
Chapter VII

Decidability and Quantifier-Elimination

By A. BAUDISCH, D. SEESE, P. TUSCHIK, and M. WEESE

The decidability of the elementary theory for a given class K of structures reflects
a certain low expressive power of the elementary language with respect to that
class. Therefore, it is natural to look for stronger logics L such that K has a decid-
able L-theory. The rigorous establishment of decidability for the L-theory of K
often provides results about the L-definable properties and L-equivalence of struc-
tures in K. This means, then, that investigations into the decidability of the L-
theory of K are closely related to the L-model theory of K.

In this chapter we will investigate the decidability of such logics. We will
concentrate on Malitz quantifiers (particularly on cardinality quantifiers) and
Hartig quantifiers as well as on stationary logic. The first result in this direction
was the decidability of the theory of unary predicates without equality in the logic
with the quantifier "there are Kα many". This result was proven in a fundamental
paper by Mostowski [1957]. Topological and monadic second-order logics are
treated in other chapters of this volume; and, we therefore, will not consider
them here. However, we wish to emphasize at this point that results concerning
the latter do have important consequences for the material that will be presented
in our discussions.

Our chapter is basically organized along the lines sketched below. First, with
respect to three main methods of proving decidability, there is a division into three
sections which are respectively entitled Quantifier-Elimination, Interpretations, and
Dense Systems. In each of these the general method is introduced and then clarified
with respect to several concrete classes of structures. These classes are: the class of
modules and abelian groups (Section 1), the class of well-orderings (Section 2), and
the classes of linear orderings and boolean algebras (Section 3). At the end of
each subsection we refer to some further results without making any claims that
the discussions given present a complete picture of the material. However, the
reader will find references to most of the corresponding investigations in the
bibliography given at the end of the volume.

Much of the material of this chapter is related to our text (see Baudisch-Seese-
Tuschik-Weese [1980]), in which the reader can find more detailed proofs as well
as some similar investigations on the class of trees.

We wish to express our gratitude to Philipp Rothmaler who contributed so
many of his ideas and so much of his time and energy to the creation of this chapter
that we can justly say that he is a co-author of this study.
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1. Quantifier-Elimination

1.1. The Framework

In general an extended language has a more expressive power than the original
language. However, in many cases there are model classes which cannot be
further distinguished in the extended language. Such model classes often have
interesting properties, and it is this very fact that leads us to the following

Definition. Let L be a sublanguage of a language L' and K & class of L'-structures.
We say that L is reducible to L with respect to the class K if for every formula
φ(x) of L' there is a formula φ(x) of L such that K N φ{x) <-> φ(x). L is said to be
effectively reducible to L with respect to K if φ can be found effectively (depending
on φ).

An important special case arises from extensions obtained by adding certain
quantifiers. And this case we will examine more closely in the

Definition. Suppose L' arises from L by adding (in the canonical way) an arbitrary
quantifier Q to it. If L' is reducible to L with respect to a class K, we say that
K admits the L-elίmination ofQ, or Q is L-eliminable in K. If K is an L'-elementary
class, that is, if K — Mod(ThL,(K)), then we also say that ThL (X) admits the
elimination ofQ, or Q is eliminable in ThL(K).

The examples below show that important model-theoretic properties are
reflected by the notion of reducibility.

Example. Let L be a first-order language, K an L'-elementary class.

(1) Let L be the set of all open L'-formulas. Clearly, L is the extension of L
by adding the quantifier 3.

(a) ThL '(K) is substructure complete iff 3 is eliminable in ThL,(X).
(b) If, in addition, L is the language of fields, then ACF—the class of

algebraically closed fields (or ThL,(ACF) since ACF is L'-elementary)—
admits the elimination of the quantifier 3 (see Sacks [1972]).

(2) Let L be the set of all existential L'-formulas. Then ThL (K) is model-
complete iff L' is reducible to L with respect to K (see Sacks [1972]).

For quantifier-elimination there are two ways to look at the problem. On the
one hand, we can regard the existence of a quantifier-elimination as a certain
model-theoretic property, this being reflected, for instance, in Example (la)
above. On the other, we might be interested more in the manner of elimination
itself. This is especially true when decidability is under consideration. If we take
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the first position, then we will speak of "eliminability ". The case in which L is an
elementary language and L is L(Q), the language obtained from L by adding a
certain generalized quantifier Q (or even a set of them), is then of particular interest.
In the second subsection, we will consider precisely this situation, admitting the
following abuse of language.

Let K be an elementary class axiomatized by the theory T in a first-order
language L, and let Q be a certain generalized quantifier. We say Q is eliminable in
K (or in T) if L(Q) is reducible to L with respect to the class Mod(T u {Qx(x = x)}
or, equivalently, if Q is L-eliminable in the class {9JielC:9W 1= Qx(x = x)}.
Notice then that for eliminability of Q in T it will suffice to eliminate Q in expres-
sions of the form Qx φ(x, z), where φ is first-order.

If we take the second of the positions we have noted, we will speak of "elimina-
tion procedures". Observe that by an "elimination procedure for a class K" we
do not mean a procedure providing a complete elimination of a given quantifier
in X, but rather one that is applicable only up to a certain set of sentences (and,
in some cases, formulas also)—the so-called core sentences—which should be
easy to survey. Thus, finding an elimination procedure will, in most cases, include
finding an appropriate set of core sentences (and definable predicates); and, of
course, it will yield eliminability results for those subclasses on which the truth
values of the core sentences are constant. In the third subsection we will consider
this problem for the class of modules as well as the class of abelian groups. Finally,
we emphasize that throughout this section we will be mainly concerned with the
Malitz quantifiers Q™ (m < ω, α an ordinal), where in the next subsection we will
concentrate on the cardinality quantifiers Qo( = β j ) a n d Qi( = Q\) a n d the Ramsey
quantifiers Q™ (m < ω).

As concerns other generalized quantifiers, we would like to draw the readers'
attention to the results of Steinhorn [1980], results which once again fortify our
conviction that the method of generalized quantifiers can be an excellent tool for
investigations into first-order model theory.

Convention. Throughout this section the length of the sequence x is assumed to be
equal to the arity of the given quantifier and, if not stated otherwise, this to be
equal to m.

Recall that a set D is (weakly) homogeneous for a formula φ(x, a) in a structure
S0Ϊ, a e 3PΪ, if every m-tuple d of (distinct) elements of D satisfies φ(x, a) in SOΪ. For an
ordinal α, the ^-interpretation Q™ of the m-placed Malitz quantifier Qm is defined
for a structure 3DΪ of power not less than Kα by" 9W \= Q™x0 . . . xm-ί φ(x0, , xm-i)
iff there is a set of power Xα in 90? which is weakly homogeneous for φ".

Warning. As to the elimination procedure given in the third subsection of this
chapter, it is essential to interpret Qm in the way in which it was there interpreted,
with emphasis on "weakly". This attribute does not play any role in the investiga-
tion of eliminability, since the corresponding two quantifiers (one as given above,
and the other having "weakly" omitted) are expressible one by the other. This
the reader can easily verify. Accordingly, in the next subsection we will use this



238 VII. Decidability and Quantifier-Elimination

quantifier with "weakly" omitted, in the interpretation the omission being for the
sake of simplicity.

The reader should consult Chang-Keisler [1973] or Shelah [1978a] for the
fundamental concepts of stability theory.

1.2. Eliminability of Generalized Quantifiers

As we have already mentioned, our aim here is to find model-theoretic properties
of first-order theories which are equivalent to eliminability of certain generalized
quantifiers.

Convention. In this subsection "theory" means "first-order theory having infinite
models only ", and T will denote such a theory. Moreover, terms such as " definable "
or "formula" are used for "first-order definable" or "first-order formula". Two
other points are worth mentioning at this juncture.

First, remember the warning given in the first subsection; and, second, we
note that although the general concept to be treated here is due to Tuschik, the
material was unfortunately, not published in full detail until the work of Baudisch-
Seese-Tuschik-Weese [1980]. In this connection, the reader should also see
Tuschik [1975, 1977a].

We will begin our exposition with the unary quantifier Qo having the interpre-
tation "there are infinitely many", examining first the following

Definition. A formula φ(x, z l 5 . . . , zn) is said to have a degree relative to T if there
is a natural number k such that, for every model 9W of T and elements al9 . . . , an

of ΪR, the following holds:

if φ(x, ax,..., an) has finitely many solutions in $Fί, then it has at most
/c-many.

T is said to be graduated if every formula has a degree relative to T.

The facts stated in the following examples can be derived from the correspond-
ing elimination of (elementary) quantifiers.

Examples. The first-order theories of the following classes of structures are gradu-
ated:

(1) The class ACF of algebraically closed fields;
(2) The class RCF of real closed fields;
(3) The class D C F 0 of differentially closed fields of characteristic 0,
(4) The class DLO of dense linear orderings
(5) The class ABA of atomless boolean algebras;
(6) The class AGp of infinite elementary abelian p-groups, where p is a prime.
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Ryll-Nardzewski's theorem (see Chang-Keisler [1973, Theorem 2.3.13])
yields a wealth of graduated theories:

Proposition. Every countable W0-categorical theory is graduated. D

Examples (4), (5), and (6) above are special cases of the assertion in the propo-
sition. The next result shows what graduatedness is related to our general topic.

1.2.1 Theorem. T is graduated iff Qo is eliminable in T.

Clearly, in a graduated theory, Qo is eliminable by 3>n, where n ranges over
the degrees of all formulas. If Qo is eliminable in such a simple manner, then we
say that Qo is definable in T. The theorem just stated thus asserts that if Qo is
eliminable, then it is definable. This is, mutatis mutandis, true for Malitz and other
"Malitz-like" quantifiers and, moreover, it is basic for eliminability investigations.
For more on this, the reader should see Baldwin-Kueker [1980]; Baudisch-
Seese-Tuschik-Weese [1980]; Rothmaler-Tuschik [1982]; Vinner [1975]. We
will prove it here in the following general form, a form which is appropriate for
our purposes. The reader may extend it to a more general concept of quantifiers,
including that of Steinhorn [1980]. Before proceeding further in this direction,
however, we need some additional notation.

For the m-placed Malitz quantifier Qm, we also introduce finitary interpreta-
tions: for a given natural number n, the ^-interpretation of Qm, in terms Q™n), is
given by "SPΪ 1= Q™n)x0 x m - i <K*o> > xm-i) iff there is a set of power n in
SCR which is homogeneous for φ(x0,..., xm_ i)'\

Definition. The quantifier Q™ is called definable in T if for every (first-order) formula
φ(x, z), there is a number nφ such that

T u {Q?x(x = x)} μ Vz(QΐHφ)x φ(x, z) - β*x φ(x9 z)).

Notice that if φ is first-order, then Q™n}x φ(x) is first order also. Hence, Q™ is
eliminable in T, if it is definable in T. The definability lemma given below asserts
that the converse is true.

The Definability Lemma. A Malitz quantifier is eliminable in Tiff it is definable in T.

Proof. One direction has been already mentioned. As for the other direction, sup-

pose that φ(x, z) and φ(z) are (first-order) formulas such that, for T = T u

{Q™x(x =• x)}, the following holds:

We have to show that a number nφ exists with
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Thus, we assume the contrary. Then, for arbitrarily large numbers n, there are
models 9Wn of T containing sequences an with 9WΠ \= ~ι φ(an) and sets An homo-
geneous for φ(x, an) which have power not less than n. Let C = {c, : i < Kα} be a
set and a be a sequence of new and distinct constant symbols, and let S denote the
union of the following sets of sentences in the corresponding inessential extension
of the (first-order) language of T:

(1) {CiΦcj'.iKjKK}',

(2) {φ(c,a):ceCm};

(3) Tu{

By assumption, every finite subset of S can be realized in some 9WΠ. Thus, the
compactness theorem (for first-order logic) implies the existence of a model 9M
of T consisting of a sequence a with ΪR \= —i φ(a) and a set A which is homogeneous
for φ(x, a) and has power Kα. But this contradicts the assertion in (*). D

Having proven the definability lemma in the most general form, we now
return to unary Malitz quantifiers = usual cardinality quantifier. Theorem 1.2.1
is a special case of that lemma. Together with the proposition above, it implies
that Qo is eliminable in every countable K0-categorical theory as well as in all the
theories of Examples (1) through (6). Let us turn now to the Kx -interpretation.
We are going to prove a theorem which is due to Tuschik and which links the
eliminability of Q1 with the following well-known property of first-order model
theory. First, recall that T has the Vaught property if it has a model $R containing
an infinite definable set of power less than | SDt |.

We need also Vaught's two-cardinal theorem which asserts that a countable
theory having the Vaught property possesses a model of power Kx containing an
infinite countable definable set. For a proof of this, consult Chang-Keisler [1973,
Theorem 3.2.12] or Sacks [1972, Section 22]. Interestingly enough, a good portion
of it yields the next lemma; and, in fact, does so without any restriction on the
cardinality of the theory.

Lemma. A nongraduated theory has the Vaught property. D

Now we are able to prove the promised theorem.

1.2.2 Theorem. Let T be countable, then Qγ is eliminable in TiffT does not have the
Vaught property.

Proof. If T has the Vaught property, then, by the two-cardinal theorem, Qγ is not
definable. Hence, it is not eliminable in T. For the other direction, suppose Qγ

is not eliminable in T. Then, by the definability lemma, there is a formula φ(x, z)
and models 9WM of T containing sequences an such that Xx > |φ(9Kπ, an)\ > n, for
every number n. If one of these latter sets is infinite, then we are done.
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If not, then T is not graduated. Thus, by the above lemma, again T has the
Vaught property. D

Vaught's two-cardinal theorem implies no Xj -categorical countable theory has
the Vaught property. Thus, a corollary follows which was independently obtained
by several investigators (see Tuschik [1975], Vinner [1975], or Wolter [1975b]).

Corollary. Qι is eliminable in every countable ^^categorical theory. D

Together with the above lemma, the preceding theorems on Qo and Qt yield
the next result.

Corollary. Let T be countable. IfQi is eliminable in T, then Qo is also, ϋ

Similarly, two-cardinal considerations show that the eliminability of Qx is
equivalent to the eliminability of each of the following quantifiers in a given count-
able theory: Chang's quantifier Qc(= the unary cardinality quantifier in the equi-
cardinality interpretation) and Hartig's quantifier /. As a further consequence,
we remark that Qγ (and also Qo) is eliminable in the theories of Examples (1), (2),
and (6). For ACF and RCF, this fact was also shown by Vinner [1975].

In the remainder of this subsection, we will present some material that is due
to Baldwin-Kueker [1980]. This material concerns the eliminability of Ramsey
quantifiers ( = Malitz quantifiers in the K0-interpretation) in complete theories.
Moreover, we will eventually prove a theorem describing this eliminability within
the class of stable theories in terms of the following notion of first-order model
theory, a notion that was introduced by Keisler [1967b]. The reader should also
see Shelah [1978a] in this connection.

φ(3c, z) has the finite cover property (abbreviated f.c.p.) in T if, for arbitrarily
large numbers π, there are models 9WΠ containing sequences aθ9 . . . , an-ί which
satisfy

Wln N= -i3x/\φ(x, aj) Λ /\3X /\ φ(x, aj).
j<n i<n iΦj<n

T is said to have the/c.p. if some formula has. Note that

ψ(x, v^u)^((p(x, v) A x Φ ύ)

has the f.c.p. if φ(x, v) is not graduated.
By Keisler [1967b] a countable N t -categorical theory does not have the f.c.p.

On the other hand, Shelah proved that every unstable one does have this property
(See Shelah [1978a]). The first half of the theorem of Baldwin and Kueker is con-
tained in the next lemma.

Lemma. If T does not have the f.c.p., then all Ramsey quantifiers are eliminable in T.

Proof Assume Q™ is not eliminable in T. By the definability lemma, we then have
a formula φ(x0,..., xm_ l 5 z) as well as models 9Wn of T containing sequences an



242 VII. Decidability and Quantifier-Elimination

and finite sets An of power not less than n such that An is homogeneous for φ(x, an)
in $RΠ and maximal with respect to that property (n < ω). Let ψ(x, z'~z) be the
formula φ(x, z l 9 . . . , zm_ 1? z) A X Φ z l 9 where z! = ( z 1 ? . . . , zw_ x). We will show
that φ(x, z'"z) has the f.c.p.

To this end, let Bn denote the set of all (m — l)-tuples from An. Choose a subset
Cn of Bn minimal with respect to the property

ceCn

This is possible, since Bn itself is a finite set having that property, for An is maximally
homogeneous for φ(x, an). Thus, the following holds:

(2)B 9MnN Λ 3 ^ Λ ^ ^ δ j
c'eCn c'*ceCn

For every subset of Bn consisting of less than n elements, we can choose an element
of An different from all first components of elements of that subset. Hence, no such
subset has the property given in (l) π . Consequently, Cn has at least n elements.
This conclusion, together with (l)π and (2)π, for all n, shows that φ(x, z'^z) has
the f.c.p. in T. D

In the other direction of the theorem below we shall utilize Shelah's f.c.p.
theorem which asserts that a stable complete theory has the f.c.p. iff there is a
formula φ(x, y, z) satisfying the following: For every number n there is a sequence
cn of elements in some model 9WΠ of T such that φ(x, y, cn) defines on the universe
of y)ln an equivalence relation having not less than n, but only finitely many
equivalence classes (see Shelah [1978a; Chapter II, Theorem 4.4]).

1.2.3 Theorem. Let T be stable and complete. Then All Ramsey quantifiers are
eliminable in T iff the Ramsey quantifier Ql is eliminable in TiffT does not have
the f.c.p.

Proof. For the remaining implication, assume T has the f.c.p., then we must show
that Ql is not definable in T. To this end, we choose a formula φ(x, y, z), as well as
sequences cn and models 9Wn according to the f.c.p. theorem. Then, clearly we have
that

holds for all n. Whence, the assertion follows. D

Using the aforementioned observation of Keisler, we can easily derive the
following

Corollary. All Ramsey quantifiers are eliminable in every countable X^categorical
theory, ϋ
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This corollary generalizes the corresponding result for ACF0 as proven by
Cowles [1979a].

Further Results. We will close this section with a few brief remarks sketching some
further pertinent results.

(1) Tuschik has provided some further results with regard to the relative
strength and effectiveness of eliminability of the unary cardinality quantifiers
βα. The reader should consult Tuschik [1977a or 1982a]; or Baudisch-Seese-
Tuschik-Weese [1980]; or Rothmaler-Tuschik [1982]. Vinner [1975] is also
informative.

(2) In Rothmaler [1981 or 1984] it is shown that Qo is eliminable in every com-
plete first-order theory of modules. Baudisch [1984] extended this to all Ramsey
quantifiers. See the next subsection for more on this.

(3) Further algebraic results can be found in the papers of Cowles, Pinus, and
Rothmaler that are cited in the bibliography.

(4) Baudisch [1977b or 1979], and Baldwin-Kueker [1980] prove inde-
pendently that all Ramsey quantifiers are eliminable in a countable K0-categorical
first-order theory, thus showing that the stability assumption made in Theorem
1.2.3 of this section is necessary.

(5) Schmerl-Simpson [1982] provided an effective elimination of all Ramsey
quantifiers in Presburger arithmetic. In contrast, however, Kierstead-Remmel
[1983] constructed decidable first-order theories admitting elimination of these
quantifiers which cannot be made effective.

(6) Baldwin-Kueker [1980] proved the eliminability of the Malitz quantifiers
Q™ (in the equi-cardinality interpretation) in countable K r categorical first-order
theories. Clearly, this is then true for all other interpretations. This result generalizes
the corresponding result for ACF0 which had been proven by Cowles [1979a].

(7) Rothmaler-Tuschik [1982] generalized the result that is here given as
Theorem 1.2.2 to Malitz quantifiers Q™ (m < ω) so as to obtain an analog of
Theorem 1.2.3 for these. Furthermore, as a corollary, they independently obtained
the result mentioned in the preceding remark.

(8) Theorem 1.2.3 asserts, among other things, that in stable theories the
eliminability of Ql implies that of all Q™ (m < ω) in the case α = 0. Rapp [1982 or
1983] proved that this is also true in the case α = 1. Moreover, he showed that in
stable theories the eliminability of Q\ implies that of all Malitz quantifiers Q™
(m < ω, α > 0; for α = 0 this was already noticed by Rothmaler-Tuschik [1982]).

1.3. Elimination Procedures for Modules and
Abelian Groups

The elementary theory of groups is undecidable (see Tarski in Tarski-Mostowski-
Robinson [1953]). Furthermore, a good number algebraically interesting classes of
groups have an undecidable elementary theory. From Ershov [1974] and Samjatin
[1978], it is known that the elementary theory of every non-abelian variety of
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groups is undecidable. In contrast to this, however, Szmielew [1955] proved the
decidability of the elementary theory Tz of abelian groups. Extending the ordinary
language ( + , - , 0) of group theory by predicates "pn\x" and defining some core
sentences, she gave an effective elimination procedure: every formula is equivalent
modulo Tz to a boolean combination of Szmielew core sentences and atomic
formulas. One can extend this elimination procedure to the logics ^ωω(Qa\
ifω ω(Qα

< ω), j£?ωω(aa), and JS?ωω(/), provided the set of core sentences is extended
in an appropriate way. For concrete results and references, the reader should see
the list below. Moreover, one can find corresponding elimination procedures for
arbitrary ^-modules. Here we will present just such a procedure for Malitz
quantifiers in regular interpretations (Baudisch [1984]).

Convention. Throughout this subsection R is an associative ring with unit 1,
91 is a left K-module, and a is a sequence from 21. As is usual in first-order model
theory of modules, we will consider the first-order language having the following
nonlogical symbols: 0, + , and, for every reR,a unary function symbol expressing
the left multiplication by r.

For the sake of simplicity we will use LR to denote the set of all first-order
formulas in this language. Then the elementary theory of all (unital) left ^-modules
can be axiomatized by a set of L^-sentences. Let LR(Q^ω) and TR(Q^ω) denote the
extensions of LR and TR respectively to the logic ^ ω ω ( β α

< ω )
A positive primitive (abbreviated p.p.) formula is a formula of the form 3y ψ(x, y),

where φ is a finite conjunction of equations (with coefficients from R). Notice that
a p.p. formula χ ( x 0 , . . . , xm-1) defines an additive subgroup χ(2lm) in the module
2Im (and if R is commutative, this is even a submodule), and a p.p. formula χ(x; a)
defines a coset of the subgroup χ(2Iw; 0) in 2Γ\

Notation. Throughout this discussion we will let χ(x; z) be a p.p. formula. Moreover,
we will use χj(x) to denote the formula χ(0, . . . , 0, x, 0, . . . , 0; 0) obtained from
χ(x; 0) by substituting x for Xj and 0 for the other components of x, χ'(x) to denote
/\j<m Xj(x\ a n d ld(χ\ a) to denote the formula χ(x, . . . , x; a).

Note that by the additivity of p.p. formulas, f\j<m χj(x) implies χd(x;0). The
following implication can be easily derived from additivity of the p.p. formula
χ(x z):

(1) TR h- χ(x0,...,*/_ i, w, x j + ! , . . . , xw_ ί z) -•

[ χ ( x 0 , . . . , Xj-19 υ, xj+1?..., xm_! z) <-• χj(v - w)].

It can be easily seen from the first part of the next lemma that, for a p.p. formula, a
sufficiently large set is homogeneous if it is weakly homogeneous.

Lemma. Let χ(x; z) be a p.p. formula, then we have

(i) A set C of power greater than m which is weakly homogeneous for χ(x a)
in 21 is contained in χd(2I; a) and in c + χ'(2I),/or every ceC; and

(ii) Every subset Cofc + /(2l), for some c e χd(2l; a), is weakly homogeneous
/orχ(x a).
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Proof. To establish (i), we let {co,...,cm} be an (m + l)-element-subset of C.
Since it is weakly homogeneous for χ(x; a) in 21, it is not difficult to derive 21 N
f\j<m lKci — ck)> where f, k < m. Hence, all elements of C lie in the same coset of
χ'(2ί). Using (1), C ^ χd(2I;a) follows. The proof of part (ii) is an immediate
consequence of (1). D

Key Lemma. Let C be an infinite subset ofϊΆ of regular cardinality such that for
every j < ra, there are less than \C\ elements of C in every coset o/χJ(2I). Then C
contains a subset of the same cardinality which is weakly homogeneous for ~ιχ(x; a).

Proof We first note that by definition a set of power less than m is weakly homo-
geneous for arbitrary m-placed formulas; this fact provides the initial step of the
following induction

It suffices to show that to every subset E of C of power less than | C | which is
weakly homogeneous for —ιχ(x a) one can add some ceC — E and still not
disturb the weak homogeneity for -ιχ(x a). To do so, however, we must prove
that the set of elements in C which one cannot add to E has power less than \C\.
To this purpose, then, let c e C — E such that E u {c} is not weakly homogeneous
for ~iχ(x; a). Then there are j < m and distinct elements e0,..., £,_ ι, ej+l5...,
em_1 in E such that

(*) M f= Z θ o , . . . , ej-1? c, ej+u...,em.ί; a).

By (1) above, all c's satisfying (*) lie in the same coset of χJ(2ί). Hence, by hypothesis,
there are less than | C | such elements.

Since C is infinite and | £ | < | C | , there are less than \C\ (m — l)-tuples in E.
Consequently, the whole set of elements that one cannot add to E must have
power less than | C | also. D

This lemma enables us to prove a strong "Ramsey-like" property for p.p.
formulas.

Lemma. Every infinite subset of 21 of regular cardinality contains a subset of the
same cardinality which is weakly homogeneous either for χ(\; a) or for ~i#(x; a).

Proof Using induction on m, we can clearly assume the assertion is true for m — 1
> 1. Let C be an infinite set in 2ί not containing a subset of cardinality | C | which
is weakly homogeneous for —ιχ(x a). By the Key Lemma there are some; < m
(for the sake of simplicity, say j = 0), some ceC, and some subset E of power
\C\ in χ°(2I) with c + E c C. By the induction hypothesis, E contains a subset
D of power | E | = | C | which is weakly homogeneous for χ(c, c + x x,..., c + xm _ x a)
or for its negation. Since D ^ Z°(2l), by (1) above, c + D is then weakly homo-
geneous for χ(x; a) or ~ιχ(x; a), respectively. D

Corollary. Let φ/(x;z) be a conjunction of p.p. and negated p.p. formulas (ί < ή).
Then every infinite set of regular cardinality weakly homogeneous for \Ji<n φ t (x; a)
in 2ί contains a subset of the same cardinality which is weakly homogeneous for some
φio(x;a),i0 < n.
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Proof. Let C be infinite and weakly homogeneous for \fi<n φ t(x; a). Using induc-
tion on n, we assume that there is no subset of C of power | C | which is weakly
homogeneous for \J0<i<n φ t (x;a) in 21. Let φ o (x;a) be /\/<k χ/(x;α), where the
Xι are p.p. or negated p.p. formulas. Step by step, we will construct a subset of C
of power | C | which is weakly homogeneous for φo(x; a) in 21. For this, assume that
C ^ C is weakly homogeneous for /\i<:j χ^x a) and \C\ = \C\, where j < k
(if j = 0, let C = C"). By the preceding lemma, it suffices to show that C contains
no subset of power \C\ which is weakly homogeneous for - lχ/x a). But this is
clear, since every subset D of C that is weakly homogeneous for i χ / x ; a) would
be weakly homogeneous for \fo<i<n Φt(x; a), thus contradicting the assumption.

D

Using an infinitary version of B. H. Neumann's lemma, we obtain the next
lemma. (See Baudisch [1984]).

Lemma. Let χ, r\i be p.p. formulas (ί < ή). Then

TR{Ql) \~

++ Λ
i<n

Before we prove the main theorem of this subsection, we will introduce some
more notation and state a theorem on the existence of an elementary elimination
procedure which is due to Baur [1976] and Monk [1975] and which is basic for
the the first-order model theory of modules.

If χ and η are p.p. formulas with TR \- η(x) -• χ(x) then let (χΛ/)(2l) denote the
cardinality of the factor group χ(2I)/f/(2l). Clearly there are elementary 3V-
sentences expressing (χ/^)(2I) > k for every natural number k. Call these ele-
mentary core sentences. Now the theorem of Baur and Monk states that every
formula of LR is equivalent modulo TR to a boolean combination of elementary
core sentences and p.p. formulas.

Our goal is to prove an analogue to this theorem for the language LR(Q^ω).
First note that in this language we can express (χ/?/)(2I) > Kα by QaXo

χi(x(xo) Λ

~~"7(xo ~ xi)) Those sentences, together with the elementary core sentences, will
be called Qj-core sentences.

Theorem. Every formula of LR(Q^ω) is equivalent modulo TR(Q<ω) to a boolean
combination of Qj-core sentences and p.p. formulas. This boolean combination
can be effectively found relative to the elementary procedure provided by the Theorem
of Baur and Monk.

Proof. We show the theorem for regular ωa only. For a complete proof, see
Baudisch [1984]. By the theorem of Baur and Monk and induction on the
complexity of formulas, it suffices to consider the case Q™x φ(x; z), where φ(x; z)
is a boolean combination of p.p. formulas. The above corollary thus reduces this
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to the case in which φ is a conjunction of p.p. and negated p.p. formulas. Since a
conjunction of p.p. formulas is equivalent to a p.p. formula, we can further suppose
that φ(x; z) is of the form χ(x; z) Λ /\i<k ~~"7i(x; z), where χ and γ\i are p.p. (ί < k).
We will now construct the desired boolean combination in the following develop-
ment.

Let //be the set of all partitions {/,./} of {(/, j): i < kj < m}. For each {/, J} eH
define F(I) = {i < k: for all7 < m (ίj) e /}. Now let \j/{τ) be the disjunction of the
following formulas, where {/, J} runs over all the partitions in //:

0;;z)Λ /\ -ι>/?(y;
ieF(I)

/ \ ^/(XO) A / \ "Ί η{(x0 - Xχ) .
(i,7)e/ ( ί , j )eJ J

Using the preceding lemma and the elementary elimination procedure, it is not
difficult to show that ψ is indeed equivalent to a boolean combination of p.p.
formulas and g^-core sentences. Thus, it suffices to verify that

TR(Q:ω) h- Vz(β?x φ(x; z) <-> ιA(z)).

To prove this in the direction from left to right, we let C be a set of power Kα

which is weakly homogeneous for φ(x; a) in 21. By part (i) of the first lemma, C is
weakly homogeneous for χ'(x0 — x j . Thus it is trivially so for

V

The corollary above yields some {/, J} eH and some set C c C of power Kα

which is weakly homogeneous for

/0c 0 - xO Λ /\ >y/(xo - Xi) Λ /\ - | ^ ( x 0 - Xi).
(ij)el (i,j)eJ

Let c e C ' a n d E a set with c + £ = C. By (i) of the first lemma, 21 \= χ\c\ a).

Further,

(2) E is weakly homogeneous for /\ ~iηί(x0 — Xi)
(iJ)eJ

and

(3) E<ΞZ'(Sϊ)n Π ^
( ί , j ) e /

Notice that (3) implies

(4) EςzηχSΆ) for all i
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since I- /\j<n η{(x) ^ ηfι(x). Then 2ί 1 = / \ ί e F ( / ) ~if/?(c;a); for, otherwise 211=
ηdi(c; a) together with (4) and (ii) of the first lemma would imply that c + E were
weakly homogeneous for ^(x a). Recalling that c + E ς= C, we thus have a
contradiction.

To establish the other direction of the above equivalence, we first choose a
partition {/, J} e H, a set E of power Kα satisfying (2) and (3) (and hence, must
satisfy (4) also), and an element c e 21 with

2lNχd(c;a)Λ f\ -ι>rf(c;a).
ieF(I)

We will eventually show that c + E contains a subset of power Kα which is weakly
homogeneous for φ(x; a). By (ii) of the first lemma, c + E is weakly homogeneous
for χ(x; a) as well as for /\ieF(i) " Ί y/i(xί a); since, otherwise, by additivity, (4) would
imply 21 N τ/?(c; a), thus contradicting the choice of c.

It thus remains to prove the following

Claim. For every subset E ofE of the same power and for every i < n with i φ F(I\
c + E contains a subset of the same power which is weakly homogeneous for

To establish this claim, we fix some i φ F(I) and, without loss of generality,
assume that (i, m — 1) e J. That done, we first consider the case {(ij):j < m} ^ J.
Then, by (2), all the elements of c + E lie in different cosets of ί//(2ί) for allj < m.
Thus, the hypothesis of the Key Lemma is trivially satisfied. Thereby establishing
the claim for this case.

Turning now to the general case, we let the variables be ordered in such a way
that "(i,7) G / iff j < /c" for some k < m. We then apply the same argument to the
formula η^c,..., c, x k , . . . , xm_ j a) in order to obtain a subset c + E" ^ c + E
which has the same power and which is weakly homogeneous for its negation.
Since E" c f]j<k f/f(2I) by (3), it is easy to see that c + E" is weakly homogeneous
even for ~ι^t(x; a); whence, the claim is proven. D

Corollary. For modules, ^ωω(Ql) has the same expressive power as ^ ω ω ( 6 α

< ω ) . D

Corollary. All Ramsey quantifiers Q™ (m < ω) are elimίnable in every complete

(first-order) extension ofTR. D

By Baur [1975], every complete first-order theory of modules is stable. Hence,
the preceding corollary, together with Theorem 1.2.3, has as a consequence the
following

Corollary. No complete first-order theory of modules has the fie.p. D

Finally, we specify the theorem to the case of abelian groups. We begin by
making a general remark.
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Assume Σ1 to be a set of p.p. formulas that is closed under substitution of
free variables by 0 and Σ 2 to be a set of elementary core sentences such that the
elementary elimination procedure only needs formulas from Σί and Σ 2 . Then, the
theorem holds true for boolean combinations of formulas from Σί u Σ 2 and
Q^-core sentences of the form βα^o^iW^o) Λ ~~ι*7(xo - *i)X where χ is a con-
junction of formulas from Σ1 and η is in Σ1.

Now let R be the ring Z of all integers, Σι the set of all atomic Lz-formulas and
all formulas 3y(p"y = Σi<k ηx;), where p is a prime, n a natural number, and rf an
integer. Furthermore, let Σ 2 be the set of all Szmielew core sentences; that is,
Σ 2 is the set of all sentences (χ/η) > k, where

( # ) either χ(x) is px = 0 Λ pn~1 \x and η(x) is x = 0;

or χ(x) is pn ~1 \ x and η(x) is pn \ x

or χ(x) is px = 0 Λ pn~1 \x and η(x) is px = 0 Λ pn\x;

or χ(x) is rx = 0 and η(x) is x = 0,

for some prime p and natural numbers n and r, with 1 < n.
Call all sentences of Σ 2 and all sentences Q2XO*IGK*O) Λ "^/(^O ~ x\)\ f°r

(χ, η) from (#), Q\-Szmielew-core-sentences. The new sentences express that
the corresponding Szmielew invariants are of power at least Kα. By Szmielew
[1955], the elementary elimination procedure for Z-modules (= Abelian groups)
only needs formulas from Σί and Σ 2 . The above theorem can be sharpened in this
context.

Theorem. For every formula ofLz{Q^ω\ we can effectively find a boolean combina-
tion of formulas from Σι and Qj-Szmielew-core-sentences to which it is equivalent
modulo Tz(ρα

<ω). D

Corollary. Tz(βα

<ω) is decίdable. D

We now collect corresponding results into the following table.

Table of Elimination Procedures and Decidability

Abelian Groups Modules

&ωω Szmielew [1955] Baur [1976], Monk [1975]

^ωω(QΛ) Baudisch [1976] Rothmaler [1981 or 1984]

<&ωω(Q*ω) Baudisch [1983] Baudisch [1984]

Eklof-Mekler [1979] Eklof-Mekler [1979]

Baudisch [1981a]

Baudisch [1977b or c] Similar to Baudisch [1977c]

Decidability Problem is open
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That TZ(I) is decidable iff the /-theory of all finite abelian groups is decidable
follows from Baudisch [1977c]. Moreover, in Baudisch [1980] the /-theory
of abelian p-groups is shown to be decidable. In the same vein, Schmitt [1982]
has shown the decidability of the JS?(βα)-theory of ordered abelian groups for
α = 0 and α = 1. Furthermore, in the language, considered, he allows quantifica-
tion (with 3 and QJ over convex subgroups generalizing Gurevich [1977a]. By
adding suitable definable predicates, an elimination procedure for first-order
quantifiers is given. In order to decide the remaining sentences, the order structure
of the convex subgroups is considered in appropriate elementary languages.

In the logics that we have mentioned above, elimination procedures are also
applied to other classes of structures. Thus, for example, Cowles has results
for certain fields (see Cowles [1977, 1979a, b]) and Wolter for Pressburger
arithmetic and for well-orderings (see Wolter [1975a, b]).

In the case of the Henkin-quantifier (the reader is referred to Section VI.2.13 of
this volume), Krynicki-Lachlan [1979] used this method to prove the decidability
of the corresponding theory of finitely many unary predictes with equality. For
more on boolean algebras, the reader should also see the results of Molzahn [1981b]
that are cited at the end of the third section of this chapter. Finally, some material
on the elimination of quantifiers in stationary logic and its applications are given
in the next subsection.

1.4. Elimination of Quantifiers for Stationary Logic

The reader should consult Chapter IV for the basic notions concerning L(aa).
Throughout the present subsection, L will be taken as a countable elementary
language and T as an L(aa)-theory. Since generalization over second-order vari-
ables is not allowed in L(aa), the appropriate notion of eliminability of quantifiers
is the one that is defined below (see Eklof and Mekler [1979] where it is called
strong elimination of quantifiers).

Definition. T is said to admit elimination of quantifiers if, for every formula φ(s, x),
there is a quantifier-free formula φ(s, x) such that T\- aa s V5c(φ(s, x) <-• φ(s, x)).

By generalizing ideas of Eklof-Mekler [1979], Mekler [1984] found the follow-
ing criterion for eliminability of quantifiers in L(aa)-theories. This criterion is an
analogue of that for the elementary case and the notation " Ξ ° " is used to denote
equivalence with respect to quantifier-free formulas.

Theorem. T admits elimination of quantifiers iff whenever 21, 93 1= T and |2I|,
1331 < X l 5 there are cubs C and Dfor 21 and 93 such that for all ΆeC,andBεD and
acSΆandbε®, i/<9ϊ, A, a) =° <93,5, δ> holds, then <2l, A, a) =aa <93, B, b).

Proof We will present the proof for the nontrivial direction. Assume, then, that
φ(s, x) is not equivalent to a quantifier-free formula. Let {ψn(s, x): n < ω} be an
enumeration of all the corresponding quantifier-free formulas. For t e k2, define

Ψ* = Λi<k Ψi& *)ί(0> w h e r e Ψ? =
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Let X be the tree of all t e <ω2 such that for all f < t

neither (i) T f- aa s Vx(i//(s, x) -• φ(s, x))
(*) _ _ _

nor (ii) T h a a s Vx(^' (5, x) -> —1 φ(s, x)).

Then X must be infinite, because otherwise there would be some k < ω such that for
all t'ek2 either (i) or (ii). This would imply Γ h a a s Vx(φ(s, x)<-• \/ t , e / ^'(s,x)),
where / is the set of all t' e k2 with property (i). By Konig's lemma, there is an
infinite branch η e ω2 of X So, by (*) and the construction of X9 we have

T u {stat s 3x(ψη ιfc(s, x) Λ -ιφ(s, x))} and
(**)

Γ u {stat s 3x(ψη ι k(s, x) Λ φ(5, x))}

are consistent for every k < ω. Assume now that s = ( s l 5 . . . ,sn) and x =
( x 1 ? . . . , xw). We will introduce new predicates l/^Si,..., st) and functions //s),
where 0 < i < n, 0 < j < m. We also define T' to be the extension of T by the
following axioms:

stat SiC/^Sj), aa s : stat s2 U2(s1, s 2 ) , . . .

aa s x aa s2...aa sn_ι stat sn Un(sl9..., sn); and

aa 5i s^t/^sO Λ U2(su s2) Λ Λ C/^S^ . . . , sπ)

->^ v k (s,/i(S),. . . ,/ M (s)) for every /c < ω.

Using compactness, we see that (* *) implies the consistency of

Γo = r u {aa Sl... sM(£/i(si) Λ Λ Un(sl9..., sn)

and

Ti = Γ ' u {aa S l . . . s^L/^sO Λ . Λ Un(sl9..., sn)

Now let 91 and © be the reducts to L of models of To and T1? and let C and D
be the cubs in 91 and 23, given by the criterion. By the axioms of T , there are chains
Aι ^ " ^ Anoϊ elements of C and chains Bγ c . . . c β π of elements of D all of
which fulfill ί/ifo) Λ Λ Un(sί9..., sn). Furthermore, A and S can be chosen
so that

<9I, AJMl... Jm(Ά)) E° <®,

and

911= -1 φ(Λ/i(^X Jm(Λ)) and

However, this contradicts the condition of the criterion. D
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Applying this notion to modules, Eklof-Mekler [1979] found an elimination
procedure for the L(aa)-theory of all ^-modules. They used L(aa)-core-sentences
of the form

aas Vx(χ(x) -• 3y(y es A χ(x - y) A η(x - y))),

where χ and η are p.p. formulas. It is easy to see that such a core sentence is equiva-
lent to (χ/^)(2l) < Ko—which is the negation of a β^-core sentence—so that
L(aa)-equivalence and (^-equivalence coincide. To verify that the criterion does
indeed hold on modules, Eklof and Mekler used the work of Fisher [1977] on
injective elements in abelian classes, which continues the work of Eklof-Fisher
[1972] on the description of saturated abelian groups to give a model-theoretic
proof of the results of Szmielew [1955].

Specifying this development to abelian groups, Eklof and Mekler proved
decidability of the L(aa)-theory. Similar results on abelian groups were inde-
pendently obtained by Baudisch [1981a]. Along these same lines, we note that
further applications of this method to fields and orderings can be found in
Eklof-Mekler [1979]. There decidability is shown for the L(aa)-theories of
complex, real, and p-adic numbers.

2. Interpretations

The method of syntactic interpretation was used by Tarski-Mostowski-Robinson
[1953] to deduce decidability or undecidability of theories from other theories (see
also Rabin [1965]).

The actual method has many applications to decidability problems, and we will
give a short description of it here. Let K and K' be model classes in languages L
and L respectively, where L and L are not necessarily elementary. Then, we say
that an interpretation I assigns to every relational symbol R of L a formula φR of
L', and the formula x = x corresponds to a formula φ(x) of L. The interpretation
of the basic symbols of the language L is inductively extended to all formulas χ of
L. The interpreted formula is then denoted by χ1 and is built according to the
following rules, where, for the sake of notational simplicity, we let L be an element-
ary language with only one binary relation symbol R.

(i) (x = yy:=(x = y);
(ii) (R(χ9y)Y'.= ψR(χ,y);

(iii) (-nχY :=-!(/);
(iv) (Xί v χ2)

I '=χ[ v χi and
(v) (3xχ)I:=3x(φ(x)AχI).

If 33 = (B,...) is a model of K\ then we obtain—with the help of /—a model S37

for L. The domain of 937 is simply the set of all elements of the domain of 93 satisfying
the formula φ(x). The symbol R of L is interpreted by the relation

{(a, b) e £2/33 |= φ(a) A φ(b) A φR(a, b)}.
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The next lemma is easily proven by induction on the complexity of formulas.

Lemma (Rabin [1965]). For each formula χ ofL and for each structure 93 of K'\

S 1= Z7 iff®71= Z •

The theory ΊhL(K) is said to be interpretable in ΊhL,(K') if

(i) for every structure 51 e K there is a 95 e K' so that 937 and 31 are isomorphic;
(ii) for every structure 93 e K', the structure S37 is isomorph to a structure of K.

The main property of interpretations with respect to decidability is expressed
in the following result.

2.1 Theorem (Rabin [1965]). Let K and K' be model classes and let L and L, re-
spectively, be suitable languages, where L is assumed to be elementary. IfThL(K) is
interpretable in ThL.(K'\ then the decidability ofTh.L,(K') implies the decidability
ofThL(K). U

The proof is a straightforward application of the preceding lemma. There are
obvious generalizations of the notion of interpretability, and a result similar to
Theorem 2.1 can be proven for them. Thus, for example, we may admit

(a) any finite signature;
(b) the identity can be handled as a non-logical symbol; that is to say, it is

interpreted by a congruence relation
(c) rc-tuples of elements from the domain of 93 can be used as individuals of

93'; and
(d) both languages can be non-elementary.

In the next subsection, we will give some examples that show how to apply inter-
pretability in investigations on decidability. In particular, we will embed these
examples in an investigation of well-orderings.

Well-orderings. The elementary theory of the class WO of all well-orderings was
proven to be decidable by Mostowski-Tarski [1949]. The proof uses the method
of elimination of quantifiers and was published in Doner-Mostowski-Tarski
[1978].

One of the simplest methods used to prove the undecidability of a theory is
that of trying to show that a theory which is known to be undecidable is interpret-
able in it. This holds also for extended logics.

The following example shows that the expressive power of the logic with the
equicardinality quantifier / is great enough to make the theory of well-orderings
undecidable.

Let K = {91}, where 91 is the structure of natural numbers with addition and
multiplication, and let K' = {9ΪΪ}, where 5ϋϊ = (M, < ) is a linear ordering of order
type ω 2 . Furthermore, L and L, respectively, will denote the corresponding
elementary languages. L'(I) arises from L by adding the equicardinality quantifier
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/. We shall show that ΎhL(K) is interpretable in ThLV)(Kf). In fact, the interpreta-
tion J is defined as follows:

(i) (x = y)J := 3y(y < x A ~i3y(y < x A VZ(Z < y v x < z))) = φ(x);

(ii) (x + y = z)J := Iu(φ(u) A U < x, φ(w) Λ y < M Λ M < z); and

(iii) ( x y = z ) J ••= Iu(φ(u) A u < z , 3 v 3w(φ(v) A v < y A v < u

A u < w Λ /w'(φ(w') A W < x, v < W A W < w))).

Here φ defines the elements of 91 as limit-elements of 9W (see Fig. 1). The formula

I I 1 I I I I I I I ••• θ | I I I I I I 1 I 1 ••• o I I I 1 I I I I 1 I ••• o I I I 1 I I I I 1 I •••

" 0 " " 1 " " 2 "

F i g . 1

on the right side of (ii) defines the addition by using the fact that between b and
a + fo there must bejustα elements. See Fig. 2, where the addition " 2 " + " 4 " = " 6 "
is presented.

" 0 " " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 "

Fig. 2

To illustrate the meaning of the formula on the right side of (iii), we present the
example " 2 " " 3 " = " 6 " in Fig. 3. Here x = 2, y = 3, and z = 6.

x y z
" 0 " " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 "

1 I I I 1 Λ m . ^ X • i » . m A l l * . . X X , i i A t I I 1 A i i i i A i i i i /*k i i i i . . . Λ j l l i • .
f ρ - i i p m V I I • ^ i i i T I i ' i I I Y i ' * I i '

V W V W V W

Fig. 3

The solid circles are precisely points satisfying the formula:

3v 3w(φ(v) A v < 3 Λ Iw'(φ(w') A W < 2, v < W A W < w)

Λ V < U A U < W).

But there are just x y = 2 3 points u, satisfying this formula. ΎhL(K) is inter-
pretable in ThL,(I)(K') iff(M, < ) J ^ 51. But this can be easily verified if we regard
the meaning of the formulas (x = x) J, (x + y = z)y, and (x y = z)J. Hence, we
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obtain the undecidability of Th L 7 / ) by Theorem 2.1, since it is well-known that 91
has an undecidable elementary theory.

From the above example, we infer the following result from Weese [1977c].

Lemma. ThL' ( / )(WO) is undecidable.

Proof. An easy way to prove the lemma is to use the fact that 91 is strongly un-
decidable (see Shoenfield [1967, Theorem 2 and Theorem 3 on pages 134 and 135,
respectively]). We go another way in demonstrating how to extend the notion of
interpretability to languages containing the quantifier /.

We first show that ThL<50ί) is interpretable in ThL<WO), where, as above, 9W
is a well-ordering of order-type ω2. Let φo(x) be a formula in L expressing the
notion

"x is the least limit-point which is a limit of limit-points ".

Assume that W is a well-ordering of order-type greater than ω2 and let a be an
element of 9W' with W |= φo(a). Then obviously

W\ {b/b e\W\ and b < α)

has order-type ω 2 . Hence, we get the desired interpretation, an interpretation
defining φ(x) to be 3y(φo(y) A x < y) and defining ιA<(x, y) to be x < y.

Now we can extend this interpretation to an interpretation of ThL(/)(9M) in
ThL' (/ )(WO). To this, we add rule (vi) as given below to rules (i) through (v) in the
definition of χ1:

(vi) (Ix(χί9 χ2)Y '-= Ix(φ(x) Λ χ[, φ(x) Λ X[).

It is easy to prove Theorem 2.1 as well as the lemma preceding it for this notion of
interpretation. Hence, we obtain the undecidability of ΎhU{I)(WO) by the above
example. D

The strongest result for the decidability of classes of well-orderings in extended
logics are the results for monadic second-order theories (see Chapter XIII, Section
4.2 of this volume). They imply many other results using the method of interpret-
ability. The following result was proved first by Slomson (see Slomson [1976]) using
the method of dense systems and a game-theoretical examination of the structure
of well-orderings.

2.2 Theorem. ThQ<ω(WO) and Th Q f ω (WO) are decίdable.

Proof. Shelah [1975e] proved the decidability of the monadic theory of the class of
all well-orderings < ω 2 , which is briefly denoted by ThΠ({(OL, <)/α < ω2}). (The
reader should also see Chapter XIV, Section 4.2 or this volume for more on this).
We will use this result to prove Theorem 2.2 by interpretability. Obviously the
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following relations are expressible by formulas in the monadic language for
ordinals:

" Y c F i s expressible by Vy(y eY-*yeX);

"X Φ 0 " is expressible by 3x x e X;

"x has a successor in Y" is expressible by 3y(y e Y Λ X < j;);

"x is not the first element of Y" is expressible by 3y(y < x A yeY);

"x is a limit in Z " is expressible by

Ίz{zeZ Λ z < x -* 3y(yeZ A Z < y < x))

and

" Z is confinal in Y" is expressible by VyO e ^ -» 3z(y < z Λ Z e Z)).

Then define χo(X) and χ^X) as follows:

Λ Vx(x e Y -* "x has a successor in Y"));

^ Ξ Y C ' Y c X " Λχo(Y) Λ ΊZ^Z^ Y" Λ "Ziscofinalin Y"

-> 3x(x e Z Λ "x is limit in Z")))

For each well-ordering 9W and each subset B of the domain of 9W, the following
holds:

(*) m \= χ.(B) iff |B| > Kf for each i = 0, 1.

The downward Lowenheim-Skolem Theorem for ^ωω(Q^ω) gives

ThQf<ω(Wθ) = ThQf<ω({(α, <)/α < ω2}) for f = 0, 1.

We will show that Thρ.*ω({(α, <)/α < ω2}) is interpretable in

<)/α < ω2}).

To this end, let φ(x) be the formula x = x and define ^<(x, y) to be x < y. We
extend the rules (i) through (v) by one of the following sets of rules

(vi)o (Gox*)z : = 3X(χo(X) AVxxeX-+χ) for each 0 < neω;

(vi)i (βixz)7 := 3^(ZiW Λ V X X G I - > / ) for each 0 < n < ω.
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Condition (*) guarantees that (Qlxχ)1 and (β"xχ)7 get the correct interpretation
by (vi)0 and (vi)x. We will leave it to the reader to verify that Theorem 2.1 also
holds for this notion of interpretability, which proves Theorem 2.2. D

At first sight stationary logic is a strengthening of i?ω ω(βi) which stands
closer to monadic second-order logic than does ^ ω ω ( β ί ω ) . Although the theory
of well-orderings in stationary logic is decidable, there are models of set theory
in which monadic second-order theory is undecidable (see, for example, Chapter
XIII of this volume).

The former was proven by Mekler [1984] who used elimination of quantifiers
and by Seese [1981b] who employed dense systems. Hence, it would be interesting
to know whether or not this result might be inferred by interpretability from the
decidability of Thj/Kα, <)/α < ω2}). For each natural number n, this is indeed
the case for Thaa({(α, <)/α < ω1 n).

Exercise. Show that Thaa((ωx n, <)) is interpret able in

Th7/({(α, <)/α < ω2) for each neω.

Hint. Extend the interpretability result Theorem 2.1 to j£?ωω(aa) and then use the
definability of ωx n in the monadic second-order logic and the fact that the
initial-intervals of ωx build a canonical closed and unbounded set-system for
(ω l 9 <).

Aside from what has already been pointed out, this interpretability result gives
the decidability of the theory of (ωx n, <), for all n e ω, in the language j£?7/(aa).
It is not possible to extend this interpretability to (ω : ω, <), as the following
example will show. Moreover, the theorem given below shows that even an exten-
sion of Thaa((cOi ω, <)) by unary predicates yields an undecidable theory.

2.3 Theorem. Let WOP denote the following class of structures

{(α, <, P)/(α, <)eWOandPc α}.

Then Thaa(WOP) is undecidable.

Proof The proof falls into three steps. First, we prove that the elementary theory of
countable, symmetric, and reflexive graphs, a theory that is known to be undecid-
able (see, for example, Rabin [1965]), is interpretable in

T h j i Π (ωl9 <, Pd: γ < ω, P t <Ξ ωi (ί < y)\\

Moreover, we should here remark that (J is the disjoint union and not the sum of
orders. The basic idea used here is the following.
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Let © = (G, R) be a countable, symmetric, and reflexive graph. We assume that
G = γ, for some y < ω, and show that © can be defined in a uniform way in a
structure of the above class. By a theorem of Ulam [1930], there is a set

{Saβ:ot<β <ω t }

of pair wise disjoint stationary subsets of ω x . For i < y, let

Then each A{ is stationary on ω x and

( # ) Xt n Aj is stationary iff (1, j) e #.

This is used to define © in (J t < y (ωί9. <, At) by the following formulas:

and

Λ ( s t a t 5) 3z 3w("sup(5 n {v: v < z}) = z"

Λ "sup(s n {ϋ:ι; < w}) = w"

Λ X < Z Λ ^ < W Λ P ( z ) Λ

Here "sup(s n {v: v < z}) = z" and "sup(s n{v:v < u}) = u" are abbreviations
of the corresponding formulas. ψι(x,y) expresses just the left side of ( # ) , while
φo(x) defines the domain of ©. Hence, by using as φ(x\ φR(x, y) the formulas
φo(x\ Ψi(x, y), respectively, we get the desired interpretation. Moreover, we must
have to add the rules (vi) and (vii) to the rules (i) through (v):

(vi) (s(x)Y := s(x) A φ(x); and

(vii) (aa sχ)1 ->= aa sχ.

Theorem 2.1 also holds for this notion of interpretability. Thus,

Th a a < U (ω l 9 <, Pd' y < ω, Pt c ω x (i < y)
\U<y

is undecidable.

The second step in our argument is to interpret this latter theory in

Th a a ( { (ω r ω, < , P ) : P czαvω}) .
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This can be easily done using the notion of interpretability given above for
stationary logic and we leave the details of it to the reader. Finally, we notice that
this theory is interpretable in Tha a(WOP). We give only a hint for this third inter-
pretation: For each well-ordering (α, < ) with α > ωί ω the point ω^ω is
uniformly definable that is, it is definable independently of α in (α, < ) by a formula
from ^ωω{Qi)' This completes the proof. D

We will conclude this subsection with a few additional facts and some historical
notes.

Further Results. In addition to Theorem 2.2, Slomson [1976] proved that
ThQ< ω(WO) is decidable for all ordinals α. He used the method of dense systems
and a game-theoretical examination of the structure of well-orderings. Moreover,
he proved that for all α, β > 0 the theory ThQ<ω(WO) equals the theory
ThQ<ω(WO), while ThQ<ω(WO) differs from these theories. These results had
already been proven by Vinner [1972] for ^ωω(Qa) rather than for J^ ω ω (β α

< ω ) .
The reader should also consult Lipner [1970] and Slomson [1972] for more on
this. A further generalization of Theorem 2.2 was proven in Tuschik [1982b]. In
particular, let Δ be a set of ordinals, and let L(Δ), L(Δ) < ω, respectively, be the
language L with the additional quantifiers Qα (for α e Δ ) and Q", for α e Δ and
n > 1, respectively. Assuming GCH, Tuschik [1982b] proceed to prove that
ThL ( Δ )(WO) is decidable for each finite set Δ of non-limit ordinals. In this connec-
tion we note that Wolter [1975b] proved this for Δ = {0, α}. Moreover, assuming
GCH, Tuschik [1982b] proved that, for any finite Δ, L(Δ) < ω is reducible to L(Δ)
with respect to the class WO and that Th L ( Δ ) < ω (WO) is decidable. By performing
ordered sums of finitely determinate linear orderings, the proof of the decidability of
Tha a(WO) given in Seese [1981b] used the method of dense systems and an in-
vestigation of the preservation of ΞΞπ(L(aa)). Interestingly enough, the proof
yields that all well-orderings are finitely determinate, a fact which was also proven
by Mekler [1984]. Moreover, Mekler [1984] proved that a simple extension of
Tha a(WO) by unary predicates and defining axioms for it admits elimination of
second-order quantifiers.

Some further results on this can be found in Caicedo [1978], Kaufmann
[1978a, b], and Mekler [1984], as well as in Seese-Weese [1982]. The reader should
also see Chapter XIII of this volume for material on these notions. Finally, we
note that the results cited at the end of the next section also provide some material
on boolean algebras.

3. Dense Systems

The method of dense systems was used by Ershov [1964b] and by Lauchli-Leonard
[1966] to obtain the decidability of the theories of boolean algebras and linear
orderings, respectively. The method used in these studies can be formulated in a
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general form, a form which is applicable both to axiomatizable and non-axio-
matizable logics. In order to develop this form, we first let X b e a class of models
and L any logic, and then make the following

Definition. A countable subset M c AT of models is:

(i) dense for K (with respect to L) if any sentence of L which is satisfiable in
K already has a model in M; and

(ii) is uniformly recursive with respect to L if the relation "A N φ " is recursive,
where A varies over models of M and φ over sentences of L (we assume a
fixed Gόdel-numbering).

3.1 Theorem. Suppose K and L are as above and M is dense for K and uniformly
recursive with respect to L. Then the theory ThL(K)is decidable if either:

(i) L and K are (recursively) axiomatizable; or
(ii) there is a recursive function f so that for each sentence φ ofL having a model

in K, there is a model Ae M, A \= φ with [A^\ < /([<?!)• Here, the notation
and [φ~] denote the corresponding Gδdel-numbers.

Generally, to obtain a Gδdel-numbering, the set M is generated from simple
structures by some operations such as sums, products etc. A logic L which pre-
serves L-elementary equivalence for these operations is especially convenient to
obtaining decidability. If it preserves L-elementary equivalence for the direct
product it has the product property. For instance, the elementary logic has the
product property as well as the logic with the additional quantifier Qα. But, on
the other hand, the logic with Malitz quantifiers Q" (n > 1) and stationary logic
do not possess this property. However, stationary logic does have the product
property if only finitely determinate structures are considered.

In the following two subsections, the sets M are constructed for the classes of
linear orderings and boolean algebras, respectively. This will clarify the abstract
notions that are given above. Furthermore, we obtain some insight into the
expressive power of cardinality quantifiers for these two classes.

3.1. Linear Orderings

Let us consider the class of linear orderings LO in the logic L(QX) which has the
cardinality quantifier Qι. The decidability of the elementary theory of LO was
established in Ehrenfeucht [1959b].

3.1.1 Theorem. The theory Th Q l (LO) is decidable.

This result was shown by Tuschik [1977b] and by Herre-Wolter [1977]. The
proof closely follows the line given by Lauchli-Leonard [1966] for the elementary
case, but with some important exception: the Ramsey theorem cannot be used,
since it is no longer valid in the uncountable case. However, Shelah's theorem for
additive colourings [1975e] is a useful substitute.



3. Dense Systems 261

As to Theorem 3.1, it follows that it is enough to have a dense set M which is
uniformly recursive. The models in M are called term-models. In order to define
M, we need some special dense linear orderings σm'" which we will briefly describe
as follows: The σ m " are uncountable dense linear orderings with finitely many
predicates Xu ..., Xm9 Y l 5..., Yn which form a partition of the underlying set of
σm'", so that Xu ..., Xm are countable dense subsets and Yu . . . , Yn are c^-dense
subsets, where Yt is said to be ωx -dense if between any two elements there are
uncountably many elements of Yt. Suppose that F = (Aί9 . . . , Am) and G =
(Bl9..., Bn) are two finite sequences of linear orderings, then σ(F, G) results from

σm,n ^ r e p i a c j n g e a c h point from Xt or Yj by a copy of At or Bj9 respectively.
σ(F9 G) is thus called the shuffle of (F, G).

Now, the set M is the smallest set containing 1 (the unique one-element order),
so that we have the following:

(i) if A, Be M then A + BeM;

(ii) If A e M, so are A ω, A ω*, A ωί9 and A-ω'f; and

(iii) If F and G are finite sequences of models from M, then σ(F, G) belongs to
M also.

The operations above are defined as usual for linear orderings. To show that M
is dense, it is convenient to use n,l-isomorphisms, these having been introduced in
Chapter II, Section 4.2. In the original papers, the game-theoretic equivalent of
~M> 1 was used (see Lipner [1970], Brown [1972]). To mark this difference we will
denote ^ 1 by ~ in the following. The proof of the following lemma is omitted.

Lemma. The operations which generate M preserve ~ D

A linear ordering A is called n-term-like iff there is a term-model B such that
A ~ B. The crucial point consists in proving the following fact:

Lemma. Suppose every bounded convex subset of A is n-term-like, then A itself is
n-term-like.

Proof. We may suppose that A has a least element (otherwise, we can partition
A = B + C + D, where B and D have a greatest or least element, respectively,
and C is bounded and convex). By the Lowenheim-Skolem theorem for L(2i),
we can assume A has cardinality K^

However, A then possesses an increasing cofinal ^-sequence* where K: is 1, ω,
or ωv In the first case, the stated property follows immediately, since then A is
bounded. To establish the other two cases, we remark that the equivalence relation
~ has only finitely many equivalence classes. Hence, ~ induces a colouring by
assigning to the pair <α, b} the equivalence class of the interval (α, ft] (as an ordered
set) with respect to ^ . This colouring is additive since + preserves ~ as was stated
in the lemma above. Now, we can apply Shelah's theorem on additive colourings
to choose homogeneous subsets. Hence, there is a subset X ^ A of order-type ω1

(or ω in the second case, respectively) so that for any element a < b and c < d of
X we have
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We refer to the original papers concerning the relation

A ~ Ao + Aγ (ω* + ω) ωί9

where Ao and Aγ are bounded segments of A (namely, Ao = A~xo and Aί =
(x 0, x j and x 0 and x : are the first two elements of X).

By the hypothesis, Ao and ^ are rc-term-like, say Ao ~ Bo and Ax ~ Bx with
B0,BγE M. Thus, we also have

A ~ £ 0 + Si ω + Bx (ω* + ω) ω ^

However, the right side itself is a term-model. Thus, A is π-term-like, and the lemma
is proven. D

From the following lemma we can easily conclude that M is dense in LO.

Lemma. Every linear ordering A is n-term-like.

Proof. By the Lόwenheim-Skolem theorem for L(Qγ\ we may again suppose that
A is of cardinality <Kj . We define an equivalence relation « on A as follows:

x « y iff every segment of the closed interval [x, y] is n-term-like. Clearly, «
is convex. Furthermore, by the preceding lemma, every equivalence class itself is
/t-term-like.

Claim. There is only one equivalence class.

Assume there are two different equivalence classes C < D in A/&. If D is a
successor of C, then we can prove that the elements of C and D are equivalent, since
M is closed under addition. However, this would contradict the assumption
about C < D. But otherwise A/ « has to be dense. The elements of A/& are
themselves linear orderings, and, as we have already proven, they are ^-term-like.
Thus, there are term-models Au...,Ak so that every CeA/& is equivalent to
some Ai9 1 < i < k. For C < De A/π, we let F(C, D) c [Aί9..., Ak} be the sub-
set of those term-models A{ which are ^-equivalent to some E between C and D.
Similarly, let G(C, D)^ {Al9...9 Ak} be the subset of all term-models A{ so that
there are uncountably many E between C and D, with E ~ At. Now, choose
C < D in A/& with F(C, D) and G(C, D) minimal. Clearly, this implies that, for
C <E<F <D9 F(C9 D) = F(E9 F) and G(C, D) = G(£, F). Then, it is not
difficult to prove that

U N i σ(F(C, D), G(C, D))9

Ne(E,F)

for any E and F, with C < E < F < D. Before continuing our argument, we should
remark that (£, F) is the open interval in Ajκ> with endpoints E and F. Returning
to our line of argument we note that by definition, σ(F(C9 D\ G(C, D)) is again a
term-model. Thus, we may conclude that the elements of C and D are «-equivalent.
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But this would be a contradiction to C < D. Thus, the claim holds and the lemma
is proven. D

Corollary. If some sentence φ of LiQ^ has an ordered set as a model, then it also
has a term-model as a model

Proof. Let A be a model of φ. By the Lόwenheim-Skolem theorem, we may assume
that A has cardinality <^i1. Suppose the quantifier rank of φ is n. Then, by the
preceding lemma, there is a term-model B, so that A £ B. However, using claim
0) from the proof of Corollary 4.2.4 in Chapter II, this implies B\= φ. D

From the definition of the set M, we know that its members have a very deter-
mined structure. This idea is used to prove that M is uniformly recursive with
respect to

Lemma. M is uniformly recursive with respect to L(QX). D

The proof of the above lemma can be accomplished by induction on the
complexity of the term-models and the sentences.

Now, using Theorem 3.1 we obtain the decidability of ThQl(LO), and hence
Theorem 3.1.1 is proven.

We have illustrated the main idea in order to prove the decidability of the
theory of linear orderings in a language with the quantifier Qv Now, let us mention
some further results about the class of linear orderings for logics with other
generalized quantifiers.

(1) First of all, we refer the reader to Chapter XIII where second-order
quantifiers are considered.

(2) (GCH) ThQα(LO) is decidable for every ordinal α. The case α = 0 follows
from Laucnli [1968]. Since, for regular Xα, this theory is the same as ThQl(LO),
it is clear that its decidability follows from Theorem 3.1.1, Herre-Wolter [1979b]
provides a proof of it for singular Kα.

(3) Let Δ be a finite set of ordinals such that for all α e Δ, Kα is regular. LΔ

denotes the language of linear orderings with the additional generalized quantifiers
Qα, αeΔ. Under some conditions that are weaker than GCH, Tuschik [1980]
proved the decidability of ThLΔ(LO).

(4) Let Llω be the language L with the additional Malitz quantifiers β™, for
all α G Δ. If we only add the binary Malitz quantifier, the extended language will
then be denoted by L\. Suppose that, for all αeΔ, Kα is regular, then Tuschik
[1982b] has shown that L2ω is reducible to L\ for the class of linear orderings.
Furthermore, ThL< ω(LO) is decidable. For the limit cardinal number Kω, it is also
shown that L^ is reducible to Lfω} for linear orders.

(5) In contrast to the results mentioned above, the theories Th/LO) and
Thaa(LO) are undecidable. The undecidability of Th/LO) follows immediately
from that of Th7(WO) (see Section 2), while that of Thaa(LO) is proven in Seese-
Tuschik-Weese [1982].
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3.2. Boolean Algebras

The decidability of the elementary theory of boolean algebras Th(BA) was proved
by Tarski [1949]. Some years later, Ershov [1964b] showed that the theory of
boolean algebras with a distinguished prime ideal is also decidable. Here we will
consider the class of boolean algebras in the logic with the additional cardinality
quantifier β α , for arbitrary ordinals α.

First, we will compare the various cardinality quantifiers with each other.
Therefore, throughout this subsection we will work in a fixed model of set theory,
where δ is that ordinal which satisfies Kδ = 1ω. Weese [1976b] showed the following

Theorem. For every ordinal α > 0, we have

(i) ThQα(BA) = ThQl(BA) iff there is some β < α, with 2X" > Kα;
(ii) ThQα(BA) = ThQ<5(BA) iff 2*' < Ka,for every β < α. D

Remark. In fact, L(QJ and L(Qβ) represent one and the same language L(Q). The
ordinal subscript only serves to mark the different interpretation. If we make
comparisons such as the above, we can consider the theories ΎhQ as subsets of

From the theorem, we see that there are at most three different theories of
boolean algebras in logics with cardinality quantifiers, namely ThQo(BA), ThQl(BA),
and ThQ<5(BA). The connection between these theories is illustrated in the next
proposition.

Proposition. ThQl(BA) ^ ThQό(BA) £ ThQo(BA).

Proof. We will only prove that the inclusions are proper. Let At(x), at(x), and
atl(x) be formulas of the elementary language of boolean algebras which express
the properties "x is an atom", "x is atomic", and "x is atomless", respectively. Set

φ «= Vx(atl(x) -> Qy(y < x)),

and

φ : = V x ( a t ( x ) Λ Q y ( y < x ) - > Q y ( A t ( y ) Λ y < x ) ) .

Then it is immediately seen that

φGThQ o(BA)\ThQ ό(BA) and φ e ThQd(BA)\ThQl(BA). D

Now, to prove the decidability of these theories, we want to establish dense
sets M o , M l 5 and Mσ, For the sake of simplicity, we will restrict ourselves to the
construction of M o in the following discussion. The constructions of M1 and Mδ

would require some further operations, so that we will omit them entirely and
refer the reader to the literature. Before we can define the set M o , we must introduce
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two operations for boolean algebras. Let η be the set of rational numbers. Then
@^ B and Y[η B are subalgebras of the Cartesian product Y[ieη Bh where Bt = B
for all ieη. @η B is the subalgebra generated by the elements {at: ieη}, where
{ί e η: at φ 0} is finite. This kind of product is also called a direct sum.

Let I(η) be the boolean subalgebra of the power set of η, which is generated by
the intervals. Then γ[η B is generated by the elements {αt: i e η) with the properties
that {ieη'.ciiΦ 0} belongs to I(η), and {i e η: at φ 0 and at Φ 1} is finite.

We are now ready to define M o . Let 2 be the unique boolean algebra with only

two elements and let P be any fixed countable atomless boolean algebra. Then, M o

is the smallest set containing 2 and P such that the following hold:

(i) if A and B belong to M o , then so does their direct product A x B;
(ii) if B e M o , then 0 ^ B and Y\η B also belong to M o .

The algebras in M o are called term-models. To show that M o is dense it is convenient
to use n, 0-isomorphisms, these latter having been introduced in Chapter II,
Section 4.2. In the original paper the game-theoretic equivalent of ^ π 0 was used
(see Lipner [1970] and Brown [1972]). We observe that it has an especially simple
form for boolean algebras. To mark this difference, we denote £Wf 0 by ~ in the
following discussion. The proof of the lemma given below is omitted.

Lemma. The operations which generate M o preserve ~ also. D

A boolean algebra A is n-term-like iff there is a term-model B so that A ~ B.
If a is an element of the boolean algebra B, then the ideal generated by a is denoted
by (a)B = {beB'.b < a}. If no confusion can arise, we omit the subscript B
altogether. By interpreting the constant 1 by the element a, we see that the structure
(a)B becomes a boolean algebra. For each boolean algebra B, we can thus define
the subset Dn(B) of n-term-like elements as

Dn(B) = {a e B: for every non-zero b e (a), (b) is n-term-like}.

Lemma. Dn(B) is an ideal

Proof. Clearly, if a e Dn(B) and b < a, then b e Dn(B). Let be a, b e Dn(B). If a < b
or if b < a, then obviously α u beDn(B). Otherwise, a u b = a u (b\a) and
a φ 0 and b\a φ 0. Since a and (b\a) are n-term-like, there are term-models A1

and A2 such that (a) ~ A1 and (b\a) ~ A2. However, since a and (b\a) are
disjoint, we get that a u(b\a) ~ Ax x A2. By definition, Aγ x A2 is again a
term-model. Hence, a u b is n-term-like. If c < α u fo, then we can repeat the
proof for a r\c and (b\a) n c. Hence, the element au b belongs also to Dn(B). D

From the next lemma we can easily conclude that M o is dense in BA.

Lemma. Every boolean algebra is n-term-like.

Proof. By the preceding lemma, we know that Dn(B) is an ideal for every boolean
algebra B. We will show that Dn(B) is not proper. Then B = (1) is n-term-like
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and the lemma is proved. Assume that lφDn(B). Since ~ has only finitely many
equivalence classes, there are Aί9 . . . , Λk e M o such that any n-term-like boolean
algebra is ^-equivalent to some Ai9 1 < i < k. For each b e B\Dn(B\ let

Tn(b) = {i: there is some c e Dn(B) with c < b such that (c) ~ At}.

Let α e B\Dn(B) be minimal. That is, for every b G B\Dn(B) n (a) Tn(fe) => Tn(a).
Clearly, we may assume that either a/Dn(B) is an atom or atomless. We will show
that in either cases a is π-term-like.

Case 1. a/Dn(B) is an atom.
If Dn{B) restricted to (a) is the zero-ideal, then a is an atom in B also; thus (a) ~ 2
and a is n-term-like. Otherwise, Dn(B) is not the zero-ideal and we can prove that

(a) ^ 0 i , where A = \\ At.
η ieTn(a)

Since M o is closed under direct product, the algebra A belongs to M o . Furthermore,
M o is also closed under the direct sum of an algebra. Hence, (J)^ A is a term-model
and (a) is n-term-like.

Case 2. a/Dn(B) is atomless.
If Dn(B) restricted to (a) is the zero-ideal, then a is atomless in B also. Thus, (a) ~ P
and a is n-term-like. Otherwise, Dn(B) is not the zero-ideal, and we can prove that

(a) - Y[η A, where A = f} Ai
ieTn(a)

As in the first case, γ\η A is a term-model, and hence (a) is ^-term-like.
If b < α, then either beB\D n (B) or beDn(B). In both cases b is rc-term-like

(in the first case, the proof is the same as for the element a above). However, a
must then be an element of Dn(B\ which is a contradiction. Hence Dn(B) = B. D

Corollary. M o is dense for BA with respect to L(Q0). D

The proof is similar to the corresponding proof of the corollary of Theorem
3.1.1.

An easy construction of the term-models is used to prove the following

Lemma. M o is uniformly recursive with respect to L(Q0).

Proof The proof is by induction on the complexity of the term-models and the
sentences. D

As a conclusion we obtain the following theorem, a result that was proved by
Pinus [1976] and by Weese [1977a].
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Theorem. The theory ThQo(BA) is decidable. D

In a similar way (by using rather complicated term-models), we can prove the
decidability of the theories ThQl(BA) and ThQό(BA). In connection with the first
theorem of this subsection, we may conclude the following result due to Weese
[1976b].

Theorem. For every ordinal number α, the theory ThQα(BA) is decidable. D

Now, we want to compare the expressive power of L(Q0) with those of the
elementary language L and weak second-order logic L w s . Let F be the boolean
subalgebra of the power set of ω generated by the finite sets. Then F = F x F (L);
however, in L(Q0\ they can be distinguished by the sentence φ, where

φ := 3x 3y(x n y = 0 Λ QOZ(Z < X) A QOZ(Z < y)).

Hence, L(Q0) is really more expressive. On the other hand, we have, for any boolean
algebras A and B,

Λ^B(L^S) iff Λ =

Thus, L w s and L(Q0) are of the same expressive power. However, while ThQo(BA)
is decidable, Thws(BA) is not, as was proved by Paljutin [1971].

In the following discussion, we will mention further decidability results for the
class of boolean algebras.

(1) First of all, we refer to the results of Rabin [1969, 1977], who proved the
decidability of the theory ThL /(P), where P is a countable atomless boolean algebra
and LI is a second-order language appropriate for boolean algebras whose set
variables range over ideals. Rabin interpreted this theory in S2S, the monadic
theory of two successor functions. Using the fact that for each countable boolean
algebra A there is an ideal / on P so that A ^ P/7, he concluded that the theory
of all countable boolean algebras in the logic LI is also decidable. As a corollary,
he obtained the decidability of the elementary theory of boolean algebras with a
sequence of distinguished ideals, an accomplishment generalizing the result of
Ershov that was mentioned at the beginning of the subsection.

(2) In this discussion, CH is assumed. Using a result of Sierpinski on the exist-
ence of special families of linear orderings, Rubin [1982] established the undecid-
ability of ThQ2(BA), the theory of boolean algebras in the logic with the binary
Malitz quantifier in the ϋί -interpretation.

(3) In contrast to the preceding fact, Molzan [1981b] proved the decidability
of ThQg(BA) by a quantifier elimination procedure.

(4) The undecidability of the theory Th/BA) in the logic with the Hartig
quantifier / was proved by Weese [1976c] by means of interpretation.

(5) Interpretability also yields the undecidability of the theory Thaa(BA) of
boolean algebras in the stationary logic. This fact was proven by Seese-Tuschik-
Weese [1982].
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Open Problems

(1) Find appropriate "first-order" conditions equivalent to the eliminability
of all Ramsey quantifiers Q™ or to the eliminability of all Malitz quantifiers Q?
(m < ω) in unstable (countable) complete first-order theories. For stable theories
this is known (see Theorem 1.2.3 and Remark 7 at the end of Section 1.2).

(2) Investigate the relative strength of eliminability of β™ for various ordinals
α and fixed m < ω. For stable theories, this is known in the case m = 1 (see
Remark 1 at the end of Section 1.2). In the case m > 1, only some partial informa-
tion is presently available (see Remark 8 at the end of Section 1.2).

(3) Investigate the relative strength of eliminability of Q™ for various numbers
m (and fixed ordinals α). For stable theories, this is known in case α = 0 and a = 1
(see Theorem 1.2.3 and Remark 8 at the end of Section 1.2, respectively).

(4) Is Tz(/), the theory of abelian groups in the logic with the Hartig quantifier,
decidable?

(5) Is the theory of well-founded trees in the logic with Qί decidable?
(6) Is it consistent with ZFC that ThQ2(BA) is decidable? Under CH it is not

(see Remark 2 at the end of Section 3.2).




