XIII. Large Ideals on wq

§0. Introduction

Here we shall start with « e.g. supercompact, use semiproper iteration to get
results like (S C w; stationary costationary):

(a) ZFC + GCH + P(w1)/(D,, + S) is layered + suitable forcing axiom and
note that by [FMSh:252] this implies the existence of a uniform ultrafilter
on wj such that X3 /D = R; (which is stronger than “D is not regular”).

(b) ZFC+GCH+P(w1)/(D., + S) is Levy + suitable forcing axiom.

(¢) ZFC+GCH+P(w1)/(Dw, + S) is Ulam + suitable forcing axiom.

where (a) Ulam means
(Duy +S)T ={ACw;:ANS #0 mod D,,}

is the union of X;, R;-complete filters, hence on R there are X; measures such
that each A C R is measurable for at least one measure

(b) Levy means that, as a Boolean algebra, it is isomorphic to the
completion of a Boolean algebra of the Levy collapse Levy(Rg, < R2)

(c) layered means that the Boolean algebra is J B,, where B, are

a<Ng
increasing, continuous, |By| < Ri, and cf(a) = R; = B, < P(w1)/(Da, + S).
We also deal with reflectiveness (see 4.3).

This chapter is a rerepresentation of [Sh:253], we shall give some history

later, and now just remark that this work was done (and reclaimed) after
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[FMSh:240 §1, §2] and [W83] ([W83] starts with “ZFC+DC+ADR+6 regular”
and forces “ZFC+CH-+the club filter on some stationary S C w; is X; dense”)
but before Woodin obtained a similar result from a huge cardinal.

In this chapter we got results by semiproper iteration iterating collapses
and sealing some maximal antichains of P(w;)/D,,, up to some large . So it
is a natural continuation of Chapter X. Our ability to do this to enough chains
comes from reflection properties of k, which is supercompact (or limit of enough
supercompacts).

The first section contains preliminaries on semi-stationary sets, relevant
reflection properties and what occurs to some such properties when we force.
In the second section we deal more specifically with our iterations (S-suitable
iterations). In the third section we deal with getting Levy algebra and lay-
eredness, and in the fourth we deal with reflective ideals (see 4.3) and with
the Ulam property. Note that for much of the chapter the iteration is of Ss-
complete forcing notion, for some (fixed) stationary S3 C wj, and in this case
the iteration is (equivalent to) a CS one; so we will stress less the names of
conditions etc.

By Foreman, Magidor and Shelah [FMSh:240], CON(ZFC+k is supercom-
pact) implies the consistency of ZFC+“D,, is Np-saturated” [i.e., if B is the
Boolean algebra P(w;)/D.,, “D,, is Ry saturated” means “9B satisfies the
Nz-c.c.”]. This in fact was deduced from the MM (=Martin Maximum™) by
[FMSh:240] whose consistency was proved by RCS iteration of semiproper forc-
ings (see Chapter X, Chapter XVII §1). Note that [FMSh:240] refutes the the-
sis: in order to get an elementary embedding j of V with small critical ordinal,
into some transitive class M of some generic extension V' of V, one should
start with an elementary embedding of 7 of V'’ into some M’ and then force
over V'. Previously, J. Steel and Van Wesep got the same result starting from
ZF+AD+ACk (see [StVW]).

This thesis was quite strongly rooted. Note that it is closely connected
to the existence of normal filters D on A which are At-saturated or at least
precipitous (use for P the set of nonzero members of P()\)/D ordered by inverse

inclusion, j the generic ultrapower). See [FMSh:240] for older history.
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In fact, it was shortly proved directly that MM+ = SPFA* and much
later it was proved that MM is equivalent to the Semi-Proper Forcing Axiom
(in ZFC) (see XVIII §1).

The rsults of [FMSh:240, §1, §2] motivated much activity. Woodin proves
from
CON(ZF+ADR+6 regular) the consistency of ZFC+“B[S is Rj-dense”, for
some stationary S C ws.

By Shelah and Woodin [ShWd:241], if there is a supercompact cardinal,
then every projective set of reals is Lebesgue measurable (etc.). This was
obtained by combining (A) and (B) below which were proved simultaneously:
(A) The conclusion holds if there is a weakly compact cardinal k and a forcing

notion P, |P| = k, satisfying the k-c.c., not adding reals and I-p “there is

a normal filter D on w;, B = P(w1)/D satisfying the Ra-c.c.”

(B) There is a forcing as required in (A) (see [FMSh:240, §3]).

This was improved for projective sets which are ¥,, using approximately
n cardinals « satisfying:

(*) for every forcing notion P € H(k) and stationary costationary S C wy
there is semiproper @, not adding reals, I PxQ “D,, S is k-saturated,

k =Ry" (and @ is not too large).

A sufficient condition for () is Prg(x) 4f & is strongly inaccessible, and for

every f : kK — & there is an elementary embedding j : V — M (M is a
transitive class), « the critical ordinal of j and H(j(f)(x)) € M. Moreover it
suffice (Woodin cardinals) Prb(n)Jr df i is strongly inaccessible, and for every
f 1 kK — kK there is k1 < K, (Va < K1), f(a) < k1 and for some elementary
embedding j : V — M (M is a transitive class), k; is the critical ordinal of j
and H((j(f))(k1)) € M.

By [Sh:237a] “2®0 < 2%t = D, is not Ry-dense”, and by [Sh:270] if D is a
layered filter on A = A<* then D* = {A C A: A ¢ D} is the union of X filters
extending D.

T Later results of Martin, Steel and Woodin clarify the connection between

determinacy and large cardinals.
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This chapter is a representation of [Sh:253] which was done then, but was
mistakenly held as incorrect for quite some time. The main change is that we
replace part of the consistency proof of the Ulam statement, (P(w;) is the
union of N; Rj-complete nontrivial measures), by a deduction from a strong

variant of layerness. Later Woodin proves from a huge cardinal CON(ZFC+
GCH+P(w1)/(D, + S) is Ri-dense).

0.1. Notation and Basic Facts.

(1) P(A) is the power set of A, Sca(A) ={B: B C A,|B| < A}, <} is a well

ordering of H(X) which, for simplicity only, we assume is an end extension

of <}, for u < A.

(2) Dy is the club filter on a regular A > Xg and D<) (A) is the club filter on

Sca(4).

(3) (a) B is the Boolean Algebra P(w;)/D.,,; we do not distinguish strictly
between A € P(w;) and A/D,, and for stationary S C wy, B[S is
defined naturally.

(b) B of course depends on the universe, so we may write BY" or B[V1];
instead of B[VF] we may write BF or B[P).

() VI C V2 Wl =w!”, then B[V] is a weak subalgebra of B[V?]
(ie., distinct elements in B[V!] may be identified in B[V?]).

(d) If P € V is a forcing notion preserving stationary subsets of wy,
then B = B[V] is a subalgebra of BF (identifying (A/D,,)" and
(A/le)vp for A € P(w1)V). If Q = (P,,Q; : i < a) is an iteration
(with limit Py, s0i < j < a = P, < P}), we let BQ = U, ,BPi+1,

(4) (a) Let us say, for Boolean algebras B; and B,, that B; < B, iff By C B,
(i.e., By is a subalgebra of Bs) and every maximal antichain of B is
a maximal antichain of Bs.

(b) Note that, for Boolean algebras By and By, B; < By iff B; C B, and
(Vz € By \ {0})(3y € B1\ {0})(Vz € By)[zNy #0 — 2Nz # 0]
Hence, if B; < B3 and By C By C B3, then B; < Bs.

(c) Hence, the satisfaction of “B; <¢ B3” does not depend on the universe
of set theory, i.e., if V| By < By and V C V! then V! | B; < B,.



608

(5)

(6)

XIII. Large Ideals on w;

(d) By Solovay and Tennenbaum [ST], <¢ is transitive, and if (B; : 1 < )

B;.

(e) Also, if (B¢ : { < &) is a C-increasing sequence of Boolean algebras
and By <¢ B¢ for ¢ < ¢, then By <o U<<€ Be.

(f) If (B; : i < 0+ 1) is an increasing continous sequence of Boolean
algebras, cf(6) > Rg and [i < 6 = |B;| < 6], and S & {i < 6 : B; <
Bsi1} is a stationary subset of § then Bs < Bs,y .

(Why? If € Bsy1 \ {0} then by clause (b) for each a € S for some
Ya € Bq \ {0} we have

is <-increasing and continuous then B; < |J;,

(Vz € Ba)[zNya #0— zNz #0).
So by Fodor lemma for some 7,
SIdéf{aGS:yaij}

is stationary. And so for some y the set {a € S} : yo = y} is station-

ary and y is as required.]

(g) For a Boolean algebra B, X; <¢ X, (in B) iff X; C X, C B\{0p} and
every predense subset of X is a predense subset of X2 where Y is a
predense subset of X if Y C X & Vz € XJy € Y(Iz € X)(z Cp zNy).
If 0g € X2 we mean X; \ {0} < X2\ {08}

This definition is compatible with the one in clause (a) and the itera-
tion in clause (b) is still true; also clause (c) holds (the others are not
needed here).

If in V we have P, < P, < P, in VP2 we have B < B2, and in

VP B8P © 8P then in VP B8P < B [follows by (4)(c), (4)(d)};

similarly for BF]S.

For a set a and forcing notion P, Gp is the P-name of the generic set and

a[Gp) = aU {z[Gp] : z € a is a P-name}. So a[Gp] is a P-name of a set,

and for G C P generic over V its interpretation is a[G] = aU{z[G] : z € a

is a P-name} (z[G] is the interpretation of the P-name ).
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(7) If A > R is a cardinal, N a countable elementary submodel of (H (),
€),P € N and G C P is generic over V, then N[G] < (H(/\)VP,E) (as
HONY® = {7[G] : T € H()) a P-name} and if kp “(HN)',€) k£
Jzp(r,a)” then for some P-name 7 € H(A) we have I-p “(H()\)VP, €)E
o(1,a)”). See 11T 2.11, I 5.17(1).

(8) Also, if some p € G is (N, P)-generic then (N,G) < (H(\)Y,€,G) (ie.,
G is an extra predicate, so you may write (N, G N |N|)). Also, if R is any
relation (or sequence of relations) on H(A)V, N < (H(\)Y,€,R) (and
P € N,G C P generic over V) and some p € G is (N, P)-generic then
(N,G) < (H(\)V,€,R,G) and even (N[G],|N|,RN,G) < (HMN)V', e
,H(\)V, R, G). Usually we use a well ordering <} of H()).

(9) Let N <, M mean N C M and N Nk is an initial segment of M N &
and N < M; if we use it for sets (rather than models), the last demand is
omitted. Note that if N < M < (H(p),€), K < pand NNk = M Nk then
N <.+ M.

81. Semi-Stationarity

1.1. Definition.

(1) A forcing notion P is semiproper if: for every regular A > 2/Pl any
countable N < (H()\), €) to which P belongs, and p € PN N there is
g such that: p < g € P and ¢ is (N, P)-semi-generic (see below).

(2) For a set a, forcing notion P and ¢ € P, we say q is (a, P)-semi-generic if
for every P-name ¢ € a of a countable ordinal, ¢ IFp “a € a” [i.e., if: ¢ IF
“a[Gp] Nwy = aNw;” see 0.1(6); note a[Gp| = {z[Gp] : € a a P-name}
if a is closed enough, i.e. for z € a also © € a where z[G] is z].

(3) Wecall W C Scy, (A) (where w; C A) semi-stationaryin A (or in Scy, (4)
or subset of A) if for every model M with universe A and countably many
relations and functions, there is a countable N < M, such that (Ja €
W)[N Nw; € a C NI, [equivalently, {a € Scx,(A) : (3b € W)laNw; C
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b C al} is a stationary subset of Scy,(A) (ie., # 0 mod Dy, (A4)). As we

allow functions in M, we can require only N C M].

Claim.

If W C Scy,(A) is stationary and w; C A then W is a semi-stationary
subset of A. Also if w; C AW C Scy,(A) is semi-stationary in A,
CeDyy(A)andfae Wkbe C&bnNw Calb=bec W
then W is stationary (subset of Scy, (4)).

If wi CACB,and W C Scy, (A) then: W is semi-stationary in A iff W

is semi-stationary in B (so we can omit “in A”).

If Wy € Wy C Scn,(A), and Wy is semi-stationary, then Wa is semi-
stationary.
If |[A| = Ny, w1 € A, A = Ujcy,ai, a; increasing continuous in 7, with

a; countable, then W C Scx,(A) is semi-stationary iff Sy def {i:(3be
W)[i C b C a;]} is stationary (as a subset of wy).

If p € P is (b, P)-semi-generic, bNwy C a C b then p is (a, P)-semi-generic.
EWCSx,(A),u>\WeN, N <(H(u),€) (hence |[W| < ), and for
some a € W,NNw; Ca C N then W is semi-stationary.

Assume A is an uncountable set, W C Scx,(4), f1, f2, are one to one
functions from w; into A, and W, def {aU{a < w1 : fei(a) €a} :ac€
W} C Scx, (AUw). Then Wi is semi-stationary iff W5 is semi stationary,
so in Definition 1.1(3) (of semi stationarity) we can replace “w; C A” by
“A uncountable”.

If A;, Ay are uncountable sets, f is a one to one function from A; to
Az, Wy C Sy, (Az), Wi C Sy, (A1) and [a € Wy = f"(a) € Wa] and
[b € Wy = (Ja € Wi)bn (A1) = f"(a)] then: W, is semi-stationary iff
W, is semi-stationary. If f is onto Asg, necessarily W1 = {a € Sc<y,(41) :
f"(a) € Wa}.

Proof. (1) - (5), (7), (8) Left to the reader.

(6) If not, some M = (\,...,Fy,...) exemplifies that W is not semi-

stationary, so some such M belongs to N, hence N N A is a submodel of M

(even an elementary submodel of M), a contradiction. 0o
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1.3. Claim. A forcing notion P is semiproper iff the set

Wp = {a € Scx,(PU F(w; +1)) : for every p € PN a there is g,
such that p < q € P and

q is (a, P)-semi-generic}

contains a club of Scx,(PU F(w; + 1)) where each A : P — (w; + 1) is

interpreted as a P-name g with the property that: if
a%[G] = min{h(r) : r € G},

then ap[G] is o) [G] if the latter is < w; and zero otherwise.

Proof. Immediate. O3

1.4. Claim. The following are equivalent for a forcing notion P:
(1) P is semiproper.
(2) P preserves semi-stationarity.

(3) P preserves semi-stationarity of subsets of Scy, (2/F1).

Proof. (1) = (2). Let w; C A, and W C Scx, (A) be semi-stationary. Suppose
p € Pandplkp “W is not semi-stationary”. So there are P-names of functions
Fp(n <w) from A to A, Fy, is n-place, and p IF “if a C A is countable closed
under F,(n < w) then ~(I)janNwis CbCa & be W] .

Let A be regular large enough. Let N < (H(A), €) be countable so that
A, (Fp :n <w),p, P belong to N and there is b € W such that NNw; CbC N
(such N,b exist as W is semi-stationary by 1.2(2)). Let ¢ be (NN, P)-semi-
generic, p < q € P.So qlFp “N[G]Nw; = NNw; and N C N[G]” hence, for
the b above,

qlFp “N[G]Nw; CbC N[G].

Also g IFp “N[G] N A is closed under the F',’s” (as N[G] < (H())[G], €) and
Fo[G] € NI[G], see Basic Fact 0.1(7) in §0), contradicting the choice of the
F.’s.

(2) = (3). Trivial.
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-(1) = =(3). Let W = Scn,(PUP(w; +1)) \ Wp (where Wp is from
1.3). As —(1),W is stationary, so for each a € W choose p, € P N a which
exemplifies a ¢ W), i.e. there is no ¢,p < g € P and q is (a, P)-semi-generic.
By the normality of the filter Dy, (P U P(w; + 1)), for some p(x) € P the
set Wi = {a € W : p, = p(x)} is stationary. Hence W; is semi-stationary (by
1.2(1)). But by the choice of (p, : a € W) and W1, easily p(x) IF “W7 is not
semi-stationary”. Clearly |P U P(wy + 1)] = 2/Pl (as P is infinite w.lo.g.),
so let f be a one to one function from 2/F! onto P U P(w; + 1) and let
W = {a € Scx,(2'F1) : f"(a) € W1}. By 1.3(8) we have W, is semi-stationary
and p(x) I “W; is not semi-stationary” so (3) fails. Oq.4

1.5. Definition.

(1) Rss(k, ) (reflection for semi-stationarity) is the assertion that for every
semi-stationary W C Scy, (A) there is A C A, wy C A, |A| < & such that
W N Scy, (A) is semi-stationary (in Scx, (A)).

(2) Rss(k) is Rss(k,A) for every A > k.

(3) Rss™(k,\) means that for every semiproper P of cardinality < x we have
IFp “Rss(k, A)”.

(4) Rss™(k) is Rsst(k, ) for every A > k.

1.5A Remark. In 1.5(3), we could strengthen the statement by replacing
“semiproper” by “not collapsing N;” with no change below. If we use below

forcing notion from a smaller class we could weaken the statement in 1.5(3)

accordingly.

1.6. Claim.

(1) In Definition 1.5(1) we can replace A by B, when |B| = X, w; € B.

(2) If Kk < k1 < A1 < X and Rss(k, ), then Rss(ki, A1) If £ < A1 < A
and Rss*(k,)) then Rss'(k,\;). Lastly, if Rss™(k;,A) (for i < a) then
Rss™( sup;< ki, A).-

(3) If k is a compact cardinal, then Rss(k);

(4) If & is a compact cardinal then Rss™ (k).
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(5) If k is measurable, W; C Scx, (A) and U;<,W; is semi-stationary then for
some o < K, U;<oW; is semi-stationary.

(6) If k is a limit of compact cardinals, then Rss* (k).

(7) If & is A-compact, A = A®¢ > k then Rss(k,A) and even Rss*(k, ).

Proof. (1) Trivial.

(2) Use 1.2(2).

(3) Let k C A, W C Scx,(A), and: W N Scy,(B) is not semi-stationary for
every B C A,w; C B, with |B| < &.

Define the set of sentences I':
r=reyrbure
where (each ¢ € A serves as an individual constant):
I'* = {c1 # c2 : c1, ¢ are distinct members of A},

re = {R(co,C1y--sCly--Jicw:a € A {a: l <w} € W},

I is the singleton with unique member (F,, is an n-place function symbol,
remember w; C A):
(VZoy, T1,y -+ vy s Ty - - In<w [if {zo,z1,...} is closed under F,(n < w), then
~(3y0,¥1,--) (R0, -+ Yns-- ) &
{xl < w,Vicw, T =i} C{y:l<w}lH{zm:m <w})].

Every subset of I' of power < x has a model (if it mentions only ¢ € B where
B C A and |B| < &, then use a model witnessing “W N Scy, (B Uwy) is not
semi-stationary”). A model M of I exemplifies “W is not semi-stationary” (in
| M|, hence in A by 1.2(2)).

(4) As forcing notions of cardinality < s preserve the compactness of x.

(5) Let I'*,T'° be as in the proof of 1.6(4), and:

Pg = {R(CO,CI,...) 1C € A,{Cl 0l <(—U} € Wl}
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Now I'*UT°UJ,., I'* has no model, hence (using the Lo$ theorem for L, .,
and R;-complete ultrafilters) for some a < k, we have: I'* UT*(J,_, T'® has no
model.

(6) Easy (use last phrase of 1.6(2)).

(7) Same proof as 1.6(3), (4). Oie

1.7. Claim.

(1) If Rss(k,2/Pl) and P is not semiproper, then P destroys the semi-statio-

narity of some W C Scx, (A),|A| < & (i.e. some p € P forces this)
[Why? By (1) < (3) from 1.4, for some p € P and semi-stationary W C
Scery (2|P l), we have p IFp “W is not semi-stationary”. By the assumption,
for some A C 2/P! we have: |A| < x and Wi % W N Sy, (A) is semi-
stationary. Clearly by 1.2(3) we have p IFp “W] is not semi-stationary”,
as required].

(2) If P destroys the semi-stationarity of W C Scy,(4), |A| = Xy, then P
destroys the stationarity of Sy C wy [with Sy as defined in 1.2(4)], which
means that Sy is stationary in V but not in VP,

(3) If Rss(Rp,2!P!) and P preserves stationarity of subsets of wy, then P is
semiproper
[Why? By parts (1), (2) above].

(4) If W C Scy,(A) exemplifies the failure of Rss(Xg,|A|), then there is
a forcing notion P of power |A|®°, not semiproper but not destroying
stationarity of subsets of Ny
[Why? Let P be {A : A = (4; : i < o) is an increasing continuous
countable sequence of countable subsets of A, each A; satisfying —(Ja €
W)(AiNwi C a C A;)}, ordered by being an initial segment. As forcing
with P destroy the semi stationarity of W, clearly P is not semiproper;
let us prove that forcing with P preserve the stationarity of subsets of
wi. If p € P and p IF “S is not stationary” where S is a stationary set
of limit ordinals < w;, we can find an increasing continuous sequence
(N; : i < w;) of countable elementary submodels of (H(37}),€), with
{W,p,A} € Ny, N; € Niz3. So C = {6 < wy : § a limit ordinal and



§1. Semi-Stationarity 615

NsNw; = 6} is a club of wy. By the choice of W, for some club C; C C of
w1, 6 € C; = —(Ja)(a € WNE§ CaC Ns), hence we can find § € C; N S
and ¢ > p which is (N, P)-generic, an easy contradiction.].

(5) Rss(Rz) is equivalent to the assertion: every forcing notion preserving
stationarity of subsets of w; is semiproper.

[By parts (3), (4) above]. Oz

1.8. Definition. (P;,Q; : i < a,j < a) is a semiproper iteration if:

(A) it is an RCS iteration [see Ch. X, §1];

(B) if ¢ < j < a are non-limit, then I-p, “P;/P; is semiproper”;

(C) for every i < a we have, IFp, “(2“1)‘/& is collapsed to X;” (we can use

another variant instead).

We shall use not only Gp, (or Gp,) but also G; (or G;) for the (name of the)

generic subset of P;.

1.9. Theorem. Suppose ) is measurable, (P;, Q; : i < X, j <)) is a semiproper
iteration, |P;| < X fori < X, and {i < X\ : Q; is semiproper } belongs to some

normal ultrafilter D on \. Then in Vx| Player IT wins © = 0({R1 },w, Rp).

1.9A. Remarks. On o see Ch. XII, Def. 2.1. or see below.

(1) The game lasts w moves; on the nth move Player I chooses f, : Ro — w;
and Player II chooses &, < wj. In the end Player II wins if A def {i <Ny
An Vi fr(i) < &n} is unbounded in Rs.

(2) We can modify the game by requiring A # # mod FE for a filter E on ws.
We then denote the game by O({R:1},w, E). The result is true for £ = D.

(3) By XII 2.5(2) we know the following: if Player II wins O({RX;},w,Rg), A >
282 N a countable elementary submodel of (H()), €,<3), then for ar-
bitrarily large ¢ < wy, there is N’ < (H(A), €,<3}), N’ countable, N C
N'Jie N and NNw; = N'Nw; (hence N <, N'; see Basic Fact 0.1(9)
in §0).
If Player II wins O({N;},w, E) (where E is a filter on ws) then the set of

such 7 is # 0 mod FE; so we have equivalence.
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Can we demand in (3) (on both see XII §2 when we use E) that N'Ni =
NNi? If {§ < wy : cf(d) = Ro} € E the answer is No. If {§ < w, :
cf(6) = R} € E the answer is Yes provided that we can change the game
to O': Player I is also allowed to choose regressive functions F,, : Ry — Ry,
and Player II in the nth move has to choose also £/, < ws, and in the
end Player II wins if S = {§ < Ry : for n < w, we have § > ¢, and
52(8) < Upn €ms Fn(6) < Uy €} # 0 mod E.

If in the theorem IFp “{6 < Ry : Qs is semiproper and cf((S)VP =N} #
¢ mod D” then Player II wins also in this variant (from (4) above). The
proof of 1.9 still works.

We can replace R; by any regular 6,8, < 6 < A, (as the range of f,)
and use the game O({6},u, E), E a normal filter on A, (P;,Q; : i < X)
is a (< @)-revised support iteration (see Chapter XIV), such that the set
of 1 < A satisfying the following belongs to D: “in VP for p € P\/P; in
the game PG¥(p, Py/P;, \,0) (see below and Chapter XII, 1.7(3), 1.4), the
second player has a winning strategy”.

We can replace in the assumption of 1.9, “D is a normal ultrafilter on k” by
“D is a normal filter on x” and the second player wins in 0’ ({®¥1},w, D).
If we use the strong preservation version of theorems, we do not need 1.9
(a weaker version is then proved, e.g. for & < A, (P./Py) * Nm is semi

proper) and is really changed.

Proof of 1.9. Let D be a normal ultrafilter on A (in V),A € D a set of
(strongly) inaccessible cardinals such that: (V& € A)[(Vi < K)(|P] < k) & Q«x

is semiproper (in VFx)].

For each « € A the forcing notion Py /P, (in V=) is a semiproper forcing,

hence for each p € Py/P; in the following game, PO“(p, P»/Px, 1), Player II
has a winning strategy which we call F,(Py/Px) (€ VF=);if p = 0p, /p, We omit
p [see Chapter XII, 1.7(3), Definition 1.4]: a play of the game lasts w-moves,

in the nth move Player I chooses a Py /P,-name Cn of a countable ordinal and
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Player II chooses a countable ordinal &,. Player II wins a play if

@) < g€ Pr/Pebqlt “Na < | &nl);
n m<w

without loss of generality the &, are strictly increasing.

Let us describe a winning strategy for Player II in O({X;},w1,R2) in
V[G»], where Gy C P, is generic over V. In the nth move Player I chooses
fn t w2 — w1, Player II, in addition to choosing &, < w1, chooses An, f,,, axn
such that:

(0) an < anps1 < A; in stage n Player II works in V[G,,], so D is still an
ultrafilter (pedantically: generates an ultrafilter);

(1) A, € D,Ap41 C An C A and for all § € Ay, we have a, < 6;

(2) IFp “ﬂ; Two > wy'

(3) frlGal = fn; fr is the first such name so f;, is from V;

(4) for k € Ap, ((fi(k),&) : I < n) is (a Pc-name of) an initial segment of a
play of Po“(@p,, Pr»/Gy,R1) in which Player II uses his winning strategy
F(P\/Gy), i.e. some condition in G,,, forces this.

How can Player II carry out this strategy? Suppose he arrives at stage
n and Player I has chosen f, € VP f, : A = w;. Stipulate ap = —1. Let
B, = A,_1 if n > 0 and B, = A if n = 0. Player II chooses for fn€V
the first (by <}, x = (2*)*) Py-name f, such that f,[Gx] = f,. Now for
every k € By, working in V[G,], he continues the play ((f;(x),&) : | < n) of
PO¥(Pp, Py /G, R1), letting the first player play f; (), and let £3(x) be the
choice of the second player according to the strategy F(P/Gy). So £2(k) =
§2(n) is a Pg;-name. Now (in V[G,,_,]) for every p € P\ and « € B, there is
qx € Px/G,, compatible with p and forcing a value to €2 (k). But as B, C A,
and by the choice of the set A (and X 1.6) we know that P; =, P;, so we
can use the normality of D; so for some { < w1, Ay € D, A} C B, and g,
we have g is compatible with p in Py/G,,_, and (Vk € A})[gs = g and q IFp,
“§g(n) = £”]. So there are such ¢ € G, and § (which we call §,) and a set

which we call A,. It is easy to choose a,.
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We should still prove that this is a winning strategy. We shall consider
one play and work in V, so everything is a Py-name (as we are using RCS,
no problems arise). I.e. we have p* € Py such that p* IFp, “(fm§n < w)
is a play of the game with Player II using his strategy, choosing on the side
(frnr@n,An :n <w)”. Now f),, A,, an are Py-names of members of V (f7, a
Py-name of a Py-name) so there is a maximal antichain J,, of Py of conditions
forcing a value to each of fnr &n f;b, Qn, Ap. But P, satisfies the A-c.c.,
Py = |J Py sofor some a(x) <A, A\ Jn C Pyx). Also w.lo.g. a(x) is bigger
than gv<e?y possible value a,. e

Work in V[Gy(y)]- Now D is (essentially) an ultrafilter (on X) in V[Gy ).
Each A, is a Py-name of a member of V so really there are < X\ candidates so

we can find A, such that for each n we have IFp, [Gatey Aw C An,” A, €D
(alternatively we can compute (| Ap in V[Gq(y]). Now for k € Ay, & > a(x)

n<w
the sequence ((fi(k),&) : I <w) is a play of PO“(Qp, Py/Pyx,R1) where Player
IT uses his winning strategy (this is a Pc-name, but fortunately (§[Gx] : | <

w) € V[Gq(x)])- So there is g, € P\/P, so that
dk ”_P)\/PK_ “/\fl("‘:) < Ufn”
l n

(more exactly:

O F Py /G o)/ (PesGaiy N\ 1) <&,
l n

actually g, is a P,/Gq(s)-name of a Py /Py-condition).
We can consider g, as a Py-condition with Dom(g,) C [k, A), because we

use RCS iteration. Now easily (g : & € Au) € V[Gq(x)), and
IFpy /Gy {6 € Aigs € Gr} is unbounded in A”

Why? As every r € Py/Gy(x) has domain bounded in A, we have: g, is compat-
ible with it for x large enough. This finishes the proof that the strategy works.
Uio
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1.10. Claim. Suppose & is measurable, Q is a semiproper iteration, £g(Q) =
Kk, |P;| < K for i < k and {3 : Q; semiproper } belongs to some normal ultrafilter
on « (this holds e.g. if {¢ < & : if ¢ is strongly inaccessible and (Vj < )[|P;| < 4],
then Q; is semi proper} € D). Then:

(1) Rss™(k, ) implies IFp, “Rss(k, A)”.

(2) If Q is a Ps-name of a forcing notion, (Pc/P;+1)*Q is semiproper for each

i < K (i.e. this is forced for P;11) then IFp, “Q is semiproper”.

(3) We can replace measurability of x by: x is strongly inaccessible and I-p,_

“Player II wins O({R1}, w1, Ra)”.

Proof. (1) Let W be a Pc-name and p € P, be such that plFp, “W C Scx, (A)
is semi-stationary”.

Fori < k,let W; ={a:a € VF ac Scy, (N),and for some g € Gp,,q IFp,
“a € W”}. So W, is a P;-name.

Let x be regular and large enough, and <}, a well ordering of H ).

Let p e G = Gx C Py, G generic over V and G; = GNP, for i < k.
In V[Gy], as W[G,] is semi-stationary, there is a countable (N,G, N N) <
(H(x)V,€,<},Gx), such that for some a € W[G] we have NNw; C a C
NN, and p, W, k,Q belong to N (note: G is considered a relation of those
models).

So there are ¢ € G, and P;-names N, a such that ¢ IFp, “N,g are as
above”, and as p € G, without loss of generality p < ¢q. As N and a are
countable subsets of H(x)" and A respectively and P, = (J; < Pi satisfies the
k-c.c. (by X 5.3(3)), for some i < k we have IV, g are P;-names, I-p, “NNk C 5"
and ¢ € P,. Now by 1.9 + 1.9A(3), in VP=, for arbitrarily large ordinal
6 < k, N®! nw; = NNuwi, and Qg is semiproper (if not, replace it by 6 + 1),
where we let:

N % Skolem Hull (N U {6})

(in (H(x)v, €,<%,Gx), working in the universe V[G,] such that q € G).

Choose such a § > i. Now § € NI and (N, Gy) < (H(x)V,€,<3,Go), as
6 > i clearly a[Gy] € W4[Gg] and w1 N N C a[Gg] C NI Let Nig) be the
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Skolem Hull of N U {6} in (H(x)v,€,<;,G9); note as IV is a Py-name, in
V[Gp] we can compute N[Gg] = N[G.] = N (and a[Gs] = a[G,] = a). Clearly
NI nw; C a[Ge] € N C Njgj € N hence by 1.2(6), V[Gg] = “Wo[G] is a
semi-stationary subset of Scx,()\)” (remembering that in (H(x)", €, <, Go)
we can interprete (H(x)VI%], € H(x)V, <, G)).

As Rss™ (s, ) clearly V[Gy] = Rss(k, ), hence in V[Gy] for some A C
M JA| < & and Wo[Gg] N Scy, (A) is semi-stationary. As P/ Py is semiproper
(by the choice of 6) it preserves the semi-stationary of Wo[Gg] N Scx, (A) (see
1.4), hence V|G| E “Wy[Gg] N Scx,(A) is semi-stationary”, but W[Gy] C
WG] hence V[Gi] F “W[Gx] N Scr,(A) is semi-stationary”.

(2) This is similar: suppose p IFp, “N < (H(x)V,€,<},Gp,) and p’ €
QNN are counterexample to semiproperness of Q”.

Let G, C P, be generic over V and p € G,. Let § < k, with § >
sup(N[Gk] N k), be such that N is a Py-name and sup(N[G] N k) < « and
N[GL®' Nnw; = N[Gk] Nwi. Now work in V[G. N Ppy1] and use: IFp,,,
“(Ps/Po+1) * Q is semiproper”. (Note that if Rss' (k) we can get the result by
1.7(3)). Alternatively prove that forcing with Q[H,] preserve semi stationarity
of sets.

(3) In the proof of (2) we use this only. In the proof of (1) we could have
chosen 6 to be a successor ordinal (so Qg is semiproper). So P,/Gy preserves

the semi-stationarity of W, hence V[G] = “W is semi-stationary”. Oy.10

1.11. Claim. Suppose Rss(k,2%), & regular and: kK = Ry or (Vu < k)u™° < k.
Then for A > 2* for every countable N < (H(\), €, <}) to which & belongs, for
arbitrarily large i < , letting N/ = Skolem Hull (NU{i}), we have N <,,, N
(note that we do not demand N Nk # N N k).

1.12. Remark. (1) The “s = Xy...” can be omitted if we replace “for arbi-
trarily large 7" by “for some i < k with ¢ > sup(N N&)”.
(2) We can replace “6 = Ng, or ...” by

(¥)1 “if @ < K, then there is a closed unbounded C' C Scy, («) of power
< K” (see the proof).

It even suffices to assume
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(¥)2 “for every stationary W C Scy,(a),(a < k) there is a semi-
stationary W’ C W of cardinality < £”.
(3) If in the conclusion we want to get N <. N, we have to replace “(3a €
W)(NNw; Ca C N)” in the definition of semi-stationary (Definition 1.1) by
“Bae W) NNkCa<,NNK)".

Proof of 1.11. Let

W ={|N|: N < (H(xk"),€,<%+), N countable and

for some iy < K, for noi € [in, &) do we have N <, NI},

Assume first that W is a stationary subset of H(k"). So, as Rss(k,2") holds
(and |H(k%)| = 2¢) there is A C H(k%), w1 C A, |A|] < & such that:
W,y & {a € W : a C A} is a semi-stationary subset of Scy,(A4). Without

loss of generality (see 1.2(2))
M= (4, € 14, <t 14) < (H(xY), €, <3

and ANk is an ordinal < k (remember « is regular).

Remembering that (by the definition of W) for countable elementary sub-
models Ny C N, of (H(k¥),€, <*,), |Ni| € W, Ny Nw; = Ny Nw; implies
|N2| € W; by 1.2(1) clearly W is stationary (as a subset of Scx, (4)). We know
by assumption that for some closed unbounded C' C Scy, (A4), C has cardinality
< k. So

§d=ef sup{in : |[N| € CN W4} < k.

Now for some club C; C C, for every a € Cj, the set alél = Skolem Hull of
aU{¢} (inside (H(x%), €, <%, )), satisfies al’l N A = a, hence a <, al). But
we can choose a € Cy N W4, contradiction.

So W is not stationary and let C* C Scx, (H(k%)) be a club disjoint to
w.

Let A > 2%, so H(kt), <%, W € H()), and let N be such that x €
N < (H()\),€,<3) and N is countable. So H(kt) € N (and <!, =<} [H(xk%))
hence W € N and without loss of generality C* € N. Hence NN H(xk%) € C*,
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and so for arbitrarily large i < k there is N} such that N[H(k") < N} <

(H(k%),€,<%4),NIH(k%) <o, N{ and i € Ni. Let N* be the Skolem Hull of

N U (Nink). We can easily check that NNk = N} Nk, so N* is as required.
Ui

§2. S-Suitable Iterations and Sealing Forcing

2.1. Definition. We say Q = (R,Qj,tj 11 < a,j < a) is S-suitable (itera-
tion), where S C w; is stationary, if:

(A) Q is an RCS iteration; (i.e. if we remove the t;’s);

(B) we denote |

We demand that &, is strictly increasing;

i<i Pji1| =k = n? so kg = 1, k; increasing continuous.
(C) for i successor k; is strongly inaccessible;
(D) for i < j < a non-limit, P;/P; is semiproper;
(E) Q satisfies the x;1-c.c., N%’PHI = Kig1;
(F) ift; = 1,i < j < and j is a successor, then BF:[S < BFi |5 (see
0.1(3)(a) + (b)).
Remark: We may, but do not, use tg which are names. Also the demand “Q;

satisfies the k;41-c.c.” is just for simplicity.

2.1A. Notation. a® = a, PZ-Q = Pi,Q? = Qj,t? = t; and (remember and

recall 0.1(3)(d)): B = U{BPi+1 : 4 < £g(Q)}.

2.2. Claim.
(1) Suppose Q = (P;,Q; : i < a,j < a) is a semiproper iteration (see 1.8 for
definition). Then:
(a) If i < a is non-limit or Q; is semiproper or Q; preserves stationarity
of subsets of wy from V% or i is strongly inaccessible and A |P;| <1,
§<i

Pi is also stationary in VP«

then every stationary subset of wy in V
(i.e., B[P;] is a subalgebra of B[P,]).
(b) RV =RV"™,
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(c) If @ > No is strongly inaccessible, and |P;| < « for ¢ < «, then P,

satisfies the a-c.c. and so

Plw)V™ = [JP)"" and VP |2 “o™ =gy,
i<a

(d) If wi\S is stationary, each Q; is (w; \ S)-complete [see V §3], then
so is Py, hence forcing by P, preserve the stationarity of wy \ S and
even subsets of it and does not add w-sequences of ordinals, hence
VP = “CH”.

(e) If @ € Ny < Nz < (H(M),€), Ny countable, Ny <o N3, a strongly
inaccessible and belongs to Ni,a > |P;| for i < a and q is (Ny, Py)-
semi-generic and ¢ = min(a N Ny \ N7) is regular, then q is (Ng, B;)-
semi-generic.

(2) Any S-suitable iteration @ is a semiproper iteration and t; = 1 = B[P]|S
< B[P;][S] when: j > i, and j is: successor or strongly inaccessible
satisfying [y < j = |Py| < j].

(3) If (in (1)) K < a is strongly inaccessible, |P;| < & for i < &, and I+p_
“Rss(R2)” then Qx (and P;j/P. when £ < j < ) are semiproper.

Proof. Left to the reader. For instance:
(1)(e) Clearly i is a strong limit [as {j < k : j strong limit } is a club of &
which belongs to N1, hence ¢ necessarily belongs to it]. Also we have assumed i
is regular hence 1 is strongly inaccessible; similarly i > Rg and j <1 = |P;| < i.
If T € N; is a maximal antichain of P;, then by X 5.3(3) for some j < i we
have T C Pj, so that consequently there is such j in N3, and hence j € N; and
also the rest is easy.

(2) If j is a successor ordinal use clause (F) of Definition 2.1, if j is strong
inaccessible use 2.2(1)(c) and 0.1(4)(e).

(3) By 1.7(3) it is enough to prove that forcing with @, does not destroy

the stationarity of any A C w;, A € VP~ However, by 2.2(1)(c) (and 2.2(2))

for some 8 < a, A€ VP8, Clearly A € VF# and is a stationary subset of w; in
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VFs+1, As P.y1/Pg41 is semiproper, A is also stationary in (VPo+1)Pet1/Ppir —

Qx
VPet1 = (VP=)"" | as required. Ua.2

2.2A. Remark. It follows that if  is strongly inaccessible, and |P;| < & for
i < k, and A is a stationary subset of wy in V=, then A is a stationary subset

of wy in VP for every large enough a < k.

2.3. Claim. Suppose Q = (P, @it 1 j < a,i < a) is an RCS iteration, « a

limit ordinal and S C w; is stationary.

(1) If Q1B is S-suitable for 3 < a, then Q is S-suitable.

(2) If for B < a, QB is a semiproper iteration, then Q is a semiproper
iteration.

(3) In (2), if i < a and A is a P;,-name then: IFp, “A < BQS” if and only
if = sup{j < a:lkp,, “A< sBPi+118”} if and only if for arbitrarily
large j < o we have IFp, “A < B,

(4) In (2), if @ > |Py| for i < @, and « is strongly inaccessible, then B9 =
DAL

Proof. (1) For clause (D) from Definition 2.1 use the semiproper iteration
lemma. The other clauses are also obvious.

(2), (3), (4) are also easy. Ua.3

2.4. Definition. Let A = (A¢ : ¢ < &) be a sequence of subalgebras or just

subsets of B(= BY) such that S belongs to each A; where S C w; stationary.

(1) Sm(A4,S) = {A C S : for some ( < &, {z € A : £ # Omod D,
and N A = Pmod D, } is pre-dense in A¢} (we should have written
z/D,, € A¢ for z, x C wy; E is predense in A, means that for every
y € A¢, such that A¢ F “y # 0” for some z € = we have A¢ F “zNy # 07).

(2) For E C BV let seal(Z) = {(a; : i < a) :  is a countable ordinal, and
letting a, = U a; we have a; € Scx, (EUwy), a; (1 < a) is increasing
continuous, e';:}(: a; countable and a; Nw; is an ordinal which belongs to
U4ezna, A}, ordered by being an initial segment.

(3) We define the sealing forcing Seal(A, S) as the product with countable

support of { seal(Z) : for some ¢ < &, E is a pre-dense subset of A; and
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wi\S € E}. Let Seal’(A, S) = {¢: ¢ a partial function from Sm(4, S), with
countable domain, and if A € Sm(A, S)NDom(¢), then 4 is a continuously
increasing function from some countable v + 1 to w; \ A},

the ordering is defined by:

¢! <& if A € Dom(c') implies A € Dom(c?) and &, C &4.

(4) If A= (A) we write A instead of A in (1), (2) above and (5) below.

(5) For k (> No) strongly inaccessible we define the strong sealing forcing

(6)
(7)

(8)

3)

SSeal(A, S, k) as P, where (P;, Qj i < k,j < k) is an RCS iteration with

Q; = Seal(A, S)Fi x Levy(Ry, 28 )VIFil,

We call Z C BY semiproper iff seal(Z) is a semiproper forcing notion.

WSeal(S) is the product, with countable support, of seal(£), = semiproper,

w1\ S eE

For k not strongly inaccessible, but still .A-inaccessible, which means:

(*) (Vu < K)[u™ < K],k = cf(k), kM = & for ¢ < €, and ¢ = fg(A) <
K,k > Ny,

we define the strong sealing forcing SSeal*(A, S, k) as P, where (P, Qj -

i < K,j < k) is an RCS iteration; Q; = seal(gj,S)VPj,gj is a maximal

antichain of A¢(j) to which w; \ S belongs for some ¢(j) < ¢ (in V) and

every maximal antichain Z of some A from VP~ is Z; for some j < K. [Py

is not neccessarily well defined].

If 2 C {E: E C B} then seal(E) is the product, with countable support,

of seal(Z) for E € E.

. Remarks.

We could have used CS iteration for SSeal and SSeal*.

If every maximal antichain of BV is semiproper, the difference between
WSeal(S) x Levy(Ry,2%) and Seal(BY, S) defined in 2.4 (7), (3) respec-
tively, is nominal (i.e. they are equivalent, i.e. have isomorphic comple-
tions).

If AclS < BYI]S and |A¢| < Ny for ¢ < Lg(A), then Seal(A,S) is
equivalent to Levy(Xy,2%).



626 XIII. Large Ideals on w;

(4) If |A¢| < Ry (for every ¢ < £g(A)) then the difference between Seal (A, S)
and Seal’(A4,S) is nominal (i.e. they are equivalent i.e. have isomorphic
completions).

(5) We use below mainly SSeal(A, S), we could use SSeal*(A4, S,3;) instead.
Also instead SSeal(A4, S) we could use SSeal’ (A, S) by 0.1(4)(c) (and see

0.1(g)).
(6) For convenience we shall use mostly SSeal(A, S). So in, e.g., 2.11, 2.13 we

can deal with SSeal*.

2.6. Notation. We omit « in SSeal(A,S,x) when it is the first strongly

inaccessible. We omit S when S = w;. We write A instead of (A).
2.7. Claim. If in V,
A =(.Al< (< g) forl=1,2and

(V1 < £1)(3C < &)[A¢, < A%, (inside BY)],
(V2 < &)(3¢1 < &1)[AZ, < Ay, (inside BY)]

then
Sm(A!,S) = Sm(A2%,S),
Seal(Al, S) =Seal(A2, S),
Seal’(A!, S) =Seal’ (A2, S) and
SSeal(A!, S, k) =SSeal(A?, S, k).
Proof. Easy. Uo7

2.8. Claim.

(1) Let E C BY be pre-dense. Then E is semiproper iff: for A regular large
enough and countable N < (H(\),€) with £ € N, there is a countable
N',N < N' < (H()),€,<3), satisfying NNw; = N'Nw1 € Uyeznn A
[Why? For the implication “=" let ¢ € seal(Z) be (N,seal(Z))-semi-
generic. Let @;(Geay(z)] be a; for any @ = (a; : j < &) € Ggea(z) Whenever

a>i50C = {a;Nw; : i < wy } is forced to be a club of w;. So C € N, hence
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as q is (N,seal(Z))- semi-generic, necessarily g I+ “9 NN wi € C“ In

fact § = as Nwy = |J @i Nwy, so possibly increasing g, for some (b; : © < §)
<0
qlF “g; = b; for 1 <67, so

q - “6 = wy N (Skolem hull in (H(A),€,<}) of |[IN|Ubs = |N|U U b;)”.
i<4

So this Skolem hull is N’ as required. For the implication “<” use 2.8(4)

below.]

(2) Fsearz)y “E C sBlseal®)] s absolutely pre-dense” (absolutely means for
extensions not collapsing N;; more specifically in this chapter, there is
a list (A; : ¢ < wy) of members of = and a club C of w; such that
6 €C =6 € lUs4i) [Why? Let (g; : i < wi) be as in the proof of
2.8(1), so let A; be such that (A; : i < J) lists the member of = in as for
limit ¢ < wy.]

(3) WSeal(S) is semiproper and IFwseai(sy “if E € V' is semiproper in BY and
(wi\S) € E, then E is absolutely pre-dense in B[WSeal($)l” [Why? For
semiproperness use 2.8(8) below; for absoluteness use 2.8(2) above.)

(4) seal(Z) is A-complete (see V §3) for A € E; so WSeal(S) is (w; \ 5)-
complete. [Why? Think.]

(5) If Z is pre-dense in B[V], then seal(Z) preserves stationarity of subsets of
wy; if A C BY E a pre-dense subset of A\ {#} then seal(E) preserves
stationary of subsets of w; which belongs to A or just are not in Sm(A4, S).
[Why? Use 2.8(4) as any A-complete forcing notion surely preserve the
stationarity of subsets of A.]

(6) The forcing notion seal(Z) forces |Z| < R; and has cardinality < (|Z| +
N1)®e. The forcing notion Seal (A4, S) is (w; \ S)-complete; SSeal* (A4, S, )
and even any initial segment of such iteration of length « is (w; \ S)-
complete and if k > Ny is A-inaccessible and S C w; is stationary then it
satisfies the 6-c.c. if 6 = cf(8) > |A¢| for ¢ < £g(A) and A |ofR < 6. If

a<k

k > Rg is strongly inaccessible then SSeal(A, S, k) satisfies the k-c.c. and

is (w1 \ S)-complete.
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(7) If Rss(Rg, 32(R1)) then for every pre-dense = C B (V), seal(E) is semiproper.
[Why? By 1.7(3) and 2.8(5).]
In this case Seal (BY,S), SSeal(WV, S, k), SSeal*(BY, S, k) are semiproper.
(8) For A regular large enough, and countable N < (H(\), €,<}) there is a
countable N', N < N’ < (H(X), €, <3}) satisfying: NNw; = N'Nw; and for
every semiproper £ C BY we have: [E€ N = N'Nw; € Uyeenn A [use
part (1) repeatedly w-times] and even £ € N’ = N' Nw; € Uyeznn A

[use the previous statement repeatedly w-times]. Oog

2.9. Claim. Suppose A = (Ac © ¢ < &) is an increasing sequence of
subalgebras or just subsets of 9, k > Ny is strongly inaccessible or just
SSeal*(A, S, k) is well defined. Assume (A, k) € N < (H()\),€), N count-
able, P % SSeal(A4, S, k) or P = SSeal*(A, S, k) respectively and

69%5 if 2 € N is a pre-dense subset of A for some { € NN§ and wy \ S € E,
then N Nw; € Upeann 4-
Then for every p € PN N, there is ¢ € P, (N, P)-generic, p < g, q force a value
to Gp N N and g IF “@Zf'g] holds”.

Proof. We have to find ¢, p < ¢ € P, which is (N, P)-generic. We first show:
(¥) if ¢,E € N are P-names, Itp “E is a pre-dense subset of A¢”, p € NNP,

then for some p2, p < p?> € NN P, and for some A, ¢ we have p? |- “¢=¢and

AcENNNA” (soAeV,and Ae NN A; and A€ V) and NNw; € A

Proof of (). We can find p° p < p° € NN P, and ¢ such that p° IF “¢ = ¢”
(so necessarily ¢ € N). Next define

Y ={A€ A¢: for some p', p<p'€ P, and p'IF “AecE"}.

Clearly T € N, T € V, and T is a pre-dense subset of A¢, ( € N.
By EB%S there is A € T N N such that N Nw; € A. By the definition of T
there is p?, p° < p? € P and p? I “A € Z”. As p°, A and Z are all in N, we
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can choose such p? in N, thus finishing the proof of ().

Now we continue with the proof of 2.9. We define p,, for n < w such that:

() Po =P, Pnt1 = Pn;

(b) pp € PN N,

(c) for every dense subset J of P, which belongs to N for some n, p,41 € J;

(d) if j € kN N,E, ¢ are Pj-names from N and IFp, “¢ < § and E C A; is
pre-dense” then for some n < w and B € BY N N, we have NNw; € B
and

=

prs1lilbp, “BEE.

This clearly suffices, as (using the notation of Definition 2.4(5)):
(a) for j € NNk we have (U, ., Pn)(j) is in Q; by (d), and
() Upco Pn is (V, P)-generic by (c).
So we can assign the tasks, and for satisfying (b) and (c) there is no

problem. For (d) use (). Uz.9

2.10 Claim. Suppose
(a) seal(Z) is semiproper for every maximal antichain = of B"Y to which w; \ S

belongs, A = (BY) = (Ao)

or
(@) A= (A;:¢ <€), Ac € BY, and seal(Z) is semiproper for any predense
subset = of A¢, ¢ < ¢

and

(b) k> Ny is strongly inaccessible

or at least

(b)" k> No is inaccessible or just |A¢|-inaccessible for ¢ < ¢ (see 2.4(5)).

Then P < SSeal(A, S, k) if (b) or P % SSeal*(A, S, k) if (b)' (both well
defined), is semiproper, have the x-c.c., is (w1 \ S)-complete and IFp “(A¢]S) <
(BF1S)” (and in case (b)" if § = cf(8) > | A¢|™, b-c.c.).

Remark. Some points in the proof are repeated in 2.11.
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Proof. The (w; \ S)-completeness is trivial by the definition of P and Ch. V,
Def. 1.1 (and the preservation theorem there i.e. by 2.8(a)).

For semiproperness let A be regular and large enough, and N < (H()), €)
countable, P € N and p € PN N. Applying repeatedly 2.8(1) (or directly
2.8(8)), there is N', N < N’ < (H(\),€), NNw; = N'Nw;, N’ countable,
and for every maximal antichain = C % (or just pre-dense = C BV if (a) or

predense subset = of A¢ for some ¢ < &, if (a)’):

E€N,NnweS=>Nnw=Nnwe |J 4
A€EENN'
Now use 2.9. (with (Y), N’ here standing for (A : ¢ < &), N there).

So we have proved that P is semiproper and by the present proof and
the A-system lemma (alternativelly if k is strongly inacessible by 2.2(1)(c)
or 2.8(6)) P has the s-c.c., hence IFp “(A¢1S) < (BF[S)” follows from the
definition of P as every P.-name of a subset of some A¢ is a Pj-name for some

j < k (as P, satisfies the k-c.c.). Os.10

2.11. Claim. If A = (A¢ : ( <€), A¢IS < BY[S for ( < &, each A, [S satisfies

the Ng-c.c. (e.g. has power < R;) and k > Ny is strongly inaccessible, then

(1) P. % SSeal(A, S, k) is proper;

(2) IFp, “A¢lS < BP<|S for ¢ < &7;

(3) in fact, P, is (w1 \ S)-complete, strongly proper and satisfies the s-c.c. and
IFp, “k = Ry = 2817,

(4) if wy \ S is stationary, P, does not add w-sequences of ordinals.

Proof. (1) Let X be regular large enough and N < (H()\), €) countable, Q € N
(hence P, € N) and p € P, N N. We want to apply 2.9, so we have (and it
suffices) to verify & there, i.e.

(%) if A TS < BIV][S, A¢ satisfies the Rp-c.c., Ac € N < (H(x), €,<}),
N countable, & C A is a pre-dense subset of A; and wy \ S € E then
Nnw, e J{A: A€ EnN}.

Proof of (¥x). As A¢[S = “Np”-c.c., clearly without loss of generality |Z| < Ry,
so let 2 = {A; : i < w1} (as E # 0 this is possible) and say Ap = wy \ S.
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Since A¢[S <o BV 1S, clearly Z is pre-dense in 8", hence we know {6:6¢
Ui<s Ai} € D., (otherwise the complement contradicts the pre-density of = in
BV, so there is a closed unbounded C' C w; such that C C {§: 4 € U’i<6 A}
As E € N without loss of generality (A; : ¢ < w1) € N and without loss of
generality C € N. As N < (H()), €) clearly C N N is unbounded in N Nwy,
hence N Nw; = sup(CNNNw;) € C,s0 NNw; € Y{4i:7i € NNuw;}, so for
some j € NNwy, NNw; € A;. But (4; : i <w;) € N so A; € N, as required.

(2)IfAe P(w1)V"™ then as Py satisfies the x-c.c. (by 2.10 or as by part
(1), {p € P, : Dom(p) is countable} is dense in P, clearly we can apply the
A-system lemma) for some o < k, 4 € ’P(wl)VP“, and so by the definition of
SSeal(A, S, k), if A/D,,, is disjoint to a dense subset of z € A¢, A C S,{ < ¢
then we “shoot” a club through its completion in the (8 + 1)-th iterand in the
iteration defining SSeal(A4, S, k) for 8 € (a, k) large enough. Why? As V= =
“|A¢| < Ry (as Py collapses 2% to Ny see 2.4(5)) there is 8,a < B < & such
that for every x € A¢, if zN A is not stationary in VP= then it is not stationary
in VFs,

(3) Easy (strong properness hold by the proof of 2.9 and use IX 2.7, 2.7A
for preservation of strong properness or prove directly).

(4) By 2.8(4) and V §3. Uz.11

2.12. Claim. Let Q = (P;, Qj 1t < a,j < a) be a semiproper iteration, and o

be a limit ordinal. Suppose I-p, “E C B? is pre-dense” and i < a. Then (a)

& (b)t = (b), where:

(a) (Pa/P;)x seal(Z) is semiproper (in VF*);

(b) If X is regular large enough, Q € N < (H()\),€, <}); N countable, = €
N,pe NNP,, i€ NNa, g € P, is (N, P;)-semi-generic, p|i < q then
there are N1, p!, ¢!, A and j such that:

(i) N <N < (H(N),€,<3),
(i) N!is countable, N! Nw; = N Nwy,
(ili) p<p' € NI NP,,

(iv) i < j < @, j a non-limit ordinal,
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(v) j € N,
(vi) ¢< ¢ € P,

(vii) ¢! is (N, P;)-semi-generic,

(vii) p*[j < g,
(ix) A € N!is a Pj-name,
(x) ¢'IF “N'nw, € A7,
(xi) ¢"Up'Ilj,a) IFp, “A€E";

(b)* Like (b) but N is a P,-name and N! is a P;-name.

Remark. There is not much difference if in clause (b) (or (b)*) we replace clause
(ix) by
(ix) A€ N is a Pj-name

but then j is allowed to be P;-name.

Proof. (a) = (b)* Let Q def seal(Z) and let ¢ € G; C P;, G; generic over V. In
V[G;], apply the definition of “(Py/P;) * seal(Z) is semi porper” to the model
N = N[G;] and the condition p, and get a condition ¢°, so ¢° is (IV, (Pa/P;)*Q)-
semi-generic. Let G be such that ¢° € G C P, * Q, G; C G, and G is generic
over V. So by the definition of ) =seal(Z) for some A € E[G,] N N|[G] we have
NNw, = N[G]Nw; € A. As A € E[Gq] C B2 = Uj<q B[Pj+1], for some
jo € anN, A € B[Pj,4+1], and there is a Pj,y;-name A € N[G] such that
A[G] = A, and without loss of generality ¢° forces this. Now

Z = {r :r € P, and r is above p or incompatible with p and

rikp, “AeZ orritp, “A¢Z}

is a dense subset of P, and r = the <}-least member of Z which belongs to
Go is a Py-name, and Z € N, r € N. Hence r[G] € N[G] and clearly r[G] is
compatible with ¢°, p < r[G] and r[G] F “A € Z”, so w.lLo.g. [G] < ¢°. Let
N' be the Skolem hull of N U {jo, 4,7(G]} in (H()\),€,<3%), let j = jo + 1,
¢' = ¢°1j and p; = 7[G].

(a) = (b) Similar proof.

(b)* = (a) Use (b)™". Specifically, for i < alet G; C P; be generic over V,1 < a.
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Assume the desired conclusion in clause (a) fails then this is exemplified by some
N, (p,r) where N < (H(\)VIG:l €) is countable, (p,1) € (Pa/G;) *seal(Z) and
(p,r) € N (where N € V[G;]). So for some go € G; and z we have: z is
a P;-name, z[G;] = N and qo IFp, “z and (p,1) € (Pa/F;) * seal(Z) form a
counterexample to semiproperness”.

Clause (b)* applied to z, o, p gives N',p',¢', Ay(») and j as there and
w.lo.g. ¢'li € Q; and let N! = NY[G,].

As P, /P; is semiproper, there is ¢*> € P, which is (N, P,)-semigeneric,
p < ¢ and ¢* = ¢?]j and let G, be such that ¢> € G, C P, and G, is
generic over V. By the choice of go (which is < ¢; < ¢* < ¢? € G,) without
loss of generality G; = G, N P;. So E,p,r, A € N|G,], where on A see clauses
(ix), (x), (xi) and as seal(Z[Gq]) is A[Gql-complete there is 72 € seal(Z[G,])
which is (N1[G,],seal(E][G4])-semiproper and above r[G,]. So for some r*,
@® Fpssear(z) “ r* is above 1 and is (N[Ga), (Pa/Gi) * seal(Z))-semi generic”.

So (q2,1*) contradict the choice of gy and we are done. Os 12

2.13 Claim. Let Q = (Pi,Qj :1 < a,j < a) be a semiproper iteration and «

be a limit ordinal.

(1) If we have P,-name E satisfying £ C E* = {Z € VP~ : Z is a P,-name
of a maximal antichain or just a pre-dense subset of %Q, such that for
every i < @, (Po/Pit1)* seal(Z) is semiproper (i.e. this is IFp,, )} then
(Pa/Piy1)* Seal(E) is semiproper for every i < a.

(2) If
(*) (Pa/Pit1)* seal(Z) is semiproper for every i < a and maximal an-

tichain (or just a pre-dense subset) Z of B9 (from VP=) to which
w1 \ S belongs,
then for every i < a, (Pa/Piy1) * Seal(B?,S) is semiproper and for
Kk > |P,| strongly inaccessible (P,/P;41) * SSeal(B?, S, k) is semiproper
with k-c.c.
(3) The hypothesis (*) of (2) holds if for arbitrarily large i < a:

Q; is semiproper and I-p, “Rss(Rz2)”.
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(4) If (A is a Py-name and it is forced for P, that) Z is a predense subset

of A, V.0 A C B+ and A < B? (for this o = sup{i : A < BP+1}
suffice), then £ € E* (E* from part (1)).
(5) Assume
(xx) A = (Ag : B < B*) and for B < B* we have: IFp, “Ag C BFi+
for some i < ” and if i < @ and Z is a P,-name of a pre-dense
subset of A to which w; \ S belongs then IFp,,, “if Ag C BFi+1 then
(Pa/P;41) * seal(Z) is semiproper”.
Then for every i < a, (Py/Piy1)* Seal (A4, S) is semiproper and if x > | Py
is strongly inaccessible then (P, /Pi+1) * SSeal(A, S, k) is also semiproper,

satisfies the k-c.c., has cardinality x, forces k = Ry and forces 4z <o
%V[PO*SSeal(A,S,n)]'

Proof. (1) Use Claim 2.12 w times and the definition of RCS (note that in
2.12(b) we do not get q'1i = g, but we can replace ¢q by any ¢/, ¢ < ¢’ € P).

(2) For the first phrase use 2.13(1). For the SSeal case, use also 2.9 with
A = (BQ) (so £ = 1), where the assumption of 2.9 can be gotten by the first
phrase; the k-c.c. is proved as in 2.11(3) using models N as in 2.9.

(3) By 1.7(5) the statement Rss(X2) implies that semiproperness and pre-
serving stationarity of subsets of w; are equivalent. Suppose i < a,Q); is
semiproper and IFp, “Rss(R;)”. As by 2.8(5), seal(E) (for = C B? a maximal
antichain) preserves stationarity of subsets of w; from V' which are stationary
in VP~ (and this property is preserved by composition (though not by limit))
and P, /P, = Q; * (Py/P;41) is semiproper hence preserve stationarity of sub-
sets of wy, we get that (Py/P;)* seal(Z) preserves stationarity of subsets of w;
hence is semiproper (in V7 of course). This holds for arbitrarily large i < a,
hence (by the composition of semiproperness) for every non-limit 4, which is
the demand (x) of (2).

4) As in the proof of (**) from the proof of 2.11(1), it suffices to prove
clause (b)* of 2.12 for successor i < a, so let A, E be as in the assumption of
2.13(4), ¢ I “{A,Z} € N” and N, 1,p,q be as in the assumption of 2.12(b)*.

We know that for some iy > i we have A C BFo+1, so without loss of generality
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(possibly increasing p and g) for some 4g, p IF “A4 C B, 4+1”, by the preservation
of semiproperness by composition without loss of generality ig =7 + 1. Let G;
be such that ¢ € G; C P;, G; generaic over V and N = N[G;]; in V[G;]

we define T & {A € BPor1 1 p Wp )5, “A ¢ £’} So T € N[G] and

VIGi] E “Y] <R, T # Bsolet,in V[G;], T = {A¢ : ( < w1} and without loss
of generality (A¢ : ( <wi) € N[Gj]. Let B = {6 < wi: 6 limit and 6 ¢ {J, 5 Ai},
so B C wy, B € V[G;], and (in V[G;]) we have: BN A¢ = @ mod D,,. So in
VP« B cannot be stationary (as B € B, A < B?) so as P, /G; is semiproper
also in V[G;] we know that B is not stationary, and we finish as in the proof
of (xx) from the proof of 2.11(1).

5) The proof of 2.13(2) (and see 2.16). O2.13

2.14 Claim. Suppose Q = (P, Qj,tji<a+lj< a+1) is an RCS iteration,

Qla is S-suitable, and k > |P,] is strongly inaccessible.

(1) If to = 0,Q, = SSeal((B[P;] : j < a,tj = 1), 5, k) then Q is S-suitable
and also: for a successor or a = cf(a) > |P;| for i < a even Q, is proper.

(2) If a is a limit ordinal, A = (A¢ : { < &) is a sequence of (Py-names of )
subalgebras of BRI with AeVica Ac C BFi+1 and for every ¢ < &,IFp,
“for ¢ < € the set {i < a : A¢[S < B[P;11]1S} is unbounded below a”,
and IFp, “for every j < a satisfying t; = 1 for some (, B S < A;[S”
and t, = 0, and Q, = SSeal(A4, S, k) then Q is S-suitable.

Proof. (1) First assume a is non-limit or @ = cf(a) > |P;| for i < a. We have
to check clauses (A) — (F) of Definition 2.1. Clause (D) holds by Claim 2.11(1);
clause (E) holds by Claim 2.11(3); clause (F) holds by 2.11(2); the other parts
of Definition 2.1 hold trivially. Lastly the conclusion concerning “Q, is proper”
holds by 2.11(3).

If o is limit, then this follows from 2.14(2) which is proved below.

2) Let E = {E : E is a Py-name of a pre-dense subset of B[P, 1] to which w;\ S
belongs for some i < a and (P, /Pj+1) *seal(Z) is semiproper for every j < a}.

By 2.13(4) above: if Z is a Py-name of a maximal antichain of A¢(¢ < &) then
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E € E. So by 2.13(5) clauses (D),(E),(F) of Definition 2.1 hold (the others are

trivial). Uz.14

2.15 Claim. 1) Suppose A = (A¢ : ¢ < &) is an increasing sequence of subal-
gebras (or just subsets) of 2B, x regular, N a countable elementary submodel
of (H(x),€,<}) and EB%,S from 2.9(1) holds, i.e.

69%,5 if(€&NN and E € N is a pre-dense subset of A¢ and w1 \ S € E
then NNw; € Uyennz 4

If @ € N is a strongly proper forcing notion, p € Q N N then there is
g€ Q,p<4q,qis (N,Q)-generic and q I- “@%’[g"]”.
2) In 2.10 we can conclude also that for a strongly proper @ which is (w; \ S)-
complite and satisfies |Q| < &, the forcing notion Q* SSeal(BV, S, n)vq is
semiproper (w; \ S)-complete.

3) Parallel strengthenings of 2.11, 2.13 (see mainly 2.13(1)) and 2.14 hold.

2.15A Remark. This claim can be used in §3, §4 to get appropriate axioms:
it gives a comprehensive family of forcing notions which we can use quite freely
in the iterations, without making problems for what is already accomplished

there.

For a more general property: see 4.6.

Proof. Straightforward (reread the proof of 2.11). Oa 15

2.16 Claim. Assume A = (A, : ( <€), A [¢ C BVIS,

W=Wz= {a :a C H(32(Ry)), a is countable, a Nw; is an ordinal and:
if { < §,E C A¢, E is a pre-dense subset of A¢,
w1 \ S belongs to E and {(,Z} € a
then a Nw; € U{A tAe€ Eﬂa}}

is a stationary subset of H(J2(R;)) and k > Ny is strongly inaccessible. Then

(1) P, % sSeal(4, S, k) is W-proper.

(2) IFp, “Ac1S < BY1S” for ¢ < €.
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(3) In fact, Py is (w1 \ S)-complete strongly W-proper and satisfies the k-c.c.
(4) If wy \ S is stationary then P, does not add w-sequences of ordinals.

(5) If&€=¢+1, Ac = BV and Rss(X;) then Py is semiproper.

(6) If A > K, Rsst(k,)) then VP~ |= Rss(Rg, \).

Proof. 1) W-properness is proved as in the proof of 2.11(1) (and 2.9) restricting
ourselves to models N such that N N H(3y(X;)) € W.

2), 3), 4) As in the proof of 2.11(2), (3), (4).

5) W-properness implies semiproperness by 2.8(7), (8), (note: we can
ignore A. when € +1 < § as Wiy, _,) = Wy).

6) Should be clear. Uz.16

2.17 Claim.

Assume Q = (Pi,gj : 1 < K,j < k) is an RCS-iteration, s is strongly
inaccessible (i < k = |P;| < k) and, for stationarily many ¢ < k, for arbitrarily
large j € (i, k), BRI < BFi. Thenin VP~ for A = (B[P.]), W = W contains
a club of Sy, (H(32(N1)).

Proof. By Fodor’s Lemma, B~ satisfies the Xy-c.c., hence we can apply 2.11.
U217

§3. On P(w1)/Dw, Being Layered
or the Levy Algebra

On layered ideals see [Sh:237a], Foreman Magidor Shelah [FMSh:252] and
[Sh:270]. A reader can read sepeately 3.1 — 3.3, 3.4 — 3.8, 3.4 — 3.10. Here
in 3.1, 3.2, 3.3 we deal with “B[S being layered”; in 3.4, 3.5, 3.6 we prepared
the ground for “B[S being the Levy algebra” and in 3.7, 3.9 we deal with
“B[S being the Levy algebra”. We deal also with getting forcing axioms and
try to present some approaches (rather than saving in consistency strength

around “ZFC+ there is a supercompact cardinal”).
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3.1. Theorem. Suppose & is supercompact. Then for some forcing notion P:
(i) P satisfies the k-c.c., has cardinality x, does not collapse R, but collapses
every A € (Ry, k) and IFp_ “s = R, and 2% = 281 = R,”,
(ii) B[P] is S*-layered (see 3.1A(4) below), for some stationary S* C {§ < & :
cf(8) =Ry (in VF)},
(ili) in VP, Azt [Q semiproper collapsing X, and B[(VF)] < ‘B[(VP)Q]].

3.1A Remark. 1) In (iii), of course if we have Az rather than Az, we can
replace the condition on the forcing @ by:

for some R,Q < R, R is semiproper, B[VF] < B[(VF)E] and R collapses
Ry (of VFP).
2) Note for 3.1(iii) that, in V¥, we have |28| = 2% = R,.
3) In (iii) of 3.1 we can replace Azt by Az,,; similarly in 3.2, 3.3(1)(iii).
4) A Boolean algebra B of regular cardinality A is S*-layered (for S* C ))
if: letting B = |J;., Bi, B; increasing continuous in 4, |B;| < A, we have
{6 <X:0€8*= Bs B} eD,.
5) We say that a filter D on a set A is S-layered if P(A)/D is S-layered.

Proof. Let S = wy and let h : Kk — H(k) be a Laver diamond (see Definition
VII2.8; later we may say: repeat this proof for other stationary S C w; and
h: k — H(k)). By induction on i < k we define P;, Q;,t; such that:
(A) Q* = (P;,Qj,t; : i < ,j < a) is an S-suitable iteration.
(B) Q4 is defined by cases:
CASE a: Assume (%); + (*)2 where
(¥)1 a is measurable and A\, [Pl <co]and i<a & t; =1=
B[P;] < B[P]], and Rss*(a,2%) and
(*)2 h(a) is a Py-name of a semiproper forcing notion, and IFp,_ 44 ()
“B[P,] < B[Ps * h(a)] and a = RY ¥ is collapsed”.
Then to =1 and Qq = h(a) * SSealV P @ ((B[P] : i < a, t; = 1), 5).
CASE b: Assume (*); but not (*)a,
then to =1 and Q4 = SSeal ((B[P]:i < a, t; =1),5).
CASE c: Assume not (x);.
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Then t,, = 0 and Q4 = SSealV[Pl((B[P] : i < a,t; = 1), ).

3.1B Observation. Q is S-suitable and 8 < k = Q[8 € H(x) and: Qp is

semiproper when 8 = cf(8) > |P;| for ¢ < 3 (or [ successor).

Proof of 8.1B. We prove by induction on 8 < s that Q[ is S-suitable and
when @ < k, then QI3 belongs to H(k) and if 8 = a + 1, a = cf(8) > |Py| for

i < a then @, is semiproper.
For B = 0: trivial.
For G limit: by 2.3(1).

For 8 = a +1 and for a, (*); above fails: By the induction hypotheses Q[a =

(Pi,Qj,tj 1 1 < a,j < ) is S-suitable, hence it is a semiproper iteration and
by our choice Q8 = Q[(a + 1) is an RCS iteration and letting ko be the
first strongly inaccessible > |P,|, we have Qo = SSeal ((B[P;] : 1 < ayt; =
1), S, Ka).

Now by 2.14(1) we are done (in particular Q, is semiproper if: « is a

successor or a = cf(a) > |P;| for ¢ < ).

For 8 =a+1 and for a, (*); above holds but (x), fails
By the induction hypothesis Qla = (P;, Qj i<, j <a)is S-suitable,

hence a semiproper iteration and by our choice Q[8 = Q[(a + 1) is an RCS-
iteration and letting x, be the first strongly inaccessible > |P,|, we have:

to = 1 and in VP we have Qo =SSeal((B[P]:i < a,t; = 1), 5, ko).
Note that, as (*); holds, a is measurable so {7y < « : case (c) applies and
v = cf(y) > |P;| for i < ~} includes all strongly inaccessible non-measurable
cardinals in C, for some club C of a. It is well known that there is a normal
ultrafilter on o to which this set belongs so 1.10 applies.

By 1.10(1) and, as V F “Rss*(a,2%)” holds by (*)1, we know that in
VP Rss(Rg,2%2) holds. So by 2.8(7) every maximal antichain Z of 2B[P,]
(in VP=) is semiproper. Hence by 2.10 SSeal(®B, S, k,) is semiproper. Now
Bl — BP [as o is (by (#)1) strongly inaccessible, Nico |Pil < K, now use
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2.2(1)(c)], and SSeal(BR', S k4) = SSeal((B[P)] : i < a,t; = 1), 5, ko) by
claim 2.7, as t, =1 and [i < a & t; = 1 = B[P|IS < B[P,]]. Together, Q,

is semiproper and we can check that Q|3 is S-suitable.

For 8 =a+1, and for a,(*); + (x)2 above holds.

Similar to the previous case, but now we use the statement in (x)2 to
note that h(a) is (in VF~) a semiproper forcing. Now by (%), we know that
B[P,] < B[P, * h(a)] and VFP=*(*) = “B[P,] has cardinality ®;” hence we

can use 2.11 to show that SSealVlPa*h("‘)](%P°,S) is semiproper. Os31m

Remark. Note that we could use only semiproper Q,’s (so demand in ()2 that

h(a) is semiproper).

3.1C. Observation. (1) If @ < k, and t, = 1 (equivalently (x); holds) then
in VP we have B[P, [S < B[P,]]S.

2) If D is a normal ultrafilter on S<.(H(3g(k)), then {a : a € S<(H(3s(k)))
and (x); is satisfied by ank} € D.

Proof of 3.1C. Should be clear. Os.1c

Letting P = P, and S* = {a < & : (x); + —(x)2 holds for a or at least
(¥)1 + VP~ |= “cf(a) = 1"}, we easily finish, note that for & € S* U {x} :
BlPa] = U
a stationary subset of x (by 3.1C) and forcing with P, preserves it (as Py
satisfies the k-c.c.) and @ € S* = IFp_ “cf(a) = R;” (check Q4). Also the other

B[P,] and for « € S*: t, = 1. As K is supercompact S* is

i<a

requirement causes no problems. Os.1

3.2 Theorem. 1) In 3.1 we can weaken “P satisfies the x-c.c” to “P does not
collapse R and has cardinality ” but add that we have 2B [P] is layered, which
means it is S*-layered for S* % {6 < Ry : ¢f(6) = Ry (in VP)}.
2) In 3.1 we can add to the conclusion (P = P, Q = (Pi,Qj,tj 11 <K, j < Ky)
is .S suitable and):

(iv) In VP, Az [Q is semiproper and i < k & t; = 1 = BF < B[(VF)?]].
3) In 3.2(1) we can add to the conclusion (P = Py, Q as above and):
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(iv)™ In VP we have Ax* [Q is semiproper changing the cofinality of X5 to
Ro,and i<k & t; =1= B < %[(VP)Q]].

Proof. 1) Force as in 3.1, and then let P = P, x Qx where in VP~ Q, =

club(S*U{é : chP(J) = No}), where for S, club(S) = {h : h astrictly increasing
continuous function h from some v + 1 < sup(S) to S}.

As, in VP~ the set S* = {a < k : (¥); + =(*)2 from the proof of 3.1
hold} C {§ < Ny : cf(d) = Ry} is stationary, moreover o € S* implies: there
is, in VP= a subset b, of a of order type w; such that v < a = b, Ny €

U VP As (U (P(B) N VF8) : a < k) is increasing and continuous and
B<a B<a
VP «P(B) N VP = Ry, clearly Q, adds no bounded subsets to x and

K= N;/[P"’], so B[P,] = B[P, * Q] and Iq, {0 < & : cf(§) = Ry but not
B[P5][S < B[P,]S} is not stationary.

Why does (iii) of 3.1 continue to hold? Suppose, in VP*QN, R is a semiproper
forcing collapsing R, such that (VF)9 k= [Fp “B < B[R]”]. Let R be a
P, * Qx-name of such a forcing notion and (p,q) € P, * Q. Apply (iii) to
Qx * R in V[P,] (strictly speaking, its proof). L.e. by the properties of the

w*R .
Laver diamond, for some Y, QIQ o <x, and M < (H(x),€,<}) to which

Q, Qx, R, and (p, q) belong and M isomorphic to some (H(x1),€,<},), by
the Mostowski collapsing isomorphism g, taking P, to P,, where k3 = M Nk,
and h(k1) = g(Qx * R). Clearly &, satisfies (*); and without loss of generality
also (x)2, hence t,, = 1. So we could have increased (p,q) to guarantee the
existence of the generic enough subset of R (i.e. we use the generic subset of

9(Qx) to increase q).

(2) In the proof of 3.1, case b is now divided into subcases b; and by;
case by: (x)1, not ()2 but
(¥)1.5 h(c) is a Py-name of a semiproper forcing notion such that i < a,
t; =1 = B < BPaxhla),
Then we let to = 0,Qa = h{a)x* SSealV[Pa*h(a)]((%[Pi] 1< oyt = 1), S, Ka),
where kg is the first strongly inaccessible > |Py * h(a)|.

case by: (%)1, not (x)2 and not (*)1.5.
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Then (as in the old case b) tq = 1,Q4 = SSealVIPel((B[P) : i < o, t; = 1), 5).
3) Should be clear. O30

3.3 Theorem. In 3.1, 3.2 we can add, as a parameter (from V), S = (Sy, Sa, S3)
a partition of wy, S = S is a stationary and restrict ourselves to pseudo (x, S3)-
complete forcing, see X 3.10, (so if S3 is not stationary this is not a restriction)
so if S5 is stationary the forcing notions will not be adding reals; i.e.

1) There is a forcing notion P such that:

(i) P satisfies the k-c.c., does not collapse Rj, but collapses every A €
(R1,K),IFp “k = Ry and 2% < Ry, 2% = R, and if S3 =0 mod D,
then 2% = R,” and P is pseudo (*, S3)-complete,

(ii) B[P]1S1 is S*-layered, for some stationary S* C {6 < & : cf(§) = ¥y
(in VP)},

(iii) in VP, Az*[Q semiproper, pseudo (*,S3)-complete collapsing Ry and
B{(VF)] < B((VP)2],
(iv) if S3 is stationary, the forcing P adds no new reals (so V¥ = CH).
2) In 3.3(1) we can replace “P satisfies the k-c.c.” by “P does not collapse
k" and have B[P] is layered, i.e. S* = {§ < Ry : cf(§) = N1} (in VF).
3) Wecanaddin3.3(1): (P = Px,Q = (P;,Q;,t; : i < K,j < k) is S;-suitable
and)

(v) in VP, Az[Q semiproper, pseudo (*,S3)-complete and i < k & t; =
1= B[VF] <« B[(VF)?]].

4) Actually in (3) it suffices “for i < K, (Ps/P;11) * Q is semiproper, pseudo

P.xQ
(*,S3)-complete and: j <i&t;=1=>BF <V =~ 7.

3.3A. Remark. 1) In 3.2(2)(iv) and in 3.3(3)(v), if we deal with Ax (Ax*) it
is enough that Q < Q’, Q' as there, or more directly, for each i < k, there are
enough models NV as in 2.9.

2) The “solution” of x/3.3(3),(4) = 3.2(3)/3.2(2) holds.

Proof. 1) Like the proof of 3.1 but we seal only sBVI[P:11S; when t; = 1 and in
(¥)2 we add “h(a) is pseudo (*, S3)-complete”, but we have to check that all
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forcing notions @, are pseudo (*, S3)-complete (and use the iteration lemma
X 3.11). Now all the sealing forcing notions which we use satisfies this trivially.

2), 3), 4) Similar. Us.s

3.4. Claim. Suppose Q = (Pi,Qj 11 < K, j < k) is a semiproper iteration, &
strongly inaccessible with k > |P;| for ¢ < &, and lastly S C w; is stationary.
Suppose further
(¥) (a) for i < K, in VFi+1, Player II wins O({R;},w, D + E;}) where E}' =
{6 < K : 6 > 1,0 strongly inaccessible, (Vo < 0)[|Po| < 6] and IFp,/p,, ,
“Qs is semiproper” }; (for a definition of the game see 1.9A(2)) so we
are assuming E;7 # 0 mod D, in VF+1 for each i < k; and let
Et* =Ef.
(b) E* = {i <k :IFp, “Rss(Rz) and Q; semiproper”} is unbounded in .

Then Ri1 def (P./P;y1) * Nm x SSeal(B[P], S) is (in the universe VF+1, Nm

in VP=, SSeal in VF=*N™ of course) is semiproper for every i < .

3.4A. Remark. (1) Remember that Nm = {T': T C “>(X;) is closed under
initial segments, is nonempty, and for every n € T we have [{v : n Qv e T}| =
Na}; ordered by the inverse of inclusion. Clearly {T" : for n € T, Sucy(n) is a
singleton or has power Ny} is a dense subset, so usually we restrict ourselves to
it. For such T; the trunk is the € T of minimal length such that |Sucr(7’)| > 1.
(2) We can use Nm(D) instead of Nm and even Nm', Nm'(D).

(3) We can replace Nm by any forcing notion satisfying, e.g. pseudo (x,S)-
completeness (see X 3.9, 10) or the I-condition (see Chapter XI) where I € V
is a family of k-complete normal ideals or even U P(I), see Chapter XV.

(4) Instead of (*)(b) we can have “largeness” demands on k. We need it to
make (P,/P;)* seal(Z) semiproper for j € ET,E a maximal antichain of B
from V=,

(5) Note that IFp, “cf(§) = No” is not forbidden in the definition of E;;
we can in clause (a) of (x) of 3.4 in the game allow pressing down functions

(see 1.9A(4)), add IFp,,, “cf(d) = Ry”; in the proof below we strengthen the
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definition of j € E?, by j = min(Ny ;N &\ Ny) and demand E?, to be stationary
and this somewhat simplify the proof.

Proof. We work in VPi+1 so let G;;1 C P41 be generic over V. Let A be regular
and large enough, N < (H(M)[Gi41],€,<}) countable, i € N, Kk € N, K €
N, Q € N and (p“,;gb,yc) € R 1NN.

We shall choose below ¢y € P/P;;1 which is (N, P;/P;;1)-semi-generic,
p® < q(y and G, C P, generic over V containing G;;1 U {q(}.

We now, in V[G] (but G, is defined only during the definition for n = 0)
define by induction on n, T, N, (n € T,,) such that:

(A) T, C nzf‘?,

B) To={( )},

(C) (W € Tny1)vin € Ty) and Tpp1 N "2k =Ty,

(D) (Vn e Tp)[{i: n"(i) € Tp4+1} has power k],

(BE) N[Gk] N HA)[Gis1] <w, Ny < (H(N)[Giy1), €, <3,Gk) and Ny is
countable and (pa,pb, p°) € Ny and Qe Ny, (note, abusing notation
we do not distinguish strictly between N(y and (N, G N Ny) and
similarly for N,)

(F) for n € Tp41 the model N, < (H(/\)[Giﬂ], €, <:‘\,G,¢) is countable,
extends Ny, and Nyt <k Ny,

(G) n € Ny,

(H) If £ is a P;/P;y1-name of a dense subset of B(P,), £ € N, and
n € Ty, then for some natural number k = k(Z,7n) and every v : if

1 Qv € T4k then:
(3A€ N,) [A €E& Aa(Py/Piy1) — name & NNw, € A[GN]],

(I) EY is a stationary subset of s, where
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E) 4f 15 < k:N, <. N, ; where N, ; is the Skolem Hull
of N, U {5} in (H()\)[G,»H], e, <%, GN) and
7 is strongly inaccessible in V' and

(Vi < )[|P| < j] and IFp; “Q;[Gj] is semiproper}”.

Now in carrying out the definition, (H) involves standard bookkeeping.

For n = 0 (we start to work in V[G,41]) our main problem is satisfying
(I). We shall now define g(y. For j < &, let N; be the Skolem Hull of N N {3}
in (H()\)[GHI], e, <} ) By (+)(a) and XII 2.6.

E' = {j < k: N <, Nj,j strongly inaccessible, |P;| < j for every i < j and
IFp, /Py, “Qj is semiproper”}

is a stationary subset of k. So by the Fodor lemma [as § € E! = cf(d) > No
in V[Git1] and u < k = pM° < k] we know that for some stationary E? C
E',(N; : j € E?) form a A-system; let N{N; : j € E*} be N{,. For j € E? let
g; € Pe/Pit1 be (Nj, P/P;1)-semi-generic and above p®. Now we know that
P; = UC < P, hence by the Fodor Lemma w.l.o.g. ¢;[j is constant, so let this
constant value be called ¢ ). Clearly gy is (N, (’), P, /P;;1)-semi-generic and it
is the ¢y which we promised. Now we actually choose G, i.e. a subset of P,
generic over V and including Gi41U{q(}. Let Ni) = N{, [G]NH())[Gi11]. So
N¢y < (H()\)[Gi+1],€,<}\ ), moreover (N, Gx N Ny) < (H(N)[Git1], €, <3
yGx) so Nyy) is as required in clause (E). As for clause (I), by the genericity
of G, we have {j € E? : ¢; € G,;} is unbounded in  (even stationary) and it
include E) (think).

For n > 0 assume N,, are defined, ¢g(n) = n — 1. Clearly, as P, satisfies the
K-c.c., for some &, < K we have (Ny : £ < £g(n)) belongs to V[G,,] and &, is
a successor ordinal > sup(N, N «). By (I), EY is a stationary subset of &, and

we shall define E} O E) stationary and will let
Togmy+1 v :nave "D} = {n°(j): j € Ej}.

So Tyg(n)+1 Will really be constructed as required.
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Actually Ej is the interpretation of some Py/G.,-name E9 forced to be
as above: just read the definition in clause (I). W.l.o.g. some member of G,
force (IFp,) that N, EY are as above.

In V[G,] for each v € E) = E}[G,/G.,] there is g} , € G./Ge, such that
p b “y € BY. Soin V[G,], for some ¢2 € G we have {y € EJ : ¢} [y = ¢2}

is stationary. As we can increase €, w.l.o.g. q,27 € G, In V[G,,] we define

E}, = {v: there is ¢ = qu such that qu v = q,l, and

Gy PPuscL, “Y € B},

so By € V[G.,], E} 2 EJ hence E} is stationary.

So, in V[Gk], NJ, = the Skolem Hull of N, U {7} in (H(A)[Git1], €
, <}, Gx), clearly N,Om C Np, (as Gy is definable from G, and <) hence
N, < N} . Also for every z € N for some function f € N,, Dom(f) = &,
f(7) is a Py-name of a member of H(\) and z = f(v)[G,].

But P, satisfies the y-c.c., hence f(7y) is a Pg-name for some § < <y and let
hs(7y) < v be minimal such 8 so hf(y) € NJ ., but as N, <. N} _, it follows
that hs(y) € Ny, so supgep, (hs(7)) < 7, hence, increasing &, and decreasing
E} (preserving their properties) w.l.o.g. we have N | € V[G¢,].

For v € E}, choose any G/, such that e N(v+1) € Gy, Gy C Gy
and G/, is generic over V. Let our bookkeeping give us £, € N, C N, a
P,.-name of a pre-dense subset of B[P,].

We shall now prove that condition (a) of 2.12 holds for the iteration
<Pj/G;+1,Qj Ty + 1 S] < I‘L)

and any non-limit ordinal (denoted by 4 in 2.12) in the universe V[G’,,].
Let £ € [y + 1,k) be a non-limit (or just Q¢ semiproper). By (x)(b) from
the assumptions of 3.4 we can find v(¢) € E*, € < v(€) < K, such that:

IFp, “Rss(RY ") and Qe is semiproper”
Py s(N and Q.(¢) is semiproper”.
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Now (Py/Py(g))* seal(E) does not destroy stationary subsets of w; (as P./Py)
is semiproper and Z is pre-dense so that seal(Z) preserves stationary subsets
of wy); so because () € E* this forcing is semiproper by 1.7(3). As Q;
is semiproper, P,¢)/P¢ is semiproper. Hence (P,/P¢)*seal(Z) is semiproper.
So condition (a) of 2.12 holds, hence condition (b) of 2.12 holds. Let N,
be the Skolem hull of N, in (H(\)VI¢+1l €, <3,G),,). Note that ¢3 I-
“NS, < Nj., € Nyp,”, hence g5, I+ “N, < N} < N}, < N,, and
NyNk = Nr(r),v Ny = N,%y,y Nsup(Np, NK) C K.
Now by 2.12(b) applied in V[G',,,], there is countable model N,?),Y satisfying
N2, < (H()\)V[G"“],e, <3, {y+1) such that N} = <,41 N?. (remember
0.1(9), and IFp ., “y < Rg”) and ¢, € P./Gy41 and j,, < K successor
such that:

(i) a9y € Pjy o /Ghp1s ¥ <lny € N,

(it) a5 > 45
(iii) gy, is (N2, P,

i, )-S€Mi-generic, and

(iv) qu Fp;, /Py, “for some Ae Ngﬂ we have: A € 2, and NNw; € 4”7
and A is a P;,  -name.

Also by (*)(a) of the assumption of 3.4, there is &, > sup(N2, N k) > v
strongly inaccessible, such that A, <t |P¢| < &n,4, and N}, = Skolem Hull of
N2, U{tnq} in (HO[Gysal €, Ghyy <3 ) satistyies N2, [Ghp] <x N3, and
4, € P, . Back to V[G,], let N, be the Skolem Hull of N} U {v,&,,}
in (H(\)[Gi41],€,<3,Ge,), and g5, € P, _ /G, forces all the above and in
particular is above q% and qu. In addition q,smf['y +1,k) = qu[[’y +1,k) =
@My +1,6n4), and ¢5 (v +1) € G, 4, 50 g5 len € Ge, and Ny < N _,

Y€ N, ., NpNk=N,Ny= N} nsup(N, N k), and

g3, IF“the Skolem Hull NS of N} in (H(\)V%+1) e, <X, G11)
satisfies N,?,,y Nsup(N, NK) = Ny NK”,
hence

¢> ., I-“the Skolem Hull NE _ of N in (H(\)VI%+] €, <3,G541)

satisfies NS’,Y Nsup(N, NkK) = Ny Nk (as V[Gy41] E |7 = Ry)”.
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(looking at the definition of EJ in clause (I) above). As we can increase ¢, and
decrease E2, w.lo.g. g1y € Ge, and ¢}l is the same for all v € E?.

Now as g5 ., € Px/G., and ¢ |7 € G, , easily Fp./a., “E} def {v:g, €
G} is a stationary subset of k7, so we have defined at least E}, Now in V[G,],
if v € E}[Gk] then v € E) (see above). We still have to define N, - (,y and
Eg. (y) (fory € E}[G.]). For each such y we repeat the proof in the case n = 0
with universe V[Ge, ] and Skolem Hull of N2 in (H(\)VIC+1l € <%, G, )
here standing for V[G;41], N there.

We have carried out the construction.

We now define by induction on n, for every n € T N ™k, a condition
ph € Nm and m, < w such that (note Ny,[G,] < (H(A)[Gx], €,<%), Ny[Gx] N
HN)[Gi1] = Ny):

(a) pb € NylGy], my < w and pl(’) = p°[G.l,
(b) pf’, € Nm, and tr(pﬁ’,) (the trunk of p?) has length > /g(n) (and has &

immediate successors in p}),

(c) P, < pY and mype < my when £ < £g(n); and if P2}, has a trunk of length
> Lg(n) or mype > £g(n) then: pl,’, = pgu & my = myyy,

(d) if n € T,,, o is a Nm-name for a countable ordinal, & € N,[G], then for
some k = k'(a,n), and every v € |J Ty, for some ordinal 8 = B(a,v) €

m<w
N, we have

k+1={ < Lg(v) : mupe < muperny H &0 < =>ph lbnm “a = B(a,v)”,

(e) if n € T, and E is a Nm-name for a pre-dense subset of B[P,] and

Z € N,[G,], then for some k = k?(E,n), for every v € |J T, we have:

m<w

[k+1 < |{€ < eg(l/) TMype < mu[(£+1)}| &nd V]

= [for some A € N,[Gn,.] we have N Nw; €A & p’, IFnm “A € Z7].

(f) if p? has a trunk of length < £g(n), say vy, and m, < fg(n) and if h, is a

one-to-one function from & onto {j < k : v, " (j) € pf,}, hy € Ny[Gy], then
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for (i) € U,, T we have:
(Vp € Dy - (3y)[Eg(p) > Le(n) = p(te(m) = hy(i)],

(g) for n € Ty, we have: the sequences (k'(a,7) : @ € Ny[G,] is a Nm-name
of a countable ordinal) and (k%(Z,7) : £ € N,[G,] is a Nm-name of a
predense subset of B[P]) are with no repetitions, with disjoint ranges

whose union is a co-infinite subset of w [Why the m,’s? just as below T

depend on pf].

There is no problem to do this. [For (e), when we come to deal with Z, say at

n, where pf, has trunk of length < £g(n) and m, < £g(n), we let
YT={A:(Fp)(p <peNm&plnm “A€E")}

So T € N,[G,] is a pre-dense subset of B(P;), and by (H) above there is
k(Y,p) as there, choose it as k%(Z,n), so we shall have p% = pi’, ifrape
The(p)s P8(0) < Le(v) +K2(E,7)]

Now in VP~ let:

C={per:pec pb[Gn] and for some n € UT"’ p is an initial segment

n

of the trunk of pz}.

We can easily see that p® < ¢® € Nm (in V[G]). Also (in V[G,]) ¢® is

(N[Gx],Nm)-semi-generic and moreover

¢ Irnm 6N N[GL)[Grm] = 0 | NynlGal”,
I<w

where GN, is the (canonical name of the) generic subset of Nm and 7 is the
Nm-name of the w-sequence in “« which it defines naturally and v is the Nm-
name of the w-sequence in “k such that v[n € T,, and the trunk of pfi by 1S <.
[Remember that if Ny, Ny < (H(A),€), N;Nwy = NaNwy,and i € NyNNy, i <
Ro, then Ny Ni = N N4.] Hence ¢* IFy,, “P(w1)VI% N N[G.][GNm] =
Plw)VCI N Uy, NGl
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Now clearly by the above and (e) we have
¢® Fnm “for every pre-dense subset = of B[P] in N[G.][GNm],

Nnw e | J{A: A€ EnNIG][Grm]} -
AcE
So we can apply Claim 2.9 to get ¢°, which is (N[G][GNm], SSeal(B[Py], S))-
semi-generic > p°[G|[GNm|. Let ¢® = q() so we are assuming just ¢* €
G, C P,,G, generic over V and so for some P.-name gb, we have: ¢* IFp_
“gb is as above ”. Similarly for some q°, (g%, gb) IF(P./Piy1)«Nm “g° is as above”.

Now (q“,gb, q¢) is as required (i.e., (R4, V)-semi-generic). Os.4

3.4B Remark. It seems that we can weaken clause (a) of (x) of 3.1 to

(a)’ for i < k in VPi+1) player II wins in the game O({X;},w, k).
See [Sh:311]

3.5 Claim. Suppose Q = (Pi,Qj + i < K, j < k) is a semiproper iteration,
k > |P;| for i < k and S C w; is stationary. Suppose further that
(*) (a) for i < Kk, in VP, Player II wins in O({®:},w, Dx + E;) where E}f = {4 <
k16 > 1, d strongly inaccessible, IFp;/p, “Qs is semiproper” },
(b) E = {i<k:IFp, “Rss(R) and Q;-semiproper”} is unbounded,
(c) It is forced (IFp,) that W C {§ < k: VF= |= “cf(6) = Ro” } is stationary
(W a P.-name).

Then (Py/P;1)*cluby, (W)xSSeal (B(P,),S) is semiproper for i < k where

club, (W) def {f : for some non-limit v < u, f is an increasing continuous

function from v into W}.

Proof. Like the previous claim, only after defining N, for a set G, C P,
generic over V,q(y € Gy, in V[G,] there is n € “k, A\,(nIn € Ty) such
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that n(£) > sup(Nyje N k) and sup{n(£) : £ < w} belong to W|[G,| and then
in V[G,] continue with |J, Ny[G]. Os.s

3.5A Remark. 3.5, 3.4 are cases of a more general theorem, see XV.

3.6 Claim. In 3.4, 3.5, if we add to the hypothesis:

(%) player II wins in V(i < &), for D in the game of “divide and choose”
ie. X 4.9 for S ={2,80, N1 },a = w,

(x)! for i < j < & non-limit, P;/P; is pseudo (*,w; \ $*)-complete,

then (Pc/P;i+1) * Nm and (P./P;+1) * clubg, (W) are pseudo (*,w; \ S*)-

complete.
Proof. Left to the reader.

3.7 Theorem. 1) Suppose {1 < & : p supercompact} is unbounded below &
and k is 3-Mahlo.

If (S1,852,953) is a partition of w; with S; stationary, then for some
semiproper pseudo (*, S3)-complete forcing notion P satisfying the k-c.c., we

have:

IFp “B[P.]1S1 has a dense subset which is (up to isomorphism) Levy(Rg, <
Rq)”.

Proof. We define by induction on i, P;, Q;, t; such that

(A) Q% = (Pi,Qj,tj 1 i < @, j < ) is Sy-suitable,

(B) there is no strongly inaccessible Mahlo A, i < A < |P],

(C) if 4 is a singular ordinal or (3j < %)[|P;| > i] or i inaccessible not a
limit of supercompacts or i inaccessible not Mahlo then t; = 0, Qi =
SSeal((B[P;] : j <1, t; =1),51) (as defined in VP, of course),

(D) if i is supercompact, not limit of supercompacts then t; = L,Qi =
SSeal(B[P;], S1),

(E) if (V4 < 4)[|P;] < ], limit of supercompacts and ¢ is inaccessible 1-Mahlo
but not 2-Mahlo, we let t; = 1, Q; = Nm * SSeal(B[P;]) (the SSeal in

P;*Nm
V"7 of course),
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(F) if (Vj < i)[|Pj] < 14],i is 2-Mahlo and a limit of supercompacts then
Wi def {6 < i:48 = cf(d) is Mahlo and a limit of supercompacts and
(Vj < 0)[|P;| < 8]} is a stationary subset of i, then we let:

t; = 1, Qi = Cluby.g1 (Wl) * SSﬁ&I(%[P,],Sl)

Why is Q S;-suitable? We shall prove by induction on i that Qi is
S1-suitable.

Note that the use of SSeal guarantees (F) of Definition 2.1, as well as (E)
(see 2.11(3), 2.13(2)). Remembering 2.3(2), it suffices to show by induction on
i that j <1 = (P;/Pjt1)*Q; is semiproper (actually the only problematic case
is when 1 is inaccessible limit of supercompacts, but then for arbitrarily large
j < i we have Rss™(j) (by 1.10, 1.6(2), 1.6(4)), so in VFi every forcing notion
preserving stationary sets is semiproper, but we check by cases:

For i = 0: trivial.

For i+ 1, and i satisfies clause (C) above (in the definition of Q) the result
follows by Claim 2.14.

For 7 + 1, and 1 satisfies (D) above: first note that |P;| < ¢ for j < 1,
hence j < i & t; = 1 = B[P;] < B[P}, hence by Claim 2.7 we have
Q:; = SSeal(®BF,S;) = SSeal((BFi : j < i,t; = 1),51). Now for a club
Cofi, jeC&j=cf(j) = Q; is semi proper (see the previous case),
so by 1.6(4)+1.10 we have IFp, “Rss(k) i.e. Rss(X2)”. Hence by claim 2.10,
SSeal(2B[P,], S1) is semiproper in V=,

For i + 1, and 1 satisfying clause (E) above: we shall apply 3.4 with ¢ here
standing for x there. Note that condition (*)(a) (of 3.4) holds for E;L i o {6 <
i: 8 > j,0 strongly inaccessible, not Mahlo, § > |P¢| for { < §, Q5 semiproper}.
Why does the second player win O({R:},w, D; + EJ;) in the universe VFi+1?
By 1.6(6) clearly for j < ,VFi = “Rss™(i)” and use 1.11, (and 1.9A(3), i.e.
XII, 2.5(2)) but this give just winning in O({X;},w, k). However for p < 1,
there is a p-complete filter on i containing the clubs of i and EL‘?
the game is easy, and lastly if j < ¢ is strongly inaccessible not Mahlo and

(Ve < j)(|P:| < j) then Q; is even proper by 2.11. Condition (x)(b) of 3.4

so winning
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holds by the definition of case (E): if A < i is supercompact then Rss*()), Q\
semiproper by the induction hypothesis (see previous case) so any A < 7 which
is supercompact satisfies the requirement on E*.

For i+ 1, and ¢ satisfying clause (F) above: similar to the previous case by
replacing 3.4 by Claim 3.5 (and remember 0.1(5) of the Notation).

Also each Q; is pseudo (*, S3)-complete (by 3.6), hence P, is pseudo (*, S3)-

complete so when Sj is stationary,

”_PK, <<2No — N1,2N1 — Nz”

. vPr
and in any case IFp_ 2% =k =R )7,

Let B, = B[R], sot; =1 = B;[S; < B[P,][S;. Let
W* € {i <k Bi1S; < BIPIIS1)-
So in VP~ (as case (F) occurs stationarily often),
e 4 {6 € W* : cf(d) = Ry and W™ contains a club of §}

is stationary. Hence it is well known that in VP,

club,(W*) = {h :h an increasing continuous function

from some o + 1 < & to W*}

does not add bounded subsets to k(= N3). (More exactly, if CH holds this
is straightforward. If CH fails, this holds if we can find P = (P, : a < k),
Pa € Scx, (@), |Pal < Ry (P € VP of course) such that {§ € W** : for some
unbounded C of § we have that C C W*, otp(C) =wj anda € C = CNa €

U P5} and this holds (with Pg = (Scx, (@)Y~ infact o € C = CNa € P,).)
B<a

So forcing will give us a universe as required. Os.7

3.8 Remarks. The proof of 3.1, 3.7 exemplifies two constructions which we

may interchange. Another variation is 3.9 below.
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3.9 Theorem. Suppose {u < & : p supercompact} is unbounded below &, & is
strongly inaccessible, h : K — H(k), and (Si, S2,S3) is a partition of w;, and
S is stationary. Then for some forcing notion P:
(i) P satisfies the k-c.c., is pseudo (x,S3)-complete, has cardinality ,
does not collapse R; and x but collapses every A € (Ry,x) and in
VPr kg =Ry, 2% = Ry, and 2% = R, <= §3 stationary,
(ii) 2B[P]1S; has a dense subset isomorphic to Levy (Ro, < R2),
(iii) in V', an axiom holds as strong as h is a diamond, i.e.
(a) If h is a Laver diamond for z € H(2*) then in VF, Az[Q is a pseudo
(*, S3)-complete, semiproper*!S1l (see definition below), @ € H())] (see 3.9A
below) and Az*[Q is pseudo (*,S3)-complete, semiproper*(51l,Q € H()\) and
BVF] < B|(VF)9).
(b) When X\ = k, then we can weaken the demand on h to: for every
z C k satisfying a S1-sentence 9 (i.e. (3z C P(k) such that ...)) then {i < k :
h(i) = z N4, (H(i), €,z N1) |= 9} is stationary. Then a conclusion similar to
the one in clause (a) holds for Q C H(k)

where

3.9A Definition. Let A = (A¢ : ( < &), A < B[V].

1) A forcing notion Q is semiproper*m if x regular large enough, N <
(H(x), €, <) is countable, Q € N, A€ N,p e QNN satisfies “(VZ, ¢)[= €
N a pre-dense subset of A¢ & ( € NN{ = NNw, € U_ A (if A¢ satisfies
the Na-c.c. this always holds) then there is ¢ € Q gflfich is (N, Q)-semi-
generic and ¢ IF “if { € ENN[Gg] and E € N[Gq] is a pre-dense subset of
A¢, then NNw, € U{A: Ae N[Ggl}".

2) féE=1A={ACwi:AN(w1\S) € {O,w1 \ S}}, write *[S] instead
*[A]. We do not strictly distinguish between B[V]]S and {4 € B[V] :
AN(w1\S) € {0,w;\ S}}

Proof. We define by induction on a < k, P;, Qi, t; for ¢ < a such that:
(A) Q* = (P;,Qj,t; 1 i < a,j < a) is Sy-suitable, |P;| < & for i < &, and

for a < k,Q* € H(k) and t; = 1 < (i successor or i strongly inaccessible
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& A |Pj| < i), (note that for ¢ limit we are trying to get BRI o BPx
i<i
not B < BF). Let A; be the following Pj-name: if j = 0 we let A; be
trivial, if j > 0 we let it be B = |J B[Psyy).
B<j
(B) For i non-limit, let x; be the first supercompact > | P,
if i =0, let @Q; = Levy(Ry, < ko),

ifi>0,let Q; = SSeal((.A] 17 < i),Sl,li.i).

(C) For i limit < & such that h(7) is a P;-name of a pseudo (x, Ss)-complete

semiproper*’l, where At def (A; : j < i), remember A; = B,

Let k;41 < K be such that h(:) € H(kit+1), Kiy1 supercompact and

Q; = h(i) » SSeal ((A*, S1, Kit1)-

(D) For i limit, but (C) does not hold, let Q; = SSeal((4; : j < ), S1, Kit+1),

Ki+1 as before.

We can prove by induction on « that Q% is Si-suitable and Q. is
semiproper, and if ¢ < & is successor, then IFp, “Rss(R3)”. If a is limit or-
dinal use 2.3(1) and for o = 0 this should be clear. If @ = f + 1, 8 not limit
by 2.11 we can see that Q% is Sj-suitable, i.e. the first phrase holds. For the
second, clearly by 2.7 we have Qg = SSeal(B[P;], S1,%p+1), and by the in-
duction hypothesis VP2 = “Rss(Rz), R = kp41”, hence by 2.8(7), IFp, “Qp
is semiproper”. Moreover in VF# Qg is an iteration (see Definition 2.4(5))
(Pf,gf 11 < Kg+1,J < kg+1) and for every strongly inaccessible j < kg, Qf
and even Pfﬂ/Pjﬂ are proper by 2.11. So by 1.10 we have I-p, “Rss(kg)”. For
a = f+1, 8 limit use 4.9 from the next section and 2.11 for the first phrase (if
clause (D) apply then use 2.13), the second is proved as in the previous case.
Remembering strong preservation of pseudo (*,S3)-completeness we have no

problems. Us.o

3.9B Remark. We can wave in the proof some t; = 1, more acurately some

A¢’s and then get stronger forcing axioms.
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§4. P(w1)/(Dw, + S) is Reflective or Ulam

In 4.3 we deal with reflectiveness: if A; C S C w; is stationary for i < Ng
then for some W C Ry of cardinality Ro, [w C W & |w| < Ry = ﬂ A; is
stationary]. Claims 4.1, 4.2 prepare the ground. In 4.4 we deal with tf: Ulam
property, for this we prove in ZFC a sufficient condition for a filter to satisfy the
Ulam property (see 4.5A — 4.5F, Definition 4.6 and the proof of the consistency

of the Ulam property (i.e. 4.4) in 4.7). The rest of the section deal with the

forcing.

4.1 Claim. Suppose S C w; is stationary Q = (P,Qj i<, j<a)isa
semiproper iteration, u < o (u = 0 is allowed), and IFp, “Rss(Ro[VF4])” (e.g.,
if p is supercompact, [i < p = |P| < p] and {i < p : Q; is semiproper (i.e.
IFp, “Q; is semiproper”)} belongs to some normal ultrafilter on 1); note that

”

IFp, “u=Ry” if p is strongly inaccessible, |P;| < p for i < p.

Let A be a P,-name for a subset of S and B a P,-name for a member of
B[P,] such that:

Fp, “(VX € %P")[0<X <B=XNA#0(in %Pa)]n.

Then
® if A is regular and large enough, N < (H(A),€,<}) is countable, and
Q, )\, p, 4, B and u belong to N, p € P, NN and ¢q € P, is (N, P,)-
generic, plp < g and qUp([u, @) Ikp, “NNw; € B” (if B is a P,-name this
means q lkp, “NNw; € B”), then there is a (N, P,)-semi generic condition

q' € P, satisfying ¢'[u = g such that ¢’ IFp, “NNw; € A”.

4.1A Remark. (1) If Q is S-suitable, t, = 1, and A # 0 mod D,,, 4 is
a Pg-name for some § < a, then we know that such B exists as t, = 1 (by
definition 2.1).

(2) Note, e.g., for S-suitable @, £g(Q) = a = Uncw @nson < anii,ta, =1, we
can use Qo = SSeal(B?, S) and not only SSeal(BF=,S) [because in 2.13 we
had demanded “(P,/P;+1)* seal (E) is semiproper”].
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Proof. As we can increase p, without loss of generality p forces B to be equal
to some P,-name, so without loss of generality B is a P,-name.

Let us fix p, A, B, u and work in V[G,], G, C P, generic over V such
that ¢ € G,. Let

Wy, & (N <(H(\)VIGul e <%): N is countable and N Nw; € B[G,], but

there is no r € P, /G, such that:
r is (N, Po/G,)-semi-generic, p|[y, &) < r and

r ”‘pa/cu “NNuwp € A”}.

If Wy = 0 mod Dex, (H(A)VIP]), we can easily get the desired result (as
in the proof of 1.11)): let A\; be such minimal that 2* < X, and Q € H(\;).
Clearly also Wy, =@ mod Dy, (H(A)VIP4)) and let W}, C Sc, (H(Ay)VF)
be closed unbound disjoint to it. So if N is as in the assumption of ®, then
necessarily \; € N hence W), € N and w.lo.g. W[ € N. Then clearly
NNH(A;) € Wy, hence NNH (A1) ¢ W), , hence N ¢ W), which suffices. So (in
V[G,]) the set W is a stationary subset of Scx, (H(A)), hence semi-stationary.
AsVI[G,] = “Rss(X2)” there is u € H(A) such that w; C u, Ju| < R (in V[G,])
and W N Scy, (u) is semi-stationary; now by 1.2(2) without loss of generality
(u,€,<} Tu) < (H(N),€,<3). Let u = Uc<w1 u¢, with each u¢ countable and

u¢ is increasing and continuous. So

Bi={(<wi: 3N eW)wiNuc CN Cue)}
is a stationary subset of w; (see 1.2(4)) which belongs to B[P,], and obviously:
(%) plkp, /g, “AN B isnot stationary”.

[Why? For ¢ € By let wi Nu¢ © Ne € ug, Ne € Wand for § < wy let N be the
Skolem Hull in (H(M\)VIGx], €, <%) of {¢: ¢ < €}U{p, (u¢, N¢ : ¢ € B1,{ < &)},
and

C={¢<w: NGp,]Nwr =Eand Ng[Gp,] Nu=uc}
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As (N¢[GPp,] : € < w1) is increasing continuous, clearly C is a P, /G,-name
of a club of w;. Now C N A is necessarily disjoint to B; by the definition of
W:if ( < wi,q € Po/Gy, and q lFp, g, “C € CNANDB,”", then Nc € W is
defined (because ¢ € By) and qq is (N¢, Po/G)-semi-generic, and ¢, IFp, /q,
“N¢Nwy € A, contradicting “Ne; € W” so (*) holds]. Also

(x%) B,CB

by the clause “N Nw; € B[G,]” in the definition of W.
Of course B; € VP+ and as said after the definition of B, it is stationary

so we get a contradiction to an assumption on A, B.

Oan

4.2 Claim. (1) Suppose Q = (P;, Qj:i1<aj < @) is a semiproper iteration,
(¢ + ¢ < &) an increasing sequence of strongly inaccessible cardinals < a,
Ac<e [(\7’7, < pe)(|Pi] < pe) and Fp,  © Rss(uc)”] and

(¥) every countable set of ordinals from VP is included in a countable set of
ordinals from V.

Suppose further that B is a P, -name of a subset of w1, A¢ is a P, , ,-name

¢+1
of a subset of wy (if ( + 1 = £ we stipulate p¢41 = @) and p € P satisfies:
plpo lbp,, “B is stationary”,
plucr kp, ,, “forevery X € B[P, )\ {0}, if X C B then AcN X is
stationary ”.
Then p IFp, “the intersection of any countable subset of {A; : ( < &} is
stationary”.
(2) In 4.2(1) we can replace the assumption (*) by:
(¥)7 if 6 € (mo,) is strongly inaccessible and [i < § = |P;| < 4], then
IFp, “cf(d) > No”.

Proof. 1) Let w be a P,-name for a countable subset of £. So without loss
of generality w = w and let w = {{(n) : n < w}. Let Y be the closure of
{1¢ - ¢ < €}U{a} (in the order topology on the ordinals). If the conclusion of 4.2
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fails then (as we can increase p) without loss of generality pI-p, “(,, <., A¢(n)
is disjoint to C' where C is a club of w;”.

We now prove by induction on j € Y:
®; if po <@ < j, both in Y, A regular and large enough, N < (H(\), €, <3)

countable, C € N, B € N,{u¢,A¢ : ( < &) € N and {i, j, Q} € N,

p<p € NNP, and q € P, is (N, P;)-semi-generic, p'[i < ¢, and

glFp, “NNuw; € Band forn <w we have [u¢(n) <i= NNw; € A¢n))”,

then there is ¢’ € Pj, (N, P;)-semi-generic, p'[j < ¢/,q'li = ¢ and ¢’ IFp;

“NNw; € B and for n <w we have [u¢pm) <j=> NNw; € A
Clearly this is enough (apply it with p’ = p, i = po, j = @, and there are N, ¢
as required and B is a P, ,-name of a stationary subset of C wy).

Case 1. j = pg. Trivial.

Case 2. j is an accumulation point of Y (hence is of countable cofinality).
As in the proof of the iteration lemma for semiproperness.

Case 8. j = pey1.

Apply the previous claim 4.1 (for Q[,ucﬂ and fi¢).

2) The proof is similar but w is P,-name of a countable subset of ¢, and for
J € [po,a] the statement ®; is now for every w which is a Pj-name (not P,-
name) of a countable subset of {¢ : u¢ < j}. So proving it we increase pl[i, j]
also for this purpose and i € [po, 7). Cases 1, 3 remain as before. Note that we
can replace w by a larger set

Case 2A. j > sup[j N {pc : ¢ < €}

Trivial

Case 2B. j =sup[j N {u¢ : { < ¢}

W.lo.g. p force a value to supw N {u¢ : ¢ < €}, call it £*.

Subcase a.. £* < j: the proof is as in case 2A, as increasing w w.l.o.g. it is
P« 1-name.

Subcase B. £* = j: for some iy < j, plix Wp, “cf(j) = j” is easy too.
W.Lo.g. i; <1 (by the induction hypothesis), pli; IF “cf(j) < 5”. So in VP we
know cf(j), and it is Ro or R;. Now ®; is impossible (as £* = j) and if it is g
act as in the old case 2.

But by (%)~ of 4.2(2), one of the subcases occurs. Oaz
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4.3 Theorem. Suppose {u < K : u supercompact } is a stationary subset of

K, {S1,S2,S3) is a partition of wy with each S; stationary. Let h : kK — H(x)

and assume {u < K : u supercompact, h(y) = 0} is stationary. Then for some

forcing notion P:

(i) P = P, (= RLimQ for some S;-suitable Q) is Ss-complete, or at least
Ss-proper and satisfies the k-c.c.

(i) In VP, from any R, stationary subsets of S; C w;, there are Ry of them
such that the intersection of any countably many of them is stationary
(and 2P~ is layered, of course). We then call B[V F=] reflective.

(iii) A forcing axiom as strong as h holds (see the proof and 3.9).

4.3A Remark. 1) We really use a weaker assumption
(a) {u < K : p measurable} is stationary;
(b) {u < k: for x < K, is x-compact} is unbounded; use 1.6(2), 1.6(3),
1.10(1). See more in XVI§2.

2) The situation is similar in 4.4, where we get better bound (i.e. using smaller
large cardinals) for a stronger result (but lose in forcing axiom.)

3) We can demand only “S; is stationary” etc. if we use 4.1(2) instead of
4.1(1), but then we should satisfy ()~ of 4.1(2).

Proof. We define by induction on a < & the iteration Q% = (Pi,Q,-,tj 1 <

a,j < a) such that:

(A) Q% is Sy-suitable.

(B) Each Q; is S3-proper.

(C) Q2, P, € H(k) when a < k.

(D) If h(i) = (t,R), i measurable, t a truth value, R a P;-name and [t =
1 = SB[P]IS;, < B[P, * B”Sl] and [j <i&t; =1= B[S, <
B[P, * R] [Sl} and (P;/Pj+1) * R is semiproper and Ss-proper for j < 4
then t; = t,Q; = R* SSeal ((B([P)]:j <i,t; =1)).

(E) Ifnot (D), ¢ is inaccessible, | P;| < i for j < i, h(i) =0, and IFp, “Rss(Rz),”
then t; = 1 and Q; = SSeal((B[P;] : j < i, t; = 1),5).
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(F) If neither (D) nor (E) then t; = 0, and
Qi = SSeal((B[P}] : j < irt; = 1), 5).

We can carry out the construction and prove by induction on « that Q<
is Sp-suitable.
a = 0. Trivial.
a limit. By Claim 2.3(1).
a=L+1, (F) applies to 8. By 2.14(1).
a=p3+1, (D) applies to . By Claim 2.11.
a=£+1, (E) applied to 5. By 2.16 note:
(x) if i € B = {4 : i inaccessible, j < i = |P;| < i} then: if for i clause (E)
or clause (F) occur then Q; is semiproper. [Why? If IFp, “Rss(R3)”
by 1.7(5), otherwise clause (F) applies, t; = 0 and we can use 2.11.]
But clause (D) does not apply to i non-measurable so
(**) for i non measurable I-p, “Q; is semiproper”.
Now suppose p € P., (A; : i < k) a Pg-name and p I+ “4; C S is stationary”.
i<p |Pil < pandlkp, “Rss(Rz)”
and t, = 1}. Note that in VP Y C {§ < K : cfVIP=l(6) = R} is stationary
j<u!Pjl <pand D
is a normal filter on u, concentrating on non-measurable so X, = {i < p : ¢
j<i|Pil < p} € D. We use 1.10(1) (noting
Rss™ (k) holds, by 1.6(6)) to get 4 € Y. Now for each u € Y choose p, € Py

Let Y = {u < K : p strongly inaccessible, A
because if p < k is measurable, limit of supercompacts, A
inaccessible, not measurable, A
and a P,-name B, such that:

p < pyu,
pulp Ik “B, C S is stationary, B, € B[P,]”,
pu lFp, “for every nonzero X € B[P,],

if X < B, then X N 4, is stationary”.

Why does such a p, exist? As B[P,] < B[P,] (and see 0.1(4)(b)). Remember
that P, satisfies p-c.c. so B, € H(xy) for some x, < p and without loss
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of generality B is a Py,-name and t,, = 1 (i.e. by increasing x,; also, Y is
stationary by a hypothesis).

By Fodor’s lemma, for some stationary Y; C Y, there are p and B such
that for p € Y1 : p, [ = p, and B, = B.
As each A¢ is a Py-name for some A > (,\ € Y, without loss of generality
[#1 < p2 in Y7 = Ay, is a Py,-name]. Now, for u € Y} let A}, be A, if
pu € Gp, and S otherwise.

Note that Y; € V and every countable subset of Y; is contained in a
countable set from V [Why? Remembering Sj is stationary, by Ss-properness.]

Now we apply the previous Claim 4.2 to B, (4}, : p € V7). O4.3

4.4. Theorem. Suppose K = sup{A < Kk : A a compact cardinal} and

(S1,S2,53) is a partition of w; to stationary sets. Then for some forcing notion

PeV:

(i) VP is a model of: ZFC + 2% = R; + 28 = Ry,

(ii) in VP, the statement Ulam(D,, + S;) holds, where, for a uniform filter
D on A, Ulam(D) means: there are many A A-complete filters extending
D, such that every D-positive set belongs to at least one of them (A is
D-positive if A C A, and (A\ A) ¢ D).

Remark. So in VP, Ulam’s problem has a positive solution: there are R; mea-
sures on [0, 1]r, each countably additive, such that every A C [0, 1] is measur-

able with respect to at least one of them.

Proof. Before we do the forcing, we work out some combinatorics, which will

tell us what will suffice.

4.5A. Context and Notation.

(1) A = X<* is a fixed regular uncountable cardinal.

(2) W denotes a fixed class of ordinals (in the actual case W C A\*), 0 € W,
for every i, 1 +1 € W, and

o <cf(i) < A=>i ¢ W.
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(3) B will denote a Boolean algebra.

(4) For a Boolean Algebra B, let B* = B\ {0}.

(5) Pr(a1,a2, B1, B2) means: By, By are Boolean algebras, By C By, a; €
B, ay € BY, and (Vz)[z € Bf &z < a; —zNay #0).

(6) If the identity of Bj is clear (when dealing with one Boolean Algebra and

its subalgebras) we just write Pr(a;, ag, By).

4.5B. Observation.

(a) Pr(1,z,B;, By) for z € Bf,|B;| = 2;

(b) if B, C B, C B, z € B}, y € Bff, z € B and Pr(z,y, B,), Pr(y, z, By)
then Pr(z, z, B,);

(c) if Pr(z,y, B1,B2),0 <z’ < z,z' € B1,y <y’ € By then Pr(z’,y’, B1) and
Pr(z’,y Nz, By).

4.5C. Notation and Definition.

(1) We call B 1-o.k. (for W) if B = (B; : i < @) is an increasing continuous
sequence, each B; a Boolean Algebra of cardinality < A, [1,7 € aNW and
i<j=B; < Bj,]and [i € WNa= B, is A\-complete].

(2) We call w C W N« closed (subset of W N a) if

(i) for every accumulation point § < a of the closure of w (that is
d =sup(wnd) & § < a) we have
(a)dgW&é+l<a=d+lecw
b)ydeW&ki+l<a=0¢cw,
(ii) for every § < a we have: Min(w) < (0 +1) € w & Ry < cf(d) < A =
§ = sup(é Nw),
(iii) if Min(w) < € W, 8+ 1 € w then 8 € w.
(3) Let CSb(a) = {w : w a closed subset of W N« of power < A},
CSb,(a) = {w € CSb(c) : w unbounded below a}.
(Clearly CSby(a) # 0 = Ro < cf(a) < ).
(4) For w € CSb(a) and B = (B : i < 8) which is 1-0.k. such that 8 > o, let
(i) Seqw(B) = {(a; : i € w) : a; € B}, a; is decreasing;
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ifi € w,i = 6+ 1, § limit of course, 6 ¢ W,i > Min(w) then
a; = (Vjewni %
if i € w, i > Min(w), cf(i) > A, then a; = a; € B for some j € i Nw;
and if 1 < j are in w(C W) then Pr(a;, a;, B;, Bj)}.

(i) Let Seq(B) % (J{Seq,, (B) : for some a (< fg(B)), a = lg(B) or a
is successor of a member of W, we have w € CSb(c)}.
Let Seq,(B) % U{Seq,(B) : w € CSby(¢g(B))}.
It is naturally ordered by a' < a? if letting a* = (af : i € wy) then
w! Cw? and [¢ € w! =>aé > a%].

(iii) Whena =46+1 < {£g(B),w € CSb(d) let

Z,(B) Y {ﬂ a;:{a; i Ew) € Seqw(B[(6+1))},

€Ew

75(B) % U{Zwu(B) : w € CSby(6)}.
If £g(B) = § + 2, we may omit 4.
(5) We call B 2-o0.k. if for every limit § < £g(B), 0 ¢ Z°(B) and B is 1-0.k.
(6) We call B 3-o.k. if it is 2-0.k. and for limit § < £g(B) of cofinality < A we
have: Z%(B) is a dense subset of Bs1.
(7) If B is not continuous, we identify it with the obvious correction for the
purpose of our definitions.
(8) We call T C Seq,(B) dense if for every a € Seq,(B) for some @' € T we
have @ < a’. We say Y’ refines Y if (Va € T)(3a’ € Y') [a < a’]. We say
T C Seq,(B) is open if @ < @ (in Seq,(B)), @ € Y implies @’ € T.

4.5D. Fact. Suppose B is 2-0.k., B = (B; : i < § + 1),Rg < cf(§) < A. Then:
(0) (i) CSby(d) # 0, moreover for every @ < § + 1 and v C a of cardinality
< A we have:
Rp < cf(a) < A = there is w € CSb, () such that v C w and
cf(a) > A = there is w € CSb(e), such that v C w and
a=1+1&i € W = there is w € CSb(a) such that v C w and i € w.
(ii) If w € CSby(d),a < 0, then w \ o € CSby,(0); similarly for CSb(a).
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(iii) If o« < 6 and w € CSby(a) and @ = € + 1 and Ny < cf(e) < A then
wU{a} € CSb(d).

(iv) If w € CSby(d), € w then thereis B € w\ a such that 8 ¢ {e +1:
Ry < cf(e) < A}; in fact 8 = min(w \ (a + 1)) is as required.

(v) If we CSb(a) and B < a, then wN 3 € CSb(B).

(1) If w € CSb(6+ 1) then Z,(B) includes Byin(w), hence: Rp < cf(§) < A =
Bs C Z%(B).

(2) (i) If wi, we € CSb(4) and Min(w,) < Min(wz—¢) = Min(ws—¢) € wy

then wy Uwy € CSb(4).
(ii) Similarly for CSb,(4).

(3) (i) If wy € wy are both in CSb(a), min(w;) = min(ws), (a; : i € w;) €
Seq , (B) then (a; : i € wa) € Seq,, (B) provided that for i € wy\w;
we define a; = @ max(inw,) Which is well defined.

(ii) If @ < sup(w), and w € CSb(d), and (a; : i € w) € Seq,,(B) then
(ai:i€w\a) € Seqy\o(B) and (a; : i € wNa) € Seq,n,(B).

(iii) If w1 C wq are both in CSb() and (a; : 1 € we) € Sequ,(d) and
[i € wa&cf(i) > A& Min(wy) < i = (Fj)(j € w1 Ni&a; = a;)] then
(ai 11 € wy) € Seqy, (9).

(iv) If 8 < 6, B is a successor of a limit ordinal, w € CSb,(8 — 1),
Min(w) < 8 < e+ 1, wy = wU{B} and (a; : i € w) € Z,(B)
then we can find ag such that (a; : i € wy) € Zy, (B).

(4) If w; C wy are both in CSb,(§) and min(w;) = min(ws) then Z, (B) C
Zo, (B).

(5) If (a; : % € wy), (bj : j € wa) are in Seq,, (B), Seq,,, (B) respectively, and
(Vi € w1)(35 € wa)a; < by then iy, i < Njcw, bj-

(6) If (a; : i € w) € Seqy(B),0 < b < min(w) and b € Bpinw) then
(a;Nb:i€w)e Seq,(B).

() If B=(B;:i<a)isl-ok. (I =1,2,3), 7, <« (for i < i(x)) is strictly
increasing continuous and [i € W & v, € W] and [Xg < cf(i) < A =
Yi+1 = vi + 1] then (B, : i < i(x)) is l-o.k.

(8) Assume B = (B; :1 < a) is 1-0.k.

() fB<y<a,BeW,yeW,be B, then for at most one a we have:
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(x) a € Bg and B, |= “a > b” and Pr(a,b, Bg, B,),

(i) if a* € Seq,,,(B) for £ = 1,2, then {$: B € w1 Nwy and aj = a3} is
an initial segment of wi N wa.

(9) Assume B = (B; :i < a)is 3-0.k., [§ <a&cf(d) >\ =46 W]

(i) If v € CSb(B), B < a+1 is a successor of a member of W, and v € v
and d € B, then the set I' =Ty 4.4 = {@ € Seq(B) : v C Dom(a)
and [ay Nd =0 or a, <d} is a dense and open subset of Seq (B).

(if) If Ro < cf(a) < A, v € CSby(a), ¥ € v and d € By then the set
' =T, ={a € Seq,(B) : v C Dom(a) and [ay Nd =0 or ay, < d]} is
a dense open subset of Seq (B).

(iii) If 8 < a,d € Bg\ {0} and v C B+1, |v| < A then there is w satisfying

vCwée CSh(B+1), 8€wand @€ Seq,,(B) such that ag < d.

Proof. Easy, e.g.,

0)(i) We prove it by induction on a. For o non-limit the result is trivial so
assume « is a limit. So for every j < o there is w; such that: vNj C w;
and [Ro < cf(j) < A = w; € CSby(j)] and [cf(j) ¢ [Ro,A) = [cf(j) >
AV (3F)G =1+ 1&i € W) = w; € CSb(j)]]. Let (je : € < cf(a)) be an
increasing continuous sequence of ordinals < a with limit a. If cf(a)) = Ro then
w.l.o.g. jn+2 € v for n < w and then w def H{wj, 143\ (Gn+3) : n < w}Uwjo43
is as required (remember 7 + 1 € W for any ordinal ¢ by 4.5A(2)). If cf(a) > A
then for some j < a, we have v C j and we can use the induction hypothesis.
If cf(a) > RNo but still it is < A, without loss of generality each j. is a limit
ordinal with cofinality < cf(a) < A. Let w = {je +1: € < cf()} UU.cep(a)
(Wjer143 \ (Je +3)) Uw,y+3 and note that it belongs to CSb,(a) and includes
v, as required.

(0)(iv) See the last phrase of 4.5C(2).

(1) For the first phrase note that for a € Byin(w), by = (a:i€w)€ Seq,(B)
(see Definition 4.5C(4)(i), (iii)).

The second phrase follows by the definition of Z%(B) and 4.5D(0)(i).

(3)(i) Why is max(i N w;) well defined?

First note: i Nwy # 0 as ¢ ¢ w; implies ¢ # min(w;), but min(w;) = min(wsy)
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so ¢ > min(wj) hence min(w;) € i Nwy.
Second note: if 4 N w; has no last element, let 8 = sup(: Nw;), so f < i and
Ro < cf(B) < |wi1] < A, hence B¢ W,s0 8¢ wz and B <i. Also B+1 € w; (as
w;y is closed and B < i < aso B+ 1<4d),so[+1 cannot be in ¢ Nwy, hence
i = B+ 1 € wy, contradicting the assumption on ¢ (i.e. i € wy \ wy).
(3)(iv) Note that, as w € CSby(B — 1), necessarily cf(8 — 1) < A. Also
wy € CSb(d +2), so Zy,(B) is well defined. Also ag e Nicw @i is well defined
as Bg is A-complete, and |w| < A as w €C CSby(8) C CSb(p) (see Definition
4.5C(3)). As B is 2-0.k. (see Definition 4.5C(5)), Op,,, ¢ Z°(B), but clearly
ap € Zy(B) C ZP(B) hence ag # 0ps,,. The order requirements for (a; : i €
w1) € Seq,, (B) are easy too.
(4) Use (3)(i).
(6) Let for i € w, ¢; def a; N'b and § = min(w). So
(i) ci=a;Nbe B; [as a; € B;,b € Bg C By];
(ii) for i < j from w, ¢; < ¢; [as a; < ay, clearly a; Nb < a; Nb;
(iii) for i < j from w, Pr(c;, c;, Bs).
[Why? Let 0 < d < ¢;, d € B; then 0 < d < a;, d € B, hence (by
Pr(a;,a;,B;))dNaj #0and d <¢;=a;Nb < bsodNb=d, hence

dNc;=dn(a;Nb)=(dNb)Na; =dNa;

so dN¢; # 0 as required.]

The other conditions are easy too.

So (¢j : j € w) € Seq,,(B).
(9) We prove this by induction on a ((i), (ii) and (iii) together). In parts
(i) and (ii), ' being open is immediate, so let us prove density. So assume
€= (ci : i € vp) belongs to Seq(B) (for 9(i)) or Seq,(B) (for 9(ii)), v C a,
Y € v, d € B, as there and we shall find b, ¢ < b € T (see end of 4.5C(4)(ii)).

In the cases below for 9(iii) only the assumption on « is relevant.

Case 1: =0
Trivial.
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Case 2:a=¢e¢+1,e e W.
For 9(iii) note that by the induction hypothesis we have to prove only the
case B = a =¢c+1and d € By = B, is given. Let d; € B be such that
Pri(d1,d, Be, By). By the induction hypothesis we can find w; € CSb(e + 1),
such that € € wy, and @ € Seq,,, (B) such that a, < dj.

Letw wy U {a}, aq def agNd € BT (not zero as ag < d; and the choice of
d1). So (a; : i € w) € Seq,,(B) is as required.

Now as o is a successor only 9(i) is left, by the induction hypothesis
B = a+1 and by the assumptions of 9(i), 3 is a successor of a member of W
so a € W hence vg has a last element. Let dy be: ¢ max(vy) N d if not zero and
€ max(vo) Otherwise and as we have proved 9(iii), there is {a; : i € w) € Seq,,(B)
satisfying w € CSb(a + 1) such that: vo Uv U {e,a} C w, and an < dp. So
aq < dor agNd=0; by 4.5D(8)(ii) we are done.

Case 8:a=¢e+1,e ¢ W (so only 9(i)+(iii) apply and ¢ is a limit ordinal) (as
B¢ W, cl(e) < ).
For 9(i) as in case 2 it follows from 9(iii), so let us prove 9(iii), by the induction
hypothesis w.lo.g. 8 = a. As B is 3-o.k. by Definition 4.5C(6) there are
wo € CSby(e) and (b? : i € wo) € Seq,, (B) such that
and is dg < d.

By the induction hypothesis we can apply 4.5D(9)(ii) to €, CSb,(e),
(b2 : i € wp) and so we can find (b; : i € wi) such that (b7 : i € wo) <
(b; : i € wy) € Seq(Bla) and v C w;. As B is 2-0.k., by def Nicw, bi € Ba is
not zero. Let w = w; U {a}, so w € CSb(a + 1) and (b; : i € w) € Seq,(B) is

O .
icwo Ui 18 not zero

as required.

Case 4: o is a limit ordinal, cf(a) > X (so @ € W by an assumption of 4.5D(9)).
As B, = Uﬂ <o Bp and the third requirement in the definition of @ € Seq (see
4.5C(4)(1)) it is easy.

Case 5: a is a limit ordinal, cf(a) < A.

So 9(i), 9(iii) does not apply. First as for 9(ii) we can assume v \ min(vy) = vp.
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[Why? By 4.5D(0)(i) w.l.o.g. 0 € v & vy C v. But sup(voUv) > sup(vg) = a, so
v =voUv € CSby(), and lastly apply 4.5D(3)(i) to replace vy by v\ min(vp).]
Second we are given v € v, d € By (so, as we can increase y w.l.o.g. v € v).
Now voN(y+1) € CSb(y+1) and so (¢; : i € vgN (B+1)) € Seq(B), and by
the induction hypothesis (on 9(i)) we can find (b? : i € wp) € Seq (B[(8 + 1))
such that (c; 13 € vo N (64 1)) < (b? : 4 € wo) and by < d Vb Nd = 0. Define

w = wp U vg,
b — b2 ifi < B (so i€ wp);
PTg NG ifi> B (soi € ).

Now (b; : i € w) is as required. O4sp

4.5E. Claim. If B = (B; : i < A%) is 3-o.k. and [i < At & cf(i) > A =i € W]

then B:\‘Zr is the union of A many A-complete filters.

Proof. Note that by 4.5D(9) we have:

(x) for every a € W and z € B for some w € CSb(a + 1) and (a; : 1 €
w) € Seq,((Bi:i < a+1)) we have 0 < [\;c,, @ <, 0 € w, and w is closed
and has a last element a.

Now remember that Seq(B) = J{Seq((B; : i < a)) : a < At isa
successor of a member of W}.

It is well known that there is H : {w C At : |w| < A} — X such
that: H(w) = H(u),a € wNu implies a Nw = aNu; also H(w) = H(u)
implies that w,u have the same order type (let f, : @ — X be one to one,
H(w) = {{otp(wNa),otp(wnp), fa(e)) : @ < B in w}. Now HO is as required
except that Rang(H®) Z A, but |[Rang(H®)| = A, so we can correct this).

Let F; be a one-to-one function from B; 1 into A\. We say (a} : i € wy), (a2 :

i € wy) € Seq(B) (hence wy, wy have last element) are equivalent if
(a) H(wy) = H(ws) and
(b) if oy € wy and as € wg, and wy N oy, w2 N az have the same order

type and a1 =1 + 1, ag = 2 + 1, then

F,, (ail) = F’Y2(a'?!2)‘
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Now the number of equivalence classes is < A<* = X. So it is enough
to show that if (af : i € we) € Seq(B) are equivalent for ( < ((x) <
A, 0 € we, max(we) € we, then e oy acmax(wd # 0 (see (x)). Note that if
a € wg, Nwe,, then a§! = a$2.

Toward this end we prove by induction on oo € W :

() (1) zqo ef Ne<er) acmax(wcn(aH)) is not zero (and belongs to B,);

(2) if y < a (and v € W) then Pr(z,,zq, Bg);
(3) if v < v is a limit ordinal then:
(a) cf(y) < A= zyp1 =N{z. e €yN W},
(b) cf(y) > A = z., = z for every large enough € < .
Clearly z, is decreasing (as af, is decreasing in « for each ¢) and well defined
as max(w¢ N (o + 1)) belongs to we when o € W (remembering 0 € w).

Case 1.a=0

Then max(we N (a4 1)) = 0 and af = a3 € Bf for every ¢ < ¢(). So
(*)(1) holds and (x)(2), (3) do not apply.

Case 2. a=0+1,8eW

Note that if (( < ((*) and) o = f+ 1 ¢ w¢ then at

max(w¢N(a+1)) =
as
max(w¢N(6+1))"

So if a ¢ w¢ for every { < ((x) then zo, = zg, so (x)(1) holds. As for
(¥)(2): for v < B use the induction hypothesis; for v = 3 this is easy. Similarly
for (x)(3).

If for some { < ((x) we have a € we, let v = {{ < ((¥) : @ € we}.
So 2o = g, acmax(wm(ﬂH» NNcew @5 By the definition of the equivalence
relation and the F;’s, for some a we have [( € v = af, = a < at

max(w(ﬂ(ﬁ-l-l))]
and [(,€ € v = we N (a+1) = we N (a+1)]. Clearly

_ ¢
Ta = ﬂ @ max(wen(a+1) 1 ﬂ ag

(¢v Cev

_ ¢

= () maxtwenisry N[ 126
¢<C(*) (Ev

=zxgNa.
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Now as B € W, Bg is A-complete, hence 23 € Bs. Now a € B, and let
¢(0) = min(v), v(0) = max(w¢yN(6+1)), the maximum exists as said above.
Clearly 7(0) = B (see 4.5C(2)(ii)), @ < aS{5) and Pr(a%y),a, Bg) by the last
clause in the definition of (af(o) 11 € we(0)) € Seqy, (B) (see 4.5D(4)(i)). As
z3 € Bg, and easily aC(O)) > x5 >0, clearly zg Na # 0. So (x)(1) holds. As for
(*)(2), by 4.5B(b) as there is a maximal v € wNa, i.e. B = v(0) (see above) it
is enough to prove (x)(2) for v = 8 = 7(0). So let d € Bg, 0 < d < z3. Then
d< aC((O)), hence by Pr(a,y(o ,a,Bg),and #0,butand=dNzgNa =dNz,,
so we are done. Lastly (x)(3) holds by the induction hypothesis.

Case 3. a=p+1,0¢ W

By an assumption of 4.5E, Rg < cf(8) < A so by 4.5D(0)(i) there is
w € CSby(B) such that {( < ¢((¥) = we € w and i € wkef(i) = A =
(37)(sup(U, we N'é) < j < i&j € w). Note that
<

_ ¢
max(w¢N(a+1)) = ﬂ @ max(weN(y+1))°
<6

a

[Why? If a ¢ we, as (aCmM(wc A1) ST < B) is nonincreasing and eventually
constant (because ( max(w¢ N (y+ 1)) : v < B) is eventually constant), it is

equal to

< — ¢
a max(w¢N(a+1)) — n a max(w¢N(y+1))"
¥<B

If a € we, as (a§ : v € w¢) € Seq(B) (see in Definition 4.5C(4)(i) the second
clause in the definition of a¢ € Seq(B)).] Now:

— ¢ — <
Ta = n a max(w¢N(a+1)) — m n a max(w¢N(y+1))

¢<C(x) ¢<C(*)v<B
= ﬂ( m a’<max(w(ﬁ('y+1))) = m Ty
Y<B (<C(*) v<B

So (*)(3) holds (as v = § is the only new case). Also it can be checked
that (z. : € € w) € Seq,,(B) (in Definition 4.5C(4)(i), the first clause by the
definition of z, and (x)(1), the second clause (. decreasing) is shown above,

the third clause (continuity) by (*)(3), the fourth clause by the choice of w and
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the definition of z., the fifth clause by (¥)(2)). As B is 2-0.k. (see 4.5C (5)) (as
(x)(2) holds below ) we get that z, = ({zc : € € uN B} # 0. Similarly, using
4.5D(6), we can check (¥)(2).

Case 4. a limit

As a € W, necessarily cf(a) = \. But then, by the definition of Seq, (B), if
o € w¢ though necessarily max(w¢ N (a+1)) # max(we N (y+1)) for v < e,
still for v < a large enough a$ = acmax(wm(%l)), hence acmax(wcn(aﬂ)) =
n'r<ﬁ acmax(w(nhﬂ)) for every large enough 8 < a. If a ¢ w, this holds on
simpler grounds. But ((*) < A = cf(a). So x4 = z, for every large enough

v < a, and we can finish easily. Usse

4.5F Remark. The proof is written such that it will be easy to change it
for B = (B; :i<7), v < (2))%, so |By| = |i| + A, Bi;1 is generated by
B; U B!, |Bl| = \, B! is A-complete and in the definition of Seq,(B) add: if
i=p8+1,8 € w then (3z € Bj)[a; = ag N z].

Just use H : {a : a € 2*,]a| < A} — X such that H(a) = H(b) & a €
anb = otp (aNa) = otp(bNa) which exists by Engelking and Karlowic [EK].

But it is not clear whether there is interest in this.

4.6 Definition. 1) We say Q = (Pi,Qj,tj,.Ai :i < a,j < a)is an S-ok.
sequence for W (where S = (S, Sz, S3), a partition of w;) if:
(A) Q is a S;-suitable iteration (forgetting the A;’s).
(B) Each Q; is Ss-complete.
(C) A; is a P;-name of a subalgebra (or just subset) of BF.
(D) A, is increasing continuous.
(E) t; € {0,1} and: if t; = 1, then IFp, “A; < BF[S".
(F) t; =1 for every successor ordinal 1.
(G) Fp, (A :j <1,j€W)is 3-0k. for W” where on W see clause (H)
below and X from 4.5A(1) is chosen as N; (see below and 4.5C(1), (5),
(6))-
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(H) Ifi is successor or zero then i € W. If, in VFi+1 1 is a limit of cofinality
No then i ¢ W. Also “6 € W” is a P;y1-name and W C a.
(I) IFp,,, “Rss(Rq)”.
(J) If ¢ is neither a limit nor a successor of a limit ordinal, then A; =
BFiS).
2) If W is not given we mean {i < « : if 4 is limit then (in VFi+1) cf(a) > R;}.

4.6A Remark. Note that W determines (t, : a < &) in Definition 4.6, so we
could in 4.7 below forget it.

4.7 Proof of 4.4. Let h : k — H(k). We define Q* = (P;,Qj,t;, Ai : i < o, j <

) by induction on o < & such that in stage a, the objects Q;(j < @), P;(j < a),

t; (j+1<a+1)and 4;(j < a) (and the truth value of “j € W” is as in

4.6(2)) have already been defined and for successor i, B < A, and:

(A) Q% is S-o.k. (and increases with a).

(B) Q> € H(k) for a < k.

(C) If o is non-limit, let ko1 be the first compact cardinal > [P,|, and
Qo = SSeal(BF=, 51, kat1) if a is successor and Levy(Ry, < Kqt1) if o
is zero and Ayy1 = BF=+1[8; (and Ay the trivial algebra). Lastly of
course to+1 =1 and “a € W” is true also to = 0 and “0 € W”.

(D) Ifais alimit ordinal, h(a) = (t,Q, A), Q a Py-name of a forcing notion, A
a Py * Q-name, and for some R € H(x) we have IFp, “Q < R” and by the
following choices for Q*+1 we get a S-0.k., then so we choose Q**!; where
the choices are: to =t,Qo = R, and Ay = PRl [S1, Pat1 = Py * R and
Aat+1 = B[P,t1]. If possible we choose R = Q.

(E) If clauses (C), (D) do not produce a definition of Q**!, let k441 be the

first compact cardinal > |P,|, and then:
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first case if in VP cf(a) > Ro then

A, & 815 je 4, ¢ U Bhiv21g) = U Aj,
j<a jI<a
QC! = SSeal((.A] J < a),Sl,Ka+1) =
= SSeal((BF+2 : j < a) " (A=), 81, Kay1)
-,’.404+17 = %Pa+l7

ty =to41 =1

second case if in VP cf(a) = g (i.e. o ¢ W) then

Ao = B8,

(in VP) let AL, be Z* = Z*((A; : j < a)"(BP=151)) (a subset of
B P15, see Definition 2.4(2)) and A1 be the subalgebra of B F=+1]S; which

A, .1 generates. We let
Qa = Ssea'l(<%Pj+2 : .7 < a)A<Aa+l>7slvna+1)a

t, =0, tor1 =1L

If we succeed to carry the induction, then letting G C P, be generic over V we

know:

(a) NY[G] = XY and (81,52, S3) is a partition of w; to stationary subsets (as
P, is semiproper by clause (A) of Definition 4.6).

(b) N;’ €= (similarly, noting that P, satisfies the s-c.c.).

(c) Every countable set of ordinals from VP~ is included in one from V (see
(e) below).

(d) (Ai[G]: i < k) is 3-0.k. (by clause (G) of Definition 4.6).

(e) Py is Ss-complete (see clause (B) of Definition 4.6) hence, as S3 is sation-

ary, P, adds no reals so V[G,] | “2% = R, s0 A = A<,
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(f) BVIC11S; is Ulam i.e., omitting 0, it is the union of A = N; many A-
complete filters. [Why? By 4.5(E) and (d) above (as W = {a < & : a zero,
successor or has cofinality > R; (in V, equivalently in V[G,])}).]

To carry the induction it is enough to show that when clause (E) in the
construction is applied, we get an S-o.k. iteration; this is dealt by 4.9 below
+2.13 +2.16 for (EBQ 1S) for the first case, and by 4.10 below +2.13 + 2.16 for
W defined by 4.10 for the second case. O4.r

4.8 Remarks. 1) We could have allowed in clause (D) during the proof 4.7 (of
4.4) to decide if i € W, i.e. decide W; = W N1, i.e. demand h(a) = (t,s,Q, 4),
and try to define Q®*! as there with the following addition: the truth value of
“‘a € W” is 5, a Py *@-name, and at the end shoot a suitable club of x through
the “good” places.

2) We could have gotten a forcing axiom, as before.

3) In fact we can weaken the large cardinals demand to “k = sup{A < K : A

strongly inaccessible and Rss*()) or at least A u<k Rss™ (A, u)}”.

4.9 Claim. Suppose S C w; is stationary, Q = (PQj i <o, j <

a) is a semiproper iteration, a a limit ordinal, and, for simplicity, Ip,,,

“Rss(Rp[VFP+1])” for i < a. Let Y be a P,-name of a dense subset of

BIS = (J,., BHIS for i e W*.

Then

® if A is regular and large enough, N < (H()),€,<3}) is countable, and

Q, A\, p, Y, belongto N, pe P,N N, 3€ an N a successor ordinal and
g € Pgs is (N, Pg)-semi-generic, p[f < ¢ and N Nw; € S, then there is a
countable N', N <g N’ < (H()), €,<}),NNwi = N’ Nwi, successor
v € [B,a), Py-name A € N' and ¢, p’ satisfyingp < p’ € P,NN', ¢’ € P,,
P’y < ¢, ¢[8 =qand p'|B = p[B such that ¢’ IFp, “NNw; € A” and
pI-F“AeY”.

4.9A Remark. 1) Note that BP+11S < B?|S for i < a.
2) The claim gives more chains than used in 4.7.

3) This is naturally used together with 2.13.
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Proof. Let us fix p, Y, 8 and work in V[Gg] where Gg C Pj generic over V

and g € Gg. Let X be large enough and

W L (M <(H(N),€,<}) : M is countable, M Nw; € S, but

there are no successor y € M N [B,a),r € P,/Gp and
A € M (a Py-name) and p’ € P,/Gg N N such that:
r is (M, Py/Gg)-semi-generic, p < p’,p’|y < r and
rlp,a, “MNwy € A7, p' IF “Ae Y}

If W = ) mod Dcy, (H())), we can easily get the desired result (as in the
proof of 1.11)).

So (in V[Gg]) the set W is a stationary subset of Scy, (H(\)), hence semi-
stationary. As V[Gg] = “Rss(R2)” (remember (3 is a successor ordinal and
clause (I) of Definition 4.6) there is v C H(X) such that w; C u and |u] < Ry
(in V[Gg]) and W NSy, (u) is semi-stationary. Now without loss of generality
(u,€,<} Tu) < (H(A),€,<3). Let u = Uy, u¢, u¢ is countable, increasing

and continuous. So

B ¥ {¢eS: (M e W)(wy Nuc €M Cue)}
is a stationary subset of S C w; (see 1.2(4)), it belongs to B[Pg], and we shall

prove:
(*)  plkp,/g, “forevery X €Y the set X N1 AN By is not stationary”.

[Why (*)? If not then for some p’ and Py,-name 4, p < p' € P,/Gp and
p'lrp e, “A€Y and ANB; is stationary”. As Y C BQ, for some v < a,
A[Gp,]is in BF~, so (possibly increasing p) without loss of generality for some
successor v € [3,a), A is a Py-name of a member of B, For ¢ € By, let the
model M, be any member of W which satisfies w1 Nu¢ € M¢ C u¢ (see the
definition of B;). For £ < wy, let N¢ be the Skolem Hull (in (H()), €, <})) of
{¢:¢<&tu{pp,A W, (uc, M : ¢ € By)}, and



§4. P(w1)/(Dw, + S) is Reflective or Ulam 677

C={¢ <wi:N{[Gp,]Nwi = Eand N{[Gp,] Nu = uc}.

As (N¢[Gp,] : € < w1) is increasing continuous, C' is a P,/Gg-name of a club
of w;. Clearly C'N A is necessarily disjoint to B; by the definition of W: if
¢( <w1,q9 € Py/Gp, and ql-p, /g, “C € CNANB;,”, then Ny € W is defined,
4o is (N¢, Po/Gp)-semi-generic, and gqo IFp, /g, “N¢Nwi € A”, contradicting
“N¢ € W” so (*) holds.]
But (*) contradicts p I-p, /g, “Y C B9 is dense ” as B; € B C B2,
Ogo

4.10 Claim. Suppose S C w; is stationary, @ = (Pi,Qj,tj,.Ai 1< gi<a)
3-0.k. sequence for W, S-suitable iteration, a limit ordinal and (for simplicity)
cf(a) = Vg and let A, = B (a Py-name). Let A= (A; :i < aandi€ W).
Then:
® if A is regular large enough, N < (H()),€,<}) countable and Q,\,p
belong to N, p € P,N N, 8 € aN N a successor ordinal and ¢ € Pj3 is
(N, Pg)-semi generic, p[8 < g and NNw; € S then there is an (N, Py )-semi-
generic ¢’ € Py,q'|3 > q and ¢ IFp,  for every dense open T C Seq,,(.A)
(see 4.5A(4)(ii), (9)) which belongs to N[G,], for some (4; : i € w) €
N[Ga]N'T we have N Nw; € [;,, 4i”.

4.10A Remark. 1) If “cf(a) # Ro” we can still assume p forces cf(a) = Ny or
p forces cf(a) = R; or “a is inaccessible, A;_, |Pi| < a” and in the first case
prove 4.10 with minimal changes.

2) Note that Z*[(A; : i < )] is a subset of BP= extending B?, 0 is not in it,

but there is no reason for it to be closed under differences.

Proof. Standard, by now. Let {8y : £ < w) € N be an increasing sequence of
successor ordinals with Gy = 8, Uy, B¢ = o Let T = (Y, : n < w) list the
sets Y € N which are P,-names (forced to be) pre-dense subsets of Seq, (A).
We choose by induction py, gn, Nn,a", Gg, such that:

(a) Gg, C P, generic over V, Gg, C Gg,.,,

(b) No=N,po=p,90 =4,

(¢) Np <w, Nnt1,Np < (H(N),€,<3) and N, € V[Gg, ],
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(d) pn < Pnt1,Pn € NN P,/Gg,,

(e) qn € Gg, C Pg, is (Ny, Pg, )-semi-generic,

(f) PalBn < gn (in Pg,),

(g) @™ = (af : ( € wn) € Seq((A; :i <a))N Ty,
(h) w, C wpy; and a’c”'1 < a for ¢ € wy,

(1) {Be: £ <n} C wy,

() NnNwi € gj that is gn Ups[[Bn, @) forces this.

The induction step is by 4.1 (and 4.5D(9)). As we are using RCS iteration,
this suffices (i.e. we can make the G, disappear).
The details are left to the reader. This induction suffices as we can use RCS

iteration, so we can find ¢’ as required. O4.10





