)” IFI/ e’(ap)f(F:h:v: al) dv.
a€F\F! Vo + iha PF(h v)

Now since Fy(s) C F', we have h,t, < 0 and ¢, < 0 for all A € D(e)
A¢,a € F)\F'. Thus using (7.1), for each a € Fj\F', we have

eiua ta

(-1/2mi)P.V. | ———dv,

_ v hato
R Vo + "ha

Thus

w‘,ta F
I (-1/2m) PV/ dVa(wi)“w'/ e”(ap)f(F:h:v: al) W
a€F{\F' Vo + thg az pF(h I/)
= (mg) "I / e (ar) aerpr € f(F :h:v:01)
pp(h:u)
—|F| fF h v:ayay)

:v)

71'2

dv

since

e“(ap) [] e*"f(F:h:v:a)= eMovs (ay)f(F i h:vp :ay)

aEFg\F'

= f(F :h:vp:aa,).

O
For any F" C Fy write hpv = ) cpn RH,.o. Combining the above we
have

Lemma 6.7. For all a = aya, € Af,h € U°(€) we have
®(f : h:a) = (mi) 1HIP.V. / ———7~dy’
PF' : )

> (- 1)IF\F|7” —IF"| f(F:h:v +0V":ay)

h:v"
Fi(s)CFCFy B pro( )
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Fix a € F}\F}(s) and define I C {1,2,...,m} as in (2.23) corresponding
to € and H,.

Lemma 6.8. Fiz E C F; such that Fy(s) C E and E' # E(I)'. Then for
all a, € Ab,vg € af,ho € HiNU(e),k >0,

z (—1)IF\EI (Dg(,)\Ef) (F:€:ho:(vg,0):a;) =0.
ECFCE(I)

Here DE(I)\E = 8/8h1 —1 ZaEE(I)\E 8/8u,,.
Proof. Fix E,a,,Vg, ho, k as in the lemma. For E C F C E(I) we write

at(F) = (Dg(,)\Ef) (F:eE(I): ho : (vg,0) : ay).
Thus by (2.24), (2.25) we know that
a™(B)= Y (-)F\Flat(F).

ECFCE(I)
Since Fj(s) C E' we have t,h, < 0 for all a € Fj\E',h € D(e),a € A{.
Thus toh, > 0 for all @ € E(I)'\E',h € D(e~(I)),a € Af. Thus, as in (6.5),
a~(E) = 0 since by assumption E(I)'\E' # 0. d
Lemma 6.9. Fiz a € Fj\Fy(s) and define I as before. Let E C Fy so that
F}(s) C E C Fy\{a}. Write E(a) = EU{a}. Then for any a, € AY,k >0,
we have

(0/0h; —i0/0uq)* Z (-D)IFN\BIf(F:e:hg:1p:01) =0

ECFCE(a)
for all (ho,vo) € U(e) x ap, such that (ho)a = (v0)a = 0.

Proof. Write s(E) = |E(I)\E| > 1. The proof is by induction on s(E).
Suppose s(E) = 1. Thus E(I) = E(a) and Dg)\g = Dy = 0/0h;—i0/0ua.
The result follows from (6.8) in the case that vgp = (1)g is the restriction
of vy to a}; since (1), = 0 implies that ((1o)g,0) is the restriction of v, to

ag( n:
Now suppose s(F) > 2. Again, by (6.8) we can write

0= Z (—1)IF\EI (Dg(,)\Ef) (F:€e:hg: (vg,0):ay).

ECFCE(I)

Now as above, if vg = (1) g and F € {E, E(c)}, then

(Dg(l)\Ef) (F:e:ho:(vg,0):a1) =DEf(F:hy:vp:ay).
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Thus it suffices to prove that for any E C E C E(I)\{a} we have

Z (=1)F\&Bl (ng\Ef) (F:€:ho: (vg,0):a;) =0.
ECFCE(a)

But for such an E we have s (E‘) < s(E) so that by the induction hypothesis
we have _
D¥ Z (-1)F\Elf(F:e:hy:1p:01) =0
ECFCE(a)
for all vy such that (v9), = 0,k > 0. Now D% 1y p = X5y (f)Dng"j where
Dy = —1 3 scp(1)\E(a) 0/01s- Now we can differentiate the above equation
with respect to D, and evaluate at ((¢4)g,0) to obtain
Z (—1)IF\EI (Dﬁ;(,)\Ef> (F:€:ho:(vg,0):a,) =0.

~

ECFCE(a)
g
Lemma 6.10. Fiz F" C F,'. The mapping (h,v',a;)
_ "\ f(F'UF":h:V +v":qy) , ,
PR v) Y (1) = dy

. h v
Fi(s)CF'CF, O 2 )

is smooth on U(e) x ajy x AL.

Proof. Each of the functions (h,v',v",a;) = f(F'UF" : h: V' +v" 1 ay) is
jointly smooth on U(e) X af X by X AP by definition. Now using [H3, 7.5]
we see that

(h,u',al)—>/ f(FFUF" :h:V +v :al)du,,
. P 07)

is jointly smooth for all Fj(s) C F' C F;. Fix a € Fy\F;(s) and define I, D,
as above. It suffices to prove that for each k£ > 0, we have
Dt Z (—1)IR\F f(FFUF":h:vV +V":a)

- . "
Fi(s)CF'CF} b, pru(h 2 v")

F!

dv' =0

lim
(h,v")—(ho,vp)

for all hy € U(e) N H; semiregular and 15 € af, such that (¥)a = 0. Of -
course the limit is taken through h € U°(e).

But using an easy extension of [H3, 7.10], if we write Ff = F"NF, there
are constants C(E"), E" C F}, so that

Dk Z (_1)|F6\F'|/ f(FIUF”:h’:V,+U”:al)an
b'

o . "
Fy(s)CF'CF} o prr(h:v")

lim
(hv")—=(ho,vh)
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= wy 3 c@) I pv. [ v
R

"JFII\F;’ EugF;l BEE" Vﬂ
Y (i, JEUE v + (06, (5)gep,0) : ar)
F}(s)CF'CF}, e Pr\Fy (ho : vg)

Here DF;'(Q) = 8/8h1 - zB/c')ua - EﬂeF;’ 6/6ug

Since we have assumed that hg is semiregular, pp\ Py (ho : vy) # 0 for all
vy Of course it is also independent of Fj(s) C F' C Fj. Thus it is enough
to prove that for all £ > 0 we have

E (—1)|F6\F'|Dk;,(a)f(F’ UF" :ho:vy+ (v, (V5)per,0) : ay) = 0.
F}(s)CF'CF}

But {F = F'UF" : Fj(s) C F' C F;} can be written as the disjoint union
of sets {F, F(a)} where F runs over all subsets of F; such that Fj(s)UF" C
F C F{\{a} U F". Thus it is enough to prove that for any such F' and for
any E" C F}y' we have

> (—)PVIDE o F(F : ho s vy + (v (vB)per, 0)  ar) = 0.
FCFCF(a)

But for all such F, using (6.9) we know that

> (~)PVIDEF(F hot vt ar) =0

FCFCF(a)

for all vy € af, such that (1) = 0. But if we write v = (v',"), then
vo = v, is independent of v"'. Thus we can differentiate with respect to the
0/0ug, B € Fy and evaluate at v" = (v, (v5)per,0). O

We now return to the proof of Theorem 6.2. Let {a,...,a4} = ©p be the
simple roots of (Lp, Ag). The proof of (6.2) will be by induction on d, the
number of simple roots.

Assume that d = 0. Then A, is central in Lp so that P = P,. Since
we assume that s~'ap C ap, C ag, this occurs only when ap, = a, and
s € W(g,ao).

Lemma 6.11. In the case that d = 0 it is enough to prove (6.2) in the case
that ll = l2 =1.

Proof. By (6.4) it suffices to prove the theorem in the case that I;,l, €
U(mp,c). But My = Mp, C K and each f(F) is Kp,-spherical so that

f(F:h:v:laly) =dnp(ll)f(F:h:v:a)dra(l).
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Now since d7;(l;),2 = 1,2, are polynomials in h and f(F) is compactly
supported as a function of h, for any D € D(iv*), ||®(f : h; D : l; ;a;1,)|| can
be bounded by a finite number of terms of the form ||®(f : h; D’ : a)||, D' €
D(iv*). Thus we may as well assume that [; = 1,7 = 1,2. O

Lemma 6.12. Theorem 6.2 is true when d = 0.

Proof. In the case that P = P, we have Ep = 1 and A} = A}, so that the
decomposition a = a,a, is just given by a = a,,a, = 1. Using Lemma 6.11
and the fact that Zp = 1, it is enough to estimate

sup (1+0(a))"||®(f : h; D : a)|.
heU®(e),a€ AT

Use (6.7) to write

*(s7'a) ZFg(s)gngF;, g(F':h:v)

d
pp(;(h : V) v

e
q)(f:h:a)zP.V./

where
g(F':h:v)

= (=1)IF\F Z (i) ~1FoUE" | F(FPUF":h: 1/”+ v l)du”.
FCF} b3 ppn(h 2 V")

Fix F = F' U F" as above. Then since f(F : €) € Jp(U : € : L} : s)
we know that f(F : €:1) € C(U(e) x a}). Now using [H3, 7.6] we see
that g(F') € C(U(e) x a}.) for each F'. By (6.10), the functions g(F")
satisfy the hypotheses for Theorem 7.7. Thus using (7.7) we see that given
D € D(iv*),r > 0, there are t > 0 and a finite subset E; of D(ib* x a}é) SO
that

sup (1+0(a))"||®(f: h;D : a)||
heU%(e),ac AT

<SS sup (+e)lgFE hvps D).
D.€eE; F’ (h"’F’)eU(E)X“;-I

But, again using [H3, 7.6], there is a finite subset E, of D(ib* x a}, ) so
that for all t > 0,

N sup (L+lwel)llg(F hives Dyl
D.€E, F' (h,uF:)EU(e)xa;,,

< Z Z sup 1+ IVF[)t+2lF”|||f(F ceth:viDy: ).
D2eE; FCFy (h,vr)EU(e) xa}
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Thus there is a finite subset F C Ep so that
sup (1+0(a))"||®2(f: h;D:a)|

heU%(e),ac AT

< Z z sup |ID'f(F:e:h:v:1)|| < Z Tp . (f)

D'e€E FCFy (h,VF)EU(é)Xa;. D'cE
for any ' > 0. O

Fix d > 1 and assume inductively that Theorem 6.2 is true when d’' < d.
For 1 <i<dleta,={H €ay:a;H) =0frl <j#:1<d}
and let Py € Q; = L;N; C P be the corresponding standard parabolic
subgroup. For H € ay let p'(H) = 1/2 trace ad H on n;, pp(H) =
1723 m(a)a(H),a € At (Lp, Ay), pi(H) = pp(H) — p*(H). For b > 0,1 <
i < d, let AT(i : b) = {a € A : a;(loga) > bpp(loga)} and AL (i : b)
{a, € AY : a;(loga) > bpp(loga)}. Fix b small enough that A} C UL,
A*(i : b). Then if we write a € AJ as a = a;a, where a, € Ai’,aQ € A}, we
see that @ € A* (i : b) if and only if a; € AP (i : b) since pp(loga) = pp(loga;)
and «;(loga) = a;(log a).

Let m;,m, € U(mpc),r > 0,D € D(iv*). Since Af C UL A*(i : b), to
complete the proof of (6.2) we must show that for each 1 < ¢ < d there is
E; C [Zp so that given any 7' > 0 there is C' > 0 so that
(6.13)

sup  Ep'(a)(1+0(a)||®(F: h;D:muiasma)|| S C Y Tpo(f)
heUO(¢),ac At (i:b) D'€E;

for every matching collection f of functions in J*(U : L} : s). Fix an ¢ and
drop it from the notations so that @ = LN = Q;, A*(b) = AT (i : b).
Write

U(mp,c) = u(épyc)U(([ N mp)c)U(nc) = U(O(n)c)u«[ N mp)c)u(Ep,C).

Given m;,m, € U(mpc) there exist by € URpc)U((INmMp)c),b, €
U((INmp)c)U(tpc) and m) € U(mpc)n,m), € §(n)U(mpc) such that m; =
b; +m},7 =1,2. Thus

O(f:h:myia;my) =B(F: h:mia;me) + @(F: h:bia;ms)
(6.14) +®(f: h:byia;be).
We will estimate each of these terms separately.

Lemma 6.15. There is a finite subset E C Lp so that gwen any ' > 0
there is C' > 0 so that

sup Ep'(a)(1 +0(a))"||®(f : h; D : mija;m,)|| < C Z Ty . (f).
heU®(e),acA*(b) D'eE
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The same is true for ®(f : h; D : by ;a;m)).

Proof. Combining (6.7), (6.10), (7.7), and [H3, 7.6] as in (6.12), there are
a constant C and a finite subset F} of P(ib* x a}, ) so that

sup Ep'(a1)(1 + o(a1)) (1 + o(az))
h€eU®(¢),a1€AP (b),a2€ A}

“[|®(f = h; D : my jaraz;ms)||

<C sup Zp(a) (1 +o(ay))"
DieF, h€U(e),a1 EAi(b),uEa;,o

. Z |f(F:h:v;Dy:mgia;ms).

FCFy

But now using (3.3) there are a finite subset E C Lp and ro > 0 so that for
all v’ > 0 this is bounded by

T8(E) sup (1+0(a))* =5 ()Eq(ar)e 55 dg (a,)
alGAi(b)

But there are constants D,q > 0 so that Eg(a;) < De™i(8)(1 4+ o(a,))’.
Further, d;'(a;) = e~ (°691) and e=Palloger) = gmaillogar) < g=borlloger) gince

a; € AP(b). Thus

EQ(al)dél(al)e“B"("’g“l) < DEp(a1)**(1 + 0(a1))?
so that

sup (1 +0(a1)) ™" T°ER (a1)Eg(ar)e P8 d5 (ay)
aleAi(b)

<D sup Ep(a))’(1+ o(al))’“'””q.
alGAi(b)

But for all a, = exp(H;) € AF,Ep(a;)® < D'e *H(1 + 0(a,))? as
above. But there are 7, > 0,0 € Op, with bpp = } .o, Tax s0 that
bpp(a1) = Yscop Ta(H1). Further, there is a constant C' so that o(a;) <
C' (X acop a(H,)?)"*. Now for a; € AP we have a(H;) > 0 for all « € Op
so that

sup DEp(a)"(1+ U(al))r+rl+ro+q = Cr < oo.
a1€Ai(b)
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Lemma 6.16. When d > 1 it is enough to prove (6.2) in the case that
li = B, = dg' o B; 0 dg where B; € U((mpNi)c),i=1,2.

Proof. Because of (6.4) and (6.15) it is enough to consider terms of the form
®(f: h; D : by ;a;b,) where

by € U(tpc)U((mp NT)c), by € U((mp ND)c)U(Epc)-

Write b, = nl,Bl, » = [Byka, where k; € U(tpc),B; € U((mp NT)c), it =
1,2, 8 = dg' o B; odg. Since each f(F) is Kp-spherical, the result follows as
in (6.11) for the d = 0 case. O

Fix 8; e U((mp N1)c),i = 1,2, as above and for each F C Fy, (h,v,a,) €
U°(€) x ay x AP, write

dF:e:h:v:a)=f(F:e:h:v:pa1;0)

=) dets; d3'(a1)fq.es(F:€: h:v: Biian; B)
i=1

where the constant terms fg,,s(F : €) are defined as in (3.19).

Lemma 6.17. There is a finite subset E C [',p so that given any r' > 0
there is C > 0 so that

sup Ep'(a1)(1 +0(a1))"(1 + o(a2))”
heU®(e),a1€ AR (b),a2€ A}

D P.V. / e (S_laz) o (—L)FE ()T

, PFy ) Fj(s)CFCFo

. / d(F:e.h.V +V”:a1)du"d1/'
L pro(h:v")
<C > T . (f).
D'eE

Proof. By (3.21) all of the constant terms {fg,.s(F : €)} satisfy the same
matching conditions as the original family {f(F : €)}. Further, since f €
JYU : L} : s), each d(F : €) is jointly smooth on U(e) x a}. Thus we have
the smoothness result of (6.10) with the terms f(F : €) replaced by d(F : €).
Now as in (6.15) we can apply (7.7) to obtain a constant C and a finite
subset F; of P(iv* x a},) so that

sup Ep' (a1)(1 +0(a1))"(1 + o(az))
heU9(e), a1€A (b), agGA
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DPV/ e (sas) S (1) ()1

pF’(h’ V’) F’(S)QFQFO

d(F:e.h.I/-}-V”: a1) , oy
. dv'dv
/b;,, ppi(h: V")
<cY s Zp )1+ o(a))”

Dy €F, h€U(e),a1€AL (b),v€ag,

. Z |d(F : €:h:v;D;:ay)l-
FCFo
Write a; = ayexp(TH) where H = H* = H(P,Q),T = «a;(loga,), and
a; = exp(X,eo, @(loga;)H*). Then a; € Ly,. Then using (3.19) we have
a finite subset £ C Zp,rl > 0, and ¢, > 0 so that for all v’ > 0 there is a
C > 0 so that

sup Ep (@)1 +0a(a1))" Z ld(F :€:h:v;D:ai)
Dy eF, heU(e),a1€AE(b), veay FCF,
<C Y TH.(F) sup e Tdg(ar) T Ep (a1)Zq(al) (1 + o (ar)) .
D'EE a1€AX (b)

But as in (6.15), this last sup over a, is finite since e“T = e~¢0oa:i(loga1) <
e—<cobop(logay) O

Lemma 6.18. Fiz 1 <i < w such that s;'s"'ag C ap,. Then there is a
finite subset E C Lp so that gwen any ' > 0 there is C > 0 so that

sup Ep'(a1)(1 +0(a1))" (1 + o(az))"
h€U°(e),a1€A$(b),a2€A;
a2) F FI Ful
DPV/ 3 (1) ()]
o PRy (h V') Fi(s)CFCFo

dQ (al)fQ,S.s(F eh:V +v": Biia1;B2) dv"dv'
) ppo(h:v")

S C Z T'g’,r’(f)'
D'eE

Proof. First, as in (6.7) we can rewrite

la,) F)\F'
PV/F,pF(h ) Z (—1)IFo\F'l

Fi(s)CFCFo
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"
(7”) IF“|/ dQ a fQ,s.s(F €:h: V”+V /81 ‘a17182)dl/,,d1/,
' prv(h V")
, ss(Fih:v: ;
= (mi)"8ldg! (a1) Y ()" / il brionas i) ,,
FCFD pr(h:v)

Now Ez'(a1)dg' (a1) < DEG'(a1)(1 + o(ay))? and A*(b) C Af.
Thus

sup Ep'(a1)(1 +o(a1))" (1 + o(az))”
hEUO(e),a1€AF (b),a2€A4}
D P. v/ : S (1) RV ()
pF’ ) RsCreR,

/ dé (al)fQ,ses(F terh:v 40" Briay; Be)
b pro(h V")

<C  sup Eg'(a)(1+o0(a))t?
heUO(e),ac AT

dv'dy' “

fQSS(F'h:V:,BIQUI;ﬁz)

AP S ()" IF|/ z;p(h:r/)

FCFy

Now by the induction hypothesis and (3.19) there is E' C Lg such that for
any r' > 0 there is C' so that the above is bounded by C' ¥ p, ¢ T v (£g,5:5)-
Finally, using (3.19) there is a finite subset E of Lp and r; > 0 so that for
all 7' > 0 there is C' > 0 so that
o Z Tg’,r’-l—rl (nySiS) <C Z TO",r' (f)
D'eE D"€E

O

Finally, to complete the proof of Theorem 6.2, we must deal with constant
terms fg ;5,1 <9 < w, for which s; T's7lag € ap,. Fix such an i. Recall that
Q is the standard parabolic subgroup of G corresponding to some simple root
@ € Op and ag = ap + RH®. Now s;'stag = s7'ap + s;'s"'RH*°. Since
we have assumed that s~'ap C ap,, it must be the case that s7'sT'RH* ¢
ap,. Let Gy be the simple factor of G containing the root a. For any
subalgebra b of g, we will write by = bN go. Fix F C Fy. Then we say that
i€l if \j(h: H)=0forallh€iv*,H €agoand i€ Iy if \j(h:H) <0
for all h € U°(€), H € ay,.

Lemma 6.19. Let F C Fy. Then fq,.:(F : €) =0 unless 1 € Iy N I°(0).

Proof. First, by definition fq ,.s(F : €) = 0 unless 7 € I°(0) C I°UI~. Now
if 4 € I°, then i € I since ago C ag. If i € I, then i € IJ U I; since a;, C
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cl(af). Suppose i € I§. Then the restriction of fg,(F : €) to the simple
factor Gy is the ordinary constant term of the restriction of f(F : €) to Gy as
defined as in [HWS5]. Thus by [HW5, 7.28] we know that fg ;. (F :€) =0
unless s;'s7lagp C ap C ap,. But s7'sT'RH® C s;'s ag, so this is not
the case. O

Let Foo C Fp be the roots in F, coming from the simple factor G,. If
Fyo = 0, then Ap is regular in the simple factor G for all F C Fj so that
i € I°(0) implies that 7 € IJ. Thus we may as well assume that Fyo # 0.
Let FJ,1 < j < m be the equivalence class of F, containing Fo .

Lemma 6.20. Let F C Fy,hy € U(e) N'H;. Then for any D € D(iv* X a})
we have
fosis(Fie:ho:v;D:m)=0

for all (v,m) € af x Ly,

Proof. Define I as in (2.23) corresponding to H; and e. The proof is by
induction on n = |F(I)\F|. When n = 0, then Ar = Ap(y) is regular in the
G, factor, so that i ¢ I;. Thus by (6.19), fos(F : €) = 0 in this case.
Now fix n > 1 and assume that the lemma is true for F' C Fy such that
|F(D\F| < n.

Fix E C F; such that |[E(I)\E| = n. Because of (6.19) we may as well
assume that i € I; with respect to E and €. Since fg . (F : €) is jointly
smooth on U(e), it is enough to show that for any choice of h; as in (2.24),
(8/0h1)¥fo.ss(E 1 €: hy :v) =0 for all k > 0, (ho,v) € (HrNU(e)) x ag.
But combining the matching conditions of (2.24) and (2.25) we can write

(0/0h) foes(E:€:hy:v:m)— (0/Oh) foes(E: € (I):ho:v:m)

= Y (D)IEDE pfges(Fie:ho: (v,0) i m).
ECFCE(I)

Fix E C F C E(I). Then by the induction hypothesis we have that
Di\gfss(F :€:ho: (v,0) :m) =0.
Thus we have
(8/0h1)* fo.eis(E € ho:v:m)—(0/0h1)* fo,ss(E: € (I):hog:v:m)=0.

Fix By € Fyp. Then since X;(0 : H*) = 0, but A\;(h : H*) is not identically
zero, there is a constant ¢y # 0 so that \;(h : H*) = s;shy, (h)V(H®) =
co < huy(h),Bo > for all h € 4v*. In particular we see that A\;(h : H*)
changes sign as we cross the wall H;. Thus since ¢ € I; with respect to ¢,
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we must have i € It with respect to e (I). Thus fg,..(E : e (I)) =0 so
that we also have (8/0h;)*fo ss(E:€:ho:v:m)=0. O

For h € Ul(e), let d;(h) be the Euclidean distance from h to #;. For g €
Jp(U :€: Ly : s;5),D € Lg,7,t > 0, define

Tp,r4(9) = sup | Dg(h : v : z)||Eq(z) ™' (1+0(z)) ™" (1+d;(h) 1)
(h,v,z)eU(¢€) xXag XLB

Note that T . ,(9) = T ,.(9)-

Lemma 6.21. For all D € Lg,r,t > 0, there is a finite subset S C Lg s0
that TP . ,(9) < X piesThi (g) for every g € JR(U : € : LY, : s;5) satisfying
g(ho : v; D : m) = 0 for all D € D(iv* x a},), (ho,v,m) € U(e) x af x L§
such that hg € H;.

Proof. This is proved in the same way as [H1, 7.12]. g

Lemma 6.22. Fiz1 < i < w so that s;'s™'ag Z ag,. Then there is a
finite subset E C Lp so that given any r' > 0 there is C > 0 so that

sup Ept(a1)(1 + a(a1)) (1 + o(ay))”
heU®(c),a1 €A% (b),a2€ A}

D PV/ (s az) Z (- 1)IF6\F'I(7TZ')—IF”I

e pry(h: pry(h:v) F)(s)CFCFo

/ dQ (al)fQ,s.s(F e:h:v +V” ﬁlxalaﬂ2)
b

// /
prr(h:v") W ”

*
F!

<C S T (%)

D'eE

Proof. By (3.21) all of the constant terms {fg s,s(F : €)} satisfy the same
matching conditions as the original family {f(F : €)}. Further, since f €
JYU : L : s), each fgs,s(F : €) is jointly smooth on U(e) X a}. Thus we
have the smoothness result of (6.10) with the terms f(F : €) replaced by
fo.s:s(F : €). Now as in (6.15) we can apply (7.7) to obtain a constant C
and a finite subset E) of D(ib* x af,) so that -

sup Ep(a1)(1 +0(a1)) (1 + o(ay))”
heUO(e),a1€AL (b),a2€ A}

iv' (o—1
D p.v. e—%—‘—‘z—) T (1) )1
T pry(h: 1) Fi(s)CFCFo
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do'(a1)fo,eis(F € h: v/ + V" : Biias; B)
bh, pru(h: V")
<C Z sup Er'(a1)(1 + o(a1))"dg' (a1)
D, €E, hGU(G),aleAi(b),VGG;.O

Y N fqus(F:€:hiv; Dy : Brias; Bo)ll-

FCFy

Fix F C F,. Ifi € I; NI°(0), then by (6.19) we know that fg ,.s(F : €) = 0.
Thus we assume that ¢ € Iy N I°(0).

Write a; = a} exp(TH) as in (6.17). Then using (3.19), for each D, € E,
we have a finite subset S C Lp,r; > 0, and €;(h) so that for all t,7" > 0
there is a C' > 0 so that

wp  Z5 ()1 + ofan) d3t )
hEU(e),mGAi(b),Vea;-o

Nfqusis(F :€:h:v;Dy: Briar;B)ll
SC Y TP, v i(fous(F :€)) sup  (1+d;(h)™)~"

Da€S h€U(e),a1 € AP (b)
e dg(a) '8 (1) (e1) (1 + (@)™
But as before, for all h € U(e),a, € AL(b),

do(a1)'E5 (a1)Zq (ar)e™ M7 < DEp(ay)* M (1 + 0(a1))"?

dv'dy' “

for some constants D, q > 0. But as in [HWS5, 8.7], since ¢;(h) > 0 for h €
U(e) and €;(ho) = 0 for hy € U(€) only when hy € H; so that d;(he) = 0 also,
there exist C,t > 0 so that supheU(E)yaleAi(b)(1+a(a1))’+"+”+q5p(a1)b€‘(h) <
C(1 +d;j(h)~!):. Now use (6.21) to obtain an estimate involving terms of
the form TP, .. (fq,s;s(F : €)). Finally, as in (6.18), we use (3.19) to obtain
estimates with terms of the form TP, .(f(F : €)). O

7. Calculus lemmas.

If f is a locally integrable function on R, define

M

P.V./Rf(x) dz =Ml_1_)Iil°°[_Mf(:1;) dz
whenever the limit exists. Let S* = {(h,t) € R? : +ht > 0}.
Lemma 7.1. Suppose (h,t) € S~. Then

eizt

P.V. dz = 2mi(sgn t)e™.

RT+1
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If (h,t) € ST then for all integers r,k with 0 <r <k,

ezztx

Proof. We will prove the formula when ¢ > 0. The result for ¢ < 0 follows
by making the change of variables z — —z.

Fix t > 0,h # 0,0 < r < k, and define f(z) = e***2". For M > 2|h/|, let
C)r be the contour in the complex plane which is the union of the four line
segments C;,1 < i < 4, where C; runs from —M to M, C, runs from M to
M +iM, C; runs from M +iM to —M + 1M, and C4 runs from —M + 1M
to —M. Then it is easy to calculate that for 2 < i < 4,

lim /(2)

M-+ Jo, (z + th)k+1 dz =0.

Now if h > 0, then —ih is outside the contour Cs so that

zmt
P.V. =0.
/ (z +1h) (z + ih)k+1 de

If h < 0, then —zh is inside the contour C), so that

eimt
P.V. —dz = 2mie™.
RZ+1
O
Lemma 7.2.
1 eizt
sup / —dz| < oo.
(ht)es- |J-1 T +th

For all0 <r <k,

sup < 00.

(h,t)eSt

1 ezztm,r
[
—1 (z + ih)k+?

Proof. Use the contour Cjs with M = 1 to estimate the integrals as in

(7.1). 0

Lemma 7.3. For every integer k > 0,

eizt
P.V. ey | .
/|z|21 (@ + i) ™ <o

sup
(h,t)€S—
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Proof. Suppose k > 1. Then for all (h,t) € S™,

< / |z|™*'dz < oo.
lz|>1

ez:ct

P.V. S
/lezl (z + th)k+! a

Now if k = 0, using (7.1), (7.2),

eia:t
P.V. / — dz
lz1>1 (T + ih)

eizt
P.V. /R mdxl

sup sup
(h,t)eS- (h,t)€S—
1 eizt
+ sup / —dz| < 00.
(ht)es- |J-1 T +1h

O

Let a > 0 and write I7(0,a] = (0,a}, I~ (0,a] = [—a,0), I%[0,a] = I*(0, a]U
{0}. Define R* = {z € R : +z > 0}. For any Banach space W define
C(I%[0,a] x R : W) =

{g € C°(I*[0,a) x R: W) : |lgllpr < oo for all D € D(R?),r >0}

where
lgllp,r = sup  (1+|z|)"|Dg(z : h)|-

(h,z)€I%[0,a]xR

Lemma 7.4. Suppose f € C(I*[0,a] x R : W),k > 0. Then there are
C > 0 and a finite subset F of D(R?) so that

f(h: x)eimt
o r e < C 2 Il

DeF

sup
(h,t)EI£(0,a]xRE

Proof. First, for all (h,t),

! f(h .’L‘ 1zt ,
(z + sh)k+1
Y f(h: z)e=t f(h: z)et=t
1 (@ + iR)FH d”l * /,x,zl (z + ih)F1 dmi '

Now

f(h: z)et '
/|z|21 (z + ih)k+1 dm’ = /[zlzl |f(h: z)|dz < C||fll12-
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Fix h and expand f in its Taylor series at z = 0 as

Z (8/6z)'f(h 0)z" +R(h: 2)

r=0

where the remainder term R(h : z) satisfies

[(0/0z)*+ f(h : z)|
(k+1) '

sup |R(h : £)z7*"!| < sup
h,z h,z

Now

eza:tx
(:z: + ih)k+1

(6/9z)"f(h: 0)

7!

dz

L f(h: g)etnt dx' <Z

_1 (z + ih)FH1

r=0

1 izt .
+/ e R(h'm)dx‘.

-1 (SL‘ + ih)k+l

Using (7.2), for each 0 < r < k there are C, > 0 and D, = (8/9z)" so
that for every (h,t) € I*(0,a] x R* C ST,

(8/0z) f(h:0)|| [} e*ta” B
l r! /_1 (z + ih)k+1 dz| < G| flIp,.0-
Finally,
th(h x) |((9/8z)’°+1f(h, . 3’)' B
/1 (z + th)k+1 de ' 2s up (k+1)! = Crs1llflDess.0-

O

Lemma 7.5. Suppose f € C(I*[0,a] x R : W). Then given s,k > 0 there
are C > 0 and a finite subset F of D(R?) so that

(6/6h)’°/ fh z)e m I<CZ||f||D2

sup (1+t))° @Tih)
DeF

(h,t)ET*(0,a] xRE

Proof. Since h # 0, we can differentiate under the integral so that
u:t
(8/0R)t / fh:a)e™ / €7t (8/OR) (F(h : 7)(z + ih)~)dz.
R
But there are D, € D(R),O <r <k, so that

h;D,:x
Zf( )

(8/0h)* (f(h : z)(z + ih)™? i e
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Further, for each r and each integer s > 0 we can integrate by parts to write

f(h; D, : z)e™t

k (@rmpa =@ /R e'*(8/9z)° (f(h; Dy : z)(z + ih) ™" )dz.

But again, there are D} € D(R),0 < j < s, so that
(8/0z)*(f (ks D, : z)(z +ih)™"") =Y f(h; D, : z; D)) (z + ih) 7172,
j=0
Now the result follows from (7.4). O

Lemma 7.6. Suppose that f € C(I*[0,a] x R : W) and g €
C>=(I*[0,a] : W) such that

(h,z) = ¢(h:z) = f_(__h_w_ai‘_)_;_‘;l_g(_h’_)

is jointly smooth for (h,z) € I*[0,a] x R. Then given s,k > 0 there are
t >0, and a finite subset F' of D(R?) so that

sup (1+¢)°
(h,t)EI%(0,a] xRF

<y (wum + s IDg(h)I) -

DeF

(8/0h)F P. V. /R e p(h : z)dz

Proof. As in (7.5) it is enough to estimate terms of the form

IP.V. / et (h : x;D)dzI where D € D(R?).
R

<2 sup |¢(h:z;D)|

heI£([0,a],|z|<1

sup / et ¢(h : z; D)dz
(ht) |/]z|<1

Now, for each D € D(R?) it follows from [H2, 6.7] that there is a finite
subset F' of D(R?) so that

sup |p(h:z; D)< D sup  |f(h:z; D) +g(h; D')|

heli[O,aHIISl D'GFhGIi[Oyalylzlsl

<y (”f”D',o+ sup ID'g(h)l)-
hel%[0,a]

D'eF
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Now there are finitely many k& > 0, D, € D(R?), so that

th z; Di) + g(h; Dy)
(z + h)*+1 '

For each such k£ > 0,

PV/ W-‘t(f(h :L.Dk)+gth
T lz|>1 (z + th)k+!

w:t
———dz
\/|1|>1 .’E + Zh)k+l

< /I L Mz D)lde +1g(h; Dyl
Thus using (7.3) there are C}, > 0 so that

sup
(h,t)

<> G (Ilfllpk,z + sup IDkg(h)l) :
& heI*[0,a]

P.V. / ¢t p(h : o; D)dz
lz|>1

O

We now turn to the notation of §6, in particular (6.7) and (6.10). For any
Fj(s) C F' C Fy, define C(U(e) x aj) =
{g € C®(U(e) x a) : ||gllp,r < oo for all D € D(iv* x af.),r > 0}
where
lgllpr =~ sup  (1+v)"llg(h: v; D).
(hw)EU()x a3,

Given g € C(U(e) x af), extend g to U(e) x af, by g(h : vry) = g(h : vr)
where for vg; € a}é, v is the restriction of vp to ap.

Theorem 7.7. Suppose for Fy(s) C F' C F; there are g(F') € C(U(e) xaf)
such that

(h,v) = pENFys) (B v)™? Z g(F' :h:v)

Fy(s)CF'CFy

is jointly smooth on U(e) X af;. Then given D € D(iv*),r > 0, there are
t > 0 and a finite subset E of D(iv* x a}é) so that

dv

sup (1+o0(a))”
heU®(e),a€A}

<> X e

D'€E F}(s)CF'CF}.

eiu 3—10, , - g(F h:v
D P.V. / (s7'a) Xpycrer 9 )
¥ pri(h:v)
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Proof. As in (6.5) we write s~'a = apexp (Zang, taH?, a) Now there is
C; > 0 so that

(1+0(a))” < Ci(1+0(ag))” J] 1+ [tal)

a€eF)

Write

PV/ (s7ta) X p g (F:h:u)du
pry(h:v)

wc. ta

+ihg )Zg

Now since each g(F" : h : v) is Schwartz as a function of vy, we have ¢; > 0
and a finite subset E; of D(iv* x aj) so that

- / dvge™ (ap) [[ P-V. / dyg—5 "

aEF’ (VC!

sup (1 + o(ay))"

h,ap)

wa ta

/ dvge™ (ag) H P.V. / dua . )Zg

a€Fy

< D sup (L+|wl)"
D.€eE, (ko)
For each a € Fi(s) we have t,h, > 0 for all a € A, h € U°(€). Further,
each g(F' : h: v) is Schwartz as a function of v,. Thus applying (7.5), there
are t, > 0 and a finite subset E; of D(iv* X ag(,)) so that

wat.,
D1HPV/dVa(a+ i Zg(pr hev).

a€F,

w.,-,tc,
sup (1 + |vp|)"* || Dy P.V. / dvy———— ) g(F':h:v)
DlgEl( h,vp) ag, (1/0, +’Lh Z
<y ,Sup 1+ lvpe))®
Day€E; MYF{(e)
wata
o I PV [ dnts S o(F
QEFI\FC',(S) ( a+1/ha)

Finally, for each o € Fj\ Fy(s) we have t,h, < 0 for alla € A, h € U(e),
and (h,v) = (Vo +tha)™ X p g(F' 1 h: v) is jointly smooth on U(e) x af
by hypothesis. Let S, be the set of all F' such that Fj(s) C F' C F; and
a € F' and let S be the set of all F’ such that Fy(s) C F' C Fjand a & F'.
Then we can write

Z g(F’:h:u)=Zg(F’:h:l/)—}-Zg(F':h:V)

F}(s)CF'CF} F'€S, F'eS=



138 REBECCA A. HERB

where 3 pcg g(F' : h : v) is Schwartz as a function of v, and Y pcga
g(F' : h :v) is independent of v,. Thus applying (7.6) to each a € F}\F}(s)
we have ¢ > 0 and a finite subset E of D(iv* x a},) so that

Z sup (1 + |vps)))*

D2€E; MVFl ()

w.,t.,
D, ] Pv/du,, 3 D9 h i)
aeFl\Fl(s) + Ot)
<> > sup (1 + lve))g(F" : b : vp; D).
D'€E Fl(s)CF'CF} (h,VFI)GU(e)Xa;,,
O
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