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HARMONIC ANALYSIS ON COMPACT POLAR
HOMOGENEOUS SPACES

JING-SoNG HuAaNG

In this paper we are concerned with the existence of dis-
crete series for semisimple homogeneous spaces. This leads
to the definition of polar homogeneous spaces. We first study
the harmonic analysis on compact polar homogeneous spaces.
The proof of the existence of disrete series and the Plancherel
formula for non-compact and non-symmetric polar homoge-
neous spaces will be given in a consequent paper.

1. Introduction.

One of the greatest achievements of mathematics in twentieth century is
Harish-Chandra’s work on discrete series for semisimple Lie groups. Sup-
pose G is a semisimple Lie group with a maximal compact Lie group K.
Harish-Chandra proved that G has discrete series if and only if the real
rank of G is equal to the rank of K ([HC]). In other words, G has discrete
series if and only if G has a compact Cartan subgroup. Harish-Chandra
also obtained a classification of the discrete series for semisimple Lie groups.
Harish-Chandra’s results on discrete series have been generalized to semisim-
ple symmetric spaces. Flensted-Jensen ([FJ]) proved that a semisimple sym-
metric space G/H has discrete series if

(1.1) rank of G/H = rank of K/K N H.

Later on Oshima and Matsuki ((OM]) proved if G/H has discrete series
then it must satisfy the rank condition (1.1). That is to say, the semisimple
symmetric space G/H has discrete series if and only if it has a compact
Cartan subspace. Othima and Matsuki also gave a description of all discrete
series for semisimple symmetric spaces. Since the group G can be regarded
as symmetric space G X G/d(G), the results of Flensted-Jensen, Othima and
Matsuki are the generalizations of Harish-Chandra’s work.

If G is a semisimple Lie group and H a closed reductive subgroup, it
is very natural to ask the following question: when does the semisimple
homogeneous space G/H has discrete series? Based on the observation of
the results mentioned above, we would guess G/H has discrete series if
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and and if it has a compact Cartan subspace. Then we face the following
fundamental question: how can we define a Cartan subspace for a semisimple
homogeneous space?

It is the purpose of this paper to undertake the task to define a proper
Cartan subspace for a class of semisimple homogeneous spaces. This new
class of homogeneous spaces are called polar spaces in this paper and they
are natural generalizations of semisimple symmetric spaces. We actually
generalize all of the harmonic analysis results on compact symmetric spaces
to compact spaces. We also prove that a noncompact polar space G/H has
discrete series if and only if it has a compact Cartan subspace, which gener-
alizes the results of Harish-Chandra, Flensted-Jensen, Oshima and Matsuki.
The complete classification of discrete series and the Plancherel formula dis-
crete series for nonsymmetric polar spaces will be given in a another paper
[Hu].

Now suppose G is a connected semisimple compact Lie group and H a
closed subgroup. In order for the homogeneous space G/H to have the
same kind of properties of a compact symmetric space, the first thing we
expect is that G/H has a Cartan subspace. Let g and h denote the Lie
algebras of G and H respectively and q the orthogonal complement of § in
g with respect to the Killing form of g. The tangent space of G/H at the
identity eH can be identified with the vector space q. We want that all
maximal abelian subalgebras contained in q are conjugated by the action of
H. This action of H is the adjoint action of G restricted to H and will be
denoted by Adg(H). Hence it is very natural to require Adg(H) on q to be
a polar representation (cf. Section 2 for the definition). This justifies the
name polar space we choose for these homogeneous spaces. It was Dadok
who introduced the notion of polar representations and classified irreducible
polar representations [Da]. The polar representations are also closed related
to the work of Palais and Terng [P'T] and the work of Heintze, Palais, Terng
and Thorbergsson [HPTT].

More precisely, we define the homogeneous space G/ H to be a simple polar
space if the action of Adg(H) on q is an irreducible polar representation.
A compact polar space is just the direct product of simple compact polar
spaces. Another equivalent definition of polar space will be given in Section
3. If G/H is a polar space, we call (G, H) a polar pair. We also call the
associated Lie algebras (g,h) a polar pair. It is clear that given a pair of
polar Lie algebras (g,h) all pairs of Lie groups associated with (g, h)-are
polar pairs.

An irreducible symmetric space is a simple polar space and a symmetric
space is a polar space. Moreover, any symmetric pair (g, ) is a polar pair,
therefore all pairs (G, H) associated with it are polar pairs. It turns out
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besides symmetric pairs there are not very many simple polar pairs. Actually
up to automorphisms of g there are only two simple polar pairs of Lie algebras
which are not symmetric. They are (Bs, g2) and (g2, 42).

From representation-theoretic point of view the polar spaces are more nat-
ural subjects to study than the symmetric spaces. The Cartan subspace a
and Weyl group W of a polar space can be defined by the corresponding
notions of polar representations. All the important results for compact sym-
metric spaces can be extended to compact polar spaces. For instance we can
show that there exists an algebra isomorphism from the set of invariant dif-
ferential operators on a polar space onto the W-invariant elements S(ac)"
of symmetric algebra S(ac) over ac. This result is even true for noncompact
polar spaces since it does not depends on the various real forms. If (G, H) is
a non-symmetric compact simple polar pair with G simply connected and H
connected, we prove in Section 4 that irreducible representations = of G has
nontrivial H-fixed vectors if and only if the highest weight of 7 is a integral
multiple of the fundamental weight with respect to the short simple root.
This result is fundamental in our study of discrete series on noncompact
polar spaces in [Hul].

The paper is organized as follows. In Section 2 we recall the definition of
polar representations. Two equivalent definitions of polar spaces are given
in Section 3. We also classify the simple polar pairs up to automorphisms of
conjugation In Section 4 we describe the irreducible spherical representations
of a polar pair (G, H). In Section 5 we describe the invariant differential
operators on polar spaces. Section 6 is devoted to the analysis on polar
spaces. In Section 7 we give the definition and classification of noncompact
polar spaces and the proof of the existence of discrete series for nonsymmetric
polar spaces. In Section 8 we define a larger class of homogeneous spaces
(called generalized polar spaces) which have Cartan subspace and compare
them with spherical spaces. It is worth noting that neither all generalized
polar spaces nor all spherical spaces have abelian Cartan subspaces. The
investigation of discrete series on them is conceivably much more difficult
than that on polar spaces. However, the effort to understand the discrete
series on spherical spaces or generalized polar spaces will certainly open a
new direction of interesting research.

It is a pleasure to thank David Vogan and Nolan Wallach for helpful
discussions.

2. Polar representations.

Let H be a compact Lie group and b be its Lie algebra. Consider a repre-
sentation of H on a real vector space V. Let (, ) be a H-invariant inner
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product on V. For a vector v € V let a, be the subspace of V defined by
a, = {w € V|(w,h-v) = 0}.

In other words, a, is the normal space to the H-orbit H - v at v. An easy
fact about a, is that it meets every H-orbit. A vector v € V is called regular
if b - v is of maximal possible dimension.

Proposition 2.1 ([D]). Fiz a regular vector vy € V. The following condi-
tions are equivalent:
(i) For any regular vector v €V, h-v=~h-(h-v) for some h € H.

(i) For any regular vector v € V, a, = h - a,, for some h € H.

(ili) For any w € ay,, (h - w,a,,) = 0.

Definition 2.2. A representation of H on V is called polar if it satisfies
one of the three equivalent conditions in Proposition 2.1. If v € V is regular
then the subspace a, is called a Cartan subspace.

Here are a few examples of polar representations:
(a) The 1-dimensional trivial representations.

(b) The natural representations of the classical compact Lie groups.

(c) The nontrivial representations of the exceptional compact Lie groups
of minimal possible dimension.

(d) The adjoint representations.
(e) The action of Adg(H) on g/h provided G/H is a symmetric space.

Remark 2.3. All irreducible polar representations are classified by Dadok
[D]. It turns out that there is only one irreducible polar representations
which does not belong to above list. It is the 8-dimensional irreducible
representation of Spin(7).

The polar representations play an important role in studying H-invariant
differential equations by separation of variables and in analyzing the H-orbit
structure in V. In the rest of this paper we will use it to study harmonic
analysis on certain homogeneous spaces, which are to be defined as polar
spaces.

Definition 2.4. Let (7,V) be a polar representation of H. Let a be a
Cartan subspace. The Weyl group W of the polar representation (m,V) is
defined as Ny(a)/Zy(a). T

The Weyl group defined above is a finite group. The Weyl groups of the
representation in Remark 2.3 and the 7-dimensional irreducible represen-
tation of G, are Z,. (Cf. Lemma 2.7 and Table 1 of [DK].) We need a
Chevalley-type restriction theorem late in Section 5:
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Theorem 2.5 ([DK]). Let (7,V) be a polar representation of H. Let a be
a Cartan subspace. Then the ring of H-invariant C[V]¥ is isomorphic via
restriction to the ring of Weyl group W -invariant Cla]" .

3. Compact polar pairs.

In this section we will give two equivalent definitions of compact polar pairs
and classify simple polar pairs. Let g be a semisimple Lie algebra and o
an involution of g. Let h and q be the eigenspaces of eigenvalue 1 and —1
respectively. We have g = & q and

(3.1) [h,b]Ch, [h,alCq, [d,9]Ca.

Then b is actually a subalgebra of g and (g, f) is a symmetric pair. Con-
versely, if § is a subalgebra of g and there is a subspace q complement to §
such that the condition (3.1) is satisfied, then we can define an involution
o with o(¢) = 2 for z € h and o(z) = —z for z € q. That makes (g,h) a
symmetric pair. Now we want to loosen the condition of existing involutions
to define polar pairs. We only define polar pairs of compact type in this sec-
tion. Let (, ) be the Killing form of g. Let q be the orthogonal complement
of b in g with respect to (, ). It follows from the fact that Killing form
is invariant under the action of g (hence under h) that we have [h,q] C g.
For z € q denote by q° the centralizer of z in q. An element 2 € q is called
regular if the tangent space ad(h)z = [b, z] of the H-orbit H - z in q is of
maximal possible dimension.

Definition 3.1. Let g be a compact semisimple Lie algebra with h a
subalgebra and q the orthogonal complement of . We say (g, h) is a polar
pair if the following condition holds: For any regular z € q, one has

(i) ¢°is an abelian Lie algebra.
(iii) ¢"=b"Dg".

Suppose (g, h) is a polar pair and (G, H) is a pair of Lie groups associated
with (g,h), i.e. G is a connected Lie group with Lie algebra g and H a
closed subgroup with Lie algebra . Then we say (G, H) a polar pair of Lie
groups. The corresponding homogeneous space G/H is called a polar space.
The space ¢° is called a Cartan subspace if z is regular. The rank of G/H
is defined to be the dimension of a Cartan subspace.

Proposition 3.2. If (g,h) is a symmetric pair, then it is a polar pair.

Proof. Denote by o the corresponding involution associated with (g, ). The
Killing form ( , ) is invariant under the automorphism o. Let q denote the
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eigenspace of o of eigenvalue —1. For z € q regular the space ¢° is a Cartan
subspace for the symmetric pair and hence a maximal abelian subalgebra
contained in q (cf. the proof of Theorem 1 and Remark 3 in [KR]). This
shows the condition (i) of Definition 3.1 is satisfied. The condition (iii) is
obviously true for symmetric pairs. Proposition 5 of [KR] shows that for any
z € q one has dim §/h® = dim q/q°. Then we have dim q = dim ¢° + dim
[, z]. In order to show that the condition (ii) is satisfied, we only have to
check g*N[h, z] = 0. This follows from the identity ([h, z], ¢°) = (b, [z, ¢%]) =
0. O

From representation-theoretic point of view it is more natural to consider
a polar space. The notions of Cartan subspaces and Weyl groups can be
defined by the corresponding notions for polar representations. At the Lie
algebra level there are not very many polar pairs other than symmetric pairs.
We now classify all of the simple polar pairs. Given a real vector space V
denote by V¢ its complexification. For a regular z € q denote by a the Cartan
space q°. Let ¥ = ¥(gc, ac) be the set of roots of ac in gc. Fix a choice of
the set of positive roots X*. Let ne be the subspace of g¢ spanned by the
positive root vectors. The subspace n¢ is a nilpotent subalgebra. Condition
(ii) of Definition 3.4 implies the equality

(3.2) dim q/¢° = dim h/h”.

It is clear the centralizer g° of a in g is contained in g°. Actually Condition
(ili) of Definition 3.4 implies g® = g°. Since g° is a subalgebra, we have
[6°,9°] C g°. Then the identity ([h%,q°],q°) = (b®,[q%,¢°]) = O implies
[h7, ¢°] = 0. Therefore we have the equality

(3.3) dim¢ n¢ = %(dim g — dim §* — dim ¢7).

We can obtain an Iwasawa-type decomposition theorem for g¢:

Lemma 3.3. Let (g,4) be a polar pair defined in Definition 3.1, then one
has

gc = he®acDnc.
Proof. 1t follows from (3.2) and (3.3)
dim¢ g¢c = dim¢ he + dime ac + dime ne.

We need to show hg+ ac + ne is a direct sum. Since a C q and [a, §] C ¢, we
have hcNac = 0 and hc N ng = 0. The direct sum ag @ ng is a solvable Lie
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algebra. We need only to show hc N (ac @ ne) = 0. Suppose it is not. There
exists a nonzero element y = y; + ¥» € hc with y; € ac and y, € nc. Then
neither y; nor y, can be zero. Denote by ( , ) the Killing form of gc. The
spaces f¢ and ac are orthogonal to each other with respect to (, ). Hence
we have (y,v1) = (y1,%1) + (¥1,%2) = 0. Since y, is the linear combination
of positive root vectors, we have (y;, y2) = 0. It follows (y;,%:) = 0. This is
a contradiction. O

Corollary 3.4. If (G, H) is a polar pair as defined in Definition 3.1, then
it is also a spherical pair. That is to say the H -fized vectors of an irreducible
G-module is at most 1-dimensional.

Proof. The solvable algebra ac @ n¢ is contained in some Borel subalgebra
bc. Let B¢ be a Borel subgroup of G¢ correspond to bg. Then B¢ has an
open orbit in G¢/Hc. O

The spherical pairs (G, H) are classified by Kramer [K2] in the case G
is simple and by Brion [B] in general. In order to get the complete list of
all polar pairs we need only to inspect the list of the spherical pairs. We
say a polar pair is simple if it cannot be decomposed into direct product of
two polar pairs. The list of simple symmetric pairs is given in [Hel]. By
examination of the lists, we have the following classification theorem:

Theorem 3.5. Besides symmetric pairs there are only two simple polar
pairs (g,h) of Lie algebras up to automorphisms of g. They are (Bs, g2) and

(g2, A2).

Note that if b is simple and g = h x b with h embedded diagonally in
g then (g,b) is also a simple symmetric pair. It is worth remarking that
both of the non-symmetric polar pairs involve g, and have been interesting
to theoretical physicists (cf. [G]).

Remark 3.6. Given a polar pair of Lie algebras (g, b), there is a unique
pair of Lie groups (G, H) associated with it providing G is connected and
simply connected and H is connected. If two Lie algebra pairs (g,b) are
conjugated by an automorphism of g, then their corresponding unique group
pairs (G, H) are conjugated by an automorphism of G. However, if we do not
require G being simply connected, then the Lie group pairs associated with
the two conjugated Lie algebra pairs may not be conjugated. For example
both the pair (SO(8), SO(7)) and the pair (SO(8), Spin(7)) are associated
with a Lie algebra pair (so(8), so(7)) (up to an automorphism of so(8)).
Another example is the pair (SO(8), SO(3)xSO(5)) and the pair (SO(8),
SU(2)-Sp(2)). If the closed subgroup H is required to be connected, there is
only one group pair (G, SU(3)) associated with the non-symmetric simple
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polar pair (g;, A;) and there are two group pairs (SO(7), G,) and (Spin(7),
G,) associated with the other non-symmetric simple polar pair (B3, g,).

If (G,H) is a simple polar pair defined in Definition 3.1, then Adg(H)
acting on g/h is an irreducible polar representation. Actually the inverse is
also true. This gives another equivalent definition of compact polar spaces.

Definition 3.7. Let G be a semisimple compact Lie group with Lie algebra
g and H a closed subgroup of G with Lie algebra . We say (g, h) is a simple
polar pair if the action of Adg(H) on g/bh is an irreducible polar represen-
tation. The corresponding homogeneous space G/H is called a simple polar
space. In general, we say (g, ) is a polar pair if we have the decomposition
of ideals g = ®g;,h = ®b; and h; C g; such that each (g;, b;) is a simple
polar pair. The corresponding homogeneous space G/H is called a polar
space.

It is clear all simple symmetric pairs are simple polar pairs under this new
definition. It follows from Theorem 3.5 that a polar pair defined in Definition
3.1 is a polar pair in the sense of Definition 3.7. We can classify all simple
polar pairs (defined in Definition 3.7) by using the results of Kramer [K1].
If the action of Adg(H) on g/b is irreducible, then g has to be either simple
or the direct product of two copies of simple Lie algebra h. In the case G is
simple all such possible pairs (G, H) are listed in Table 1-4 in [K1]. Now we
can inspect which pair induces an irreducible polar representation of H on
a/b. It produces the same list we had in Theorem 3.5. Therefore we have

Proposition 3.8. Definition 3.1 and Definition 3.7 are equivalent.

4. Spherical representations of polar pairs.

Let (G, H) be a polar pair defined in Section 3 with the associated Lie algebra
pair (g, h). We say a representation m of G over a complex vector space V is
spherical if # has nontrivial H-fixed vectors. In this section we characterize
spherical representations of a polar pair (G, H) with G simply connected
and H connected. Let a be a Cartan subspace of G/H. Let b be an abelian
subalgebra of f such that ¢ = a @ b is a Cartan subalgebra of g. We use
subscript C to denote a complexification of a real vector space or Lie algebra
(for example ac is the complexification of a). Let ¥ = ¥(gc, ¢¢c) denote the
set of roots of g¢ with respect to c¢c. Let £, be the set of roots in ¥ which
do not vanish identically on ac. Let ¥; = X(gc, ac) be the set of roots of g¢
with respect to ac. Let ¥+, £} and ¥} be the compatible choices of the sets
of positive roots. Here is Helgason’s theorem on spherical representations of
symmetric pairs (cf. [He2] Theorem 4.1 and Corollary 4.2 of Chapter IV).

Theorem 4.1 (Helgason). Suppose (G, H) is a compact symmetric pair
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with G simply connected and H connected. Let a be a Cartan subspace of
G/H. FExtend a to a Cartan subalgebra c =a® b of g with b C . Then the
following two conditions are equivalent:

(i) A € cg is the highest weight of an irreducible spherical representation

of G.
(i) A(bc) =0, %'%))- € Z, for any o € XF.
B G
a3 B
} /
o N //_/ «
o >-/
JARN
v s
2
Figure 1. Figure 2.

Lemma 4.2. Suppose that (g,h) is a non-symmetric simple polar pair.
Let v be a long simple root in ¥*. Then the restriction of vy to ac is zero.
In other words, the vector H., € c¢ is orthogonal to ac, where Hy € c¢ is
determined by (H, H,) = v(H) for any H € cc.

Proof. By the classification of polar pairs it is sufficient to verify the lemma
for the polar pairs (gz, A;) and (Bs,g2). In the case (g, A;), the set of
positive roots Xt of g, is {a, 8, a+ 8,20+ 3,3a+ 3, 3a+ 26} (see Figure 1).
Here « is the short simple root and § is the long simple root. The Cartan
subspace ac is CHj444. Since the number of positive roots in ¥t is 5, they
are simply the projection of the positive roots of £} to ac. The subalgebra
hc is the conjugation by Ad(ExpX,.4s) of the subalgebra generated by the
root vectors {X,} associated with all long roots.

In the other case (Bs,g2), we identify the root system as the vectors
+(e; £+ ;) and xe; in R? (see Figure 2). The two long simple roots are
a; = e; — ey and @y = e; — ez. The only short simple root is az = e3.
Since the number of positive roots in L} is 6, the restriction of a root to a¢
is simply the projection of &} to the subspace C(e;, + e, + €3). Hence the
lemma follows. a

The following theorem describes the spherical representations of non-
symmetric polar pairs.

Theorem 4.3. Suppose (G, H) is a simple non-symmetric pair with G sim-
ply connected and H connected. In other words (G, H) is either (G,, SU(3))
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or (Spin(7), Gs). Let a be a Cartan subspace of G/H. Eztend a to a Cartan
subalgebra c = a® b of g with b C h. Then the following two conditions are
equivalent:
(i) A € ¢}, is the highest weight of an irreducible spherical representation
of G.
(i) A = np, for some positive integer n.
Here p € ¢* is the fundamental weight associated with the short simple
root, i.e. p is determined by

2<,u, ) {O, if a is a long simple root

(o) |1, if « is the short simple root.

Proof. Suppose that (7, V') is an irreducible spherical representation of (G, H)
with highest weight A € c¢i over C and a highest weight vector v,. The repre-
sentation 7 can be extended to a representation of G®. Then its differential
is an irreducible representation of g¢ with nontrivial he-annihilated vectors.
Recall that we have the decomposition g¢c = he@PacPne. Then V is spanned
by the vectors in the set 7(H)v,. Put P = [ w(h)dh. Then Pr(h)vy = Pu,,
so PV = CPuvy. Since (G, H) is a spherical pair, the H-invariant vectors
PV is 1-dimensional. Hence Puv, is a nonzero H-fixed vector. If X € b, then

7(exp X)Puvy = P Xy, = X) py,.

Hence e**) = 1 and A(b) = 0. Hence by Lemma 4.2, we have (i) implies
(i).

Let (8, V) be the irreducible representation of G with the highest A = u
and a highest weight vector v,. Then it is clear that § has nontrivial H-fixed
vectors. In the case G = Spin(7), 6 is the 8-dimensional spin representa-
tion. The restriction of § to H = G, is decomposed into direct sum of the
trivial representation and the nontrivial representation of minimal possible
dimension. In the case G = Gg, ¢ is the 7-dimensional representation. The
restriction of § to H = SU(3) is decomposed into the direct sum of the triv-
ial representation, the 3-dimensional natural representation and its complex
conjugation. In either case Pv, is a nonzero H-fixed vector. The irreducible
representation m with the highest weight A = nu is a subrepresentation of
tensor product of V' of n-copies. Hence vy = v, ® v, ® ---® v, is a highest
vector of 7. Then Pvy, = Pv,® Pv,®---® Pv, is a nonzero H-fixed vector.
This proves that (ii) implies (i). d

Remark 4.4. The nature diffeomorphisms between simple polar spaces
and symmetric spaces G, /SU(3) = SO(7)/SO(6) = S, Spin(7)/ G, &
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SO(8)/SO(7) = S7 suggest that spherical representations of the polar pairs
(G2,SU(3)) and (Spin(7), G,) are related to that of symmetric pair (SO(7),
SO(6)) and (SO(8),SO(7)) respectively. Actually the irreducible spherical
representations of (Gy,SU(3)) are exactly the irreducible spherical repre-
sentations of (SO(7),SO(6)) restricted to G, and the irreducible spherical
representations of (Spin(7), G,) are exactly the spherical representations of
(SO(8),SO(7)) restricted to Spin(7). The similar remarks using this geo-
metric picture can be made in the next two sections after Theorem 5.4 and
Theorem 6.3.

5. Invariant differential operators on polar spaces.

In this section we define the Weyl group W of a compact polar space and
show that the invariant differential operators on a polar space is isomorphic
to S(ac)”, the W-invariant elements in the symmetric algebra S(ac) of a
Cartan subspace ac.

Definition 5.1. Let (G, H) be a polar pair. The Weyl group of the polar
space is defined to be the Weyl group of the associated polar representation
of H on g/b (cf. Definition 2.4).

Theorem 5.2. Let X = G/H be a polar space. The G-invariant differential
operators D(X) on X is isomorphic to U(gac)®/(U(ac)bc N U(gc)").

This theorem follows from a more general theorem about invariant differ-
ential operators on so called reductive homogeneous spaces. (Cf. Theorem
4.6 of Chapt. II in [He2].) We will retain the notations in Section 3. Recall
that we have the decomposition gc = hc @ ac @ n¢. Denote by p the half of
the sum of all positive roots in X*(gc, ac)-

Lemma 5.3. Let (g,h) be a polar pair. For each D € U(gc) there is a
unique element D, € U(ac) = S(ac) such that

D — D, € hcU(ac) + U(ac)ne.

Proof. The existence of D, follows from the decomposition g¢c = hcDacdnc
and PBW theorem. The uniqueness is due to the fact

U(ac) N (heU(ac) + Ulac)ne) = 0.
£

Theorem 5.4. Let X = G/H be a polar space of rank r. Let ¢ : U(gc) —
Ulac) = S(ac) be defined by

#(D)(A) = Do (A — p) for all X € ag.
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Then U(ge)bc N U (gc)be is the kernel of ¢. So ¢ defines an algebra isomor-
phism of D(X) onto S(ac)” . HenceD(X) is an polynomial algebra generated
by r homogeneous algebraically independent elements.

For the case X is a symmetric space the proof is due to Harish-Chandra.
The proof for the non-symmetric polar space follows the same line of Harish-
Chandra’s proof for symmetric spaces (cf. the proof of Theorem 5.17 of
Chapt. II in [He2]). However, we do need some modifications to show the
image of ¢ is actually the Weyl group invariant elements S(ac)” . This will
be done by using the following lemma (Lemma 5.5) to replace Theorem 5.16
of Chapt. II in [He2] used in the proof mentioned above. To show the map
¢ is surjective we use Theorem 2.5.

Denote by (, ) the Killing form of g¢c. Consider g¢ with the Hilbert space
inner product (X,Y) = —(X,7Y), where 7 is the conjugation of g¢ with re-
spect to g. Since g¢ = ne@acdhc, the map (N, X, H) — exp Hexp X exp N
is a holomorphic diffeomorphism of a neighbourhood of (0, 0, 0) onto a neigh-
bourhood G of e in GC. Here G® is the complexification of the compact Lie
group G. Hence the map A defined by

expNexpXexpH — X
is a well-defined holomorphic mapping of G§ into ag. We may take G as the
diffeomorphic image of an open ball B(0) C g¢ with center 0. Then G is

invariant under the conjugations by elements h € H and so is G, = GSNG.

Lemma 5.5. In the setting of Theorem 4.3 we have for A = nu € ag
falg) = [ 0" Man, g€ Gy
H

is a H-bi-invariant eigenfunction of each D € U(gc)®® with eigenvalue
D (X) and f\ = f,» for each s € W.

Proof. Put fi(g) = e”*“) for g € GS. 1t is clear for any H € lj we have

Hf, =0, so that DHf; = 0 for any D € U(gc). We also have NDf; =0
for any N € ng. Hence Df; = Dy (A) fi, and

D ([ ntwgmar) = [ (DRI A gh)ah = Do) [ Ak~ gh)a



HARMONIC ANALYSIS ON COMPACT SPACES 565

6. Analysis on compact polar spaces.

In this section we define and determine the spherical functions related to the
spherical representations in Section 4. We also describe the joint eigenfunc-
tions of D(X') and eigenspace representations.

Definition 6.1. Let (G, H) be a compact polar pair and X = G/H be the
corresponding polar space. A complex valued smooth function ¢ on G' with
#(e) = 1 is called a spherical function if

(i) ¢ is H-bi-invariant,

(i) D¢ = Apo, for each D € D(X), where Ap is a complex number.

As in the case of symmetric pair, the spherical functions and spherical
representations are closely related. Since a polar pair (G, H) is a spherical
pair, the H-bi-invariant smooth functions C"(G) on G is a commutative
algebra with respect to the convolution. Therefore the proof of Theorem 3.4
and Theorem 4.2 of Chapt. II in [He2] gives the following theorem.

Theorem 6.2. Let (G, H) be a compact polar pair. We have
(1) If ¢ is a spherical function, then the G representation m associated with
¢ is irreducible and spherical.

(i) Ifm is an irreducible spherical representation with the unit H -fized vec-
tor vg. Then the function ¢(g) = (va, 7(g)ve) is a spherical function
on G. Moreover, we have

$(g9) = /H x(¢~'h)dh,
where x is the character of 7.

In the rest of this section we assume (G, H) is a polar pair with G' simply
connected and H connected. Let Gy be the set of equivalent classes of
spherical representations of G. For each § € Gy let V; be a representation
space. The H-fixed vectors Vi of V; is spanned by a single unit vector
vg. Let C3(G/H) denote the space consisting of functions ¢ defined by
#(g9) = (v,6(g)vy). Each C5(G/H) has a unique spherical function ¢;(g) =
(ve,0(g9)ve). Denote by as the homomorphism D(G/H) — C determined
by Dé¢s = a;(D)¢s for each D € D(G/H). The joint eigenspace is defined
to be

Es(G/H)={f € C*°(G/H) | Df =a(D)f, forall DeD(G/H)}.

We can use Theorem 3.5 of Chapt. V in [He2] to obtain the following
theorem.
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Theorem 6.3. We have the following Hilbert space decomposition

L*(G/H) = P Cs(G/H).

665]—{

Moreover, Cs(G/H) = Es(G/H) and the natural representation on Cs(G/H)
is of class & and it coincides with the eigenspace representation on Es(G/H).

7. Noncompact polar spaces and discrete series.

This section is devoted to noncompact polar spaces. From now on we denote
by g a noncompact semisimple Lie algebra with a Cartan involution 6. Let
h be a #-stable reductive subalgebra of g. We can define (g, h) to be a polar
pair if its compact form (g¢, h°) is a compact polar pair. We may also define
the noncompact polar pairs in the same fashion as we did for compact polar
pairs in Definition 3.1. Let (, ) be the Killing form on g. Define an inner
product on g by (X,Y) = —(X,0Y), X,Y € g. Let q be the orthogonal
complement of § in g. It is clear that [, q] C q. A element z € q is called
regular if Ad(h)z = [h, 2] is of maximal possible dimension.

Definition 7.1. We say (g, ) is a polar pair, if the following condition is
satisfied: for any regular semisimple element € g one has

(i) g¢°is an abelian Lie algebra.

(i) a=q"®[h,z].
(i) g"=h"Da"
Remark 7.2. It is clear that if (g, ) is a noncompact polar pair then its
compact form (g°, ) is a compact polar pair defined in Section 3. Therefore
for a regular semisimple # € q the space g° consists of only semisimple
elements and will be called a Cartan subspace. If (G, H) is a Lie group
pair associated with a noncompact polar pair (g, §), then we say (G, H) is a
noncompact polar pair of Lie groups. The corresponding homogeneous space
G/H is called a noncompact polar space. Note that a nonlinear semisimple
Lie group may not have a compact form. However, if G is linear then (G, H)
is a noncompact polar pair if and only if its compact form (G° H¢) is a
compact polar pair.

By the same argument used in the proof of Proposition 3.2 we know that
any noncompact symmetric pair is a noncompact polar pair. Denote by
Gy(2) the noncompact (split) simple Lie group of type g;. The following
are a few examples of noncompact polar pair of Lie groups which do not
associated with symmetric pair of Lie algebras: (Gg), SU(2,1)), (Ga2),
SL(3,R)), (Spine(3,4), Ga(2)) and (SO.(3,4), Ga(z)). Note that there are also
noncompact polar pairs of groups which are associated with noncompact
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symmetric pair of algebras such as (SO, (4,4), Spin.(3,4)). By Remark 7.2
and Theorem 3.5 we have

Theorem 7.3. Besides noncompact symmetric pairs there are only three
noncompact simple polar pairs (g,h) up to automorphisms of g. They are

(82(2),8u(2, 1)), (g2¢2), s1(3,R)) and (so(3,4), ga(2))-

It is well known that a symmetric space has a discrete series if and only
if it has a compact Cartan subspace. This is due to Harish-Chandra for the
group case and Flensted-Jensen, Sekiguchi and Oshima for the symmetric
space case. We would like to extend this result to polar spaces.

Theorem 7.4. Let U/K be a compact polar space with U connected and
simple connected and K connected. Let G/H be a noncompact real form of

U/K (which means G¢ = Ug and K¢ = Hc). Then G/H has discrete series
if and only if it has a compact Cartan subspace.

Here is the idea of the proof of the theorem. By Theorem 7.3 and the
known results on symmetric spaces it suffices to verify the theorem for the
three nonsymmetric simple polar spaces Gz(2)/SU(2,1), Ga(2)/SL(3,R) and
Spin(3,4)/Gz(z). Since all of the three polar spaces have compact Cartan
subspaces we need to show that they all have discrete series. We actually
classify all discrete series and obtain the Plancherel formulae on these three
noncompact polar spaces in [Hu]. Here we only prove the existence of dis-
crete series for the three polar spaces.

The three non-symmetric polar spaces X = G/H, Gyp)/SU(2,1),
G2(2)/SL(3,R) and Spin, (3, 4)/Gg(s), are isomorphic to real hyperbolic spaces
in a special way. Now we describe the isomorphisms. Consider the following
three quadruplets:

(1) Let G=Spin,(3,4) be the subgroup of G'=SO,(4,4). Let H'=S0, (4, 3)
be the standard subgroup of G’. Then H = G N H' is isomorphic to

(2) Let G=Gy() be the subgroup of G'=SO.(4,3). Let H'=SO,(4,2) be
the standard subgroup of G’. Then H = G N H' is isomorphic to
SU(2,1).

(3) Let G=Gy) be the subgroup of G'=SO,(3,4). Let H'=SO.(3,3) be
the standard subgroup of G’. Then H = G N H' is isomorphic to
SL(3,R).
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List of the Three Quadruplets

G G i H
(1) | Spin.(3,4) | SO.(4,4) | SO.(4,3) Gy
2) Gaer) S0.(4,3) | 50.(4,2) | SU@,1)

(3) Ga() SO, (3,4) SO, (3,3) SL(3,R)

In all of the three cases the inclusion of G < G’ induces a diffeomorphism
of G/H onto G'/H’. In other words, the natural embedding G/H — G’/H’
is surjective. The very significance of these diffeomorphisms is that we can
make use the known results [R] on real hyperbolic spaces to obtain the
desired results on polar spaces. A discrete series representation of G’/H’
restricted to GG is an irreducible representation of G, which is a discrete
series for G/H.

8. Generalized polar spaces and spherical spaces.

Let G be a semisimple compact Lie group with Lie algebra g. Let and H be
a closed subgroup of G with Lie algebra . The homogeneous space G/H is
called a simple polar space if the action Adg(H) on g/ is an irreducible polar
representation. This was defined in Section 3. We may loosen the condition
that the representation Adg(H) is irreducible to define generalized polar
spaces.

Definition 8.1. Let G be a semisimple compact Lie group with Lie
algebra g and H a closed subgroup of G with Lie algebra ). We say (G, H)
is a generalized simple polar pair if the action of Adg(H) on g/h is a polar
representation (cf. Section 2). The corresponding homogeneous space G/H
is called a generalized simple polar space. A generalized compact polar space
is defined to be the direct product of generalized simple polar spaces.

One can define the Cartan subspace and Weyl group for generalized polar
spaces accordingly. It is proved in Section 3 that all polar spaces are spherical
spaces. One might hope that all generalized polar spaces are also spherical
spaces, which is unfortunately false. One might hope that all spherical space
are generalized polar spaces, which is not true either.

Remark 8.2. There are spherical spaces which are not generalized polar
spaces. Consider G = SU(2) x SU(2) x SU(2) and H = SU(2) embedded in
G diagonally. The homogeneous space G/H is a spherical space. However,
the representation Ad,(H) on g/b is not polar.

It is conceivable that harmonic analysis on either generalized polar spaces
or spherical spaces are quite different from that on the polar spaces. This
is because neither the generalized polar spaces nor the spherical spaces have
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abelian Cartan subspaces. The investigation of discrete series on the non-
compact form of these homogeneous spaces will be substantially more diffi-
cult than that on polar spaces. However, we hope that the effort to under-
stand the harmonic analysis on generalized polar spaces and spherical spaces
will open the new direction of interesting research.
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