Special Notations

Chapter I		$(\gamma)^n$	n-th component of a coded in-
_			finite sequence 11
$\operatorname{Dm} \varphi$	domain of φ 7	ZF(ZFC)	Zermelo-Fraenkel set theory
Im φ	image of φ 7		(with axiom of choice) 11
$\varphi(x)\downarrow$	$\varphi(x)$ is defined, $x \in \operatorname{Dm} \varphi$ 7	AC	axiom of choice 11
$\varphi(x)\uparrow$	$\varphi(x)$ is undefined, $x \not\in \operatorname{Dm} \varphi$	DC	axiom of dependent choice 11
	7	AC_{ω}	axiom of countable choice 11
≃	strong equality 7	Or	class of ordinals 11
$\varphi \restriction X$	restriction of φ to X 7	$\inf X$	least element of X 11
φ " X	image of X under φ 7	$\sup X$	least ordinal ≥ all elements of
$\varphi: X \to Y$	function from X into Y 7	•	X 12
×Y	total functions $X \rightarrow Y$ 7	$\sup^+ X$	least ordinal > all elements of
$x \mapsto y_x$		•	X 12
$\lambda x \cdot y_x$	function which assigns 8	$\operatorname{Lim} X$	limit points of X 12
$\langle y_x : x \in Z \rangle$	y_x to x for each $x \in Z$	Card(X)	cardinal of X 13
ω	set of natural numbers 8	N _a	σ -th infinite cardinal 13
lg	length of a finite sequence 8	P(X)	power-set of X 13
ıg x⊆y	y extends x 8	, ,	field of the relation $Z_1 \leq 13$,
-	x concatenated with y 8	110(2),110(7)	15
x * y	•	$ Z , \gamma $	order-type of the (pre-)wellor-
x * φ		2 , 7	dering $Z_1 \leq 14$, 15
$x \in Z$	$(\forall i < \lg(\mathbf{x})) \ x_i \in Z 8$	o(V)	
$\varphi(\mathbf{x})$	$(\varphi(x_0),\ldots,\varphi(x_{k-1})) \qquad 8$	o(X)	least ordinal not the type of a
^{k, l} ω	$^{k}\omega\times^{\prime}(^{\omega}\omega)$ 8	_	pre-wellordering of X 14
F[m , α]	$\lambda p \cdot F(p, \mathbf{m}, \boldsymbol{\alpha}) = 8$	≤ _γ	binary relation coded by γ 14
~ R	complement 8	W	codes for well-orderings of
K _R	characteristic functional 9		ω 15, 81
$Gr_F, Gr(F)$	graph 9	$\gamma \upharpoonright \rho$	code for initial segment of
$^{k,l,l'}\omega$	$^{k}\omega \times ^{l}(^{\omega}\omega) \times ^{l'}(^{(\omega\omega)}\omega) \qquad 9$		≤ _γ 15
∧,∨,¬,		$ p _{\gamma}$	ordinal represented by p in
ightarrow, $ ightarrow$, $ ightarrow$	logical symbols 9		≤ _γ 15
$(\exists p < m),$		[m]	interval determined by m 16
$(\forall \alpha \in A)$	bounded quantifier 10	BIr	binary irrationals 19, 160
∃! <i>x</i>	exists exactly one $x = 10$	mes	Lebesgue measure 20
$\langle \mathbf{m} \rangle, \langle \boldsymbol{\alpha} \rangle$	codes for finite sequences 10	$ar{arGamma}$	set inductively defined by
() _i	<i>i</i> -th component 10, 11		Γ 22
Ìg	length 10, 11	$\Gamma^{(\sigma)}, \Gamma^{\sigma}$	stages of an inductive definition
*	concatenation 10, 11		22
Sq, Sq1	set of sequence codes 10, 11	$ \Gamma $	closure ordinal 23

Chapter II			A 136
		₽	recursive dense linear ordering
sg^+, sg^-	signum functions 29		of Sq 136
"least" $q < p$	bounded search 30	$\triangleleft_{\mathbf{m},\alpha}^{p}$	restriction of ≤ 136
$\exists^{\scriptscriptstyle 0}_{\scriptscriptstyle <}, \forall^{\scriptscriptstyle 0}_{\scriptscriptstyle <}$	bounded number quantifica-	$\leq_{\Sigma}, <_{\Sigma}, \leq_{\Pi}, <_{\Pi}$	ordinal comparison on W 138,
	tion 31		144
Pri	primitive recursive indices 34	W_{σ}	codes for ordinals $< \sigma$ 140
[a]	primitive recursive functional indexed by $a \in Pri$ 34	W	(number) codes for recursive ordinals 140
{a}	partial recursive functional indexed by a 38	$\omega_1[oldsymbol{eta}]$	least ordinal not recursive in
Ω	codes of recursive computa-	$W[\beta]$	β 140 (number) codes for ordinals re-
12	tions 39	# [P]	cursive in β 140
Sbi	substitution functions 41	$\ll_{\boldsymbol{\beta}}$	reducible recursively in β 141
"least" q	unbounded search 42	-β ≪	reducible by a continuous
T, T	normal form relations 46, 49	`	functional 141
∃°, ∀°	type-0 (number) quantifica-	$\sum_{i}^{1, \text{Hyp}}$	$(\exists \beta \in \Delta_1^1[\alpha]) P(\mathbf{m}, \alpha, \beta)$ 147
-,.	tion 54	$A \leq_1^1 B$	$A \in \Delta_1^1[B] 149$
∃¹,∀¹	type-1 (function) quantifica-	hydg(A)	hyperdegree of A 149
-, •	tion 57	A ^{NJ}	hyperjump 155
cX	set of complements of members	$oldsymbol{\Sigma}^0_{ ho}, oldsymbol{\Pi}^0_{ ho}, oldsymbol{\Delta}^0_{ ho}$	Borel hierarchy 157
671	of X 59	U _ρ , Π _ρ , Δ _ρ	universal relations 159
$dg(\alpha)$	degree of α 63	$N^{k,l}, N^{k,l}_{\rho}$	indices for the effective Borel
$R \leqslant A$	R is (many-one) reducible to	1, 1, ρ	hierarchy 163
	A 65	$\Sigma^{\scriptscriptstyle 0}_{\scriptscriptstyle ho},\Pi^{\scriptscriptstyle 0}_{\scriptscriptstyle ho},\Delta^{\scriptscriptstyle 0}_{\scriptscriptstyle ho}$	effective Borel hierarchy 164
$A^{\infty}, \beta^{\infty}$	ordinary jump 65, 66		notations for recursive or-
π , ρ	oramary jump os, oo	0, 3, 6, 10	dinals 173–174
Chapter III		D_{u}	Hyperarithmetic hierarchy 173
chapter 222			
•	arithmetical hierarchy 69, 77, 78	Chapter V	
$\Sigma_r^0, \Pi_r^0, \Delta_r^0, \Delta_{(\omega)}^0$		-	new notations for ≤. <. ≤
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0}	78 universal relations 73	$\leq_{\Sigma}^{W}, <_{\Sigma}^{W}, \leq_{\Pi}^{W},$	new notations for \leq_{Σ} , $<_{\Sigma}$, \leq_{Π} , $<_{\Pi}$, $<_{\Pi}$
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$	78 universal relations 73	$\leq^{w}_{\Sigma}, <^{w}_{\Sigma}, \leq^{w}_{\Pi},$ $<^{w}_{\Pi}$	<₁₁ 203
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84	$\leq_{\Sigma}^{W}, <_{\Sigma}^{W}, \leq_{\Pi}^{W},$	$<_{11}$ 203 least non- Δ , pre-wellorder
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{r}^{1} -degree of α 86	$\leqslant_{\Sigma}^{w}, <_{\Sigma}^{w}, \leqslant_{\Pi}^{w}, <_{\Pi}^{w}, <_{\Pi}^{w}, \delta^{1}$	$<_{11}$ 203 least non- Δ , pre-wellorder type 208
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}\text{-dg}(\alpha)$	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{r}^{1} -degree of α 86	$\leq_{\Sigma}^{w}, <_{\Sigma}^{w}, \leqslant_{\Pi}^{w},$ $<_{\Pi}^{w},$ $\boldsymbol{\delta}_{r}^{l},$ \mathcal{L}_{ZF}	< ₁₁ 203 least non-Δ, pre-wellorder type 208 language of set theory 214
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}\text{-dg}(\alpha)$ \mathscr{A}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{r}^{1} -degree of α 86 Suslin operation/quantifier 88	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{\cdot}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$	< ₁₁ 203 least non-Δ, pre-wellorder type 208 language of set theory 214
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $U_{r}^{0}, U_{r}^{0}, \Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ $U_{r}^{1}, U_{r}^{1}, \Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{Γ}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89	$\leq_{\Sigma}^{w}, <_{\Sigma}^{w}, \leqslant_{\Pi}^{w},$ $<_{\Pi}^{w},$ $\boldsymbol{\delta}_{r}^{l},$ \mathcal{L}_{ZF}	$<_{11}$ 203 least non- Δ , pre-wellorder type 208 language of set theory 214 $\mathfrak A$ is true at $\mathbf u$ in $\mathfrak M$ 214 ρ -th level of the hierarchy of
$\Sigma_r^0, \Pi_r^0, \Delta_r^0, \Delta_{(\omega)}^0$ $U_r^0, U_r^0, \Sigma_r^1, \Pi_r^1, \Delta_r^1, \Delta_{(\omega)}^1$ U_r^1, U_r^1, Δ_r^1 Δ_r^1 -dg(α) \mathcal{A} Z_{α}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_r^1 -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89	$ \begin{aligned} &\leqslant_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leqslant_{\Pi}^{\mathbf{w}}, \\ &<_{\Pi}^{\mathbf{w}} \\ &\boldsymbol{\delta}_{\cdot}^{\mathbf{l}}, \end{aligned} $ $ \begin{aligned} &\mathcal{L}_{ZF} \\ &\mathfrak{M} \models \mathfrak{A}[\mathbf{u}] \\ &L_{\rho} \end{aligned} $	$<_{11}$ 203 least non- Δ , pre-wellorder type 208 language of set theory 214 \Re is true at u in \Re 214 ρ -th level of the hierarchy of constructible sets 215
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}\text{-dg}(\alpha)$ \mathscr{A} Z_{α} P_{r} $U_{(\omega)}^{0}$	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{r}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{\cdot}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$	$<_{11}$ 203 least non- Δ , pre-wellorder type 208 language of set theory 214 \Re is true at u in \Re 214 ρ -th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility:
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} Δ_{r}^{1} -dg(α) \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$	$<_{11}$ 203 least non- Δ , pre-wellorder type 208 language of set theory 214 \Re is true at u in \Re 214 ρ -th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\star}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97, 208	$ \begin{aligned} &\leqslant_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leqslant_{\Pi}^{\mathbf{w}}, \\ &<_{\Pi}^{\mathbf{w}} \\ &\boldsymbol{\delta}_{\cdot}^{\mathbf{l}}, \end{aligned} $ $ \begin{aligned} &\mathcal{L}_{ZF} \\ &\mathfrak{M} \models \mathfrak{A}[\mathbf{u}] \\ &L_{\rho} \end{aligned} $	< ₁₁ 203 least non-Δ! pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1}	niversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\star}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\star}^{1} ordinal 97, 208 standard model for arithme-	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{zF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$	< ₁₁ 203 least non-Δ! pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{M}	78 universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{+}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{+}^{1} ordinal 97, 208 standard model for arithmetic 114	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$	< ₁₁ 203 least non-Δ! pre-wellorder type 208 language of set theory 214 Y is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I
$\begin{array}{c} \boldsymbol{\Sigma}_{r}^{0}, \boldsymbol{\Pi}_{r}^{0}, \boldsymbol{\Delta}_{r}^{0}, \boldsymbol{\Delta}_{(\omega)}^{0} \\ \boldsymbol{\Sigma}_{r}^{0}, \boldsymbol{\Pi}_{r}^{0}, \boldsymbol{\Delta}_{r}^{0}, \boldsymbol{\Delta}_{(\omega)}^{0} \\ \boldsymbol{U}_{r}^{0}, \boldsymbol{U}_{r}^{0} \\ \boldsymbol{\Sigma}_{r}^{1}, \boldsymbol{\Pi}_{r}^{1}, \boldsymbol{\Delta}_{r}^{1}, \boldsymbol{\Delta}_{(\omega)}^{1} \\ \boldsymbol{U}_{r}^{1}, \boldsymbol{U}_{r}^{1} \\ \boldsymbol{\Delta}_{r}^{1} \text{-dg}(\boldsymbol{\alpha}) \\ \boldsymbol{\mathcal{A}} \\ \boldsymbol{Z}_{\alpha} \\ \boldsymbol{P}_{r} \\ \boldsymbol{U}_{(\omega)}^{0} \\ \boldsymbol{\omega}_{1} \\ \boldsymbol{\delta}_{r}^{1} \\ \boldsymbol{\mathfrak{R}} \end{array}$	niversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\cdot}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , α) in \Re 115	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $<_{L}$	< ₁₁ 203 least non-Δ! pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222
$\begin{split} & \Sigma_r^0, \Pi_r^0, \Delta_r^0, \Delta_{(\omega)}^0 \\ & \Sigma_r^0, \Pi_r^0, \Delta_r^0, \Delta_{(\omega)}^0 \\ & U_r^0, U_r^0, \\ & \Sigma_r^1, \Pi_r^1, \Delta_r^1, \Delta_{(\omega)}^1 \\ & U_r^1, U_r^1, \\ & \Delta_r^1 - \mathrm{dg}(\alpha) \\ & \mathscr{A} \\ & Z_{\alpha} \\ & \mathbf{P}_r \\ & U_{(\omega)}^0, \\ & \omega_1 \\ & \delta_r^1, \\ & \mathfrak{M} \\ & \sigma[\mathbf{m}, \boldsymbol{\alpha}] \\ & \models \mathfrak{A}[\mathbf{m}, \boldsymbol{\alpha}] \end{split}$	nuiversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{+}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{+}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , α) in \Re 115 \Re is true at (\mathbf{m} , α) in \Re 115	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{zF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$	< ₁₁ 203 least non-Δ!, pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathscr{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{R} $\sigma[\mathbf{m}, \boldsymbol{\alpha}]$ $\boldsymbol{\exists}_{r}^{i}, \boldsymbol{\forall}_{r}^{i}$ $\mathcal{F} \vdash \mathfrak{A}$	nuiversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{+}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{+}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic for-	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$	< ₁₁ 203 least non-Δ! pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathscr{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \Re $\sigma[\mathbf{m}, \alpha]$ $\vDash \mathfrak{A}[\mathbf{m}, \alpha]$ $\exists_{r}^{i}, \forall_{r}^{i}$	nuiversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ',-degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta^0_{(\omega)}$ 93 least non-recursive ordinal 97 least non- Δ^1_{c} ordinal 97, 208 standard model for arithmetic 114 value of σ at $(\mathbf{m}, \boldsymbol{\alpha})$ in \Re 115 \Re is true at $(\mathbf{m}, \boldsymbol{\alpha})$ in \Re 115 classes of arithmetic formulas 116	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{1},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $<_{L}$	 <₁₁ 203 least non-Δ!, pre-wellorder type 208 language of set theory 214 ½ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are deter-
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathscr{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{R} $\sigma[\mathbf{m}, \boldsymbol{\alpha}]$ $\boldsymbol{\exists}_{r}^{i}, \boldsymbol{\forall}_{r}^{i}$ $\mathcal{F} \vdash \mathfrak{A}$	nuiversal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\star}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\star}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in $\mathfrak N$ 115 $\mathfrak M$ is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in $\mathfrak N$ 115 classes of arithmetic formulas 116 $\mathfrak M$ is a theorem of $\mathcal T$ 118	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$ $\mathrm{Det}(X)$	< ₁₁ 203 least non-Δ!, pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are determined 222
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathscr{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{R} $\sigma[\mathbf{m}, \boldsymbol{\alpha}]$ $\boldsymbol{\exists}_{r}^{i}, \boldsymbol{\forall}_{r}^{i}$ $\mathcal{F} \vdash \mathfrak{A}$	universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\star}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\star}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic formulas 116 \Re is a theorem of \mathcal{T} 118 \Re is a theorem of \mathcal{T} + ω_{\star}	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$	< ₁₁ 203 least non-Δ!, pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are determined 222 Hypothesis of Projective Deter-
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \Re $\sigma[\mathbf{m}, \alpha]$ $\models \mathfrak{A}[\mathbf{m}, \alpha]$ $\exists_{r}^{1}, \forall_{r}^{1}$ $\mathcal{F} \vdash \mathfrak{A}$ $\mathcal{F} \vdash \mathfrak{A}$	universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\cdot}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic formulas 116 \Re is a theorem of \mathcal{T} 118 \Re is a theorem of \mathcal{T} + ω -rule 121	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$ $\mathrm{Det}(X)$	< ₁₁ 203 least non-Δ!, pre-wellorder type 208 language of set theory 214 ¾ is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are determined 222 Hypothesis of Projective Determinacy: all projective sets are
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{N} $\sigma[\mathbf{m}, \alpha]$ $\exists \mathcal{A}_{r}^{1}, \forall \mathcal{A}_{r}^{1}$ $\mathcal{A} \vdash \mathfrak{A}$	universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\cdot}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic formulas 116 \Re is a theorem of \mathcal{T} 118 \Re is a theorem of \mathcal{T} + ω -rule 121	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$ $Det(X)$ PD	< 1 203 least non-Δ , pre-wellorder type 208 language of set theory 214 f is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are determined 222 Hypothesis of Projective Determinacy: all projective sets are determined 222
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1}-dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \Re $\sigma[\mathbf{m}, \alpha]$ $\models \mathfrak{A}[\mathbf{m}, \alpha]$ $\exists_{r}^{1}, \forall_{r}^{1}$ $\mathcal{F} \vdash \mathfrak{A}$ $\mathcal{F} \vdash \mathfrak{A}$	universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\cdot}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic formulas 116 \Re is a theorem of \mathcal{T} 118 \Re is a theorem of \mathcal{T} + ω -rule 121	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{A}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$ $\mathrm{Det}(X)$ PD $\Phi \langle P_{p} \colon p \in \omega \rangle,$	< 1 203 least non-Δ , pre-wellorder type 208 language of set theory 214 f
$\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ $\Sigma_{r}^{0}, \Pi_{r}^{0}, \Delta_{r}^{0}, \Delta_{(\omega)}^{0}$ U_{r}^{0}, U_{r}^{0} $\Sigma_{r}^{1}, \Pi_{r}^{1}, \Delta_{r}^{1}, \Delta_{(\omega)}^{1}$ U_{r}^{1}, U_{r}^{1} $\Delta_{r}^{1} - dg(\alpha)$ \mathcal{A} Z_{α} P_{r} $U_{(\omega)}^{0}$ ω_{1} δ_{r}^{1} \mathfrak{N} $\sigma[\mathbf{m}, \alpha]$ $\exists \mathcal{A}_{r}^{1}, \forall \mathcal{A}_{r}^{1}$ $\mathcal{A} \vdash \mathfrak{A}$	universal relations 73 analytical hierarchy 80, 86, 87 universal relations 84 Δ_{\cdot}^{1} -degree of α 86 Suslin operation/quantifier 88 zeros of α 89 relation which represents Γ 89 universal set for $\Delta_{(\omega)}^{0}$ 93 least non-recursive ordinal 97 least non- Δ_{\cdot}^{1} ordinal 97, 208 standard model for arithmetic 114 value of σ at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 \Re is true at (\mathbf{m} , $\boldsymbol{\alpha}$) in \Re 115 classes of arithmetic formulas 116 \Re is a theorem of \mathcal{T} 118 \Re is a theorem of \mathcal{T} + ω -rule 121	$\leq_{\Sigma}^{\mathbf{w}}, <_{\Sigma}^{\mathbf{w}}, \leq_{\Pi}^{\mathbf{w}},$ $<_{\Pi}^{\mathbf{w}}$ $\delta_{1}^{\mathbf{h}},$ \mathcal{L}_{ZF} $\mathfrak{M} \models \mathfrak{N}[\mathbf{u}]$ L_{ρ} $V = L$ $<_{L}$ $\epsilon_{1}, \epsilon_{\Pi}$ $\gamma \# \delta$ $Det(X)$ PD	< 1 203 least non-Δ , pre-wellorder type 208 language of set theory 214 f is true at u in M 214 ρ-th level of the hierarchy of constructible sets 215 Hypothesis of Constructibility: all sets are constructible 215 well-ordering of constructible functions 215 sequence of moves of player I (player II) 222 play resulting from two strategies 222 all sets in X are determined 222 Hypothesis of Projective Determinacy: all projective sets are determined 222

Special Notations 471

$\Theta_{\mathtt{B}}$	operation with base B 237	$\Sigma_r^2, \Pi_r^2, \Delta_r^2$	functional-quantifier hierarchy
Β (Φ)	canonical base of Φ 237		338
Φ°	dual operation 238	U,1, U,2	universal relations 338
$\nabla(\Phi)$	relations generated by Φ 239	≼,, w ,∥I∥	codes for well-orderings of
$\Sigma_{\rho}^{\Phi}, \Pi_{\rho}^{\Phi}, \Delta_{\rho}^{\Phi}$ Φ^{*}	Φ-hierarchy 240, 243		<i>ω</i> 340
$N^{\Phi,k}$	"next" operation after Φ 240		
IN .	indices for the effective Φ -hierarchy 247		
$\Sigma_{\rho}^{\Phi}, \Pi_{\rho}^{\Phi}, \Delta_{\rho}^{\Phi}$	effective Φ -hierarchy 247	Chapter VII	
$\nabla(\Phi)$	relations effectively generated	O[n]	and an affirmment of the 244
*(-)	by Φ 247	$\Omega[\mathbb{I}] \ \{a\}'$	codes of computations in 1 344 functional partial recursive in 1
$O^{J}, <^{J}, ^{J}$	notations for ordinals generated	\u j	with index $a = 344$
	by J 249	Œ	function-quantifier functional
D_u^{J}	set in the J-hierarchy 249	_	345
$\nabla(J)$	relations generated by J 250	Ĺz	superjump functional 345
		U', U¦, U'	universal relations 351
		11'	length of a computation in
Chapter VI			I 351
Chapter VI		$oldsymbol{\omega}_1[\mathbb{I}], oldsymbol{\omega}_1[\mathbb{I}]$	least ordinal not recursive in I
$\Omega[I]$	codes of computations in 1 260		(and some function) 354
$\{a\}'$	functional partial recursive in I	s∮	type-4 superjump 356, 364
. ,	with index a 261	J,	type-3 jump operator associated
E	number-quantifier functional	$O^{J}, <^{J}, ^{J}$	with 1 360
	262	O, $<$, $ $	notations for ordinals generated by J 361
E,	Suslin-quantifier functional 263	$ abla(\mathtt{J})$	relations generated by J 361
οJ	ordinary-jump functional 263	*(J)	functional-quantifier functional
E°.	dual functional to E 266	· ·	364
sJ	superjump 269	$\Omega[\mathcal{I}],\{a\}^{\mathcal{I}}$	recursion in 9 364
Sbc	subcomputations 275 least ordinal not recursive in	$\Sigma_r^3, \Pi_r^3, \Delta_r^3$	type-3-quantifier hierarchy 365
$\omega_1[1]$	1 283		•
$U^{\scriptscriptstyleI}, U^{\scriptscriptstyleI}_{\scriptscriptstyle{m{lpha}}}, U^{\scriptscriptstyleI}$	universal relations 285		
'	length of a computation in		
rı	1 285	Chapter VIII	
Sel'	selection functional 292		
116	norm induced on U' by $ ' $ 295	Pd	ordinal predecessor function 373
κ¹	length of $\left \cdot \right _0^1 (= \omega_1[1])$ 295	λ-"least"	λ-search 374
$\Sigma_1^{1,i}$	$(\exists \beta \text{ recursive in } I, \alpha) P(\mathbf{m}, \alpha, \beta)$	$\langle \rangle, \lg, ()_i,$	ordinal sequence coding 374-
	300	*,Sq	375
ای, ان	functionals associated with	$\Omega_{\kappa\lambda}$	codes of (κ, λ) -computations 376
(~)J	$J, \Phi = 307$	$\{a\}_{\kappa},\{a\}_{\infty\lambda},\{a\}$	$_{\infty} \kappa$ -, (∞, λ) -, and ∞ - partial recursive function with index a 377
$\{a\}^{J}$	$\{a\}^{I_J}$ 307 jump operator associated with	T_0, T	normal form relations 385–386
J,	l 314	m	$(\ m_0\ , \dots, \ m_{k-1}\)$ 394
Φ^{*}	extended functional correspond-	$oldsymbol{\Omega_{\mathbf{w}}}$	codes for ω_1 -computations 394
*	ing to Φ 317	Ω_{γ}	codes for $\ \gamma\ $ -computations 399
E *	extended Suslin-quantifier func-	o	relation $u \in \Omega_{\gamma}$ 399
•	tional 318	Om[I]	$\{\omega_1[H]: 1 \text{ is recursive in H}\}$ 409
M, M_{α}, M	complete sets for recursion in	$\mathrm{Ef}_{d}[I]$	l is κ -effective with index d 409
	E ₁ " 320	$ au_{ ho}$	ρ -th recursively regular ordinal
E,	$E_0 = E$; $E_{r+1} = (E_r)^{sJ}$ 326		419
Ω_3	codes of type-3 computa-	к*	projectum of κ 423
-2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	tions 335	st _a , st	next (λ -) stable ordinal 424
\exists^2, \forall^2	type-2 (functional) quantifica-	Sqc	sequence closed 429, 438
	tion 337	TC	transitive closure 433

472 Special Notations

o(M) v̂;̃̃̃̃ Val ∃⁰,,∀⁰,	least ordinal not in M 433 abstraction term 435 value of a term 436 classes of set-theoretic formulas	X-Ind, X- mon-Ind X-Hyp, X-mon-Hyp	X-(montone-) inductively definable 445
	443	k-env	k-envelope 448
		k-sc	k-section 448
		M-pos-Ind	positive inductively definable over M 451
		$\mathfrak{N}_{\mathrm{o}},\mathfrak{N}_{\mathrm{i}}$	standard models for arithmetic 451
		$HYP(\mathfrak{M})$	smallest admissible set contain-
Epilogue			ing M 452
		$HYP_{\mathfrak{M}}$	smallest admissible set above
X , X-mon	sup of closure ordinals 445		M 456