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HAAR MEASURE ON Eq(2)

ARUPKUMAR PAL

The quantum E(2) group is one of the simplest known
examples so far of a locally compact noncompact quantum
group. The existence and uniqueness of an 'invariant mea-
sure' on this group has been proved in this article. Using
the invariant measure, we compute certain orthogonality re-
lations, which then tells us that any unitary representation
can have both square-integrable and non square-integrable
matrix entries.

1. Introduction.

The notion of a compact quantum group has now reached more or less a
final form after extensive investigations by several people. This, however, is
far from true in the case of noncompact quantum groups, where one is yet
to arrive at a satisfactory definition. In order to be able to give an appro-
priate definition of a noncompact locally compact quantum group, specific
examples are being investigated. Eq(2), the ^-deformation of the group of
motions of the Euclidean plane, is one example that has been studied by
various authors ([2], [6], [7]). It is known to have many features not exhib-
ited by any classical noncompact locally compact group. It will be shown in
this article (see Section 2) that, like any locally compact group, Eq(2) also
has an invariant 'measure5. As we shall see, the form of the haar weight is
quite easy to guess, if we know the haar state for the group SUq{2) from
which Eq{2) comes via the contraction procedure([7]). But the proof of its
invariance properties and uniqueness is quite involved. In the third section,
we list all the irreducible unitary representations of Eq(2), and compute the
orthogonality relations between their matrix entries. As a consequence, it is
observed that any unitary representation of Eq(2) can have matrix entries
which are square-integrable as well as those which are not. Such a situa-
tion can never arise for a locally compact unimodular group. The modular
operator associated with the haar weight is written down explicitly in the
last section. This enables us to use the Radon-Nikodym theorem for weights
due to Pedersen and Takesaki ([4]) in order to prove the uniqueness of the
invariant weight.
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We retain most of the notations in [7]. Places where they differ are the
following. The deformation parameter is denoted by q here; μ denotes the
comultiplication map for the group Eq(2)\ Cq denotes the closure of the set
{qkz : k eZ,z £ S1}; C0(Eq(2)) denotes the algebra of continuous vanishing-
at-infinity functions on Eq(2), and Cb(Eq(2)) denotes the multiplier algebra
of C0(Eq(2)). For an element a in Co(Eq(2)) and a bounded functional p on
C0{Eq(2)), p*a denotes (p ® id)μ(a) and a* p denotes (id ® ρ)μ{a).

Let {βi} be the canonical orthonormal basis for ^2(Z). We denote e{ ® ê
by e^, ei®ej®ek by eijk, and ei®βj®ek®eι by eijkι. Let i and N denote the
operators ek »-)> e^_i and ek ι-> kek respectively, v and n are the operators
introduced in [7]. Denote by r the automorphism a H> vαu* of C0(i2g(2)).

Let us denote by Ar the C*-algebra τr(C(Sfί7g(2))), where r G Z. Let .4
denote C0(Eq(2)). For any o G i , define pr(a) = τr(ISuτ~r(a)ISu)' Then
pr(α) is a projection onto *4r, i.e. p r maps >A onto Ar, and satisfies p r

2 = p r ,
and ||p r(α)|| < ||α|| Vα G ̂ 4. Clearly, 0 < pr(ά) < pr+i(a) < a for any positive
a of the form f(n).

Call an element a £ A compactly supported if α = pΓ(α) for some r, i.e. if
α G UAr. A continuous functional p on .A is said to be compactly supported
if there is an r G Z such that pr(a) = 0 implies p(a) = 0.

2. The Haar Weight.

Define a weight h on A as follows:

(2.1) Λ(α) = Σ g 2 i ( e i 0 , α e i 0 ) , α G Λ^.

Let /isί/ be the haar state for SUq(2). It is easy to see that

(2.2) h(a) = lim (1 - ςr 2 )-V 2 r W
r > C X D

Let ^ = {a G >t+ : /ι(α) < oo}. ^ contains all compactly supported
positive elements, and hence is dense in A+. Therefore the linear span Ah

of A\ is dense in A and contains UrAr. For each r G Z, /ιpr is a bounded
positive functional, and h(a) = s\iprhpr(a) whenever a > 0. Therefore h is
a /ower semicontinuous weight.

If we define h by (2.1) on the von-Neuman algebra M = A" generated by
A, then

(i) h is semifinite, i.e. M\ is weakly dense in ΛΊ+,

(ii) Pr(Ό £ -Λ4+ ^r5 PrCO increases to / strongly (σ-finiteness),

(iii) h is σ-normal, i.e. is a countable sum of positive normal functionals.

It is immediate from (2.1) that τk(Ah) C Ah for all fc G Z, and

(2.3) hτk(a)=q-2kh(a) MaeAh.
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The next theorem describes the invariance properties of this functional
under right and left convolutions.

Theorem 2.1. For any a G Ah and any bounded functional p on A, both
a * p and p * a are in Ah, and the following equalities hold:

(2.4) h(a * p) = h(a)p(I) = h(p * a).

Remark. Notice that although the C*-algebra A does not have iden-
tity, (2.4) makes sense because any continuous functional on A admits an
extension to the multiplier algebra M(A).

We break the proof into several propositions. Let us begin with the fol-
lowing proposition.

Proposition 2.2. Let a £ A and p be a continuous functional on A. If
both a and p are compactly supported, then a and a* p are both in Ah, and

h(a *p) = h

Proof. Observe that C0(Eq(2)) is a type I C*-algebra, so that any representa-
tion is a direct integral of the irreducible ones. Therefore any representation
of the C*-algebra C0(Eq(2)) can be written as a direct sum πu Θ eVi where
U and V are two unitary operators acting on the Hubert spaces Ή, and K
respectively, and -κυ and ev are representations acting on 4(Z) ® Ή, and
ί2(Z)®K given by:

jυ \-

Therefore any positive functional p is of the form

(2.5) a ι-> (u, πu(a)u) + (v, ev(a)υ).

Denote by puy the first term on the right hand side above. If Ή. —

and U = t , then we will simply write pu instead of pUiU. Let {fk} be an

orthonormal basis for H. Denote ek ® fj by ekj.

Step I. Take a G (A)+, and p = Pemn,t/

(2.6)
\hp3r(a * p) - Λ((id ® p)(r3r ® ^Oμ^c/ίr- 3 ^))!

(α * p — ( τ 3 r ® pτ3r)μsu{τ~3ro))eκ
i>~3r

Σ 22 i(eiθmn,(^®πt/)(μ(α) - (τ 3 r ® τ 3 r)μ (sC /(τ" 3 rα))e i O mn)
i>~3r
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Suppose for the time being that the right hand side above tends to zero as
r goes to infinity. Now,

Λ((td®p)(τS r®τ8 r)μSι/(τ-3 rα))

= hτ3r((id®pτ3r)μsu(τ-3τa))

= q-6rh((id®pr3r)μsu(r-3ra))

= (1 - qT'q-^ihsu ® Pτ
3r)μsu(τ-3ra)

= ^-q2)-lq~trhSu{τ-3τa)pτ3r{Isu)

= (l-q2)-1hsu(a)pτ3r(Isu)

= h{a)pτ3r{Isu).

Since pτ3τ{Isu) tends to p(I) as r -» oo, lim,...,^,/ίp3r (α * p) = h(a)p(I).
Therefore a* p € A+ and

(2.7) /ι(o * p) = Λ(«)p(-0

We now proceed to show that the right hand side of (2.6) indeed goes to
zero as r tends to infinity.

Remark 2.3. The contraction formula, proved in [7], merely tells us that

Πm \\μ(a) - (r3r ® τ3r)μsu{τ-3ra)\\ = 0,

but it does not say anything about the rate of convergence, which is what
we need here.

Let t = UtLΛIsu-q2kβ*β) and X = ΣΐLoCk(-qβ*®β)k(v®v)~k, where
<V = ΠI=i(l - 9 2 i ) - 1 Write Λ for μ S [ /(t~ 1 / 2 αt- 1 / 2 ). Then by equation (30)
of [7], μ(a) = X*(t ® ί)1/2Λ(t ® t)ι'2X. Therefore,

(2.8) (eiOmn, {id ® πu)(μ{a) - (τ 3 r ® τ3r)μsu{τ-3ra))ei0mn)
6

where

Ei =X*{t® t)1/2λ{t ® t)1'2 \X-Y\ cs{-qβ* ® β)*{υ ® »)

^ ) β ] (ί ® *)1/2Λ(ί ® t) I / 2

«=o

s=0
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s=0

s=Q

s=0

Wo

E4 = ( J2 drs{v ® v)s(-qβ ® /3*) - (t; ® ί;)

drs(-qβ*

= (» ® vfrμsu{a*3r)λ

s=O

= ( τ 3 r(τ 3

( 3r \ / /3r-s

Πd-a / Πα-
i=l / / \i=l

Assume, for the time being, that

(2.9)

\-3r

and

lim q 6r sup \(eiOmn,(id®πu)El,eiomn)\=Q for i/ = l ,2 ,
r > o o

(2.10)

lim
r—»oo

= 0 for i/ = 3, . . . , 6.

These, together with (2.8), will then ensure that the right hand side of (2.6)
tends to zero as r approaches infinity. So let us now prove (2.9) and (2.10).

i/ = 1. For any integer A:,
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q kr sup
i

< q k r sup

s>r+l

m+s>0

Σ
\rn-f s>0

and now, clearly the right hand side tends to zero as r goes to infinity. Using
this for k = 6, we get (2.9) for v = 1.

ι/ = 2. Similar to the previous case.

v = 3. In this case,

*.-.,ΣΣ<«
s=0 s'=0

(t πu)A(t

i>-r s=OV(-i)V(-m) s/=OV(-i)V(-m)

n )

< const. g~2r sup (cs — d r s ) ,
0<s<r

and the right hand side here goes to zero as r approaches infinity.

ι/ = 4. We shall need the following lemma.
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Lemma 2.4. For any integer k,

3r

\imq *Γsup
r-+oo

= 0.

icu(β)Y(<*<Z>

Proof.

3r

dr8(-

3r
)-2fcr 1

3r

< const.

< COnst.

1/2

g2*+ S(2m+*)+s2-2*r

It is clear now that the required limit is zero.

Now, using the binomial expansion for μ5f/(o:*3r), we get

D

i>-3r

s=0

((*' (α* ® α*)3 r"5)

3r

i>-3r \

Λ(t β)s'(v ® «)
s'=0

\

< const. q~2r sup 1 - J ] (1 -
0<s<r \ k>3r-s+l
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+ const, q 6 r sup (id® πu)

eiOmn

The first term obviously goes to zero as r approaches infinity. By Lemma 2.4,

the same conclusion holds for the second term also. Therefore (2.10) holds

for v = 4.

v = 5. Similar to the previous case.

v = 6. Let us denote by Pr the operator ^q2N+2k)~1/2 ® /. Then

i>-3r

q2i (
i>-3r

3r(PrO,Pr - a ) ) e i + 3 r 0 m + 3 r n )
i>-3r

~6r(q~6r(l - g 2 ) " 1 |Λ s ^(r- 3 r (

(l-q2)-1\hsu(PraPr-a)\.

- a))\

Therefore (2.10) holds for v = 6.

Observe that in all the estimates above, we have used crucially the fact

that m is not allowed to go too near minus infinity. Essentially the same

calculations can therefore be used to show that the conclusion holds even

when p is of the form pu,u-> where

(2.11) U = m e Z.

Step II. Take a £ (>Ao)+> a n d p compactly supported.

In this case, it can be shown that p must be of the form puμ + (w, ey {-)w),

where u is as in (2.11). For p = pu > c /, the proof is already done in step I.

Let us now prove the equality for p = (w,ev{')w). It is easy to see that

in this case, α * p G Λ and a * p = (id® p)μsu{a) Therefore h(a * p) =

(1 - q2yι{hsu®p)μsu{a) = (1 - g2)"1 Wα)p(J) = h(a)p(I).
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Step III. Take a £ (Ar)+, and p to be any compactly supported state. Ob-
serve that τ~ra*ρτr = τ~r(a*ρ). Since τ~ra € (Λ))+ and pτ r is compactly
supported, we have h(r~ra * ρτr) = h(τ~ra)ρτr(I) = q2rh(a)p(I). On the
other hand h(τ~r(a * p)) = g2r/ι(α * p). Therefore Λ(α * p) = h(a)p(I). As
UrΛr is just the linear span of the (Λr)+'s, and any compactly supported
continuous functional is a linear combination of compactly supported states,
the equality above holds for any compactly supported a and any compactly
supported continuous functional p. D

Let Fq be the function introduced by Woronowicz in [6]. Denote by /£
the k t h Fourier coefficient of the function z M> Fq(qnz), i.e.

k = ί Fq(qn

Js1

The identity below involving these Fourier coefficients follow from the above
proposition.

Corollary 2.5. Σiez^f-'rUf-^ = * r 0 Vr,fc£Z.

Proof. Take p to be the functional a ι-» (e*_i 0 , aer+k^χ r) and let 6 = vrg(n),

where # is the function qkz ι-> 7{0}(A:)^"r, k eZ,z € 5 1 . Using equation (12)

of [7], it can be shown that

(2.12)

(eijki,μ(a)erstu)

= fc - i - j - ί,

[θ otherwise.

Use this to evaluate 6* p. Now, use the relation /ι(6*p) = h(b)p(I). D

Proposition 2 6. For any a e A+, and state p, we have h(a * p) < Λ(α).

Proo/. For any α G A, lim|]pr(α) - a\\ = 0, and for any state p on 4̂,
limρpr(α) = ρ(a) for all α. This, along with the fact that μ{A) C A® A,
yields that pr(a) * ppr converges to a * p in norm. Also, for a and p positive,
all these quantities remain positive. Since pr{o) and ppr are compactly
supported, we have h(pr(a) * ρpr) = hpr(a)ppr(I). Therefore, combining
all these observations together, we get

h(a*ρ) < lim hpr(a)ρpr(I)
r—¥oo

= h(a)\imppr(I)
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= h(a).

Π

Let (L2(h), ηh, πh) and (Ήp, ηp, πp) be the GNS triples associated with the
weights h and a H> h(a * p) respectively. We shall very often identify a and
ηh(a) for α E {6 E *4 : h(b*b) < oo}.

Proposition 2.7. Let gjk be the function on C? defined by qrz i-* Iyy(r)zk,
r E Z, 2 E 5 1 . TΛen {^"^^^(n) : i,^, fc E Z} is a complete orthonormal
basis in L2(h) and {q~^τ]p{vιgjk{n)) : i,jf,k E Z} is an orthonormal system
of vectors in Ή.p.

Proof. The first part is easy. We prove the second part here. Write aλ for
vιgjk(n) and α2 for υrgst(n). Then from the first part, h(a*ai) < oo, i = 1,2.
Now, using Proposition 2.6, we get

<

< oo.

Next,

= h(ά[a2 * p)

= lim hpm(ά[a2 * p)
m—xx>m—xx>

lim

\Z>-m

= lim p(Tm),

where T m = Σι>-mQ2lPel0 * a>\a>2 Now using (2.12), we get

where Vn is the unitary appearing in the polar decomposition of n, and
f^% denote the operator ek »->• fj+tek. Therefore

Γ m - όiir+t-kdji8+t-kυ Vn 2 ^ 9 ft-k+8-ι ts-i ® -M •
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Now using Corollary 2.5 one can show that for any positive functional p of
the form ρUfU, limp(Tm) = δirδj8δktq

2i\\u\\2. Since ev(Tm) = δirδjsδktq
2j for

all m > —j, it follows that

(Vp(^i9jk(n)),ηp(vrg8t(n))) = δirδjsδktq
2s,

which proves the assertion. D

Proof of Theorem 2.1. Take a G *4/j:, and p to be a state. Define a map
S from L2{h) to %p by the prescription a ι-> ηp(a). Then by the above
proposition S extends as an isometry to the whole of L2{h). Therefore, for
any a G A\, \\Saι'2\\ = \\ax'% which means h(a * p) = h(a) = h(a)p(I). By
taking linear combinations, the same conclusion holds for any a G Λh and
any continuous functional p.

Proof of the other equality, namely, h(p * a) — /ι(α)p(J), is exactly simi-
lar. D

Uniqueness of this weight will be proved in the last section.

Remark 2.8. For a positive, Theorem 2.1 tells us that if h(a) is finite,
then so also is h(a * p), and h(a * p) = h(a). The equality actually holds
always, i.e. if h(a) = oo, then h(a * p) also is infinity. To see this, take ar =
a — (I — rr(/5f/))α(/~τr(Isu))- Then h(ar) = hpr(a), so that h(ar) increases
to infinity. On the other hand, since h(ar) < oo, h(ar) = h(ar *p), and since
a — ar > 0, h(α * p) > h(ar * p). Therefore we must have h(a * p) = oo.

Remark 2.9. We call /ι the Λααr weight for the group 2?g(2). It is easy to
see that h is faithful.

Let us prove here another identity using the invariance of the weight h
that will be needed in the next section.

Corollary 2.10. Σiez Q2if^rfΐ+r> = < W ( 1 - r + 5 ) V r, r', s G Z.

Proof. Let # be the following function on Cq: g(qkz) = I{ι-rι+8}(k)zr~r>',
fc G Z, 2τ G 5 1, and let 6 = ur~~r'ρ(n). Take p to be the functional a *-»
(ei_Γ|o,oei_r#ϊr/_r). Now use (2.11) to compute /ι(p*fe), and use the equation

•

3. Orthogonality Relations.

For a closed operator Γ, let VT denote the partial isometry appearing in the
polar decomposition of Γ. Let (6, Γ) be a pair of closed operators acting on
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some Hubert space H such that the following conditions hold:

(i) Γ is self-adjoint,

(ii) b is normal,

(iii) T and \b\ commute strongly,

(iv) Vb

mTVb = T + 2/ on (ker 6) x,

(v) σ(T, |6|) C Σ ; , where Έq = {(r, q'+r'2) : r, s G Z

σ(T, |6|) being the joint spectrum of T and |6|.

(3.1)

It has been proved in [6] that if (6,T) is such a pair, then Fq{qτ^2b®vή){I®
v)T(S>I is a unitary representation of Eq(2) acting on Ή, and conversely, given
any unitary representation w of Eq(2) acting on a Hubert space Ή, there is
a pair (6, Γ) of operators on % satisfying the requirements above such that
w = Fq(qτ'2b ® vn)(I ® t>)TΘ/.

We call a pair (6,Γ) satisfying (3.1) irreducible if the Hubert space Ή on
which they act does not have any nonzero proper closed subspace that is
kept invariant by 6, b*, and T.

Proposition 3.1. Let w be a unitary representation of Eq(2). Then w is
irreducible if and only if the associated pair (6, T) is irreducible.

Proof. If the associated pair (6, T) is not irreducible, then clearly w cannot
be irreducible. We now prove the converse.

Simple computations yield that for each m E | Z , there is an irreducible
copy (&(m),T(m)) acting on £2(Z) given by 6<m) = qmt, T ( m ) =2N,ΊfmeZ
and b^ = qmt, T^ =2JV + l , i f m € Z + | . It is easy to see that these
are all the infinite dimensional irreducible copies of (6,Γ). Finite dimen-
sional irreducible copies are all one dimensional, and they are (0, m) where
m E Z. Now w(0, m) = υm G C (̂-E?g(2)), which means it is a one dimen-
sional representation and hence obviously irreducible. Denote by w^ the
representation corresponding to the pair (&(m),T(m)), where m G | Z . We
now show that each w^ is irreducible. For this, let us first compute the
quantity (erij^w^eskι). For m G Z we have

otherwise,
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and for m G Z + | ,

(3.3)

(e^ωe.*) = |p*+*
otherwise.

Let P be a nonzero projection on £2(Z) such that tϋ(m)(P<g> J) = (P® J)w (m).
Then for any continuous functional p on C0(Eq(2)), (id ® ρ)w^ commutes
with P.

Take a nonzero vector M = Σu8es G P(^(Z)). Then ut ^ 0 for some ί.
Take any p G Z.
Case I: m G Z. Let p be the functional a H> (eOo,αe ί + p ί_p). Then (id®

^ ) t + 1

II: m G Z + | . Take p to be the functional a H> (e0

Then (id ® p)ΐi/m' (u) = Utfp_t

 2βp.
Therefore in both the cases, ep G P4(Z). Therefore P = /. D

Let u)(™\ r, s G Z, denote the matrix entries of tί/m) with respect to the
basis {ej, i.e. wffi = (p®id)w^m\ where p is the functional b *-> (er,6es).
Denote by /^ the following function on Cq: fij(z) = / 5 1 Fq(qizu)u~j du, z G
Cg. It is easy to see, from (3.2) and (3.3), that

<3 4> - * ' = { ^ - " " '^L lZTz+ι
Since fiά G C 0(O) for all i j , we have ^ } G C0(J59(2)) for all r,5GZ, and
for all m G | Z . We shall shortly see that they belong to L2(h) also.

The following lemma will be very useful in the sequel.

Lemma 3.2. {vrfst{n) : r, s,£ G Z } is a complete set of orthogonal vectors

in L2(h).

Proof. Using Corollary 2.10, one can easily compute that

(3.5) M(«7*(n)) V/,,(n)) = ί r r^^ί«^ 2 ( 1-+ < ).

Therefore all we need to prove is {υrfst(ή) : r,syt E Z}-1 = {0}.
Take an operator a G L2(h) such that Λ((v*/i*(w))*α) = 0 for all i,j, fc G

Z. This implies

(3.6) Σ Λ Γ Ί β r - ί ^ α e H , ) = 0 Vi,j,fc.
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Write u(z) = ΣrQ
r(er-ik,aer0)zr, $(z) = ΣrQ^'^ft^- τh™ " , # E

L2(S1). Prom (3.6), (ξj,u) = 0 for all j and k. Therefore if we can show
that {ξj}jez is complete in L2{S1) for each fixed fc, it follows that aer0 = 0
for all r E Z, so that h(a*a) = 0, which means α is 0 in L2(h).

Fix any fcGZ. Prom Corollary 2.10, it follows that {£*}̂  ez is an orthonor-
mal set of vectors. Observe that z8ξ!j(z) = ξj_8(z). Therefore (£o>£j) = δjo
implies ξfi (z) φ 0 almost everywhere. If P is the projection onto {£* : j E
Z}-1-, then P commutes with all the multiplication operators, and hence is
multiplication by an indicator. Since P£* = 0 a n d £o 7̂  0 almost everywhere,
P must be zero. D

We are now in a position to state the following proposition.

Proposition 3.3. The matrix entries wffi satisfy the following:
(i) w^eL2(h) Vm,r,5.

(ϋ)

(iii) {<?[ml-rw<™} : r, s E Z, m E | Z } /orm an orthonormal basis for L2(h).

Proof Follows from (3.4), (3.5) and Lemma 3.2. D

Remark 3.4. Though the matrix entries in the given basis are all in
L2(h), this is not, in general, true; that is, there are vectors w, v such that
((u\ ® id)w^(v ® •) 0 L2(h). One could, for example, take u = Σ n > 1 ne~n

and v = e0. Thus each w(m) has both square-integrable and non square-
integrable matrix entries.

4. Uniqueness of fc.

In this section we deviate a little bit from the (7*-algebraic setup in which we
have worked so far. To be more specific, we deal with the von Neumann alge-
bra M generated by C0(Eq(2)). This does not pose any serious problem, as
the comultiplication map μ, being unitarily implemented (cf. equation (12)
of [7]), extends readily to Λί.

To start with, let U be the *-subalgebra of C0(Eq(2)) generated by
{vr/s*(n) : r, s,t E Z}. It is easy to see that U is contained in L2(h)
and it follows from Lemma 3.2 that it is dense there.

Let Pr denote the projection Σ8 ler«)(eΓβ| For an operator a on ί2(Z) ®
^2(Z), denote by ars the operator PraP8. Then any bounded operator can be
written as a strong sum of the form Σ r Σs αr+*'*. Observe that for a GW,
the first summation is finite, i.e. a = Σ r G F Σ s α

r + s ' s , where F is some finite
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subset of Z. Define an operator Δ o on U as follows:

One can check that the closure Δ of this operator is a positive self-adjoint
operator, and is in fact the modular operator associated with the weight h.
That is, we have h(ab) = h(bAa) for α, b G U. The corresponding modular
automorphism group Aιt is seen to be given by

(4.1) Δ**α = eq-it * a * eq-u,

where ez is the functional v ι-> z, n «-> 0, z G S1. Prom Proposition 1.4 of
[6], fixed point subalgebra of this automorphism group is {f(n) : / bounded
measurable function onί?} .

Suppose now that hi is a normal semifinite weight on M for which The-
orem 2.1 holds. Also assume that all compactly supported elements of
C0(Eq(2)) are in the domain of hi. It is clear from (4.1) that hxA

lt = hi.
Therefore by the Radon-Nikodym theorem for weights on a von Neumann
algebra (Theorem 5.12 of [4]), there is a positive measurable function / on
Cq such that

hι(a) = h(f(n)a)

for all a in the domain of h\. Using the invariance properties of h and Λl5

faithfulness of h and the fact that ez * f(n) = f(zn) for all z G 5 1, it is
easy to see that f(zn) = f(n) for all z G S1. This means there is a positive
measurable function c on {qk : k G Z} such that /ii is given by

Notice that each c(gr) has to be strictly positive. Because, if c(qv) — 0 for
some v, then from the relation /ii(po*&i/) — hι[av\ we get Σr q2rc{qr)\fl+l\2

= 0, which forces each c(qr) to be zero.
It follows from Lemma 3.2 and the above observation that {vrfst(n) :

r, s,t G Z} form an orthogonal basis for L2{hι) also. Simple computations
give

hι((vrfst(n)yvr'fs,t,(n)) = δ^δ^δ^ciq1^1)^^,

hi(vr'fs,t,(n)(vrfst(n)y) = ί r f .^ί« 'c(g 1 " p - # + t )g 2 ( 1 " r " # + f ) -

Therefore, denoting by Δ(χ) the modular operator for the weight hi, we get

Δ(i)(vΓΛt(n)) = e ^+t ) '
) g" a r ΐ>7««(n) O« the other hand, it can easily
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be verified that Δ(i)#(n) = g(n) for any compactly supported function g on
O . Therefore ctyqϊ-~+t^ must be independent of s and t, which means there
is a positive real d such that c(qr) = c(l)dr. Now it remains only to show
that d = 1.

If we use the weight hi instead of h in the proof of Corollary 2.5, we get
the following identity:

r

Suppose now that d < ςr 1 . Let ξk(z) = ΣrQ
rkfk-ϊzr ^ n e c a n s e e that

z8ξk(z) = ξk+s{z) and (&,&') = £**<• Therefore {ξjb}*ez form a complete
orthonormal basis for L2(S1). Write u(z) = Σ r <f <f/Γr

rzr. From (4.2),
(^>6;) = <W Hence ΐi G C.£Q, which implies that d is 1. If d > ςπ1,
then taking ξk{z) = Σr Qr~ky/dr~kfk-rzT a n d u(z) = ΣrQr^^~rf-rZr and
using the same arguments as in the earlier case, we get u G Cξ0, which is
impossible since d > 1. Thus, up to a scalar multiple, an invariant weight is
unique.

Remark. After the first version of this paper was submitted, the author
came to know of the paper ([1]) by Baaj, in which the invariance of the
haar measure for the quantum E{2) group has been proved. His method of
proof, however, is different. He essentially uses the cross product structure
of the C*-algebra C0{Eq(2)), and makes use of some g-identities, whereas in
our case, the close relatioship between Eq(2) and SUq(2) has been exploited,
and the g-identities are derived as by-products.
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