
XIII. Large Ideals on ω\

§0. Introduction

Here we shall start with K e.g. supercompact, use semiproper iteration to get

results like (S C ω\ stationary costationary):

(a) ZFC 4- GCH 4 P(ωι)/(Dωι 4 5) is layered 4 suitable forcing axiom and

note that by [FMSh:252] this implies the existence of a uniform ultrafilter

on ω\ such that K^1 /D — NI (which is stronger than "D is not regular").

(b) ZFC+GCH+P(α;ι)/(Pωι 4 5) is Levy 4 suitable forcing axiom.

(c) ZFC4GCH4:P(u;ι)/(£>α,1 4 S) is Ulam 4 suitable forcing axiom,

where (a) Ulam means

(Dωι 4 5)+ - {A C ωι : A Π 5 ± 0 mod Pωι}

is the union of NI, Ki-complete filters, hence on R there are KI measures such

that each A C R is measurable for at least one measure

(b) Levy means that, as a Boolean algebra, it is isomorphic to the

completion of a Boolean algebra of the Levy collapse Levy(K0, < ^2)

(c) layered means that the Boolean algebra is Uα<H2 ^^ w^ere B& are

increasing, continuous, \Ba\ < HI, and cf(α) = NI =Φ Ba <£ P(ωι)/(Dωι 4 5).

We also deal with reflectiveness (see 4.3).

This chapter is a rerepresentation of [Sh:253], we shall give some history

later, and now just remark that this work was done (and reclaimed) after
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[FMSh:240 §1, §2] and [W83] ([W83] starts with "ZFC+DC+ADR+0 regular"'

and forces "ZFC+CH-fthe club filter on some stationary S C ω\ is KI dense")

but before Woodin obtained a similar result from a huge cardinal.

In this chapter we got results by semiproper iteration iterating collapses

and sealing some maximal antichains of P(ωι)fDωι up to some large K. So it

is a natural continuation of Chapter X. Our ability to do this to enough chains

comes from reflection properties of K, which is super compact (or limit of enough

supercompacts).

The first section contains preliminaries on semi-stationary sets, relevant

reflection properties and what occurs to some such properties when we force.

In the second section we deal more specifically with our iterations (5-suitable

iterations). In the third section we deal with getting Levy algebra and lay-

eredness, and in the fourth we deal with reflective ideals (see 4.3) and with

the Ulam property. Note that for much of the chapter the iteration is of 53-

complete forcing notion, for some (fixed) stationary 83 C α i, and in this case

the iteration is (equivalent to) a CS one; so we will stress less the names of

conditions etc.

By Foreman, Magidor and Shelah [FMSh:240], CON(ZFC+Av is supercom-

pact) implies the consistency of ZFC+"Ί}ωί is ^-saturated" [i.e., if 23 is the

Boolean algebra P(ω\)/Vωι^
 ίίfDωι is H2 saturated" means "23 satisfies the

K2-c.c."]. This in fact was deduced from the MM+(=Martin Maximum'1") by

[FMSh:240] whose consistency was proved by RCS iteration of semiproper forc-

ings (see Chapter X, Chapter XVII §1). Note that [FMSh:240] refutes the the-

sis: in order to get an elementary embedding j of V with small critical ordinal,

into some transitive class M of some generic extension Vp of V, one should

start with an elementary embedding of j of V into some M' and then force

over V1'. Previously, J. Steel and Van Wesep got the same result starting from

ZF+AD+ACβ (see [StVW]).

This thesis was quite strongly rooted. Note that it is closely connected

to the existence of normal filters D on λ which are λ+-saturated or at least

precipitous (use for P the set of nonzero members oίP(X)/D ordered by inverse

inclusion, j the generic ultrapower). See [FMSh:240] for older history.
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In fact, it was shortly proved directly that MM4" = SPFA+ and much

later it was proved that MM is equivalent to the Semi-Proper Forcing Axiom

(in ZFC) (see XVIII §1).

The rsults of [FMSh:240, §1, §2] motivated much activity. Woodin proves

from

CON(ZF+ADR+<9 regular) the consistency of ZFC+"23ΓS is Ni-dense", for

some stationary 5 C ω\.

By Shelah and Woodin [ShWd:241], if there is a supercompact cardinal,

then every projective set of reals is Lebesgue measurable (etc.). This was

obtained by combining (A) and (B) below which were proved simultaneously:

(A) The conclusion holds if there is a weakly compact cardinal ft and a forcing

notion P, |P| — ft, satisfying the ft-c.c., not adding reals and Ihp "there is

a normal filter D on ωi, *B = P(ω\)/D satisfying the N2-c.c."

(B) There is a forcing as required in (A) (see [FMSh:240, §3]).

This was improved for projective sets which are Σn using approximately

n cardinals ft satisfying:

(*) for every forcing notion P e H(κ) and stationary costationary 5 C ω\

there is semiproper Q, not adding reals, \\~P*Q "T>ωι \S is ft-saturated,

K = ft2" (and Q is not too large).

A sufficient condition for (*) is Prα(ft) = ft is strongly inaccessible, and for

every / : ft — > ft there is an elementary embedding j : V — * M (M is a

transitive class), ft the critical ordinal of j and H(j(f)(κ)) C M. Moreover it

suffice (Woodin cardinals) Pr^ft)' = ft is strongly inaccessible, and for every

/ : ft — > ft there is fti < ft, (Vα < ftι),/(α) < fti and for some elementary

embedding j : V — > M (M is a transitive class), fti is the critical ordinal of j

By [Sh:237a] "2H° < 2Nl => T>ωι is not Hi-dense", and by [Sh:270] if D is a

layered filter on λ = λ<λ then D+ — {A C λ : A £ D} is the union of λ filters

extending D.

' Later results of Martin, Steel and Woodin clarify the connection between

determinacy and large cardinals.
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This chapter is a representation of [Sh:253] which was done then, but was

mistakenly held as incorrect for quite some time. The main change is that we

replace part of the consistency proof of the Ulam statement, (P(ωι) is the

union of HI HI-complete nontrivial measures), by a deduction from a strong

variant of layerness. Later Woodin proves from a huge cardinal CON(ZFC+

GCH+P(u;ι)/(Z>ωι 4-5) is Ni-dense).

0.1. Notation and Basic Facts.

(1) P(A) is the power set of A, S<χ(A) = {B : B C A, \B\ < λ}, <*χ is a well

ordering of H(\) which, for simplicity only, we assume is an end extension

of <* for μ < λ.

(2) T>\ is the club filter on a regular λ > HO and Ί)<\(A) is the club filter on

S<x(A).

(3) (a) 53 is the Boolean Algebra P(ωι)fDωι] we do not distinguish strictly

between A € P(ωι) and A/T>ωι and for stationary S C ω\, *&\S is

defined naturally.

(b) 03 of course depends on the universe, so we may write *BV or 03[V1];

instead of 93 [Vp] we may write 23 p or 23 [P].

(c) If V1 C V2, ωY1 = ω\\ then 03 [V1] is a weak subalgebra of 93 [V2]

(i.e., distinct elements in 03[V 1 ] may be identified in 0 3 [ V 2 ] ) .

(d) If P £ V is a forcing notion preserving stationary subsets of ωι,

then 03 = 03[V] is a subalgebra of 03 p (identifying (A/Vωι)
v and

(A/τ>ωι)
yP for A G 7>(ωι)v). If Q = (P^φ : i < a) is an iteration

(with limit Pα, so i < j < α => Pi <§ P, ), we let 03*5 - Uί<α23Pί+1.

(4) (a) Let us say, for Boolean algebras BI and B2, that £χ <$ 52 iff BI C S2

(i.e., BI is a subalgebra of B2) and every maximal antichain of £?ι is

a maximal antichain of B2.

(b) Note that, for Boolean algebras BI and B2, BI <£ £?2 #f £?ι C B2 and

(Vx G B2 \ {0})(37/ G Bl \ {0})(Vz € fiOfz Π i / ^ O - ^ Π z ^ O ] .

Hence, if BI <$ B3 and BI C B2 C B3, then βx <> J52.

(c) Hence, the satisfaction of "Bι <> B^ does not depend on the universe

of set theory, i.e., if V |= Bl <o B2 and V C V1 then F1 f= Bl <o S2.
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(d) By Solovay and Tennenbaum [ST], <£ is transitive, and if (Bi : i < a)

is ^-increasing and continuous then Bi <£ [_) <aBj.

(e) Also, if (Bζ : ζ < ξ) is a C-increasing sequence of Boolean algebras

and BQ <> Bζ for ζ < ξ, then β0 <» Uζ<ξ ^C

(f) If (Bi : i < δ + I) is an increasing continous sequence of Boolean

algebras, cf(ί) > H0 and [i < δ => ||̂ || < £], and S d= {i < δ : B< <o

is a stationary subset of δ then £5 <£

[Why? If x G B(5+ι \ {0} then by clause (b) for each α G S for some

ya£ Ba\ {0} we have

So by Fodor lemma for some

is stationary. And so for some y the set {a £ 8% : ya = y} is station-

ary and y is as required.]

(g) For a Boolean algebra B, Xλ <£ X2 (in B) ijff Xx C X2 C B\{0β} and

every predense subset of X\ is a predense subset of X% where y is a

predense subset of X if Y C X & Vx G X3y G Y(3z G X)(* Cβ xΠy).

If Oβ G X2 we mean Xl \ {Oβ} <o X2 \ {0B}.

This definition is compatible with the one in clause (a) and the itera-

tion in clause (b) is still true; also clause (c) holds (the others are not

needed here).

(5) If in V we have PI <£ P2 <> ^3, in Vp<2 we have 03 Pl <£ »P2, and in

Vp*i*Bp* <> <BP3, Λen in yp3,23Pl <$ Q3P3, [follows by (4)(c), (4)(d)];

similarly for 23 Pί \S.

(6) For a set a and forcing notion P, Gp is the P-name of the generic set and

α[Gp] = α U {x[Gp] : x G a is a P-name}. So α[Gp] is a P-name of a set,

and for G C P generic over V its interpretation is a[G\ = αU {x[G] : x G α

is a P-name} (x[G] is the interpretation of the P-name x).
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(7) If λ > NO is a cardinal, N a countable elementary submodel of (-ff(λ),

G),P G TV and G C P is generic over V, then N[G\ X (#(λ)yP,G) (as
P = {r[G} : r € H(X) a P-name} and if lhP "(#(λ)vP,G) h

(x,α)" then for some P-name τ G H(\) we have lhP "(#(λ)yP, G) h

<Xτ,α)"). See III 2.11, I 5.17(1).

(8) Also, if some p G G is (AT, P)-generic then (TV,G) -< (H(\)v,e,G) (i.e.,

G is an extra predicate, so you may write (TV, G Π \N\)). Also, if Λ is any

relation (or sequence of relations) on H(X)V, N -< (ίί(λ)v,€,Λ) (and

P G AT, G C P generic over V) and some p G G is (TV, P)-generic then

(TV,G) -< (tf(λ)v,G,#,G) and even (N[G\,\N\,RN,G) X (ff(λ)^P,G

, H(X}V,R, G). Usually we use a well ordering <*x of if (λ).

(9) Let N <κ M mean N C M and N Π AC is an initial segment of M Π K

and A^ -< M; if we use it for sets (rather than models), the last demand is

omitted. Note that if N -< M -< (H(μ), G), K < μ and N Π K = M Π K then

TV <Λ+ M.

§1. Semi-Stationarity

1.1. Definition.

(1) A forcing notion P is semiproper if: for every regular λ > 2'p', any

countable TV -< (/f(λ),e) to which P belongs, and p G P Π N there is

q such that: p < q G P and <? is (TV, P)-semi-generic (see below).

(2) For a set α, forcing notion P and # G P, we say ς is (α, P)-semi-generic z/i

for every P-name a G α of a countable ordinal, </ Ihp "α G α" [i.e., if: q Ih
αα[Gp] Π ωι = a Π α i" see 0.1(6); note a[GP] = [x[GP] : x G α a P-name}

if α is closed enough, i.e. for x G α also x G α where x[G\ is x].

(3) We call W C ίŜ  (A) (where ωi C Λ) semi-stationary in ^4 (or in ̂ ^j (A)

or subset of A) z/for every model M with universe A and countably many

relations and functions, there is a countable TV -< M, such that (3α G

ωι <Ξ « C TV], [equivalently, {α G 5<Nl(A) : (36 G W)[aΠωl C
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b C a]} is a stationary subset of 5<^1(A) (i.e., ^ 0 mod T><^l(A)). As we

allow functions in M, we can require only N C M].

1.2. Claim.

(1) If W C 5<«1(A) is stationary and ω\ C A then W is a semi-stationary

subset of A. Also if ω\ C A,W C 5<^1(-A) is semi-stationary in A,.

C G £><*!( A) a n d [ α G W & & G C & 6 n u ; ι C α C & = > 6 G W ]

ίften W is stationary (subset of 5<N1(-A)).

(2) If ωι C A C B, and W C 5<Nl(A) then: W is semi-stationary mAiffW

is semi-stationary in B (so we can omit "in A").

(3) If VFi C WΊ C 5<^1(A), and Wj. is semi-stationary, ίften VF2 is semi-

stationary.

(4) If I-A I = NI, ω\ C A, A = U^<u;ια^, α^ increasing continuous in i, with

α^ countable, ί/ien W C «S<^1(A) is semi-stationary iff 5v^ = {ί : (36 G

W)[i C 6 C α^]} is stationary (as a subset of ω\).

(5) If p G P is (6, P)-semi-generic, bΓ\ωι C α C 6 thenp is (α, P)-semi-generic.

(6) If W C 5<Nl(λ), μ > λ, W G AT, TV X (ff(μ), G) (hence |W| < μ), and for

some α G V F , N Γ\ωι C a C N then W is semi-stationary.

(7) Assume A is an uncountable set, W C ^^(A), /i, /2, are one to one

functions from ω\ into A, and Wι = {a U {α < ω\ : /g(o:) G α} : α G

W} C 5<^1(AUα;ι). T/ien Wi is semi-stationary iff W 2 is semi stationary,

so in Definition 1.1(3) (of semi stationarity) we can replace "α i C A" by

"A uncountable".

(8) If AI, A2 are uncountable sets, / is a one to one function from AI to

A2, W2 C 5<Nl(A2), Wι C 5<Hl(Aι) and [α G Wi =» /;/(α) G W2] and

[6 G W2 =» (3α G VFι)6Π //;(Aι) = /"(α)] then: Wi is semi-stationary iff

W2 is semi-stationary. If / is onto A2, necessarily W\ = {α G *S<H,(Aι) :

Γ(α) G W2}.

Proo/. (1) - (5), (7), (8) Left to the reader.

(6) If not, some M = (λ, . . . ,Fn,...) exemplifies that W is not semi-

stationary, so some such M belongs to N, hence N Π λ is a submodel of M

(even an elementary submodel of M), a contradiction. Dι.2
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1.3. Claim. A forcing notion P is semiproper ^jff the set

Wp = {a G £<><! (P U p(ωι + 1)) : for every p G P Π α there is <?,

such that p < q G P and

<7 is (α, P) -semi- generic}

contains a club of S<#l(P U p(ω\ 4- 1)) where each h : P —+ (ωι -f 1) is

interpreted as a P-name a^ with the property that: if

g°h[G]=mm{h(r):reG},

then gh[G] is α$[G] if the latter is < ω\ and zero otherwise.

Proof. Immediate. Dι.3

1.4. Claim. The following are equivalent for a forcing notion P:

(1) P is semiproper.

(2) P preserves semi-stationarity.

(3) P preserves semi-stationarity of subsets of «S<

Proof. (1) => (2). Let ωi C A, and W C ̂ ^(A) be semi-stationary. Suppose

p e P and p Ihp "W is not semi-stationary". So there are P-names of functions

Fn(n < ω) from A to A, Fn is n-place, and p Ih "if α C A is countable closed

under Fn(n < ω] then -ι(36)[α ΠωiCbCa&be W}" .

Let λ be regular large enough. Let N -< (ίf(λ),G) be countable so that

A, (Fn : n < ω),p, P belong to TV and there is 6 G VF such that TVΠα;! C b C N

(such TV, 6 exist as W is semi-stationary by 1.2(2)). Let q be (TV, P)-semi-

generic, p < q G P. So q lhP

 CW[G] Π ωi = N Π α i and N C JV[G]" hence, for

the b above,

q\\-P

 ίίN[G}Πωl CbC N[G}" .

Also q Ihp "N[G\ Π A is closed under the Fn's" (as N[G] -< (ff (λ)[G], G) and

-Fn[G] G A^[G], see Basic Fact 0.1(7) in §0), contradicting the choice of the

(2) ^> (3). Trivial.
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-ι(l) =* -.(3). Let W = <S<Kl(P U p(ωl + 1)) \ WP (where WP is from

1.3). As -ι(l), W is stationary, so for each α G W choose pα G P Π α which

exemplifies a φ Wp, i.e. there is no <?,p < ς G P and g is (α,P)-semi-generic.

By the normality of the filter Ί><^λ(P U p(ωι + 1)), for some p(*) G P the

set Wi = {α G W : pa = p(*)} is stationary. Hence W\ is semi-stationary (by

1.2(1)). But by the choice of (pa : α G TV) and W^, easily p(*) Ih "Wι is not

semi-stationary". Clearly |P U p(ωι + 1)| = 2 |p| (as P is infinite w.l.o.g.),

so let / be a one to one function from 2'p' onto P U p(ωι + 1) and let

W<2 = {a G <S<Hl(2lpl) : /"(α) G Wi}. By 1.3(8) we have W2 is semi-stationary

and p(*) Ih "W2 is not semi-stationary" so (3) fails. Dι.4

1.5. Definition.

(1) Rss(ft, λ) (reflection for semi-stationarity) is the assertion that for every

semi-stationary W C 5<«1(λ) there is A C λ, ω\ C A, |A| < «; such that

WnS^CA) is semi-stationary (in S<^l(X)).

(2) Rss(«) is Rss(«, λ) for every λ > K.

(3) Rss+(«, λ) means that for every semiproper P of cardinality < K we have

Ihp "Rss(«,λ)".

(4) Rss+(^c) is Rss+(/^, λ) for every λ > K.

1.5A Remark. In 1.5(3), we could strengthen the statement by replacing

"semiproper" by "not collapsing HI" with no change below. If we use below

forcing notion from a smaller class we could weaken the statement in 1.5(3)

accordingly.

1.6. Claim.

(1) In Definition 1.5(1) we can replace λ by B, when \B\ = λ, ω\ C B.

(2) If /€ < KI < λi < λ and Rss(κ,λ), then Rss(«;ι,λι). If « < λi < λ

and Rss+(κ,λ) then Rss+(/ς,λι). Lastly, if Rss"l"(^,λ) (for i < α) then

Rss+(sup ΐ<QΛi,λ).

(3) If ft is a compact cardinal, then RSS(AV);

(4) If ft is a compact cardinal then Rss+(fr).
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(5) If K is measurable, Wi C ̂ ^(A) and Ui<KWi is semi-stationary then for

some α < K, (Ji<aWi is semi-stationary.

(6) If AC is a limit of compact cardinals, then Rss+(/s).

(7) If AV is λ-compact, λ = λN° > K, then RSS(AV, λ) and even RSS+(AC,A).

Proof. (1) Trivial.

(2) Use 1.2(2).

(3) Let K, C A, W C 5<«1(A), and: W Π S<^1(B) is not semi-stationary for

every B C A,ωιCB, with \B\ < K.

Define the set of sentences Γ:

Γ = Γα U Γb U Γc

where (each c G A serves as an individual constant):

Γα = {ci 7^ C2 : ci, C2 are distinct members of A},

Γb = {Λ(co,cι, . . ,Q, . . .)i<ω : Q G A, {cz : I < ω} G W},

Γc is the singleton with unique member (Fn is an n-place function symbol,

remember ω\ C Λ):

( V x o j ^ i j » ϊ^n, )n<ω if {xo,^ι, . . .} is closed under Fn(n < α;), ίften

-•(32/0, 2/ι, - - -) (Λ(2/o, . . - , 2/n, - - •) &

{x/ : / < cj, Vi< ω ιx/ = i} C {2/j : / < α;} C {xm : m < ω}) 1 .

Every subset of Γ of power < K has a model (if it mentions only c e B where

B C A and \B\ < K, then use a model witnessing "W Π 5<^1(B U ω\) is not

semi-stationary"). A model M of Γ exemplifies "W is not semi-stationary" (in

|M I , hence in A by 1.2(2)).

(4) As forcing notions of cardinality < ft preserve the compactness of K.

(5) Let Γα, Γc be as in the proof of 1.6(4), and:

Γ =
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Now Γα U Γc U \Ji<κ Γ^ has no model, hence (using the Los theorem for LωiίUl

and Hi-complete ultrafilters) for some a < ft, we have: Γα U Γc \Ji<a Γ^ has no

model.

(6) Easy (use last phrase of 1.6(2)).

(7) Same proof as 1.6(3), (4). DL6

1.7. Claim.

(1) If Rss(κ,2lpl) and P is not semiproper, then P destroys the semi-statio-

narity of some W C S^^A), \A\ < K (i.e. some p G P forces this)

[Why? By (1) 4Φ (3) from 1.4, for some p G P and semi-stationary W C

5<H1(2'P'), we have p \\-p "W is not semi-stationary". By the assumption,

for some A C 2 |p| we have: |A| < K and Wι d=f W Π S<^ί(A) is semi-

stationary. Clearly by 1.2(3) we have p Ihp "Wi is not semi-stationary",

as required].

(2) If P destroys the semi-stationarity of W C S<^1(A), \A\ = KI, then P

destroys the stationarity of Sw £ MI [with S\γ as defined in 1.2(4)], which

means that Sw is stationary in V but not in Vp.

(3) If Rss(N2,2lpl) and P preserves stationarity of subsets of α i, then P is

semiproper

[Why? By parts (1), (2) above].

(4) If W C S<χl(A) exemplifies the failure of Rss(N2, \A\), then there is

a forcing notion P of power |-A|**°, not semiproper but not destroying

stationarity of subsets of KI

[Why? Let P be {A : A = (Ai : ί < a) is an increasing continuous

countable sequence of countable subsets of A, each Ai satisfying -ι(3α G

W)(Ai Π ωι C α C Ai)}, ordered by being an initial segment. As forcing

with P destroy the semi stationarity of W, clearly P is not semiproper;

let us prove that forcing with P preserve the stationarity of subsets of

ωι. If p e P and p Ih "5 is not stationary" where S is a stationary set

of limit ordinals < α>ι, we can find an increasing continuous sequence

(Ni : i < ω\) of countable elementary submodels of (ffpτ~),G), with

{W,p,A} G NQ, Ni G N +i- So C = {δ < ωι : δ a limit ordinal and
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= δ} is a club of ω\. By the choice of W, for some club C\ C C of

cji, ί e CΊ => ->(3α)(α E VF Π J C α C Λfc), hence we can find δ € CΊ Π 5

and ς > p which is (TV, P)-generic, an easy contradiction.].

(5) Rss(K2) is equivalent to the assertion: every forcing notion preserving

stationarity of subsets of ω\ is semiproper.

[By parts (3), (4) above]. DI.T

1.8. Definition. (Pi,Qj : i < a,j < α) is a semiproper iteration if:

(A) it is an RCS iteration [see Ch. X, §1];

(B) if i < j < a are non-limit, then \\-pi "Pj/Pi is semiproper";

(C) for every i < a we have, ll-pi+1 "(2Kl)v * is collapsed to Nj" (we can use

another variant instead).

We shall use not only Gpi (or CpJ but also Gi (or Qi) for the (name of the)

generic subset of Pi.

1.9. Theorem. Suppose \ is measurable, (Pi, Qj : i < X , j < X) is a semiproper

iteration, |P;| < λ for i < X, and {i < X : Qi is semiproper } belongs to some

normal ultrafilter D on λ. Then in VPx, Player II wins D = D({Nι},α;, ^2).

1.9A. Remarks. On D see Ch. XII, Def. 2.1. or see below.

(1) The game lasts ω moves; on the nth move Player I chooses fn : ^2 —» ω\

and Player II chooses ξn <ω\. In the end Player II wins if A = {i < ^2 :

Λn Vm f n ( i ) < ξrn} is unbounded in H2.

(2) We can modify the game by requiring A ^ 0 mod E for a filter E on ω^.

We then denote the game by 3({^ι},ω,E). The result is true for E = D.

(3) By XII 2.5(2) we know the following: if Player II wins D({Nι},α;, N2), λ >

2^2, N a countable elementary submodel of (H(X), G, <£), then for ar-

bitrarily large i < ω2, there is N' -< ( H ( X ) , £ , < * χ ) , N ' countable, N C

Nf, i e Nf and A^ Π ωι = N' Π ωι (hence A^ <ω2 N'; see Basic Fact 0.1(9)

in §0).

If Player II wins 3({^ι},ω,E) (where E is a filter on ω%) then the set of

such i is 7^ 0 mod E', so we have equivalence.
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(4) Can we demand in (3) (on both see XII §2 when we use E) that Nr Π i =

N Π ΐϊ If {δ < ω2 : cf(ί) = H0} G E the answer is No. If {δ < ω2 :

cf(ί) = NI} € £ the answer is Yes provided that we can change the game

to D7: Player I is also allowed to choose regressive functions Fn : ^2 —> ^2,

and Player II in the nth move has to choose also ξ'n < ω%, and in the

end Player II wins if 5 = {δ < K2 : for n < ω, we have δ > ξ£, and

/n(«) < Umfm, ^n(ί) < Um O 7^ 0 Πlθd E.

(5) If in the theorem lhP "{£ < N2 : <?<* is semiproper and cf(ά)yP = NI} ̂

0 mod D" ί^en Player II wins also in this variant (from (4) above). The

proof of 1.9 still works.

(6) We can replace NI by any regular 0, NO < θ < λ, (as the range of fn)

and use the game D({0},μ,£7), E a normal filter on λ, (Pi,Qi : i < X)

is a (< 0)-revised support iteration (see Chapter XIV), such that the set

of i < λ satisfying the following belongs to D: "in VPί for p G Pχ/Pi in

the game PGω(p, Pχ/Pi, λ, 0) (see below and Chapter XII, 1.7(3), 1.4), the

second player has a winning strategy".

(7) We can replace in the assumption of 1.9, "D is a normal ultrafilter on K" by

"D is a normal filter on κn and the second player wins in D' ({Nι},u;, D).

(8) If we use the strong preservation version of theorems, we do not need 1.9

(a weaker version is then proved, e.g. for α < λ, (Pκ/Pa) * Nm is semi

proper) and is really changed.

Proof of 1.9. Let D be a normal ultrafilter on λ (in V),A G D a set of

(strongly) inaccessible cardinals such that: (V/c G A)[(Vi < κ)(\Pi\ < «) & Qκ

is semiproper (in VPκ)].

For each K G A the forcing notion P\/PK (in VPκ) is a semiproper forcing,

hence for each p G Pλ/P/c in the following game, PDω(p, Pχ/Pκ, NI), Player II

has a winning strategy which we call FP(P\/PK) (G VPκ)', if p = 0pλ/pκ, we omit

p [see Chapter XII, 1.7(3), Definition 1.4]: a play of the game lasts α -moves,

in the nth move Player I chooses a Pχ/P«rname ζn of a countable ordinal and



§1. Semi-Stationarity 617

Player II chooses a countable ordinal ξn. Player II wins a play if

(3q)(p < q e Pχ/Pκkq\^ «/\[ζn < \J fm]»);
m<ω

without loss of generality the ξn are strictly increasing.

Let us describe a winning strategy for Player II in D({Nι},α;ι, H2) in

V[Gλ], where G\ C Pχ is generic over V. In the nth move Player I chooses

ίn '• ω2 —> ωi, Player II, in addition to choosing ξn < ωι, chooses An, f'n, Oίn

such that:

(0) an < αn+ι < λ; in stage n Player II works in V[GαJ, so D is still an

ultrafilter (pedantically: generates an ultrafilter);

(1) An G D, An+ι C An C A and for all δ e An, we have an < ί;

(2) Ihp Ufn:ω2-+<*>!»',

(3) f'n[G\] = fn'ι fn *s tne first sucn name so /^ is from V;

(4) for K € ^4n? {(/zWϊ^) : ^ — n) ^s (a ^«-name of) an initial segment of a

play of PDu;(0pλ, P\/GK, NI) in which Player II uses his winning strategy

F(P\/GK), i.e. some condition in Gατι forces this.

How can Player II carry out this strategy? Suppose he arrives at stage

n and Player I has chosen fn G VPλ,/n : λ —> α i. Stipulate α0 = — 1. Let

5n = An-ι if n > 0 and Bn = A if n = 0. Player II chooses for fn G V

the first (by <*, χ = (2λ)+) Pλ-name /n such that /^[Gλ] - /n. Now for

every K e Bn, working in V[GΛ], he continues the play {{//(«),£?) : / < n) of

PDω(0P,Pλ/G/ί,Hι), letting the first player play /^(/c), and let ^(/ς) be the

choice of the second player according to the strategy F(Pχ/Gκ). So ξ^(κ) =

ξn(κ) is a ^-name. Now (in V[Gαn_1]) for every p G P\ and K € Bn there is

ζta ^ Pκ/Gan compatible with p and forcing a value to £°(ft). But as £?n C A,

and by the choice of the set A (and X 1.6) we know that Pκ = [Ji<κ P%, so we

can use the normality of D] so for some ξ < ωi, A™ G D, A™ C Bn and q,

we have # is compatible with p in P\/G0ίn_1 and (We G Ap)[ς« = q and # lhP/c

"£θ(tt) — ξ"]. So there are such q G GA, and ξ (which we call £n) and a set

which we call An. It is easy to choose αn.
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We should still prove that this is a winning strategy. We shall consider

one play and work in V, so everything is a P\-name (&s we are using RCS,

no problems arise). I.e. we have p* G Pχ such that p* !hpλ "{/n,ξn : n < ω)

is a play of the game with Player II using his strategy, choosing on the side

(fn,Qίn, An : n < ω)n. Now fn, An, an are Pχ-names of members of V ( f ' n a

Pλ-name of a Pλ-name) so there is a maximal antichain Jn of P\ of conditions

forcing a value to each of /n, ξn, /^, αn, An. But PA satisfies the λ-c.c.,

Pχ = \J Pa so for some α(*) < λ, f\ Jn C. Pa(*) Also w.l.o.g. α(*) is bigger
α<λ n<u>

than every possible value αn.

Work in V[Gα(*)]. Now D is (essentially) an ultrafilter (on λ) in V[Gα(*)].

Each An is a P\-name of a member of V so really there are < λ candidates so

we can find Aω, such that for each n we have \\-px/ca(^ "Aω C An," Aω G D

(alternatively we can compute p| An in V[Gα(s|t)]). Now for /ς G Aω, « > α(*)
n<ω

the sequence ((/z(«),ξz) : / < cj) is a play of PDω(0p,Pλ/ P/c,Nι) where Player

II uses his winning strategy (this is a Pκ-name, but fortunately (ξι[Gκ] : I <

ω) G V[Ga(^}). So there is qκ G Pχ/Pκ so that

(more exactly:

<

actually qκ is a Pκ/GQ!(s|<)-name of a P\/PK-condition).

We can consider qκ as a P\-condition with Όom(qκ) C [«, λ), because we

use RCS iteration. Now easily (qκ : K G Aω) G V[Gα(#)], and

" f t € Ά : 9κ ^ GΛ is unbounded in λ"

Why? As every r G P\/Ga^ has domain bounded in λ, we have: q^ is compat-

ible with it for K large enough. This finishes the proof that the strategy works.

Πl.9
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1.10. Claim. Suppose ft is measurable, Q is a semiproper iteration, ίg(Q) =

ft, \Pi\ < ft for ί < ft and {i : Qi semiproper } belongs to some normal ultrafilter

on ft (this holds e.g. if {i < ft : if Us strongly inaccessible and (Vj < i)[\Pj\ < i],

then Qi is semi proper} G Ί>κ). Then:

(1) Rss+ (ft, λ) implies lhP|ς "Rss(ft,λ)".

(2) If Q is a Pκ-name of a forcing notion, (P^/Pi+i) * Q is semiproper for each

i < ft (i.e. this is forced for P +i) #ιen lhP/ς "Q is semiproper".

(3) We can replace measurability of ft by: ft is strongly inaccessible and lhPκ

"Player II wins

Proof. (1) Let ψ be a P«-name and p G PΛ be such that p lhPκ "W C <S<Kl (λ)

is semi-stationary".

For i < ft, let Wi = {a : a e VPi , a G tS^ (λ), and for some q G GPi , q \\-Pκ

"α G W"}. So tfi is a P -name.

Let x be regular and large enough, and <* a well ordering of H(χ)v.

Let p G G — Gκ C PΛ, G generic over V and G^ = G Π P^ for z < ft.

In V^Gtf], as ^[G^] is semi-stationary, there is a countable (N,GK Π N) -<

(ίfίχJ^^j^jG^), such that for some α G WfG^] we have N Π α i C α C

Λ^ Π λ, and p, T}7, λ, ft, Q belong to N (note: GΛ is considered a relation of those

models) .

So there are q G Gκ and P^-names 7V,α such that q lhPκ. 'W,α are as

above", and as p G G^, without loss of generality p < q. As N and α are

countable subsets of H(χ)v and λ respectively and P^ = \Ji<KPi satisfies the

ft-c.c. (by X 5.3(3)), for some i < ft we have AT, a are P^-names, lhPi "AΓίΊft C i"

and q £ Pi Now by 1.9 4- 1.9A(3), in yp/c, for arbitrarily large ordinal

θ < ft, AΓl61! Π ωi — N Π α i, and Q,9 is semiproper (if not, replace it by θ -f 1),

where we let:

N&] d= Skolem Hull (N U {θ})

(in (H(χ)v , G, <* , GΛ), working in the universe V[GK] such that ^ G GΛ).

Choose such a β > i. Now 0 G N^ and (N^,GΘ) -< (H(x)V , e, <*,GΘ), as

> i clearly α[G0] G ψθ[Gθ] and ωl Π 7V^ C a[Gθ] C TV^l. Let ΛΓ[β] be the
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Skolem Hull of N U {9} in (H(χ)v, G, <*,G0); note as AT is a P0-name, in

V[G0] we can compute N[GΘ] = N[GK] = N (and a[Gθ] = α[GΛ] = α). Clearly

ΛΓM Πcj! C α[G0] C N C Afy] C AΓ^l; hence by 1.2(6), V[GΘ] \= UWΘ[GΘ] is a

semi-stationary subset of 5<N1(λ)" (remembering that in (ίf(χ)v, G, <* , G0)

we can interprete (H(χ)v^Gθ\ G tf (χ)y, <*,G)).

As Rss+(ft, λ) clearly V[G0] |= Rss(ft,λ), hence in V[G0] for some A C

λ, \A\ < ft and VF0[G0] Π 5<«1(A) is semi-stationary. As Pκ/Pθ is semiproper

(by the choice of 0) it preserves the semi-stationary of W0[G0] Π 5<«1(A) (see

1.4), hence V[GK] \= "WΘ[GΘ] n5<N l(A) is semi-stationary", but W[GΘ] C

W[GK] hence V[GK] 1= "W[GK] Π<S<H0(A) is semi-stationary".

(2) This is similar: suppose p \\-PK "AT ^ (H(χ)v, G, <*,GPJ and p7 G

Q Π AT are counterexample to semiproperness of Q".

Let Gκ C Pκ be generic over V and p G G^. Let 0 < ft, with 0 >

sup(ΛΓ[GΛ] Π ft), be such that AT is a P^-name and sup(AΓ[G] Π ft) < ft and

N[GK]W Π ωι = N[GK] Π α i- Now work in V[GK n P0+ι] and use: lhPθ+1

"(P/c/Pβ+i) *Q is semiproper". (Note that if Rss+(ft) we can get the result by

1.7(3)). Alternatively prove that forcing with Q[HK] preserve semi stationarity

of sets.

(3) In the proof of (2) we use this only. In the proof of (1) we could have

chosen 0 to be a successor ordinal (so QQ is semiproper). So PK/G0 preserves

the semi-stationarity of W", hence V[GΛ] |= "W is semi-stationary". DI.IO

1.11. Claim. Suppose Rss(ft, 2Λ), ft regular and: ft = K2 or (Vμ < ft)μH° < ft.

Then for λ > 2* for every countable N -< (if (λ), G, <£) to which ft belongs, for

arbitrarily large i < ft, letting N® = Skolem Hull (ATu{i}), we have N <ω2 N®

(note that we do not demand N Π ft 7^ A/"W Π ft).

1.12. Remark. (1) The "ft = ft2 •" can be omitted if we replace "for arbi-

trarily large i" by "for some i < ft with i > sup(N Π ft)".

(2) We can replace "ft = ^2, or ..." by

(*)ι "if α < ft, then there is a closed unbounded C C «S<κ1 (α) of power

< ft" (see the proof).

It even suffices to assume
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(*)2 "for every stationary W C S<^l(a)^(a < K) there is a semi-

stationary W C W of cardinality < ft" .

(3) If in the conclusion we want to get N <κ N^, we have to replace "(Ξ3α G

W)(N Π ωι C α C JV)" in the definition of semi-stationary (Definition 1.1) by

"(3o G VF)(AΓ Π ft C α <κ N Π AC)" .

Proof of 1.11. Let

W - {|7V| : N -< (H(κ+), G, <*+), N countable and

for some IN < ft, for no i G [ZΛΓ, «) do we have TV <ω2

Assume first that W is a stationary subset of H(κ+). So, as Rss(«, 2*) holds

(and \H(κ+)\ = 2*) there is A C ff(«+), cji C A, |A| < « such that:

WΛ = {α G W : a C ^4} is a semi-stationary subset of S<^1(A). Without

loss of generality (see 1.2(2))

M d^f μ, G \A, <;+ r^4) ^ (^(/^+), e, <+)

and ^4 Π K is an ordinal < K (remember K is regular) .

Remembering that (by the definition of W) for countable elementary sub-

models NI C N2 of (H(κ+),e, <*+), \Nι\ eW, NI Γ\ωι = N2 Π ωl implies

|A^| G W] by 1.2(1) clearly WA is stationary (as a subset of 5< 1̂ (A)). We know

by assumption that for some closed unbounded C C 5<κ! (-4), C has cardinality

< K. So

C d= SUP{ZΛΓ : |7V| G C Π WA} < K.

Now for some club CΊ C C, for every α G CΊ, the set α^' = Skolem Hull of

α U {C} (inside (H(κ+), G, <*+)), satisfies α^l Π -A = α, hence α <ω2 α^. But

we can choose α G CΊ Π WΛ, contradiction.

So VF is not stationary and let C* C S<κl(H(κ~*~)) be a club disjoint to

W.

Let λ > 2Λ, so #(AV+), <*+, VF G ίf(λ), and let AT be such that K G

N x (ίf(λ), G, <^) and TV is countable. So H(κ+) G AT (and <* + =<λ \H(κ+))

hence W G A^ and without loss of generality C* G A^. Hence N Π ̂ (κ+) G C*,
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and so for arbitrarily large i < K there is TVf such that N\H(κ+) -< TVf -<

(H(κ+), G, <* + ), N\H(κ+) <ω2 Nΐ and i G TVJ. Let TV* be the Skolem Hull of

TV U (N{ Π K). We can easily check that TV* Π « = TVf Π «, so TV* is as required.

§2. 5-Suitable Iterations and Sealing Forcing

2.1. Definition. We say Q = (Pi,Qj,tj : i < α, j < a) is S-suitable (itera-

tion), where S C cji is stationary, if:

(A) Q is an RCS iteration; (i.e. if we remove the t/s);

(B) we denote | Uj<i -Fj'+il — ί̂ — κ? so ^o = 1? ̂  increasing continuous.

We demand that KI is strictly increasing;

(C) for i successor κ,i is strongly inaccessible;

(D) for i < j < a. non-limit, Pj/Pi is semiproper;

(E) Qi satisfies the ^_|_ι-c.c., H^ ϊ+l — ̂ i+i;

(F) if t^ = 1, i < j < a and j is a successor, then 23 Pί fS <£ 25 Pj [5 (see

0.1(3)(a) + (b)).

Remark: We may, but do not, use tβ which are names. Also the demand "Qi

satisfies the ttΐ+i-c.c." is just for simplicity.

2.1A. Notation, α^ = α,P^ = ^,θf = Qj,tf = tj and (remember and

recall 0.1(3)(d)): <£>$ = U{»Pi+1 : i < lg(Q)}.

2.2. Claim.

(1) Suppose Q — (Pi,Qj : i < a,j < a) is a semiproper iteration (see 1.8 for

definition). Then:

(a) If i < a is non-limit or Qi is semiproper or Qi preserves stationarity

of subsets of ω\ from VPί or i is strongly inaccessible and /\ \Pj\ < i,
j<i

then every stationary subset of ω\ in VPi is also stationary in VPa

(i.e., 23 [P^ is a subalgebra of 23 [Pα]).

(b) κr = κίrPβ
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(c) If a > NO is strongly inaccessible, and |P^| < α for i < α, then Pa

satisfies the α -c.c. and so

P(ωι)γPa = (J P(ωl)
yPi and Vp<* \= "2Hl - N2".

i<a

(d) If ωι\S is stationary, each Qi is (α i \ 5)-complete [see V §3], then

so is Pα, hence forcing by Pα preserve the stationarity of ω\ \ 5 and

even subsets of it and does not add ω-sequences of ordinals, hence

(e) If Q G NI X NI X ( H ( X ) , e ) , N 2 countable, TVi <α AΓ2,α strongly

inaccessible and belongs to Λ/ι ,α > |P*| for i < a and q is (JVι,Pα)-

semi-generic and i = min(α Π 7V2 \ A/i) is regular, ί/ien <? is (7V2, Pt)-

semi-generic.

(2) Any 5-suitable iteration Q is a semiproper iteration and t^ — 1 => 23 [Pi] \S

<> 5B[Pj]f5] when: j > z, and j is: successor or strongly inaccessible

satisfying [7 < j = >̂ |P7| < j ] .

(3) If (in (1)) K < a is strongly inaccessible, \Pi\ < K for ί < /ς, and lhpκ

"Rss(H2)" then Qκ (and Pj/P^ when ft < j < α) are semiproper.

Proof. Left to the reader. For instance:

(l)(e) Clearly i is a strong limit [as {j < K : j strong limit } is a club of /ς

which belongs to NI , hence ί necessarily belongs to it] . Also we have assumed i

is regular hence i is strongly inaccessible; similarly i > N0 and j < i => \Pj\ < i.

If T G Λf2 is a maximal antichain of P;, ί/ien by X 5.3(3) for some j < i we

have T C P^ , so that consequently there is such j in 7V2, and hence j G NI and

also the rest is easy.

(2) If j is a successor ordinal use clause (F) of Definition 2.1, if j is strong

inaccessible use 2.2(l)(c) and 0.1(4)(e).

(3) By 1.7(3) it is enough to prove that forcing with Qκ does not destroy

the stationarity of any A C ωι, A € VPκ. However, by 2.2(l)(c) (and 2.2(2))

for some β < α, A e VPP. Clearly A G VFβ and is a stationary subset of ω\ in
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γPβ+ι m AS Pκ+ι/Pβ+ι is semiproper, A is also stationary in (VpP+l)p*+1/pβ+l =
Q/c

yPκ+ι _. (T/p«)~ , as required. Π2.2

2.2Λ. Remark. It follows that if K is strongly inaccessible, and \Pi\ < K for

ί < ft, and A is a stationary subset of ω\ in Vp>c, Λen A is a stationary subset

of ω\ in VPa for every large enough a < K.

2.3. Claim. Suppose Q = (Pj,Qi,ti : j < a,i < a) is an RCS iteration, α a

limit ordinal and 5 C ω\ is stationary.

(1) If Q\β is 5-suitable for β < α, ί/ien Q is 5-suitable.

(2) If for /? < α, Qί/3 is a semiproper iteration, ί/ien Q is a semiproper

iteration.

(3) In (2), if i < α and .4 is a Pi-name then: \\-Pa "A <° 23° ΓS" if and only

if a = sup{j < α :lhPj+1 "A <Φ 95^'+* Γ^"'} if and only if for arbitrarily

large j < α we have Ihp. "A <$ ^BFj".

(4) In (2), if a > |Pi| for i < α, and a is strongly inaccessible, then 93^ =

<BP«.

Proof. (1) For clause (D) from Definition 2.1 use the semiproper iteration

lemma. The other clauses are also obvious.

(2), (3), (4) are also easy. D2.3

2.4. Definition. Let A — (Aζ : ζ < ξ) be a sequence of subalgebras or just

subsets of 95(= 95^) such that 5 belongs to each *4ζ where 5 C ω\ stationary.

(1) Sm(A,S) = {A C S : for some C < ξ, {x G ^lc : x ^ 0 mod Pωι

and x Π A — 0 mod P^i) is pre-dense in ^4^} (we should have written

x/T>ωι G ^4^ for x, x C α i; Ξ is predense in Aζ means that for every

y 6 Aζ, such that Λ: ^ "y / 0" for some x G Ξ we have ̂  N "xΠy ^ 0").

(2) For Ξ C 25y let seal(Ξ) — {{α^ : i < a) : a is a countable ordinal, and

letting aa = \J α^ we have α^ G 5<^1(Ξ U α i), α^ (i < α) is increasing
i<a

continuous, each α^ countable and α^ Π ω\ is an ordinal which belongs to

|JΛGΞnα. >!}, ordered by being an initial segment.

(3) We define the sealing forcing Seal(*4, S) as the product with countable

support of { seal(Ξ) : for some ζ < £, Ξ is a pre-dense subset of Aζ and
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ωι\S G Ξ}. Let Seal'(./ϊ, S) = {c : c a partial function from Smpϊ, 5), with

countable domain, and if A G Sm(.4, S)nDom(c), then CA is a continuously

increasing function from some countable 7 + 1 to ω\ \ ^4},

the ordering is defined by:

c1 < c2 if A G Domic1) implies A G Dom(c2) and c\ C c^.

(4) If A — (A) we write Λ instead of A in (1), (2) above and (5) below.

(5) For K (> MO) strongly inaccessible we define the strong sealing forcing

SSeal(v4, 5, K) as Pκ, where (Pi, Q3 : i < κ,j < K) is an RCS iteration with

QJ = Seal(ΛS')^ x LevyίNi^^)^^'1-

(6) We call Ξ C ?&v semiproper iffseal(Έ) is a semiproper forcing notion.

(7) WSeal(5) is the product, with countable support, of seal(Ξ), Ξ semiproper,

ωι \ S e Ξ.

(8) For K not strongly inaccessible, but still .4-inaccessible, which means:

(*) (Vμ < κ)[μ"° < κ],κ = cf(«), Ac'^l = κ for C < ί, and ξ = ίg(Λ) <

K, Av > KI,

we define the strong sealing forcing SSeal*(*4,5, K) as Pκ where (Pi,Qj :

* < ^7j < ^} is an RCS iteration; Q? = seal(Ξj,5)v J ,Ξ^ is a maximal

antichain of Aζ(j) to which ωι\S belongs for some ζ(j) < ξ (in Vpj) and

every maximal antichain Ξ of some ^4^ from VPκ is Ej for some j < K. [Pκ

is not neccessarily well defined].

(9) If Ξ C {Ξ : Ξ C 03} then seal(Ξ) is the product, with countable support,

of seal(Ξ) for Ξ G Ξ.

2.5. Remarks.

(1) We could have used CS iteration for SSeal and SSeaΓ.

(2) If every maximal antichain of *BV is semiproper, the difference between

WSeal(5) x Levy(Nι,2N l) and Seal(<8v,S) defined in 2.4 (7), (3) respec-

tively, is nominal (i.e. they are equivalent, i.e. have isomorphic comple-

tions).

(3) If Aζ\S <£ *BV\S and μc| < NI for C < tg(A), then Seal(Λ^) is

equivalent to Levy(Kι,2H l).
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(4) If \Λζ\ < NI (for every ζ < ig(A)) then the difference between Seal (A, S)

and Seal'(*4, 5) is nominal (i.e. they are equivalent i.e. have isomorphic

completions).

(5) We use below mainly SSeal(^4, 5), we could use S Seal* (.A, £,^2) instead.

Also instead SSeal(Λ 5) we could use SSeal'(ΛS) by 0.1(4)(c) (and see

o.i(g)).
(6) For convenience we shall use mostly SSeal(,4, S). So in, e.g., 2.11, 2.13 we

can deal with SSeal* .

2.6. Notation. We omit K in SSeal(.4, 5, K) when it is the first strongly

inaccessible. We omit 5 when S = ω\. We write A instead of (A).

2.7. Claim. If in V,

(VCi < ξι)(3C2 < 6)[̂  <$ Λ2

ζ2 (inside

(VC2 < &)(3Ci < ξι)[Λl <$ A1^ (inside

then

Seal7 (Al,S) -Seal7 (A2, S) and

1, 5, K) -SSeal(^2, 5, «).

Proof. Easy. D2.γ

2.8. Claim.

(1) Let Ξ C *BV be pre-dense. Then Ξ is semiproper iff. for λ regular large

enough and countable N -< (#(λ), G) with Ξ G N, there is a countable

AT, N -< TV' -x (ff(λ) , €, <Λ), satisfying ]V Π α i - Nf Π ωi G UAEBΠAΓ' A

[Why? For the implication "=>" let ρ G seal(Ξ) be (TV, seal (Ξ) ̂ semi-

generic. Let αi[Gseai(s)] be α^ for any ά = (a,j : j < α) G GSeai(Ξ) whenever

α > i so C = {αiΠα i : i < ωι} is forced to be a club of ω\. So C G JV, hence
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as q is (N, seal(Ξ))- semi-generic, necessarily q Ih "ί = TV Π ω\ G C". In

fact δ = α$ Πωi = (J α; Πα i, so possibly increasing <?, for some (bi : i < δ)

q Ih "α; = &ΐ for i < ί", so

g Ih «δ = ωιΠ (Skolem hull in (ff(λ), G, <£) of |7V| U 65 - |7V| U (J &.)".

So this Skolem hull is Nf as required. For the implication "<=" use 2.8(4)

below.]

(2) lhSeai(Ξ) "Ξ C 23lseal(Ξ)] is absolutely pre-dense" (absolutely means for

extensions not collapsing NI; more specifically in this chapter, there is

a list (Ai : ί < ω\) of members of Ξ and a club C of ω\ such that

S G C =» J G Uΐ<£^) [Why? Let (α< : i < α i) be as in the proof of

2.8(1), so let ^4i be such that (Ai : i < δ) lists the member of Ξ in a§ for

limit δ < ωι.]

(3) WSeal(5) is semiproper and lhWSeai(s) "z/Ξ G V is semiproper in 95 y and

(ωι\S) G Ξ, £/ien Ξ is absolutely pre-dense in 2j[WSeal(5')]»< [Why? For

semiproperness use 2.8(8) below; for absoluteness use 2.8(2) above.]

(4) seal(Ξ) is A-complete (see V §3) for A G Ξ; so WSeal(S) is (ωι \ S)-

complete. [Why? Think.]

(5) If Ξ is pre-dense in 95 [V], then seal(Ξ) preserves stationarity of subsets of

ω\\ if A C 93V,Ξ a pre-dense subset of A \ {0} then seal(Ξ) preserves

stationary of subsets of ω\ which belongs to A or just are not in Sm(»Λ, 5).

[Why? Use 2.8(4) as any A-complete forcing notion surely preserve the

stationarity of subsets of A.]

(6) The forcing notion seal(Ξ) forces |Ξ| < N X and has cardinality < (|Ξ| -h

HI)K O. The forcing notion Seal (A, S) is (ωι \ 5)-complete; SSeal*(^, 5, K)

and even any initial segment of such iteration of length K, is (ωι \ 5)-

complete and if K, > KQ is .A-inaccessible and S C ω\ is stationary then it

satisfies the 0-c.c. if θ = cf(fl) > \Aζ\ for C < tg(A) and /\ |α|H° < θ. If

K > KQ is strongly inaccessible then SSeal(^4, £,«) satisfies the AC-C.C. and

is (ω\ \ 5)-complete.
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(7) If Rss(H2,^2(^ι)) then for every pre-dense Ξ C 23(V), seal(Ξ) is semiproper.

[Why? By 1.7(3) and 2.8(5).]

In this case Seal (35v, S), SSeal(<Bv, 5, «), SSeal*(S3v, S, «) are semiproper.

(8) For λ regular large enough, and countable N -< (ff(λ),£,<£) tfcene is a

countable TV7, N X TV' X ( ff(λ), G, <J) satisfying: TVn^i - WlΊα i and for

every semiproper Ξ C 23 y we have: [Ξ G TV = >̂ N' Π ωi G LUeΞn v ̂  tuse

part (1) repeatedly ω-times] and even Ξ G N' => N' Π ω\ G LUesrw ̂

[use the previous statement repeatedly α -times]. U2.8

2.9. Claim. Suppose A = (Λζ : ζ < £) is an increasing sequence of

subalgebras or just subsets of 23, K > NO is strongly inaccessible or just

SSeaΓ(Λ£» is well defined. Assume (A,κ) G N -x (ff(λ),G), N count-

able, P =f SSeal(Λ 5, AC) or P = SSeal*(A 5, /ς) respectively and

9^ s if Ξ G AT is a pre-dense subset of Aζ for some ζ G N Π ξ and ωi \ 5 G Ξ,

then N Π α i G UAGΞΓW ̂

T/ien for every p G PΠ7V, ί/iere is q £ P, (AT, P)-generic, p <q,q force a value
N[GP]

to GP Π AT and g Ih "Θ^55 holds".

Proof. We have to find ς, p < g G P, which is (TV, P)-generic. We first show:

(*) if C, Ξ G TV are P-names, Ihp "Ξ is a pre-dense subset of Aζ", p G A/ΉP,

ίften for some p2, p < p2 G TV Π P, and for some A, ζ we have p2 Ih "£ = C and

A G Ξ Π TV Π Aζ" (so A G V, and A G TV Π Aζ and A G V) and TV Π cji G A.

Proof of (*). We can find p°, p < p° G TV Π P, and C such that p° Ih "ζ - C"

(so necessarily ζ G TV). Next define

T = {Λ G A: : for some p1, p < p1 G P, and p1 Ih "A G Ξ"}.

Clearly T G TV, T G V, and T is a pre-dense subset of Aζ, ζ G TV.

By Θ^ s there is A G T Π TV such that TV Π cji G A. By the definition of T

there is p2, p° < p2 G P and p2 Ih "A G Ξ". As p°, A and Ξ are all in TV, we
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can choose such p2 in TV, thus finishing the proof of (*).

Now we continue with the proof of 2.9. We define pn for n < ω such that:

(a) po =p, pn+ι >pn;

(b) Pn G Pκ Π TV;

(c) for every dense subset J of Pκ which belongs to N for some n, pn+\ € J]

(d) «/ J € ft Π TV,Ξ, C are P^-names from TV and Ihp. "ζ" < £ and Ξ C ̂  is

pre-dense" then for some n < ω and 5 € 2JV Π TV, we have N Π ωi G B

and

Pn+XUII-p, "£€Ξ".

This clearly suffices, as (using the notation of Definition 2.4(5)):

(α) for j e N Π K we have (\Jn<ωpn)(j) is in Qj by (d), and

(0) Un<ωPn & (N,P)-generic by (c).

So we can assign the tasks, and for satisfying (b) and (c) there is no

problem. For (d) use (*). D2.g

2.10 Claim. Suppose

(a) seal(Ξ) is semiproper for every maximal antichain Ξ of 23v to which ωι\S

belongs, A - (<BV) = (A)

or

(a); A = (Λζ : ζ < ξ), Aζ C 23v, and seal(Ξ) is semiproper for any predense

subset Ξ of Λζ, ζ < ζ

and

(b) AC > NO is strongly inaccessible

or at least

(b)f K > NO is inaccessible or just |^4ζ|-inaccessible for ζ < ζ (see 2.4(5)).

Then P d= SSeal(Λ 5,«) if (b) or P d= SSeal*(^,5,/c) if (b)' (both well

defined), is semiproper, have the /c-c.c., is (ωι \5)-complete and Ihp "(Aζ \S) <$

(32>P\S)" (and in case (b)' if (9 - cf(<9) > \Aζ\*°, fl-c.c.)-

Remark. Some points in the proof are repeated in 2.11.
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Proof. The (ω\ \ S) -completeness is trivial by the definition of P and Ch. V,

Def. 1.1 (and the preservation theorem there i.e. by 2.8(a)).

For semiproperness let λ be regular and large enough, and N -< (ff (λ), G)

countable, P G N and p G P Π TV. Applying repeatedly 2.8(1) (or directly

2.8(8)), there is TV', N -< Nf -< (#(λ),G), NΠωl = N' Πα^AΓ' countable,

and for every maximal antichain Ξ C 95 (or just pre-dense Ξ C *BV if (a) or

predense subset Ξ of Aζ for some ζ < ξ, if (a)'):

|J A.

Now use 2.9. (with (93V), Nf here standing for (Aζ : ζ < ξ) , N there) .

So we have proved that P is semiproper and by the present proof and

the Δ-system lemma (alternativelly if K is strongly inacessible by 2.2(l)(c)

or 2.8(6)) P has the /c-c.c., hence lhP "(Aζ\S) <£ (<BPίS)" follows from the

definition of P as every P^-name of a subset of some Λζ is a P^-name for some

j < K (as Pκ satisfies the «-c.c.). Hb.io

2.11. Claim. I{A=(Aζ:ζ<ξ),Aζ\S<> *BV \S for ζ < ξ, each Aζ \S satisfies

the ^2-c.c. (e.g. has power < HI) and K > NO is strongly inaccessible, then

(1) Pκ

 d= SSeal(^, 5, K) is proper;

(2) ihPκ "Arts <° »p" Γ s for c < Γ;
(3) in fact, Pκ is (α i \ 5)-complete, strongly proper and satisfies the κ-c.c. and

\\-PK «/ς = «2 = 2K l";

(4) if α i \ 5 is stationary, PΛ does not add α -sequences of ordinals.

Proof. (1) Let λ be regular large enough and N -< (-ff(λ), G) countable, Q £ N

(hence Pκ G AT) and p G Pκ Π N. We want to apply 2.9, so we have (and it

suffices) to verify 0 there, i.e.

(**) if Aζ \S <$ βpr] f5, Λ satisfies the N2-c.c., Aζ G N -< (H(χ), G, <* ),

N countable, Ξ C Aζ is a pre-dense subset of Aζ and ω\ \ 5 G Ξ t/ien

AT Π ωι G (J{^ : A G Ξ Π AT}.

of (**). As *4ζ f5 |= "N2"-c.c., clearly without loss of generality |Ξ| < KI,

so let Ξ = {Ai : i < ωι} (as Ξ ^ 0 this is possible) and say AQ = ω\ \ 5.
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Since Λζ\S <£ *BV\S, clearly Ξ is pre-dense in 23V, hence we know {δ : δ G

\Ji<δ Ai] G Vωι (otherwise the complement contradicts the pre-density of Ξ in

2SV), so there is a closed unbounded C C ω\ such that C C {δ : δ G \Ji<δ Ai}.

As Ξ G TV without loss of generality (Ai : i < ωι) £ N and without loss of

generality C G N. As N -< (H(X), G) clearly C Π TV is unbounded in TV Π α i,

hence TV Π ω\ = sup(C Π TV Π α i) G C, so N Π α i G (J{^ -i£ NΓ\ωι},so for

some j G N Π α i, TV Π ω\ G Aj. But (A* : i < α i) G N so A^ G TV, as required.

(2) If A G ̂ (α i)^ * then as P« satisfies the κ-c.c. (by 2.10 or as by part

(1), {p G Pκ : Dom(p) is countable} is dense in P^, clearly we can apply the

Δ-system lemma) for some a < ft, A G P(ωι)v ", and so by the definition of

SSeal(.4, S,«), if A/T>ωι is disjoint to a dense subset of x G Aζ, A C 5, ζ < ξ

then we "shoot" a club through its completion in the (β + l)-th iterand in the

iteration defining SSeal(*4, 5, K) for β G (α,«) large enough. Why? As FPκ |=

"\Aζ\ < HI" (as PI collapses 2Hl to K x see 2.4(5)) there is β,a < β < K such

that for every x G Λζ, if x Π A is not stationary in VPκ, then it is not stationary

inF^.

(3) Easy (strong properness hold by the proof of 2.9 and use IX 2.7, 2.7A

for preservation of strong properness or prove directly).

(4) By 2.8(4) and V §3. D2.n

2.12. Claim. Let Q = (P^, Q} , : i < a,j < a) be a semiproper iteration, and a

be a limit ordinal. Suppose lhpα "Ξ C 03^ is pre-dense" and i < a. Then (a)

<& (b)+ => (b), where:

(a) (PQ /P^)* seal(Ξ) is semiproper (in FPί);

(b) If λ is regular large enough, Q G N -< (if(A),G,<J),^ countable, Ξ G

AT, p G N Π Pα, i G N Π α, ςι G P< is (JV, P»)-semi-generic, pf i <

there are TV1,^1,^1, A and j such that:

(i) A^A^tf^G,^),
(ii) N1 is countable, ΛΓ1 Π α i = TV Π α i,

(iii) p<pl £NlnPa,

(iv) i < j < α, j a non-limit ordinal,
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(v) j G N\

(vi) q<ql^P^

(vii) ql is (AT1, Pj)-semi-generic,

(viii) pl\j <ql,

(ix) A G Nl is a P^-name,

(x) ql\\- "NlΠωl G A",

(xi) ^UpHfrcOlb^ " 4 G Ξ " ;

(b)+ Like (b) but AT is a P^-name and Nl is a P^-name.

Remark. There is not much difference if in clause (b) (or (b)+) we replace clause

(ix)by

(ix) A G N is a Pj-name

but then j is allowed to be P^-name.

Proof, (a) =» (b)+ Let Q d= seal(Ξ) and let q G G; C Pi? G» generic over V\ In

V[Gi], apply the definition of "(Pα/Pi) * seal(Ξ) is semi porper" to the model

TV = ΛΓ[Gi] and the condition p, and get a condition g°, so g° is (TV, (Pa/Pi)*Q)-

semi-generic. Let G be such that q° G G C Pα * Q, Gi C G, and G is generic

over V. So by the definition of Q =seal(Ξ) for some A G Ξ[Gα] Π AΓ[G] we have

AT Π ωi - TV[G] Π ωι e A. As A e Ξ[Gα] C 03^ = \Jj<a BfPj+i], for some

jo € α Π JV, A G 93[Pi0+i], and there is a Pj0+ι-name A G N[G] such that

A[G] = A, and without loss of generality q° forces this. Now

X — {r :r G P^ and r is above p or incompatible with p and

r lhPα "A G Ξ" or r \\-Pa "A φ Ξ}

is a dense subset of Pa and r = the <^-least member of X which belongs to

Gα is a Pα-name, and J G AT, r G AT. Hence r[G] G N[G\ and clearly r[G] is

compatible with ςr°, p < r[G] and r[G] 1= "A G Ξ", so w.l.o.g. r[G] < ςf0. Let

Nl be the Skolem hull of N U {jo, A,r[G]} in (ίf(λ),G,<J), let j - j0 4- 1,

g1 ^ς°ίj andpi =r[G].

(a) =» (b) Similar proof.

(b)+ => (a) Use (b)4". Specifically, for i < α let G^ C P^ be generic over V,i <a.
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Assume the desired conclusion in clause (a) fails then this is exemplified by some

TV, (p, r) where N -< (H(λ)v^Gi^ G) is countable, (p,r) G (Pa/Gi) *seal(Ξ) and

( P i ΐ ) ^ N (where N G V[G$]). So for some QQ G GI and x we have: x is

a Pi-name, x[Gi] = N and qQ \\-p. "x and (p,r) G (Pa/Pi) * seal(Ξ) form a

counterexample to semiproperness" .

Clause (b)+ applied to x, q0, P gives Nl^pl^ql^Aq(^ and j as there and

w.l.o.g. ql \i G Qi and let N1 = Nl[Gi].

As Pa/Pj is semiproper, there is q2 G Pα which is (A^1,PQ,)-semigeneric,

p < g2 and g1 = </ 2 f j and let Gα be such that </2 G Ga C Pα and Gα is

generic over V. By the choice of #o (which is < qι < q1 < q2 G Ga) without

loss of generality G* = Ga Π P^. So Ξ,p, r, ^4 G AΓ[Gα], where on A see clauses

(ix), (x), (xi) and as seal(Ξ[Gα]) is A [Ga] -complete there is r2 G seal(Ξ[Gα])

which is (Λ^1[GQ;],seal(Ξ[Gα])-semiproper and above r[Gα]. So for some r*,

Q2 "~pα*seai(Ξ) " Γ* ^s above r and is (N[Ga], (Pa/Gi) * seal(Ξ))-semi generic".

So (^2,r*) contradict the choice of #o and we are done. ^2.12

2.13 Claim. Let Q — (Pi,Qj : i < a,j < a) be a semiproper iteration and a

be a limit ordinal.

(1) If we have Pα-name Ξ satisfying Ξ C Ξ* = {Ξ G VPa : Ξ is a P^-name

of a maximal antichain or just a pre-dense subset of 25^, such that for

every i < α, (Pα/Pi+1)* seal(Ξ) is semiproper (i.e. this is lhp.+1)} then

(Pα/Pi_i_ι)* Seal(Ξ) is semiproper for every i < a.

(2) If

(*) (Pα/Pi+ι)* seal(Ξ) is semiproper for every i < a and maximal an-

tichain (or just a pre-dense subset) Ξ of 35^ (from VPa) to which

ωι\S belongs,

then for every i < α, (Pα/Pί+ι) * Seal(^8^,5) is semiproper and for

K > \Pa\ strongly inaccessible (Pα/Pi+ι) * SSeal(25^,5, /ς) is semiproper

with ft-c.c.

(3) The hypothesis (*) of (2) holds if for arbitrarily large i < a:

Qi is semiproper and Ihp. "Rss(K2)"
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(4) If (A is a Pα-name and it is forced for Pa that) Ξ is a predense subset

of A V;<α<4 C 23Pί+S and ,A <> <B<2 (for this α - sup{i : A <S 23Pί+1}

suffice), thenΞe Ξ* (Ξ* from part (1)).

(5) Assume

(**) A = (Aβ : β < β*} and for β < β* we have: \\-Pa "Aβ C 23p*+ι

for some i < α" and if i < a and Ξ is a P^-name of a pre-dense

subset of .4/3 to which ωι\S belongs then \\~pί+1 " if Aβ C 23Pΐ+1 then

(Pα/P$+ι) * seal(Ξ) is semiproper".

Then for every i < α, (PQ/Pί+1) * Seal (^4, 5) is semiproper and if K > \Pa\

is strongly inaccessible then (Pα/Pί+1) * SSeal(.4, 5, K) is also semiproper,

satisfies the ft-c.c., has cardinality ft, forces K = ^2 and forces A/? <Φ

Proof. (1) Use Claim 2.12 α; times and the definition of RCS (note that in

2.12(b) we do not get ql \i = ς, but we can replace q by any g;, q < q1 G P^).

(2) For the first phrase use 2.13(1). For the SSeal case, use also 2.9 with

A — (25^} (so ξ — 1), where the assumption of 2.9 can be gotten by the first

phrase; the κ>c.c. is proved as in 2.11(3) using models N as in 2.9.

(3) By 1.7(5) the statement Rss(K2) implies that semiproperness and pre-

serving stationarity of subsets of ω\ are equivalent. Suppose i < α, Qi is

semiproper and Ihp. "Rss(N2)" As by 2.8(5), seal(Ξ) (for Ξ C 23^ a maximal

antichain) preserves stationarity of subsets of ω\ from VPί which are stationary

in VPa (and this property is preserved by composition (though not by limit))

and Pa/Pi — Qi * (Pα/Pi+ι) is semiproper hence preserve stationarity of sub-

sets of ωi, we get that (Pα/Pί)* seal(Ξ) preserves stationarity of subsets of ω\

hence is semiproper (in VPί of course). This holds for arbitrarily large i < α,

hence (by the composition of semiproperness) for every non-limit i, which is

the demand (*) of (2).

4) As in the proof of (**) from the proof of 2.11(1), it suffices to prove

clause (b)+ of 2.12 for successor i < α, so let A, Ξ be as in the assumption of

2.13(4), q Ih "{.A,Ξ} e TV" and N,i,p,q be as in the assumption of 2.12(b) + .

We know that for some ZQ > i we have AC *BPίo+1 , so without loss of generality
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(possibly increasing p and q) for some IQ,P\\~ "A C 2$i0+ι" , by the preservation

of semiproperness by composition without loss of generality i§ — i + 1. Let GI

be such that q G GI C Pi? GΪ generaic over V and AT = W[Gi]; in V[Gi]

we define T d= {A G 03Pίo+ι : p ^Pa/Gi "^ ^ Ξ"}. So T G ^[G<] and

i] \= 1TI < NΓ, T ^ 0 so let, in F[G;], T = {Ac : C < α>ι} and without loss

of generality (Aζ : C < ωi} G JV[G<]. Let B = {δ < ω\\ δ limit and δ φ \Ji<δ A;},

so B C ωι, B e V[Gi], and (in V^Gj) we have: B Γ\ Aζ = Φ mod 2^. So in

VPa , 5 cannot be stationary (as B G 2J^, A <> 23^) so as Pa/Gi is semiproper

also in V[Gi] we know that B is not stationary, and we finish as in the proof

of (**) from the proof of 2.11(1).

5) The proof of 2.13(2) (and see 2.16). D2.ι3

2.14 Claim. Suppose Q = (Pi,Qj,tj : i < α + 1, j < α+1) is an RCS iteration,

Q\a is 5-suitable, and K > \Pa\ is strongly inaccessible.

(1) If tα = 0,Qα = SSeal((Q5[Pj] : j < α,t, = 1),S» then Q is 5-suitable

and also: for a successor or α = cf(α) > \Pi\ for i < a even Qa is proper.

(2) If a is a limit ordinal, A = (Aζ : ζ < ζ) is a sequence of (Pα-names of )

subalgebras of 23Qrα with Λc Vi<a ^ζ £ ®Pί+1 , an<3 for every C < ξ, l^pα

"for C < ξ the set {i < α : .4cf5 <$ »[Pi+1]ί5} is unbounded below α",

and \\-pa "for every j < α satisfying t^ = 1 for some ζ, 93 p^ f5 <> ^f5"

and tα = 0, and Qa = SSeal(^ϊ, 5, K) then Q is 5-suitable.

Proof. (1) First assume a is non-limit or α = cf(α) > |P^| for i < α. We have

to check clauses (A) - (F) of Definition 2.1. Clause (D) holds by Claim 2.11(1);

clause (E) holds by Claim 2.11(3); clause (F) holds by 2.11(2); the other parts

of Definition 2.1 hold trivially. Lastly the conclusion concerning "Qα is proper"

holds by 2.11(3).

If α is limit, then this follows from 2.14(2) which is proved below.

2) Let Ξ = {Ξ : Ξ is a P^-name of a pre-dense subset of 23[Pi+ι] to which ω\ \S

belongs for some i < a and (Pα/Pj+ι) * seal(Ξ) is semiproper for every j < α}.

By 2.13(4) above: if Ξ is a Pα-name of a maximal antichain of A^(C < 0
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Ξ G Ξ. So by 2.13(5) clauses (D),(E),(F) of Definition 2.1 hold (the others are

trivial). CU2.14

2.15 Claim. 1) Suppose A — (Λζ '• ζ < ζ) is an increasing sequence of subal-

gebras (or just subsets) of 23, χ regular, N a countable elementary submodel

of ( H ( χ ) , G, <* ) and Θ^5 from 2.9(1) holds, i.e.

Θ^ s if ζ e ξΓ\ N and Ξ G N is a pre-dense subset of Λζ and ω\ \ 5 G Ξ

then N Π ωι G LUewnΞ ̂

If Q G N is a strongly proper forcing notion, p G Q Π AT ί/ien there is

q£Q,p<q,q is (AT, Q)-generic and 4 Ih αθ^[^p!".

2) In 2.10 we can conclude also that for a strongly proper Q which is (ω\ \ 5)-

complite and satisfies \Q\ < ft, the forcing notion Q* SSeal(Q5v, 5, κ)γQ is

semiproper (ω\ \ 5)-complete.

3) Parallel strengthenings of 2.11, 2.13 (see mainly 2.13(1)) and 2.14 hold.

2.15A Remark. This claim can be used in §3, §4 to get appropriate axioms:

it gives a comprehensive family of forcing notions which we can use quite freely

in the iterations, without making problems for what is already accomplished

there.

For a more general property: see 4.6.

Proof. Straightforward (reread the proof of 2.11). ^2.15

2.16 Claim. Assume A = (Λζ : C < 0» ΛK £ »V \S,

W = WA = < a :a C /ίp2(Hι)), a is countable, a Π ω\ is an ordinal and:

if ζ < ξ, Ξ C Aζ, Ξ is a pre-dense subset of *4ζ,

ω\ \ 5 belongs to Ξ and {(", Ξ} G a

then a Π ω\ G |̂ J{^4 : A G Ξ Π α} j

is a stationary subset of #(^2(^1)) and K, > NO is strongly inaccessible. Then

(1) Pκ

 d= SSeal(A, 5, K) is W-proper.

(2) lhPκ «Aζ\S ^ Bvt5" for ζ < ξ.
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(3) In fact, Pκ is (ω\ \ Sf)-complete strongly W-proper and satisfies the ft-c.c.

(4) If ωι \ S is stationary then Pκ does not add ω-sequences of ordinals.

(5) If ζ = ζ +1, Λ: = 2&V and Rss(N2) then Pκ is semiproper.

(6) If λ > Λ, Rss+(κ,λ) then Vp« \= Rss(N2,λ).

Proof. 1) PF-properness is proved as in the proof of 2.11(1) (and 2.9) restricting

ourselves to models N such that N Π if (^(^i)) £ W.

2), 3), 4) As in the proof of 2.11(2), (3), (4).

5) VF-properness implies semiproperness by 2.8(7), (8), (note: we can

ignore Λε when ε + 1 < ξ as W^ξ_^ = Wj).

6) Should be clear. Cb.iβ

2.17 Claim.

Assume Q = (Pi,Qj : i < κ,j < K) is an RCS-iteration, K is strongly

inaccessible (i < K =>• \Pi\ < K) and, for stationarily many i < /ς, for arbitrarily

large j G ( i , K), 33^* <$ »PΛ Thenin Vp«, for ̂  - <B[PΛ]), W = W^ contains

aclubof5<N l(ffp 2(Nι)).

Proof. By Fodor's Lemma, 03Pκ satisfies the ^2-c.c., hence we can apply 2.11.

Π2.17

§3. On T(ωι)/Ί>ωι Being Layered
or the Levy Algebra

On layered ideals see [Sh:237a], Foreman Magidor Shelah [FMSh:252] and

[Sh:270]. A reader can read sepeately 3.1 - 3.3, 3.4 - 3.8, 3.4 - 3.10. Here

in 3.1, 3.2, 3.3 we deal with "23\S being layered"; in 3.4, 3.5, 3.6 we prepared

the ground for "^Bf5 being the Levy algebra" and in 3.7, 3.9 we deal with

"25 \S being the Levy algebra". We deal also with getting forcing axioms and

try to present some approaches (rather than saving in consistency strength

around "ZFC+ there is a supercompact cardinal").
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3.1. Theorem. Suppose K is super compact. Then for some forcing notion P:

(i) P satisfies the «-c.c., has cardinality tt, does not collapse NI, but collapses

every λ G (Ni, «) and lhP(c "« - N2, and 2*° - 2*1 - N2",

(ii) 93 [P] is 5*-layered (see 3.1A(4) below), for some stationary 5* C {5 < K :

cf(ί) - N! (in Vp)},

(iii) in Vp, AE+ JQ semiproper collapsing N2 and 93[(FP)] <o

3.1A Remark. 1) In (iii), of course if we have Ax rather than Ax+, we can

replace the condition on the forcing Q by:

for some R, Q <$ β, R is semiproper, <B[VP] <£ 23[(Fp)β] and B collapses

2) Note for 3.1(iii) that, in Vp, we have |93| - 2*1 = N2.

3) In (iii) of 3.1 we can replace Ax+ by Axωι\ similarly in 3.2, 3.3(l)(iii).

4) A Boolean algebra B of regular cardinality λ is 5*-layered (for S* C λ)

if: letting B = \Ji<χBi, Bi increasing continuous in i, \Bi\ < λ, we have

{δ < λ : δ e 5* =Φ Bδ <£ B} G Pλ.

5) We say that a filter V on a set A is 5-layered if P(A)/D is 5-layered.

Proof. Let 5 = ω\ and let h : K -+ H(κ) be a Laver diamond (see Definition

VII2.8; later we may say: repeat this proof for other stationary S C ω\ and

h : K; — > H(κ)). By induction on i < /ς we define P{, Qi, t^ such that:

(A) Qα = (Pi,Qj,tj : i < α, j < α) is an 5-suitable iteration.

(B) Qa is defined by cases:

CASE a: Assume (*)ι -|-(*)2 where

(*)ι a is measurable and /\i<0ί[\Pi\ < cx\ and [i < α & t* = 1 =>

93 [P»] <o 93[PΛ]j, and Rss+(α,2Q:) and

(*)2 h(ά) is a Pα-name of a semiproper forcing notion, and \\~pa*h(a)

"93 [Pα] <> 93[P« * Λ(α)] and α = ̂ [Pa] is collapsed".

TTien ta = I and Qα - h(a) * SSealy[p«*/l^)]((23[^] : i < α, t» = 1), 5).

CASE b: Assume (*)ι but not (*)2,

then ta = 1 and Qα - SSeal ((93[P<] : i < α, t< = 1), 5).

CASE c: Assume not (*)ι.
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Then tα = 0 and Qa = SSeal^p^((23[Pi] : i < α,t< = 1),5).

3. IB Observation. Q is 5-suitable and β < K => Q\β G H(κ) and: Qβ is

semiproper when β = cf(β) > \Pi\ for i < β (or β successor).

Proof of 3. IB. We prove by induction on β < K that Q\β is 5-suitable and

when β < «, then <5Γ/2 belongs to /f (/ς) and if /? = a + 1, α = cf(/3) > |P*| for

i < a then <3α is semiproper.

For 0 = 0: trivial.

For β limit: by 2.3(1).

For 0 = α 4- 1 and for α, (*)Ί above fails: By the induction hypotheses Q \a —

(Pi,Qj,tj : i < a,j < a) is 5-suitable, hence it is a semiproper iteration and

by our choice Q\β — Q\(ot + 1) is an RCS iteration and letting κa be the

first strongly inaccessible > |Pα|, we have Qa = SSeal ((95 [Pi] : i < α,ti =

l),S,«α).

Now by 2.14(1) we are done (in particular Qa is semiproper if: α is a

successor or a — cf(α) > |Pi| for i < a).

For β — α + 1 and for α, (*)Ί above holds but (*)9. fails

By the induction hypothesis Qfα = (Pi,Qj '• i < ,̂ j < α) is 5-suitable,

hence a semiproper iteration and by our choice Q\β = Q\(a + 1) is an RCS-

iteration and letting κa be the first strongly inaccessible > |Pα|, we have:

tα - 1 and in Vp<* we have Qa =SSeal((95[Pi] : i < α, t< = 1), 5, /cα).

Note that, as (*)ι holds, α is measurable so {7 < a : case (c) applies and

7 = cf(7) > |Pi| for i < 7} includes all strongly inaccessible non-measurable

cardinals in C, for some club C of a. It is well known that there is a normal

ultrafilter on a to which this set belongs so 1.10 applies.

By 1.10(1) and, as V N "Rss+(α,2α)" holds by (*)ι, we know that in

Vp«, Rss(N2,2*2) holds. So by 2.8(7) every maximal antichain Ξ of 95[Pα]

(in VPa) is semiproper. Hence by 2.10 SSeal(95, 5, κa) is semiproper. Now

= fQP<* [as a js (by (*)ι) strongly inaccessible, f\i<a \Pi\ < «, now use
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2.2(l)(c)], and SSeal(<B0rα, S, κa) = SSeal((QS[Pί] : i < α,ti = l>,5,κα) by

claim 2.7, as tα = 1 and [i < a & t; - 1 => 33 [Pj fS <° 33[Pα]]. Together, ζ)α

is semiproper and we can check that Q \β is 5-suitable.

For 0 = a 4- 1, and for α, (*)ι 4- (*)s above holds.

Similar to the previous case, but now we use the statement in (*)2 to

note that h(a) is (in VPa) a semiproper forcing. Now by (*)2 we know that

33[Pα] <S 23[Pα * Λ(α)] and Vp<**h^ N ct33[Pα] has cardinality HI" hence we

can use 2.11 to show that SSealv[p-*h(α)l(33p-,5) is semiproper. Π3,1B

Remark. Note that we could use only semiproper Qa's (so demand in (*)2 that

h(a) is semiproper).

3.1C. Observation. (1) If a < ft, and tα = 1 (equivalently (*)ι holds) then

in Vp* we have 33[Pα] \S <£ *£>[PK}\S.

2) If P is a normal ultrafilter on S<κ(H(3s(κ)), then {α : α e 5<Λ(ffp8(«)))

and (*)ι is satisfied by a Π ft} G P.

Proo/ o/ 5.ί C7. Should be clear. D3.ιc

Letting P = Pκ and 5* = {α < ft : (*)ι 4- ->(*)2 holds for a or at least

(*)ι + Vp« \= "cf(α) - HI"}, we easily finish, note that for α G 5* U {ft} :

2J[Pα] = \Ji<otV&[Pi] and for α G 5*: tα = 1. As ft is supercompact 5* is

a stationary subset of ft (by 3.1C) and forcing with Pκ preserves it (as Pκ

satisfies the ft-c.c.) and a G 5* => Ihp^ "cf(α) = KI" (check Qα). Also the other

requirement causes no problems. DS.I

3.2 Theorem. 1) In 3.1 we can weaken "P satisfies the ft-c.c" to "P does not

collapse K2 and has cardinality ft" but add that we have 23 [P] is layered, which

means it is SMayered for 5* d= {δ < K2 : cf(ί) = NI (in Vp)}.

2) In 3.1 we can add to the conclusion (P = Pκ, Q — (Pi,Qj,tj : i < ft, j < ft,}

is S suitable and):

(iv) In Vp, Ax [Q is semiproper and i < ft & t* - 1 =» 23Pί <* 3S[(VP)Q]].

3) In 3.2(1) we can add to the conclusion (P = PΛ, Q as above and):
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(iv)~ In Vp we have Ax+ \Q is semiproper changing the cofinality of K2 to

NO, and i < K, & t< = 1 =» <BPί

Proo/. 1) Force as in 3.1, and then let P = PK*QK where in VP*,QK =

club(S*U{<ϊ : cfyP(δ) = N0}), where for S, club(S) = {h : h a strictly increasing

continuous function h from some 7 -f 1 < sup(5) to S}.

As, in VP|C, the set 5* = {α < AC : (*)ι -h -ι(*)2 from the proof of 3.1

hold} C {δ < N2 : cf(ί) = KI} is stationary, moreover α G 5* implies: there

is, in VPκ , a subset feα of a of order type ω\ such that 7 < α = > f r α Γ i 7 G

U Vpe. As ( U (P(/?) Π Vpe) : a < K) is increasing and continuous and
β<a β<a

γPκ μ "\P(0) nVp?\ = KI", clearly Qκ adds no bounded subsets to K and
K so B[PΛ] - 23 [P« * 9*] and lhQ κ "{5 < « : cf(ί) = NI but not

<o *B[PK]\S} is not stationary.
P*Qκ.

Why does (iii) of 3.1 continue to hold? Suppose, in V ,R is a semiproper

forcing collapsing N2 such that (VP)Q« |= [lhΛ "OS <$ 33[β]"]. Let β be a

PK * Q«-name of such a forcing notion and (p,#) G Pκ * Qκ- Apply (iii) to

ζ)/t * /? in V^[PK] (strictly speaking, its proof). I.e. by the properties of the

Laver diamond, for some χ, 2 * < χ, and M ^< (H(χ), G, <*) to which

Q, Q«, Λ, and (p,ς) belong and M isomorphic to some (H(χι), G, <*J, by

the Mostowski collapsing isomorphism g, taking Pκ to PKί where KI = M Π K,

and /I(KI) = #(Q/ς * Λ) Clearly «ι satisfies (*)ι and without loss of generality

also (*)2, hence tκι = 1. So we could have increased (p, ς) to guarantee the

existence of the generic enough subset of R (i.e. we use the generic subset of

d(Qκ) to increase q).

(2) In the proof of 3.1, case b is now divided into subcases 61 and 62;

case bi : (*)ι, not (*)2 but

(*)ι.5 h(a) is a Pα-name of a semiproper forcing notion such that i < α,

Then we let tα = 0,9* = fι(α)* SSeal^t^^^Kί®^] * <

where /cα is the first strongly inaccessible > \Pa * h(α)|.

case b ?: (*)ι, not (*)2 and not (*)ι.5
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Then (as in the old case b) tα = l,Qα = SSealy[p«l({23[Pί] : ϊ < α,t< = 1),S).

3) Should be clear. D3.2

3.3 Theorem. In 3.1, 3.2 we can add, as a parameter (from V), S — (SΊ, 52, S3)

a partition of α i, S — Si is a stationary and restrict ourselves to pseudo (*, 53)-

complete forcing, see X 3.10, (so if 53 is not stationary this is not a restriction)

so if S3 is stationary the forcing notions will not be adding reals; i.e.

1) There is a forcing notion P such that:

(i) P satisfies the ft-c.c., does not collapse N1 ? but collapses every λ G

(«ι,«), Ihp "K = K2 and 2*° < N2,2H l = N2 and if 53 = 0 mod Vωι

then 2K° = H2" and P is pseudo (*, ̂ -complete,

(ii) 93[P]ΓSΊ is SMayered, for some stationary 5* C {δ < K : cf(ί) = NI

(inFp«)},

(iii) in Vp ,Ax+\Q semiproper, pseudo (*,53)-complete collapsing H2 and

(iv) if 53 is stationary, the forcing P adds no new reals (so Vp \= CH).

2) In 3.3(1) we can replace "P satisfies the /ς-c.c." by "P does not collapse

κn and have 95 [Pi] is layered, i.e. 5* - {δ < N2 : cf(δ) = KI} (in Fp).

3) We can add in 3.3(1): (P = PΛ, Q = (P^, Q^ , t^ : i < /ς, j < «) is 5ι-suitable

and)

(v) in Fp, Ax[Q semiproper, pseudo (*,53)-complete and i < K & t^ =

4) Actually in (3) it suffices "for i < AC, (P^/P^+i) * Q is semiproper, pseudo

P«χQ
(*, 53)-complete and: j < i & t j = 1 ^> 95 '̂ <$ V

3.3A. Remark. 1) In 3.2(2)(iv) and in 3.3(3)(v), if we deal with Ax (Ax+) it

is enough that Q <£ Q', Qr as there, or more directly, for each i < «, there are

enough models N as in 2.9.

2) The "solution" of x/3.3(3),(4) = 3.2(3)/3.2(2) holds.

Proof. 1) Like the proof of 3.1 but we seal only 95^tPί' fSΊ when t^ — 1 and in

(*)2 we add "/ι(α) is pseudo (*, 53) -complete", but we have to check that all
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forcing notions Qa are pseudo (*, 53)-complete (and use the iteration lemma

X 3.11). Now all the sealing forcing notions which we use satisfies this trivially.

2), 3), 4) Similar. D3.3

3.4. Claim. Suppose Q = (Pi,Qj : i < ft, j < K) is a semiproper iteration, K

strongly inaccessible with K > |P$| for i < K, and lastly 5 C ω\ is stationary.

Suppose further

(*) (a) for i < «, in VPi+l, Player II wins S({Λι},ω,Vκ + £+) where E+ =

{δ < K : δ > i, δ strongly inaccessible, (Vα < ί)[|Pα| < δ] and \\~pδ/pί+l

"Qδ is semiproper"}; (for a definition of the game see 1.9A(2)) so we

are assuming E* ^ 0 mod T>κ in VPi+1 for each i < «; and let

E+=E+.

(b) E* = {i < K : lhp i "Rss(^2) and Qi semiproper"} is unbounded in K.

Then Λί+i d= (PΛ/Pi+ι) * Nm * SSeal(»[PΛ], S) is (in the universe VPί+l , Nm

in VPκ, SSeal in VPκ*Nm of course) is semiproper for every i < K.

3.4A. Remark. (1) Remember that Nm = {T : T C ω>(K2) is closed under

initial segments, is nonempty, and for every η G T we have |{z/ : 77 < v € Γ}| =

N2}; ordered by the inverse of inclusion. Clearly {T : for η G T, Sucτ(^) is a

singleton or has power ^2} is a dense subset, so usually we restrict ourselves to

it. For such T\ the trunk is the η € Γ of minimal length such that |Sucτ(τ/)l > l

(2) We can use Nm(D) instead of Nm and even Nm', Nm^D).

(3) We can replace Nm by any forcing notion satisfying, e.g. pseudo (*,5)-

completeness (see X 3.9, 10) or the E-condition (see Chapter XI) where I £ V

is a family of ^-complete normal ideals or even f7P(I), see Chapter XV.

(4) Instead of (*)(b) we can have "largeness" demands on «. We need it to

make (Pκ/Pj)* seal(Ξ) semiproper for j G E+,Ξ a maximal antichain of 23

(5) Note that lhPκ "cf(<J) = H0" is not forbidden in the definition of Ef\

we can in clause (a) of (*) of 3.4 in the game allow pressing down functions

(see 1.9A(4)), add \^pδ+1 "cf(δ) = HI"; in the proof below we strengthen the



644 XIII. Large Ideals on ω\

definition of j G E® by j = mm(NηίjΓ{κ\Nη) and demand E® to be stationary

and this somewhat simplify the proof.

Proof. We work in VPi+l so let G$+i C Pί+1 be generic over V. Let λ be regular

and large enough, N X (/f(λ)[Gi+ι],e,<J) countable, i e N, K G N, K G

TV, Q G TV and (pa,pb,pc) G fli+i Π TV.

We shall choose below < ? < > G Pκ/Pi+ι which is (TV, P^/Pi+i)-semi-generic,

Pα < <?() and GK C PΛ generic over V containing GΪ+I U {^{)}.

We now, in V[GK] (but G« is defined only during the definition for n — 0)

define by induction on n, Tn, A^ (ry G Γn) such that:

(A) Tn C »>«,

(B) To = {( }},

(C) (Vi/ G Γn+1)[ι/rn G Γn] and Γn+1 n
 n^κ - Γn,

(D) (Vrj G Γn)[{i : ηΛ(i) G Tn+1} ha^ power Λ],

(E) N[GK]nH(X)[Gi+l] <ω2 N(} x (F(λ)[G,+1],G,<^,G,) and N(} is

countable and (pα,pfe,pc) G TV() and Q G TV(), (note, abusing notation

we do not distinguish strictly between NQ and (AΓ^,GΛ Π 7V(>) and

similarly for JV^)

(F) for r? G Tn+ι the model Λ^ -< Γff(λ)[Gi+ι], G, <λ,GΛ) is countable,

extends ^rn, and Nηtn <κ Nη,

(G) ry G Λ^

(H) If Ξ is a P^/Pi+i-name of a dense subset of 95(P«), Ξ G TV^ and

77 G Γn, ί/ien for some natural number fc = fc(Ξ, ry) and every ι/ : if

77 < i/ G Tn_(-fc then:

(3A G N,,) [A G Ξ & A a (P^/Pz+i) - name & TV n ωi G

(I) E® is a stationary subset of AC, where
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£θ d= {j < K :Nη <κ NηJ where NηJ is the Skolem Hull

of A ^ U U J i n (#(λ)[Gm],e,<,G,) and

j is strongly inaccessible in V and

(Vi < j)[\Pi\ < j] and Ihp. "Qj[Gj] is semiproper}".

Now in carrying out the definition, (H) involves standard bookkeeping.

For n — 0 (we start to work in V[G$+ι]) our main problem is satisfying

(I). We shall now define <?(). For j < K, let Nj be the Skolem Hull o f N Γ ] {j}

in (#(λ)[Gm], €,<;;) . By (*)(a) and XII 2.6.

El = {j < K : N <α>2 N j , j strongly inaccessible, \Pi\ < j for every i < j and

lhp./p.+1 "Qj is semiproper"}

is a stationary subset of /ς. So by the Fodor lemma [as δ G El => cf(ί) > H0

in V^Gi+i] and μ < ft => μκ° < ft] we know that for some stationary E2 C

J51, (A^ : j G £2} form a Δ-system; let n{^ : j G E2} be ΛΓ ( ' }. For j G E2 let

gj G PK/PΪ+I be (A^, Pκ/Pi+ι)-semi-generic and above pa. Now we know that

Pj = Uζ<j Pζi hence by the Fodor Lemma w.l.o.g. qj \j is constant, so let this

constant value be called <?( > . Clearly q^) is (A/r//v,P/ί/P^_f.ι)-semi-generic and it

is the </{ ^ which we promised. Now we actually choose Gκ i.e. a subset of Pκ

generic over V and including G +iU{<?()}. Let N() = Nf^[Gκ]r}H(X)[Gi+ι}. So

7V ( ) x (ff(λ)[Gί+ι],e,<5; ), moreover (N(},GKΠN(}) -< (^(λ)[Gm], G, <^

, Gκ) so 7V{}) is as required in clause (E). As for clause (I), by the genericity

of Gκ we have {j G E2 : ̂  G Gκ} is unbounded in K (even stationary) and it

include E° (think).

For n > 0 assume A^ are defined, ig(η) = n - 1. Clearly, as Pκ satisfies the

ft-c.c., for some εη < K we have (A^^ : ^ < ^g(ry)) belongs to F[G£J and εη is

a successor ordinal > sup(Nη Π «). By (I), E^ is a stationary subset of ft, and

we shall define E^ D ̂  stationary and will let

2ig(,,)+ι Π {i/ : η<v G (n+1)ft} - {rf (j) : j G ^}.

So T^g(r/)+1 will really be constructed as required.
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Actually E® is the interpretation of some P^/G^-name E^ forced to be

as above: just read the definition in clause (I). W.l.o.g. some member of G£r]

force (\\-pκ) that TV, E^ are as above.

In V[GK] for each 7 G £$ - E°η[Gκ/G£η} there is q^Ί G GΛ/GefI such that

ς£ι7 Ih "7 € JE°". So in F[GΛ], for some q* G G* we have {7 G £° : ς^fr = <£}

is stationary. As we can increase εη w.l.o.g. q* G Gεr]. In V[GeJ we define

E* = {7 : there is <? = q* ̂  such that q* ?7 \*γ = q^ and

so E^ G F[GεJ, £7^ 2 ̂  hence E* is stationary.

So, in V[GK], N*tΊ = the Skolem Hull of Nη U {7} in (ff(λ)[G<+ι],<Ξ

, <^,G/ς), clearly A^7 C NηtΊ (as G7 is definable from Gκ and 7) hence

Nη <κ N%ιΊ. Also for every x G AΓ^7 for some function / G Nη, Dom(/) = «,

7(7) is a P7-name of a member of H(X) and x = /(7)[G-γ]

But P7 satisfies the 7-c.c., hence 7(7) is a P^-name for some β < 7 and let

/ι/ (7) < 7 be minimal such β so h/(7) G A^>7, but &s Nη <κ N^7, it follows

that ft/ (7) G Λfη, so sup^€N (ft/ (7)) < 7? hence, increasing ε^ and decreasing

E^ (preserving their properties) w.l.o.g. we have 7V^7 G V[GeJ.

For 7 G E^ choose any G7+1 such that q$ι7Γ(7 4- 1) G G^+1, G7 C G7+1

and G7+1 is generic over V. Let our bookkeeping give us Ξη G Nη C N°57, a

Pκ-name of a pre-dense subset of 95 [P«].

We shall now prove that condition (a) of 2.12 holds for the iteration

and any non-limit ordinal (denoted by i in 2.12) in the universe V[G7+1].

Let ξ G [7 4- 1, K) be a non-limit (or just Qξ semiproper). By (*)(b) from

the assumptions of 3.4 we can find 7(£) G E*,ξ < j(ξ) < K, such that:

''
γ(0

) and Q7(ξ) is semiproper"
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Now (PΛ/P7(£))* seal(Ξ) does not destroy stationary subsets of ω\ (as PK/PΊ^

is semip roper and Ξ is pre-dense so that seal(Ξ) preserves stationary subsets

of ω\)\ so because j(ξ) G E* this forcing is semiproper by 1.7(3). As Qξ

is semiproper, PΊ^/Pξ> is semiproper. Hence (PΛ/Pξ)*seal(Ξ) is semiproper.

So condition (a) of 2.12 holds, hence condition (b) of 2.12 holds. Let Nl

be the Skolem hull of Λ^7 in (H(X)vlG*+ύ,e,<*χ,G'Ί+l). Note that q^η Ih

"<7 -< <7 £ Λ^7", hence < 7̂ Ih "Λ^ X JV°7 X TV^ ^ TV^ and

Nηnκ = 7V°>7 n 7 = N*ίΊ n sup(A^ n /ς) e «".

Now by 2.12(b) applied in V[(?7+1], there is countable model A^7 satisfying

N^Ί X (H(\}v\G^\e,<*x,G'Ί+^ such that N^ <7+ι A^2

7 (remember

0.1(9), and \\~pΊ+l "7 < ^2") and q^Ί € P^/G^+i and j^^ < « successor

such that:

(i) 47 G PhJG'Ί+ι, 7 < ̂ ,7 e <7,

(iii) ^?7 is (N*tΊ,Pjη J-semi-generic, and

(iv) g^7 H-p^^/p^! "for some A G A^)7 we have: A G Ξ^ and TV Π ω\ G A"

and A is a P^^-naine.

Also by (*)(a) of the assumption of 3.4, there is ̂ j7 > sup(Λ^7 Π «) > 7

strongly inaccessible, such that Λξ<ξ l Pξl < 67,75 an(i ,̂7 — Skolem Hull of

ΛΓ2ι7U{6,,7} in (ίf(λ)[G7+1], e,G'Ί+ί < χ ) satisfyies ^2,7[ί?;+1] <κ N^ and

«ί,7 € PU-, Back to ^[^7]' let K,τ be the Skolem Hull of N^ U {7,ξ^ιΎ}

in (H(\)[Gi+ι],€,<χ,Gerι), and ς^,Ύ € PitiT/G£?) forces all the above and in

particular is above q% and q*^. In addition ^,7f[7 + l,κ) = 9^,7t[7 + !,«) =

<7Γ[7 + 1,^,7). and <fr,,Ί\(Ί + 1) 6 G;+I) so «*i7re, € Ge, and ̂  -< N^,

7 € Λ^ι7, AT, Π K = Nn Π 7 = ΛΓ^7 n sup(ΛΓ,, n K), and

Ih'the Skolem Hull N^Ί of N^Ί in (#(λ)κlGί+lJ, G, <J, G7+ι)

satisfies JV£7 Π sup(A^ Π K) = A^ Π /ς",

hence

q^Ί lh"the Skolem Hull N^Ί of Λ^>7 in (^(λ)v[G?ί+l1, G, <J, G7+ι)

satisfies ΛΓ®>7 Π sup^ Π K) = A^ n K (as V[G7+ι] N (7) = KI)".
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(looking at the definition of Eη in clause (I) above). As we can increase εη and

decrease E2, w.l.o.g. q^ [7 G G£r) and q^ fy is the same for all 7 G E2 .

Now as 47 e PK/G£7J and ̂  r7 e Gε^, easily lhPκ/Gej) «Ej ̂  {7 : <$„ €

Gκ} is a stationary subset of ft" , so we have defined at least E^. Now in VfG^],

if 7 6 E*[Gκ] then 7 G E® (see above). We still have to define Nη^Ί) and

E® ~ ̂  (for 7 e jE?ι [Gκ]). For each such 7 we repeat the proof in the case n — 0

with universe V[G^J and Skolem Hull of Λ^7 in (j^λ)^*1', G, <λ,Gξτ? J

here standing for V[Gi+ι], AT there.

We have carried out the construction.

We now define by induction on n, for every η G Γ Π ntt, a condition

p^ <Ξ Nm and πιη < ω such that (note A^[GJ ^ (if (λ)[GΛ], G, <*), ^[G^] Π

(a) p^ G ΛΓrJGj, m^ < α; and p\} - pb[GΛ],

(b) p^ G Nm, and tr(p{j) (the trunk of pb

η) has length > ig(η) (and has K

immediate successors in p^),

(c) pj^£ < p^ and m^^ < mη when £ < ίg(η)\ and if p^^ has a trunk of length

> ίg(η) or m^^ > £g(ry) then: pb

η = pb

η{l & mη = mη^

(d) if η G Tn, α is a Nm-name for a countable ordinal, α G A^[G], then for

some k = kl(α, ή), and every v G |J Tm, for some ordinal β = β(α, v) G
m<ω

NV we have

fc+1 - |{^ < *g(ι/) : m,r£ < m^M}\ & ry < i/ =* p^ lhNm "α - /3(α, ι/)w,

(e) if η G Tn and Ξ is a Nm-name for a pre-dense subset of 95 [PΛ] and

Ξ G Nη[Gκ], then for some k — /c2(Ξ, 77), for every v G \J Tm we have:

[fc+1 < \{ί < lg(v) m^t < ra^+i)}! & η < z/]

=» [for some A G N^GN^ we have TV Π ω\ G A & p^ lhN m M G Ξ"].

(f) if pk has a trunk of length < tg(η), say ι̂ , and m^ < ig(η) and if /i^ is a

one-to-one function from K onto { j < K : vη

 Λ (j) G p^}, hη G A^[GK], then
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for 77Λ{^) e(jnTn we have:

(g) for 77 G Tn we have: the sequences (kl(a,ή) : α G Nη[Gκ] is a Nm-name

of a countable ordinal) and (A;2(Ξ, 77) : Ξ G Nη[Gκ] is a Nm-name of a

predense subset of 0 3 [ P κ ] ) are with no repetitions, with disjoint ranges

whose union is a co-infinite subset of ω [Why the ra^'s? just as below T

depend on pb

η}.

There is no problem to do this. [For (e), when we come to deal with Ξ, say at

77, where pb

η has trunk of length < tg(ή) and mη < ίg(η), we let

T - {A : (3p)(pb

η <peNmkp lhNm "A G Ξ")}.

So T G Nη[Gκ] is a pre-dense subset of 2J(PΛ), and by (H) above there is

k(Ύ,p) as there, choose it as k2(Ξ,η), so we shall have pb

v — pb

p if v < p G

Now in VPκ let:

qb = {p £ω>κ : p £ pb[GK] and for some r? G [Jrn,p is an initial segment
n

of the trunk of pb

η}.

We can easily see that pb < qb G Nm (in V[GK]). Also (in F[G«]) ^6 is

ic and moreover

qb lhNm «« Π 7V[^][GNm] = Λ Π

where G^m is the (canonical name of the) generic subset of Nm and η is the

Nm-name of the α -sequence in ωκ which it defines naturally and y is the Nm-

name of the ω-sequence in ωκ such that v\η G Tn and the trunk of pb. is <η.

[Remember that if N^N2 -< (H(X),e),NιΓ\ωι = Λ^Πu i, and i G NιΠN2, i <

N2, then JVi Π i = JV2 Π i] Hence ^ lhNrrι

 tβp(α;ι)vlσ-] Π N[GK}[GNm] =
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Now clearly by the above and (e) we have

qb ll~Nm "for every pre-dense subset Ξ of 25[PK] in -/V[G«][GNm]j

So we can apply Claim 2.9 to get <f , which is (N[GK][GNm\, SSeal(33[PΛ], S))-

semi-generic > pc [Gκ] [GNm] . Let qa = q^ so we are assuming just qa G

Gκ C PK,GK generic over V and so for some Pκ-name qb, we have: qa \\-pκ

"qb is as above ". Similarly for some ςc, (qa,qb) l^(pκ/pί+1)*Nm "qc is as above".

Now (qa,qb,qc) is as required (i.e., (Λi+i, AΓ)-semi-generic). D3.4

3.4B Remark. It seems that we can weaken clause (a) of (*) of 3.1 to

(a)7 for i < K in Vp<+1, player II wins in the game D({Nι},ω, K).

See [Sh:311]

3.5 Claim. Suppose Q = (Pi,Qj : i < K, j < K) is a semiproper iteration,

κ> \Pi\ foτ i < K and 5 C α i is stationary. Suppose further that

(*) (a) for i < «, in VPί , Player II wins in D({Nι}, ω, Vκ + E?) where Ef = {δ <

K : δ > i, (J strongly inaccessible, ll~pδ/pί "Q^ is semiproper"},

(b) E = {i < K : \\-p. "Rss(^2) and Qi-semiproper" } is unbounded,

(c) It is forced (lhPJ that W C {δ < K : Vp« \= u c f ( δ ) = N0" } is stationary

(W a Pκ-name).

Then (Pκ/Pί+ι)*clubH1(lf)*SSeal (95(PΛ),5) is semiproper for i < Λ where

clubμ(VF) = {/ : for some non-limit 7 < μ, / is an increasing continuous

function from 7 into W}.

Proof. Like the previous claim, only after defining Nη for a set GΛ C Pκ

generic over V , ς f ( ) G GΛ, in V[GΛ] there is η G w«, f\n(η\n G Tn) such
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that η(£) > sup(Nη^ Π K) and sup{τ?(£) : i < ω} belong to W[GK] and then

in V[GK] continue with (J£ Nηιι[G\. D3.5

3.5A Remark. 3.5, 3.4 are cases of a more general theorem, see XV.

3.6 Claim. In 3.4, 3.5, if we add to the hypothesis:

(*) player II wins in VPi(i < AC), for Ί)κ in the game of "divide and choose"

i.e. X 4.9 for S = {2, N0, Nι},α - ω,

(*)' for i < j < K non-limit, Pj/Pi is pseudo (*,α;ι \ S*)-complete,

then (Pκ/Pi+ι) * Nm and (PΛ/Pi+ι) * club^OίO are pseudo (*,α;ι \ S*)-

complete.

Proof. Left to the reader.

3.7 Theorem. 1) Suppose {μ < K : μ supercompact} is unbounded below K

and K is 3-Mahlo.

If (Sι,S2,S3) is a partition of ω\ with Si stationary, then for some

semiproper pseudo (*, S3)-complete forcing notion P satisfying the κ-c.c., we

have:

Ihp "93[PΛ]tSΊ has a dense subset which is (up to isomorphism) Levy(K0,<

»2)
M.

Proof. We define by induction on z, P$, Q^, t^ such that

(A) Qa = (Pi,Qj,tj : i < α, j < a) is Si-suitable,

(B) there is no strongly inaccessible Mahlo λ, i < X < |P^|,

(C) if i is a singular ordinal or (3j < ϊ)[\Pj\ > i] or i inaccessible not a

limit of supercompacts or i inaccessible not Mahlo then t^ = 0, Qi —

SSeal((B[P, ] :j<i, tj = 1), Si) (as defined in VPi, of course),

(D) if i is supercompact, not limit of supercompacts then t^ = 1,Q^ =

SSeal(»[Pi],Sι),

(E) if (Vj < i)[\Pj\ <i],i limit of supercompacts and i is inaccessible 1-Mahlo

but not 2-Mahlo, we let t» = 1, Qi = Nm * SSeal(B[Pi]) (the SSeal in

P<*Nm
V of course),
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(F) if (Vj < i)[|Pj| < i]ji is 2-Mahlo and a limit of supercompacts then

Wi = {δ < ί : δ = cf (5) is Mahlo and a limit of supercompacts and

(Vj < δ)[|Pj| < δ}} is a stationary subset of i, then we let:

= 1, Ql =

Why is Q Si -suitable? We shall prove by induction on i that Q\i is

SΊ -suitable.

Note that the use of SSeal guarantees (F) of Definition 2.1, as well as (E)

(see 2.11(3), 2.13(2)). Remembering 2.3(2), it suffices to show by induction on

i that j < i => (Pi/Pj+ι)*Qi is semiproper (actually the only problematic case

is when i is inaccessible limit of supercompacts, but then for arbitrarily large

j < i we have Rss+ (j) (by 1.10, 1.6(2), 1.6(4)), so in VFj , every forcing notion

preserving stationary sets is semiproper, but we check by cases:

For i = 0: trivial.

For i + 1, and i satisfies clause (C) above (in the definition of Q) the result

follows by Claim 2.14.

For i 4- 1, and i satisfies (D) above: first note that \Pj\ < i for j < i,

hence j < i & tj = 1 =» 25 [Pj] <£ 03 [Pi], hence by Claim 2.7 we have

Qi = SSeal(BPi,Sι) - SSeal((5Bp' : j < i,tj = l ) , f iΊ). Now for a club

C of i, j E C & j = cf(j) => Qj is semi proper (see the previous case),

so by 1.6(4)4-1.10 we have Ihp. "Rss(«) i.e. Rss(tt2)". Hence by claim 2.10,

SSeal(a5[PK], 5ι) is semiproper in Vp- .

For i + 1, and i satisfying clause (E) above: we shall apply 3.4 with i here

standing for K there. Note that condition (*)(a) (of 3.4) holds for E^ = {S <

i : δ > j, δ strongly inaccessible, not Mahlo, δ > \Pζ\ for ζ < δ, Q§ semiproper}.

Why does the second player win c)({^ι},ω,l^i 4- E^) in the universe VFj+l7

By 1.6(6) clearly for j < i,Vpι |= "Rss+(i)" and use 1.11, (and 1.9A(3), i.e.

XII, 2.5(2)) but this give just winning in D({Nι},α;,ft). However for μ < i,

there is a μ-complete filter on i containing the clubs of i and E^ so winning

the game is easy, and lastly if j < i is strongly inaccessible not Mahlo and

(Vε < j ) ( \ P ε \ < j) then Qj is even proper by 2.11. Condition (*)(b) of 3.4
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holds by the definition of case (E): if λ < i is supercompact then Rss+(λ),Qλ

semiproper by the induction hypothesis (see previous case) so any λ < i which

is supercompact satisfies the requirement on E* .

For i -f 1, and i satisfying clause (F) above: similar to the previous case by

replacing 3.4 by Claim 3.5 (and remember 0.1(5) of the Notation).

Also each Qi is pseudo (*, 53)-complete (by 3.6), hence Pκ is pseudo (*, 53)-

complete so when £3 is stationary,

and in any case lhPκ "2Kl =κ = ̂ κ}".

Let *Bi = »[Pi], so t< = 1 =» SB, rSi <S »[P«] ίSi Let

So in VPκ (as case (F) occurs stationarily often),

W** d= {δ e W* : cf (5) - N! and W* contains a club of δ}

is stationary. Hence it is well known that in V Pκ ,

club/ί(VF*) — {h :h an increasing continuous function

from some a -h 1 < K, to W* }

does not add bounded subsets to κ(= ^2)- (More exactly, if CH holds this

is straightforward. If CH fails, this holds if we can find P = (Pa : a < «),

Pa £ S<Nl(α), \Pa\ < NI (P G yp« of course) such that {δ e W** : for some

unbounded C of ί we have that C C W*, otp(C) = α i and α e C ^ C Π α G

U P/?} and this holds (with Pa = (5<Nl (α))vPα in fact α G C => CΠα € Pα).)
/3<α
So forcing will give us a universe as required. Da. 7

3.8 Remarks. The proof of 3.1, 3.7 exemplifies two constructions which we

may interchange. Another variation is 3.9 below.
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3.9 Theorem. Suppose {μ < K : μ supercompact} is unbounded below K, K is

strongly inaccessible, h : K — > H(κ), and (Si, 62, #3) is a partition of ωi, and

Si is stationary. Tften for some forcing notion P:

(i) P satisfies the ft-c.c., is pseudo (*, S^-complete, has cardinality /ς,

does not collapse NI and /ς but collapses every λ G (Nι,ft) and in

Vp«, K = N2, 2
Hl = N2, and 2H° - NI «=> 53 stationary,

(ii) 25 [P] [Si has a dense subset isomorphic to Levy (No, < N2),

(iii) in Vp , an axiom holds as strong as /ι is a diamond, i.e.

(a) If h is a Laver diamond for x G H(2χ) then in Vp, Ax[Q is a pseudo

(*> 3̂ ) -complete, semiproper*[5ll (see definition below), Q G ίί(λ)] (see 3.9A

below) and Ax+[Q is pseudo (*,5s)-complete, semiproper*[5ll,Q £ H(X) and

<B[VP] <B[(Vp)g].

(b) When λ = «, then we can weaken the demand on h to: for every

x C K satisfying a Σj-sentence ψ (i.e. (3z C P(κ) such that . . . )) then {i < K :

/i(i) = x π z, (ίf(i), G,x Π i) |= ^} is stationary. T/ien a conclusion similar to

the one in clause (a) holds for Q C H(κ)

where

3.9A Definition. Let A = (Λζ : C < 0» A

1) A forcing notion Q is semiproper*^ if x regular large enough, N -<

(ff(χ), G, <* ) is countable, Q G N, A G AT, p G QnAΓ satisfies "(VΞ, C)[Ξ G

TV a pre-dense subset ofAζ&cζζ.NΓ\ξ=ϊNΓ\ωι€ \J A]" (if Λζ satisfies
Λ€Ξ

the ^2-c.c. this always holds) then there is q G Q which is ( JV, Q)-semi-

generic and g Ih "if C G ξ Π TV[Gg] and Ξ G N[Gq] is a pre-dense subset of

Λζ, thenN^\ωl £ U{A : A e N[GQ}}" .

2) If ξ = l,Λζ = {A C ωι : A Π (ωl \ 5) G {0,ωι \ 5}}, write *[5] instead

*[,4]. We do not strictly distinguish between 95[y]f5 and {A G 95 [V] :

Proof. We define by induction on a < /ς, P^, Q^, t^ for i < a such that:

(A) Qa = (Pi,Qj,tj : i < α,j < α) is 5ι-suitable, |Pi| < « for i < /ς, and

for α < ft, Qα G if («) and t» = 1 -ΦΦ (ΐ successor or i strongly inaccessible
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& f\ \Pj\ < ϊ), (note that for i limit we are trying to get 23^ri <£
j<i

not 23 Pί <> 23P/C). Let ̂  be the following P^-name: if j = 0 we let Aj be

trivial, if j > 0 we let it be 23^ = \J BfP/j+i].
£<J

(B) For z non-limit, let κ>i be the first supercompact > |Pi|,

if i = 0, let Qi = Levy(Nι, < «0),

if i > 0, let φ = SSeal({A; : j < i),Sι,Ki).

(C) For i limit < K such that ft(i) is a P^-name of a pseudo (*,S3)-complete

semiproper*^1], where A1 = (A, : j < i), remember Λi = 23 .̂

Let κί+ι < K; be such that Λ(i) e fί(«i+ι), κί+ι supercompact and

Qi = Λ(<) * SSeal({^, SΊ, Λ<+I).

(D) For i limit, but (C) does not hold, let Qi = SSe&l((Aj : j < z),SΊ,Ki+ι),

Ki+ι as before.

We can prove by induction on α that Qa is SΊ-suitable and Qa is

semiproper, and if i < K is successor, then Ihp. "Rss(K2)" If α is limit or-

dinal use 2.3(1) and for α = 0 this should be clear. If α = β + 1, β not limit

by 2.11 we can see that Qa is Si-suitable, i.e. the first phrase holds. For the

second, clearly by 2.7 we have Qβ = SSeal(25[P/?],Sι, κ/3+ι), and by the in-

duction hypothesis VPP t= "Rss(H2),K2 = Λ/J+I", hence by 2.8(7), lhP/3 "Q^

is semiproper". Moreover in VFβ , Q/3 is an iteration (see Definition 2.4(5))

(P?,Qj : z < κ/3+ι, j < fi/3+ι) and for every strongly inaccessible j < κ,β, Qβ

and even P^/P/ are proper by 2.11. So by 1.10 we have lhPα "Rss(^)". For

a. = β 4- 1, /? limit use 4.9 from the next section and 2.11 for the first phrase (if

clause (D) apply then use 2.13), the second is proved as in the previous case.

Remembering strong preservation of pseudo (*,S3)-completeness we have no

problems. Da. 9

3.9B Remark. We can wave in the proof some tj — 1, more acurately some

Aζ's and then get stronger forcing axioms.



656 XIII. Large Ideals on ω\

§4. T(ωι)/CDωι + S) is Reflective or Ulam

In 4.3 we deal with reflectiveness: if Ai C S C ω\ is stationary for i < N2

then for some W C K2 of cardinality ^2? [w <Ξ W & IH < HO => Π Ai is
iGω

stationary]. Claims 4.1, 4.2 prepare the ground. In 4.4 we deal with the Ulam

property, for this we prove in ZFC a sufficient condition for a filter to satisfy the

Ulam property (see 4.5A - 4.5F, Definition 4.6 and the proof of the consistency

of the Ulam property (i.e. 4.4) in 4.7). The rest of the section deal with the

forcing.

4.1 Claim. Suppose S C ω\ is stationary Q — (Pi,Qj : i < α, j < a) is a

semiproper iteration, μ < a (μ — 0 is allowed), and \\-pμ "Rss(N2[Fp^])" (e.g.,

if μ is supercompact, [i < μ => \Pi\ < μ] and {i < μ : Qi is semiproper (i.e.

If" Pi "Qi is semiproper")} belongs to some normal ultrafilter on μ); note that

"~Pμ V — ̂ 2" if μ is strongly inaccessible, |Pj| < μ for i < μ.

Let A be a P^-name for a subset of 5 and B a P^-name for a member of

23 [Pμ] such that:

Then

® z/ λ is regular and large enough, A^ -< (ίί(λ),G,<^) is countable, and

Q, λ, p, A, B and μ belong to JV, p G Pα Π N and ς G Pμ is (TV, Pμ)-

generic, p\μ < q and qUp\[μ, a) \\-pa "NΓ\ωι G J3" (if 5 is a Pμ-name this

means q \\-pμ "NΓ\ωι G -B"), ίften there is a (N, Pα)-semi generic condition

q' G Pα satisfying q'\μ = q such that </ IKPα "TV Π ω\ G A" .

4.1A Remark. (1) If Q is 5-suitable, tμ = 1, and A ^ 0 mod Pωι, A is

a P/3-name for some β < α, then we know that such JB exists as tμ — 1 (by

definition 2.1).

(2) Note, e.g., for 5-suitable Q,ίg(Q) = a = \Jn<ωan,otn < αn+ι,tαn = 1, we

can use Qa = SSea^QS^, 5) and not only SSeal(Q3Pα, 5) [because in 2.13 we

had demanded "(PQ/Pi+i)* seal (Ξ) is semiproper"].
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Proof. As we can increase p, without loss of generality p forces B to be equal

to some Pμ-name, so without loss of generality B is a Pμ-name.

Let us fix p, A, B, μ and work in V[Gμ], Gμ C Pμ generic over V such

that q £ Gμ. Let

Wχ

 d= {N -<(H(X)ylGΛ, G, O : AT is countable and TV Π ωι G S[Gμ], but

there is no r G Pa/Gμ such that:

r is (TV, Pα/(7μ)-semi-generic, p\[μ, a) < r and

r\\-Pa/Gμ "NΓ\ωι G ,4"}.

If 1/F\ = 0 mod P<κ1(JT(λ)v[pμl), we can easily get the desired result (as

in the proof of 1.11)): let λi be such minimal that 2λl < λ, and Q G H(\ι).

Clearly also WXl = 0 mod P<Nl(JT(A)v[p"]) and let W(τ C 5<Hl(^(λι)y[p^

be closed unbound disjoint to it. So if N is as in the assumption of ®, then

necessarily λi G TV hence l/F\i ^ ^ and w.l.o.g. WXι G -/V. Then clearly

NnH(\ι) G W^, hence NΓ\H(\ι) φ Wλl, hence N φ Wλ, which suffices. So (in

V[(?μ]) the set VF is a stationary subset of «S<«1(f/"(λ)), hence semi-stationary.

As F[Gμ] |= "Rss(N2)" there is u C H(λ) such that α i C u, \u\ < M2 (in V[Gμ})

and VF Π S<^l(u) is semi-stationary; now by 1.2(2) without loss of generality

(u, G, <^ \u) -< (if (λ), G, <£). Let u — Uζ<u;ι ^C' w^n eac'1 uζ countable and

Uζ is increasing and continuous. So

Bi = {( < ωι : (37V G W)(ωl Π uζ C TV C uc)}

is a stationary subset of α i (see 1.2(4)) which belongs to 95[Pμ], and obviously:

(*) p \\-pa/o "4 Π -Bi is not stationary".

[Why? For C G BI let α i Π uζ C Nζ C uc, NζeW and for ̂  < ωι let ̂  be the

Skolem Hull in (H(\)V\G»\ G, <J) of {C : C < ί}U{p, (uc, A^C :ζeB^ζ< £)},

and

C - ί < α i : [GPJ Πωι=ξ and [GPJ Π n = uξ}.



658 XIII. Large Ideals on ω\

As (Nt[Gpa] : ξ < ωι) is increasing continuous, clearly C is a Pα/Gμ-name

of a club of ω\. Now C Π A is necessarily disjoint to BI by the definition of

W: if C < ωι,ς G Pα/Gμ, and q \\-Pa/Gμ "C £ Q Π A Π BI", then 7VC G W is

defined (because C G BI) and qrα is (ΛΓζ,Pα/Gμ)-semi-generic, and qa \\-pa/Gμ

ίίNζΓ\ωl G A\ contradicting "AΓC G W" so (*) holds]. Also

(**) Bi C B

by the clause "AT Π ωi G B[Gμ]" in the definition of W.

Of course BI G VPμ and as said after the definition of BI , it is stationary

so we get a contradiction to an assumption on A, B.

Π4.ι

4.2 Claim. (1) Suppose Q = (Pi,Qj : i < α, j < α) is a semiproper iteration,

(μ^ : C < ξ) an increasing sequence of strongly inaccessible cardinals < α,

Λς<ξ [(Vt < μζ)(|Pi| < μc) and \\-Pμ( "Rss(μζ)"] and

(*) every countable set of ordinals from VPa is included in a countable set of

ordinals from V.

Suppose further that B is a Pμo-name of a subset of ω\, Aζ is a Pμς+1-name

of a subset of ω\ (if ζ + 1 = ξ we stipulate μ^+ι — α) and p G P satisfies:

pfμo "~pμo "B is stationary",

p\μζ+ι I^Pμζ+1 " for every X G 23[PMc] \ {0}, if X C B ί/ien Ac Π X is

stationary ".

Then p \\-pa "the intersection of any countable subset of {Aζ : ζ < ξ} is

stationary".

(2) In 4.2(1) we can replace the assumption (*) by:

(*)~ if δ G (μo,α) is strongly inaccessible and [i < δ => |P;| < ί], ίften

lhPa «cf(ί)> V-

Proof. 1) Let -w; be a Pα-name for a countable subset of ξ. So without loss

of generality w = w and let w = {ζ(n) : n < ω}. Let Y be the closure of

{μζ : ζ < ξ}U{θί} (in the order topology on the ordinals). If the conclusion of 4.2
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fails then (as we can increase p) without loss of generality p lhpα "Γ\n<ω ^c(n)

is disjoint to C where C is a club of ω\\

We now prove by induction on j G Y:

®j if μo < * < J j both in y, λ regular and large enough, TV -< (-ff(λ), G, <J)

countable, C G TV, £ G TV, (μc,Ac : ζ < ξ) G N and {i, j, Q} G AT,

p < p' £ N Γ\ Pa and g G P$ is (A/", P$)-semi-generic, p'fi < q, and

<? Ihpj "TVίΊu i G J3 and forn < ω we have [μ^(n) < i => NΠωi G 4c(n)]">

then there is #' G P/, (AT, P/)-semi-generic, p'f j < q',q'\i — Q. and ^ Ihp.

"TV Π ωi G B and for n < ω we have [μ^(n> < 3 => ̂  Π ωi G ̂ c(n)]"

Clearly this is enough (apply it with p' = p, i = μ0> j = &, and there are TV, q

as required and B is a Pμo-name of a stationary subset of C α i).

Case 1. j = μo. Trivial.

Case 2. j is an accumulation point of Y (hence is of countable cofinality).

As in the proof of the iteration lemma for semiproperness.

Case 3. j = μ^+i.

Apply the previous claim 4.1 (for Q\μζ+ι and μζ).

2) The proof is similar but w is Pα-name of a countable subset of C, and for

j G [μo,α] the statement ®j is now for every w which is a P^-name (not Pα-

name) of a countable subset of {ζ : μζ < j}. So proving it we increase pf[z, j]

also for this purpose and i G [μo >.?')• Cases 1, 3 remain as before. Note that we

can replace w by a larger set

Case 2A. j > sup[j Π {μc : C < ξ}]

Trivial

Case 25. j = sup[j Π {μc : C < ξ}].

W.l.o.g. p force a value to supu> Π {μ^ : ζ < ξ}, call it ξ*.

Subcase α. ξ* < j: the proof is as in case 2A, as increasing w w.l.o.g. it is

P£*+ι-name.

Subcase β. ξ* = j: for some iι < j, p\i\ l/p^ "cf(j) = j" is easy too.

W.l.o.g. iι < i (by the induction hypothesis), p\iι Ih "cf(j) < j". So in VPi we

know cf(j), and it is KQ or NI. Now MI is impossible (as ξ* = j) and if it is H0

act as in the old case 2.

But by (*)~ of 4.2(2), one of the subcases occurs. D4.2
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4.3 Theorem. Suppose {μ < ft : μ supercompact } is a stationary subset of

ft, (Si, 52,£3} is a partition of ω\ with each Si stationary. Let h : ft —> H(χ)

and assume {μ < ft : μ supercompact, Λ(μ) = 0} is stationary. Then for some

forcing notion P:

(i) P = Pκ (= RLΊmQ for some 5ι-suitable Q) is 53-complete, or at least

Ss-proper and satisfies the ft-c.c.

(ii) In VPκ, from any ^2 stationary subsets of S\ C ω\, there are ^2 of them

such that the intersection of any countably many of them is stationary

(and *BPκ is layered, of course). We then call 93[VpfC] reflective,

(iii) A forcing axiom as strong as h holds (see the proof and 3.9).

4.3A Remark. 1) We really use a weaker assumption

(a) {μ < ft : μ measurable} is stationary;

(b) {μ < ft: for χ < ft,μ is χ-compact} is unbounded; use 1.6(2), 1.6(3),

1.10(1). See more in XVI§2.

2) The situation is similar in 4.4, where we get better bound (i.e. using smaller

large cardinals) for a stronger result (but lose in forcing axiom.)

3) We can demand only "Si is stationary" etc. if we use 4.1(2) instead of

4.1(1), but then we should satisfy (*)" of 4.1(2).

Proof. We define by induction on α < ft the iteration Qa — (P^Q^tj : i <

a,j < a) such that:

(A) Qa is Si-suitable.

(B) Each Qi is S3-proper.

(C) Qα, Pa G H(κ) when α < ft.

(D) If h(i) — (t, JR), i measurable, t a truth value, R a P^-name and t =

1 => B[Pi]ΓSι <o <&[Pi * JR]ϊSι] and [j < i & tά = 1 =» &[Pj]\Sι <o

03[Pi * R]\Sι\ and (P^/Pj+i) * R is semiproper and Ss-proper for j < i

then ti = t,Qi = R* SSeal ((95[Pj] : j < i,tj = 1)).

(E) If not (D), i is inaccessible, \Pj\ < i for j < i, h(ϊ) = 0, and lhP. "Rss(^2),"

then ti = 1 and Q^ - SSeal((Q5[Pj] :j<i, tj = 1), S).
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(F) If neither (D) nor (E) then t^ = 0, and

We can carry out the construction and prove by induction on a that Qα

is Si-suitable.

α = 0. Trivial.

a limit. By Claim 2.3(1).

a = β + 1, (F) applies to β. By 2.14(1).

a = β + 1, (D) applies to β. By Claim 2.11.

a = β + 1, (E) applied to β. By 2.16 note:

(*) if i G B = {i : i inaccessible, j < z => |P, | < z} then: if for i clause (E)

or clause (F) occur then Qi is semiproper. [Why? If Ihp. "Rss^)"

by 1.7(5), otherwise clause (F) applies, t; = 0 and we can use 2.11.]

But clause (D) does not apply to i non-measurable so

(**) for i non measurable \\-pi "Qi is semiproper".

Now suppose p G Pκ, (Ai : i < K) a P^-name and p Ih "Ai C Si is stationary".

Let Y = {μ < K : μ strongly inaccessible, /\i<μ |P»| < μ and Ihp. "Rss(K2)"

and tμ = 1}. Note that in VPκ, Y C {δ < K : cfv[Pκ](δ) = NI} is stationary

because if μ < K is measurable, limit of super compacts, Λj<μ \Pj\ < P> and D

is a normal filter on μ, concentrating on non-measurable so Xμ = {i < μ : i

inaccessible, not measurable, Λj<J^Ί < μ} £ D. We use 1.10(1) (noting

Rss+(μ) holds, by 1.6(6)) to get μ G Y. Now for each μ G Y choose pμ G Pκ

and a Pμ-name ^μ such that:

P<Pμ,

pμ\μ\\- "BμCSι is stationary, 5M G 33 [Pμ]",

Pμ ll~pκ "for every nonzero X G 2J[Pμ],

if X < Bμ then X Π Aμ is stationary" .

Why does such a pμ exist? As 25 [Pμ] <S 35 [PΛ] (and see 0.1(4)(b)). Remember

that Pμ satisfies μ-c.c. so Bμ G H(χμ) for some χμ < μ and without loss
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of generality B is a PXμ-name and tXμ = 1 (i.e. by increasing χμ; also, Y is

stationary by a hypothesis).

By Fodor's lemma, for some stationary Ύ\ C y, there are p and B such

that for μ G y"ι : pμ [μ = p, and Bμ = B.

As each Aζ is a P\-name for some λ > ζ, λ G y, without loss of generality

[//i < μ2 in YI =» Aμι is a Pμa-name]. Now, for μ e YΊ let A'μ be Aμ if

Pμ £ Gpκ and 5 otherwise.

Note that y"ι £ V and every countable subset of YI is contained in a

countable set from V [Why? Remembering 83 is stationary, by 5s-properness.]

Now we apply the previous Claim 4.2 to JB, (A'μ : μ € YI). Π^

4.4. Theorem. Suppose K = sup{λ < K : λ a compact cardinal} and

(SΊj £2? £3) is a partition of ωi to stationary sets. T/ien for some forcing notion

PeV:

(i) yp is a model of: ZFC + 2*° = NI + 2Nl = N2,

(ii) in Fp, the statement Ulam(Pα;ι -f SΊ) holds, where, for a uniform filter

D on λ, Ulam(J9) means: there are many λ λ-complete filters extending

D, such that every D-positive set belongs to at least one of them (A is

^-positive if A C λ, and (X\A)$D).

Remark. So in Vp', Ulam's problem has a positive solution: there are NI mea-

sures on [0, I]E, each countably additive, such that every A C [0, I]R is measur-

able with respect to at least one of them.

Proof. Before we do the forcing, we work out some combinatorics, which will

tell us what will suffice.

4.5A. Context and Notation.

( l)λ = λ < λ i s a fixed regular uncountable cardinal.

(2) W denotes a fixed class of ordinals (in the actual case W C λ+), 0 G W,

for every i, i + I G W, and

Ho < cf (i) <\^iφW.
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(3) B will denote a Boolean algebra.

(4) For a Boolean Algebra B, let B+ = B \ {0}.

(5) Pr(αι, 02,^1,^2) means: Bι,B2 are Boolean algebras, BI C £?2, αi G

Bf, α2 G £3", and (Vx)[x G Bj1" & x < αi -» x Π α2 ^ 0].

(6) If the identity of #2 is clear (when dealing with one Boolean Algebra and

its subalgebras) we just write

4.5B. Observation.

(a) Pr(l,x,Bi,B 2 )forxeBi, |J3i | = 2;

(b) if Ba C Bb C 5, x 6 £+, yeB+,zeB and Pτ(x,y,Ba}, Pr(y,z,B6)

then Pr(x, z, jBα);

(c) if Pr(x,y,Bi,B 2),0<x'<x,x' εBι,y<y' eB2 ίΛen Pr(x',y',Si) and

Pr(x',ynx,5i).

4.5C. Notation and Definition.

(1) We call 5 1-o.k. (for W) if j§ = (B^ : i < α) is an increasing continuous

sequence, each ̂  a Boolean Algebra of cardinality < λ, [i, j G a Π PF and

i < j =ϊ Bi <$ JB^ ,] and [i G W Π α =>> Bi is λ-complete] .

(2) We call w C W Π α closed (subset of W Π α) if

(i) for every accumulation point δ < a. of the closure of w (that is

δ = sup(w Π δ) & 5 < α) we have

(ii) for every δ < a we have: Min(w) <(ί + l ) E w & ; N o < cf(J) < λ =>

δ — sup(JΠtί ),

(iii) if Min(n ) < βeW, β + lew then βew.

(3) Let CSb(α) = {w : w a closed subset of W Π a of power < λ},

CSbn(o;) = {w G CSb(α) : w unbounded below α}.

(Clearly CSbu(α) ± 0 => ^0 < cf(α) < λ).

(4) For tϋ G CSb(α) and B = (Bi : i < β) which is 1-o.k. such that /3 > α, let

(i) Seq^(B) = {(α* : i G w) : α» G 5+,^ is decreasing;
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if i G w, i — 5 + 1, δ limit of course, S φ W,i > Min(κ ) then

&i — \ \j£wniaj'>

ifiζw, i> Min(iϋ), cf(i) > λ, then α^ = α^ G Bj for some j G i Π w\

and if i < j are in w(C W) then Pr(α^, α^, S^, Sj)}

(ii) Let Seq(£) =f (JίSeqJB) : for some α (< ^g(S)), α - ̂ g(B) or α

is successor of a member of W, we have ΊU G CSb(α)}.

Let SeqjS) d= (JίSeqJB) : w G CSbu(^g(S))}.

It is naturally ordered by α1 < α2 if letting of- — (αf : i G Wf) then

tt;1 C w2 and [( G w1 =Φ αi > α?].

(iii) Wien α - 5 + 1 < £g(5), ty G CSb(δ) let

d , : (α, : i G ™) G

: ti; G

If ig(B] = δ + 2, we may omit 5.

(5) We call S 2-o.k. if for every limit δ < ίg(B), 0 φ Zδ(B) and B is 1-o.k.

(6) We call B 3-o.k. if it is 2-o.k. and for limit δ < ίg(B] of cofinality < λ we

have: Zδ(B) is a dense subset of B$+I.

(7) If B is not continuous, we identify it with the obvious correction for the

purpose of our definitions.

(8) We call T C Sequ(j§) dense if for every α G Seqn(5) for some α' G T we

have α < a'. We say T' refines T if (Vα G T)(3α' G T7) [α < α']. We say

T C Sequ(B) is open if α < a! (in Seqn(B)), α G T implies α' G T.

4.5D. Fact. Suppose B is 2-o.k., B = (Bi : i < δ + 1), H0 < cf (ί) < λ. Then:

(0) (i) CSbu(£) ^ 0, moreover for every α < δ + 1 and υ C a of cardinality

< λ we have:

HO < cf(α) < λ => there is lί; G CSbu(α) such that υ C w and

cf(α) > λ => there is w G CSb(α), such that υ C w and

α = ΐ - f l & ΐ G Ϋ F = > there is it; G CSb(α) such that v Cw and i G u>.

(ii) If we CSbu(δ),a < δ, then w\ae CSbu(<5); similarly for CSb(α).
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(iii) If a < δ and w G CSbn(α) and a = ε 4 1 and N0 < cf(ε) < λ then

wU{a}e CSb(J).

(iv) If w G CSbw(ί), α G w then there is β G w \ a such that β £ {ε + 1 :

NO < cf (ε) < λ}; in fact β = min(u> \ (a 4 1)) is as required.

(v) If we CSb(α) and β < α, then w Π β G CSb(/J).

(1) If w G CSb(ί H-1) then ZW(B) includes BMin(tι;), hence: N0 < cf(5) < λ =>

D f— ^7^ f D\IJ X \ Xy I f> I .

(2) (i) If wι, W2 G CSb(ί) and Min(u^) < Min(iί;3_^) =Φ Min(κ;3_^) G ι/j£

thenwi U w2 G CSb(δ).

(ii) Similarly for CSbw(£).

(3) (i) If wι C iί;2 are both in CSb(α),min(iί;ι) = min(iί;2), (α^ : i G Wι) G

Seq W l (5) then (a,i :i e w%) G Seq^.2 (B) provided that for i G w2\wι

we define a$ = a max(iπυ;ι) which is well defined,

(ii) If α < sup(w), and w G CSb(5), and (α^ : i G ιw) G Seq ̂ (B) ίften

(αi : i G ιy \ α) G Seq^\a(5) and (α^ : i G ιy Π α) G Seqυ;nQ:(J§).

(iii) If wι C W2 are both in CSb(δ) and (α^ : i G 1^2} € Seq^2(J) and

(di : i G Wι) G SeqWl(5).

(iv) If β < 5, /? is a successor of a limit ordinal, n; G CSbu(β — 1),

Min(ιy) < /? < ε + 1, wι = w U {β} and (α^ : i G w) G ZW(B)

then we can find α/3 such that (α^ : z G Wι) G ZWl(B).

(4) If tϋi C iί;2 are both in CSbw(5) and min(iϋι) = min^) then ZWl(B) C

(5) If (α^ : i G u>ι), (6^ : j G w2) are in Seq^^B), Seq^2(B) respectively, and

(Vi G wι)(Ξ3j G 1^2)̂ -1 < frj then Γliewi ai — Γ\j^W2 '̂

(6) If (di : i e w) e Seqw(B),Q < b < amin(w} and 6 G Bmin(w} then

(7) ΊfB = (Biii <a) is Z-o.k. (I = 1,2,3), ^ < α (for i < i(*)) is strictly

increasing continuous and [i G VF Φ> 7^ G W] and [N0 < cf(i) < λ ^>

^ΐ+1 — ̂  4-1] ίften (BΊi : i < i(*)) is /-o.k.

(8) Assume B = (B» : i < a) is 1-o.k.

(i) if β < 7 < a, β G W, 7 G W, b G J57 ίften for at most one a we have:
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(*) α G Bβ and BΊ |= "o > 6" and Pr(α, 6, B/j, B7),

(ii) if α^ G Seq^£(B) for ί = 1, 2, tfien { / ? : / ? G iϋι Π iί;2 and al

β = α^} is

an initial segment of wι Π w<2.

(9) Assume B - (B; : i < α) is 3-o.k., [δ < α&cf(ί) >X^δeW}.

(i) If u € CSb(/3), /? < a + 1 is a successor of a member of W, and 761;

and d G B7 ίΛen the set Γ = Γαjυ)7)d = {α G Seq (B) : υ C Dom(α)

and [α7 Π d — 0 or aΊ < d\} is a dense and open subset of Seq (B).

(ii) If NO < cf(α) < λ, v G CSbu(α), 7 G υ and d e BΊ then the set

Γ = Γα = {α G Seqn(B) : v C Dom(α) and [α7 Π d = 0 or α7 < d}} is

a dense open subset of Seq(B).

(iii) If β < α, d G B/? \ {0} and v C /3 -f 1, |f | < λ ί/ien there is tί; satisfying

υ C w G CSb(/3 + 1), βew and α G Seq^(B) such that aβ < cί.

Proof. Easy, e.g.,

0)(i) We prove it by induction on α. For a non- limit the result is trivial so

assume α is a limit. So for every j < α there is Wj such that: υ Π j C w^

and [No < cf(j) < λ => Wj G CSbuO')l and [cf(j) £ [N0,λ) =Φ [cf(j) >

λ V (Ξi)(j = i + l & i € W) => tϋj e CSb(j)]]. Let (je : ε < cf(α)> be an

increasing continuous sequence of ordinals < a with limit α. If cf (α) = N0 then

w.l.o.g. jn + 2 G v for n < cj and then w = U{^n+ι+3\(jnH-3) : n < cc;}

is as required (remember i + 1 G W for any ordinal i by 4.5A(2)). If cf (α) > λ

then for some j < α, we have v C j and we can use the induction hypothesis.

If cf (α) > NO but still it is < λ, without loss of generality each jε is a limit

ordinal with cofinality < cf(α) < λ. Let w = { jε -i- 1 : ε < cf(α)} U Uε<cf(Q!)

(wjε+l+z \ (jε + 3)) U Wj0+z and note that it belongs to CSbn(α) and includes

υ, as required.

(0)(iv) See the last phrase of 4.50(2).

(1) For the first phrase note that for α G Bmin(iϋ)> ba — (a : i G w) G Seqw(B)

(see Definition 4.50(4) (i), (iii)).

The second phrase follows by the definition of Zδ(B) and 4.5D(0)(i).

(3)(i) Why is max(i Π wι) well defined?

First note: i Π w\ ^ 0 as i φ w\ implies i ^ min(tί ι), but min(tt ι) — min(κ;2)
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so i > min(wι) hence min(κ ι) G i Π w\.

Second note: \fiΓ\wι has no last element, let β = sup(z Π wι), so β < i and

NO < cf(β) <\wι\< λ, hence β φ W, so β φ w2 and β < i. Also β +1 G MI (as

wi is closed and β < i < a so β + 1 < ί), so /? -f 1 cannot be in z Π MI, hence

i — /? -f 1 G u>ι, contradicting the assumption on i (i.e. z G w2 \ u>i).

(3)(iv) Note that, as w G CSbu(/J - 1), necessarily cf(β - 1) < λ. Also

wι G CSb(δ + 2), so ZW(B) is well defined. Also α/j = Πze u; α^ is we^ defined

as Bβ is λ-complete, and \w\ < X as w GC CSbu(/?) C CSb(β) (see Definition

4.5C(3)). As B is 2-o.k. (see Definition 4.5C(5)), QBδ+1 Φ Zδ(B), but clearly

ap G ZW(B) C Z(3(B) hence α/j 7^ Oβ^+i The order requirements for (a» : i G

u>ι) G Seq^ί-B) are easy too.

(4) Use (3)(i).

(6) Let for i G w, Q = α^ Π 6 and /? = min(iί ). So

(i) Ci = aiΓ}beBi [as o< e Bi,b e Bβ C J5<];

(ii) for z < j from it;, c^ < Ci [as α -̂ < α ί? clearly α^ Π 6 < a» Π 6];

(iii) for i < j' from w, PΓ(Q,CJ , Si).

[Why? Let 0 < d < Q, d G B< then 0 < d < a<, d G 5, hence (by

Pr(a^, dj,Bi)) d Γ i d j ^0 and cf < Q = α^ Π b < b so d Π 6 = d, hence

dΓ\Cj = d Π (07 Π 6) = (d Π 6) Π dj = d Π CLj

so d Π Cj ^ 0 as required.]

The other conditions are easy too.

So(c, : J G ^ ) G Seqw(B).

(9) We prove this by induction on α ((i), (ii) and (iii) together). In parts

(i) and (ii), Γ being open is immediate, so let us prove density. So assume

c = (^ : i G v0) belongs to Seq(B) (for 9(i)) or Sequ(B) (for 9(ii)), υ C α,

7 G υ, d G 57 as there and we shall find 6, c < 6 G Γ (see end of 4.5C(4)(ii)).

In the cases below for 9(iii) only the assumption on α is relevant.

Case 1: a = 0

Trivial.
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Case 2: a = ε + I, ε G W.

For 9(iii) note that by the induction hypothesis we have to prove only the

case β = α — ε + 1 and d G Bβ = Ba is given. Let d\ G Ŝ  be such that

Pτι(dι,d, Bε,Ba). By the induction hypothesis we can find wi G CSb(ε + 1),

such that ε G u>ι, and α G Seq^B) such that αe < dι.

Let it; = Wi U {α}, αα = α^ Π d G £?+ (not zero as a,β < d\ and the choice of

dι). So (di : z G w) G Seq^(S) is as required.

Now as α is a successor only 9(i) is left, by the induction hypothesis

β = a + 1 and by the assumptions of 9(i), β is a successor of a member of W

so α G W hence VQ has a last element. Let d^ be: c max(υo) Π d if not zero and

c maχ(υo) otherwise and as we have proved 9(iii), there is (α^ : i G w) G Seqw(B)

satisfying w G CSb(α + 1) such that: VQ U υ U {ε,α} C w, and αα < ofo- So

α<* < d or αα Π d = 0; by 4.5D(8)(ii) we are done.

Case 3: a = ε + 1, ε £W (so only 9(i)4-(in) apply and ε is a limit ordinal) (as

βtW, cf(ε) < λ).

For 9(i) as in case 2 it follows from 9(iii), so let us prove 9(iii), by the induction

hypothesis w.l.o.g. β = a. As B is 3-o.k. by Definition 4.5C(6) there are

WQ G CSbu(ε) and (6? : ί G WQ) G Seq^0(5) such that Γ\iew0

 b°i is not zero

and is do < d.

By the induction hypothesis we can apply 4.5D(9)(ii) to ε, CSbu(ε),

(tf : i G WQ) and so we can find (6^ : i G wι) such that (6j : i G tί o) <

(bi : i £ wι) G Seq(Bfα) and υ C w\. As β is 2-o.k., ba = Γ\ieWl ^
 G ^α is

not zero. Let w = Wι U {α}, so w G CSb(α + 1) and (6» : i G υ;} G Seqn(5) is

as required.

: a is a limit ordinal, cf(α) > λ (so α G W by an assumption of 4.5D(9)).

As Ba = \Jβ<a Bβ and the third requirement in the definition of ά G Seq (see

4.5C(4)(i)) it is easy.

Case 5: a is a limit ordinal, cf (α) < λ.

So 9(i), 9(iii) does not apply. First as for 9(ii) we can assume υ \min(τ;o) = VQ.
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[Why? By 4.5D(0)(i) w.l.o.g. 0 G v & VQ C v. But sup(voUf) > sup(^o) = OL, so

v = VQ\JV G CSbu(α), and lastly apply 4.5D(3)(i) to replace VQ by v\rnin(v0).]

Second we are given 7 G v, d G £7 (so, as we can increase 7 w.l.o.g. 7 G t>o)

Now v0 Π (7 4-1) G CSb(7 + 1) and so (a : i G VQ Π (/? + 1)} G Seq (5), and by

the induction hypothesis (on 9(i)) we can find (&9 : i G w0) G Seq(Sf(/? 4-1))

such that (c< :ieυ0n(β + 1)) < (6? : i G w0) and 6^ < d V 6^ Π d = 0. Define

W = WQ U ^o,

i ifi<β (so z G WQ)]
^Γ\Ci ifi>β (so i G VQ).

Now (bi : ί £ w) is as required. Π4.5D

4.5E. Claim. If B = (B» : i < λ+) is 3-o.k. and [i < λ+ & cf (i) > λ =» i G W]

then B^+ is the union of λ many λ-complete filters.

Proof. Note that by 4.5D(9) we have:

(*) for every α G W and x G B£ for some w G CSb(α + 1) and (α^ : i G

w) G Seqυ;({JB^ : f < α 4-1}) we have 0 < f]iew α* < x, 0 G w, and w is closed

and has a last element α.

Now remember that Seq (B) = \J{Seq((Bi : i < a)) : α < λ+ is a

successor of a member of W}.

It is well known that there is H : {w C λ+ : \w\ < λ} —> λ such

that: H(w) — H(u),a G w Π u implies α Π w = α Π u; also jH"(w) = -ff(u)

implies that w,u have the same order type (let fa : a —> λ be one to one,

H°(w) = {(otp(wΓ\a),otp(wΓ\β),fβ(a)) : a < β inw}. Now #° is as required

except that Rang(#°) ^ λ, but |Rang(#°)| = λ, so we can correct this).

Let Fi be a one-to-one function from Bi+\ into λ. We say (α^ : i G MI), (α? :

i G ̂ 2) G Seq(B) (hence wi, tϋ2 have last element) are equivalent if.

(a) jff(wι) - H(w2) and

(b) i/αi G wι and 0:2 G ̂ 2, and tϋi Π QI, ̂ 2 Π #2 have the same order

type and ΌL\ — 71 + 1, 0:2 = 72 + 1,
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Now the number of equivalence classes is < λ<Λ = λ. So it is enough

to show that if (a^ : i G Wζ) G Seq (B) are equivalent for ζ < £(*) <

λ, 0 G Wζ, max(wc) G Wζ, then Πc<C(*) αCmaχ(™c) ^ ° (see (*))- Note tnat if

α G K;̂  Π Wζ2 , then α ,̂1 = α£2 .

Toward this end we prove by induction on α G W :

(*) (1) Xα =f f\<C(*) αCmax(™ζn(α+l)) iδ nθt ZeΓO (and belongs tθ Bα);

(2) if 7 < α (and 7 G W) then Pr(x7, xα, Bβ)]

(3) if 7 <α is a limit ordinal then:

(a) cf (7) < λ =Φ xΊ+ι = Γ]{xε : ε G 7 Π W},

(b) cf (7) > λ => XΊ = xε for every large enough ε < 7.

Clearly xa is decreasing (as α£ is decreasing in α for each ζ) and well defined

as max(tί;ζ ΓΊ (α + 1)) belongs to wς when a eW (remembering 0 G Wζ).

Case 1. a. — 0

Then m3x(wζ Π (α + 1)) = 0 and α£ = αg G 5̂  for every £ < £(*). So

(*)(!) holds and (*)(2), (3) do not apply.

Case 2.a = β + I,βζW

Note that if (C < C(*) and) a = β + I φ wζ then αC

max(w;cn(α+1)) -

αc" max(υ;ςn(/3+l))

So if a φ Wζ for every ζ < £(*) then xα = x/5, so (*)(!) holds. As for

(*)(2): for 7 < β use the induction hypothesis; for 7 = β this is easy. Similarly

for (*)(3).

If for some ζ < ζ(*) we have a G u^, let v = {ζ < £(*) : α G Wζ}

So xa = Γ\ζ£v α
C

max(υ;ζn(/3+1)) Π nc€υ α^. By the definition of the equivalence

relation and the F^'s, for some α we have [ζ G v => α£ = α — α^maχ(ιu n(/3-fi))l

and [C, ξ G v =ϊ Wζ Π (α + 1) = Wξ Π (α 4- 1)]. Clearly

= Π ̂

Π
Π flα

C<C(*)

x/3 Π α.
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Now as β G W, Bβ is λ-complete, hence Xβ G Bβ. Now α G Ba and let

C(0) = min(t ), 7(0) = max(^(0) Π (/? + !)), the maximum exists as said above.

Clearly 7(0) - β (see 4.50(2)(iϋ)), α < α^j and Pr(α^J,α,^) by the last

clause in the definition of (α^0) : i G Wζ(o)) G Seqw (B) (see 4.5D(4)(i)). As

Xβ G Bβ, and easily αj^ > Xβ > 0, clearly Xβ Π α / 0. So (*)(!) holds. As for

(*)(2), by 4.5B(b) as there is a maximal 7 G w Π α, i.e. /? = 7(0) (see above) it

is enough to prove (*)(2) for 7 = β = 7(0). So let d G Bβ, 0 < d < Xβ. Then

d < α7(θ)' hence by Pr(a^/Qv,o, Bβ),aΓϊd ^ 0, but a Π d = dΓ\Xβ Πa = dΠx a ,

so we are done. Lastly (*)(3) holds by the induction hypothesis.

By an assumption of 4.5E, K0 < cf(/3) < λ so by 4.5D(0)(i) there is

w G CSbu(/J) such that ζ < £(*) => lϋζ C ti; and i G tϋ&cf(i) = λ =>

• Π i) < j < i & j G w). Note that

£ = O ^max(tί;ζΠ(Q:-{-l)) | | max(u;^n(7-f 1))'

[Why? If a φ Wζ, as (c£max,w 0(7+1)) : 7 < /^} is nonincreasing and eventually

constant (because { max(tϋζ Π (7 4- 1)) : 7 < β) is eventually constant), it is

equal to

max(u;ςn(c*+l)) = [ ] tt

Ί<β

If a G Wζ, as (α^ : 7 G Wζ) G Seq(β) (see in Definition 4.5C(4)(i) the second

clause in the definition of α^ G Seq (£?)).] Now:

max(tt;cn(α+l)) = [ ] [ | fl

C<C(*) C<C(*)τ</?

= I I ( I I tt max(υ;cn(7+l))) = [ | X/V
C<C(*)

So (*)(3) holds (as 7 — /? is the only new case). Also it can be checked

that (xε : ε G w) G Seqw(B) (in Definition 4.50(4) (i), the first clause by the

definition of xa and (*)(!), the second clause (xe decreasing) is shown above,

the third clause (continuity) by (*)(3), the fourth clause by the choice of w and
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the definition of xε, the fifth clause by (*)(2)). As B is 2-o.k. (see 4.5C (5)) (as

(*)(2) holds below β) we get that xa = Π{χε : ε G u ΓΊ β} ̂  0. Similarly, using

4.5D(6), we can check (*)(2).

Case 4- OL limit

As a G W, necessarily cf(α) = λ. But then, by the definition of Seq^(j5), if

a G Wζ though necessarily max(wζ Π (α +1)) ^ m&x.(wζ Π (7 -f 1)) for 7 < α,

still for 7 < α large enough α£ - αC

max(w;cn(7+i))> hence αCmax(™ζn(α+i)) =

Π7</3αC

max(™ζn(7+i)) for every larβe enough β < a. If a φ wζ this holds on

simpler grounds. But £(*) < λ = cf(α). So xa = XΊ for every large enough

7 < α, and we can finish easily. Π4.5E

4.5F Remark. The proof is written such that it will be easy to change it

for B = (Bi : i < 7), 7 < (2λ)+, so \Bi\ = \i\ 4- λ, βί+ι is generated by

Bi U B'i, \B(\ — λ, B( is λ-complete and in the definition of Seqw(B) add: if

i = β + l,β G w then (3x G J5^)[αi = α / j Π z ] .

Just use fί : {α : α C 2λ, |α| < λ} -> λ such that H(ά) = H(b) & α G

α Π 6 => otp (α Π α) = otp(6 Π α) which exists by Engelking and Karlowic [EK].

But it is not clear whether there is interest in this.

4.6 Definition. 1) We say Q = (Pi,Qj,tj,Ai : i < α,j < a) is an 5-o.k.

sequence for W (where S = (SΊ, 52, 5a), a partition of α i) if:

(A) Q is a 5ι-suitable iteration (forgetting the Λ^s).

(B) Each Qi is 5s-complete.

(C) Λi is a P^-name of a subalgebra (or just subset) of 25Pi.

(D) Λi is increasing continuous.

(E) tj G {0,1} and: if t^ - 1, then lhP. "A <$ Q3Pί ΓSΊ".

(F) ti = 1 for every successor ordinal i.

(G) Ihp. "(Aj :j<ije W) is 3-o.k. for W" where on If see clause (H)

below and λ from 4.5A(1) is chosen as HI (see below and 4.5C(1), (5),

(6))
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(H) If i is successor or zero then i G W. If, in VPi+l, i is a limit of cofinality

NO then i φ W. Also "i G W" is a P +i-name and ΐf C a.

(I) lhpί+1 "Rss(N2)".

(J) If i is neither a limit nor a successor of a limit ordinal, then A* =

Bp'rsι.
2) If W is not given we mean {i < a : if i is limit then (in VPί+l) cf(α) > KI}.

4.6A Remark. Note that W determines (tα : a < K) in Definition 4.6, so we

could in 4.7 below forget it.

4.7 Proof of 4.4. Let h : K -> ff(/ς). We define Qa = (Pi,Qj,tj,Ai ' i < <*J <

a) by induction on α < K such that in stage α, the objects Q j ( j < α), Pj(j < α),

tj (j + 1 < OL + 1) and Λj(j < a) (and the truth value of "j G W" is as in

4.6(2)) have already been defined and for successor z, 23Pί <> -4i-|_ι and:

(A) Qa is 5-o.k. (and increases with α).

(B) Qα G H(κ) for α < «.

(C) If a is non-limit, let ttα+i be the first compact cardinal > |Pα|, and

Qa = SSeal(23Pθί,5ι,/ία_(-ι) if α is successor and Levy(Nι,< /^α+i) if &

is zero and Aa+ι = 95Pot+1 fSΊ (and .40 the trivial algebra). Lastly of

course tα+ι = 1 and "α G W" is true also t0 = 0 and "0 G Wn.

(D) If a is a limit ordinal, h(ά) = {t, Q, .4), Q a P^-name of a forcing notion, .4

a Pα * Q-name, and for some R G H(κ) we have lhp i "Q <$ Λ" and by the

following choices for Q""1"1 we get a 5-o.k., then so we choose Q0^1; where

the choices are: tα = t, Qa = R, and >tα = 955rα f5i, Pα+ι = Pa*R and

.4α+ι = 95[Pα+ι]. If possible we choose R = Q.

(E) If clauses (C), (D) do not produce a definition of Qa^1^ let κa+ι be the

first compact cardinal > \Pa , and then:
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first case if in VPa , cf (α) > NO then

Λa

 ά^ aS^rSi i e. Λa

 d^ U »^« ΓSi - (J

Qa = SSeal((^ : j < a), S1,κa+1) =

= SSeal«<Bp^ : j < a) " (Ap"),Sι,κa+1)

tα — tα+ι = 1

second case if in FPo: , cf (α) = N0 (i.e. α ^ W) ί/ien

(in yp«) let ̂ α+1 be Zα - Za((Λj : j < α)Λ(»p«r5ι)) (a subset of

95 Pα fSi, see Definition 2.4(2)) and Aa+ι be the subalgebra of <8Pα+1 f5ι which

•ί̂ ά+i generates. We let

Qa =

- 0, tβ+ι - 1.

//we succeed to carry the induction, then letting G C Pκ be generic over V we

know:

(a) Nj_ ̂  = #Y and (Si, 3%, 83) is a partition of α i to stationary subsets (as

Pκ is semiproper by clause (A) of Definition 4.6).

(b) N2 ^ — K (similarly, noting that Pκ satisfies the «-c.c.).

(c) Every countable set of ordinals from VPκ is included in one from V (see

(e) below).

(d) (Ai[G\ : i < «) is 3-o.k. (by clause (G) of Definition 4.6).

(e) PΛ is 53-complete (see clause (B) of Definition 4.6) hence, as 83 is sation-

ary, Pκ adds no reals so V[GK] (= "2^° - HI, so λ - λ<λ".
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(f) *Bvίc}\Sι is Ulam i.e., omitting 0, it is the union of λ — HI many λ-

complete filters. [Why? By 4.5(E) and (d) above (as W = {a < K, : a zero,

successor or has cofinality > KI (in F, equivalently in ^[<2«])}).]

To carry the induction it is enough to show that when clause (E) in the

construction is applied, we get an S-o.k. iteration; this is dealt by 4.9 below

+2.13 + 2.16 for (*&® \S) for the first case, and by 4.10 below -f 2.13 -f 2.16 for

W defined by 4.10 for the second case. U4.7

4.8 Remarks. 1) We could have allowed in clause (D) during the proof 4.7 (of

4.4) to decide if i G W, i.e. decide Wι = WΓ\i, i.e. demand h(a) = (t,s, Q, A),

and try to define Qα+1 as there with the following addition: the truth value of

"α G W" is s, a Pa * Q-name, and at the end shoot a suitable club of K through

the "good" places.

2) We could have gotten a forcing axiom, as before.

3) In fact we can weaken the large cardinals demand to "ft = sup{λ < K : X

strongly inaccessible and Rss+(λ) or at least /\μ<κ Rss+(λ,μ)}".

4.9 Claim. Suppose S C ω\ is stationary, Q = (Pi,Qj : i < α, j <

a) is a semiproper iteration, a a limit ordinal, and, for simplicity, \\~pi+1

"Rss(K2[FPί+1])" for i < a. Let T be a Pα-name of a dense subset of

&Q \S = \Ji<a *BPί \S for i e W*.

Then

<S> if λ is regular and large enough, N -< (#(λ),G,<^) is countable, and

0? λ, p, T, belong to TV, pePanN,βeanNa successor ordinal and

q G Pβ is (N, P0)-semi-generic, p\β < q and N Π ω\ G 5, then there is a

countable TV', N <β N' -< (fί(λ), G, <J), N Π ω\ = N1 Γ\ω\, successor

7 G \β, α), P7-name A G N' and q1 ', p7 satisfying p < p; G Pα Π N', qf G P7,

< ^x, q'\β = q and j/Γ/7 = pt/3 such that g7 lhFa "TV Π ̂  G A" and

4.9A Remark. 1) Note that B^^1 ΓS <$ S Γ ^ for z < α.

2) The claim gives more chains than used in 4.7.

3) This is naturally used together with 2.13.
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Proof. Let us fix p, Ύ, β and work in V[Gβ] where Gβ C Pβ generic over V

and q e Gβ. Let λ be large enough and

W d= {M X(if (λ), G, <Λ) : Af is countable, M Π wi G 5, but

there are no successor 7 G M Π [/3, α), r G PΊ/Gβ and

A G M (a P7-name) and pf G Pα/G/3 Π N such that:

r is (M, P7/G0)-semi-generic, p < p',p'\j < r and

r lhPa/G/3 "Mnα;! G A",p' Ih "A G T"}.

If W = 0 mod P<κ1(fl"(λ)), we can easily get the desired result (as in the

proof of 1.11)).

So (in V^G/j]) the set W is a stationary subset of S<^1 (if (λ)), hence semi-

stationary. As V[G/j] (= "Rss(K2)" (remember β is a successor ordinal and

clause (I) of Definition 4.6) there is u C if (λ) such that α i C u and |u| < ^2

(in V[G0]) and WΓ\S<^l(u) is semi-stationary. Now without loss of generality

(u,£,<£ Γu) -< (ίf(λ),€,<J). Let u — Uζ<α;ι UC' UC ^s countable, increasing

and continuous. So

Bl

 d= {ζeS: (3M G W)(α;ι Π uζ C M C uc)}

is a stationary subset of 5 C ω\ (see 1.2(4)), it belongs to 95 [P^], and we shall

prove:

(*) P ^Pa/Gβ " f°Γ every X G T the set X Π A Π 5ι is not stationary" .

[Why (*)? If not then for some p' and Pα-name A, p < pf G Pa/Gβ and

P7 1^/0/3 "^ G T and 4 Π Si is stationary". As T C 58^, for some 7 < α,

A[Gpα] is in ^Bp^, so (possibly increasing p) without loss of generality for some

successor 7 G [β, α), A is a P7-name of a member of 93 p^. For ζ G BI, let the

model Mζ be any member of W which satisfies ω\ Π Uζ C Mζ C w^ (see the

definition of BI). For ξ < ωι, let ΛΓ^ be the Skolem Hull (in (if (λ), G, <£)) of

{C : C < C} U {p,ι/, A, W, (uc,Mc : C € BI», and
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C = {ξ<ωl: N'ξ[GPa] Πωι=ξ and N'ξ[GPa] Π u = ue}.

As (Nζ[Gpa] : ξ < ωι) is increasing continuous, C is a Pa/Gβ-n&me of a club

of ω\. Clearly C Π A is necessarily disjoint to B\ by the definition of W: if

ζ<ωι,qe Pa/Gβ, and ςr \^Pa/Gβ "ζeCnAn BI", then TVC G W is defined,

<7α, is (TVζ,Pα/G0)-semi-generic, and qa \^pa/Gβ "Nζ Π ωi G ^4", contradicting

"TVC G W so (*) holds.]

But (*) contradicts p \\-Pot/Gβ "Ύ £ 23° is dense " as Bl G B^ C 23 <3.

Π4.9

4.10 Claim. Suppose 5 C ω\ is stationary, Q = (Pί^Qj^jjAί : i < .7, .7 < α)

3-o. k. sequence for W, 5-suitable iteration, α limit ordinal and (for simplicity)

cf(α) = K0 and let Aa = t&® (a Pα-name). Let A = (Ai : i < a and i eW).

Then:

(8) z/ λ is regular large enough, TV X (#(λ), E, <J) countable and <3,λ,p

belong t o A ^ , p G P α Π 7 V , ^ G α Π A ^ a successor ordinal and g G P^ is

(TV, P0)-semi generic, pf/? < g and A^Πα i G 5 then there is an (A/", Pα)-semi-

generic #' G Pa , ̂  f β > q and '̂ lhpα " for every dense open T C Seqn(v4)

(see 4.5A(4)(ii), (9)) which belongs to TV[Gα], for some (̂  : i G iϋ) G

TV[Gα] Π T we have TV Π ωl G f}iew W -

4.10A Remark. 1) If "cf (α) ̂  H0" we can still assume p forces cf (α) = K0 or

p forces cf(α) = KI or "α is inaccessible, /\i<a \Pi\ < α" and in the first case

prove 4.10 with minimal changes.

2) Note that Za[(Ai : i < a)} is a subset of <BPo; extending VS® , 0 is not in it,

but there is no reason for it to be closed under differences.

Proof. Standard, by now. Let (βt : ί < ω) G TV be an increasing sequence of

successor ordinals with /30 — β, \Jt<ω βι — &• Let T = (Tn : n < ω) list the

sets T G TV which are P^-names (forced to be) pre-dense subsets of Sequ(.Λ).

We choose by induction pn, gn, TVn, αn, Gβn such that:

(a) Gβn C Pβn generic over V, Gβn C G/3rι+1,

(b) TV0 =TV,p0 =P,^o = 9,

(c) TVn <ω2 TVn + 1,TVn X (#(λ),e,<X) and TVn G
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(d) Pn < Pn+liPn € TV Π Pa/Gβn,

(e) qn e Gβn C Pβn is (7Vn,P^J-semi-generic,

(f) Pn\βn<qn (ίnP/jJ.

(g) άn = (g% : C e wn) G Seq((Λ : i < α» Π Tn,

(h) wn C wn+ι and α£+1 < α^ for C € wn)

(i) {A : £ < n} C u;n,

(j) TVn Π α i G a^n that is ςn U pn ί[/3n, α) forces this.

The induction step is by 4.1 (and 4.5D(9)). As we are using RCS iteration,

this suffices (i.e. we can make the Gβn disappear).

The details are left to the reader. This induction suffices as we can use RCS

iteration, so we can find q' as required. Ekio




