
Epilogue 

In contrast with those of a work of fiction, the lives of the characters of this 
book extend well beyond its covers. For the reader who has a yen to follow them 
a bit further, we discuss here briefly some of the more recent developments and 
offer some suggestions for further reading. In many cases the material is still very 
much in a state of development and we are attempting not to give a thorough 
and orderly presentation but rather to  convey some of the flavor of current 
research. Some of the notational conventions of the preceding chapters do  not 
apply here. 

We begin with Inductive Definability, which has been either on stage or just 
in the wings in almost every section of the book. One  of the most elementary 
questions which was not answered in the text is that of the closure ordinals and 
sets for most classes of non-monotone inductive operators over w. T o  state these 
results concisely, we introduce some notation. For any class X of relations, let 

( X I  = sup'{(r ( : r is an inductive operator and r E X) ;  

X-Ind = { R  : R  is reducible to r for some inductive operator r E X);  

X-Hyp = { R  : both R  and - R  belong to X-Ind). 

Replacing "inductive" by "monotone" yields the definitions of I X-mon 1, X -  
mon-Ind, and X-mon-Hyp. 

For comparison we state first some of our earlier results in this notation: 

0 XI-mon-Ind = 2: ; (111.3.5) 

A:") 2Y-1nd $ A: ; (111.3.6,7) 

(2) 
0 JIIII  = IIIY-rnonI = In:-monl= a,; (IV.2.15,16,21) 

II:-1nd = II7-mon-1nd = IIi-mon-1nd = II: ; (III.3.1,2, IV.2.17) 

(3) (2:-mon ( = w,[Er]; 

2:-mon-1nd = { R  : R  is semi-recursive in E:); (VI.6.14) 
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(4) for all r 5* 2,

.7.10, IH.3.34)

Π'-mon-Ind = Uι

r. (ΠI.3.1)

Aanderaa [1974] proves the following:

(5) | Π ! | < | Σ J | and IS^I < | ^

if V = L, then for all r ^ 2,

if PD, then as above for all even r =* 2, while for all odd r s= 2,

The proof is based on the pre-wellordering property.

Recall from Exercise VIΠ.7.27 the notion K is V°-reflecting. In view of (i) of

that exercise and Theorem VIII.3.4(i), the following result of Aczel-Richter

[1974] is a generalization of (2):

(6) for all r s * l ,

|Π°| = least κ . L κ is V^+1-reflecting;

= {l? : R is |Π^|-semi-recursive in parameters}.

Similarly, if we add to ifZF second-order variables and define the classes of 3j

and V* formulas analogously, we have:

(7) |Σ} | = |Σ}-mon| = least κ . L κ is 3j-reflecting;

Σ r I n d = Σ r mon-Ind = {R : R is ISJ-semi-recursive in parameters};

(8) IΠ} I = least K . Lκ is V!

Γreflecting;

Π1-Ind = {JR : R is IIΊj-semi-recursive in parameters}.

Richter [1975] shows that

(9) IΠ2I = least K . Lκ is V^-reflecting;

Πι

2-Hyp = {R : R is iΠ^I-recursive in parameters};

Π2-Ind^{JR : R is iΠ^I-semi-recursive in parameters}.
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The direct analogues of (7)-(9) for Σ2 or higher levels of the analytical hierarchy
are not true, but Aczel-Richter [1974] have modified versions. They, and
independently Cenzer [1974], obtained the interesting characterization

(10) |Π,I = least K. K is κ+ stable,

where κ+ denotes the least admissible ordinal greater than K. Cenzer [1974] has
similar characterizations for IX2I and for higher levels under the hypothesis
V = L. Many of these facts are also proved in a more general form in
Moschovakis [1974b] (see (31)-(33) below).

The results of the text concerning inductive operators over ωω, other than
decomposable ones, are even more limited. We have only

(11) for all r >0,

Cenzer [1974b] announces (among others) the following results for operators
over ω ω:

(12) |Δ?| = |n?-mon| = |Πj-mon| = |Σ!-mon| = Ht\

Π^-mon-Ind = Γl]-mon-Ind = ΓlJ

Δ|-Ind C Σj-mon-Ind = Σ2»

(13) |Π! | = ω i[E]

Γl|-Ind = {R : R is semi-recursive in E (semi-hyperanalytical)};

(14) | Σ 2 | = |Σ #

Σ2-Ind = Σ r

{R : R is semi-recursive in E# (semi-hyperprojective)};

The characterizations of ΓlJ-Ind and Σ2-(mon)-Ind are essentially contained in
Grilliot [1971a] read in conjunction with Hinman-Moschovakis [1971].

We turn next to an important unifying concept which is currently playing an
important role in definability theory, that of a Spector class of relations over ω
or over an arbitrary set M. A class X of relations over ω is called a Spector class
iff it contains the recursive relations, is closed under Π , U, 3°, V°, and
relational composition with recursive functions, is ω -indexable, and has the
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pre-wellordering property. This book is full of examples of Spector classes: Πj,
Σ2, and the classes of relations semi-recursive in E, I for any type-2 functional I,
in E, D for any type-3 functional 0, or K -semi-recursive for an admissible K. The
similarities in structure among these classes are largely explained by the fact that
many of their properties are properties of any Spector class. Moschovakis [1974,
9A-C] gives a good exposition of the theory of Spector classes.

Call a type-2 functional I normal iff E is recursive in I. The \-envelope and
1-section of I are the classes:

l-env(l) = {K : R is semi-recursive in I};

l-sc(l) = {R : R is recursive in I}.

For any normal I, l-env(l) is a Spector class. The next two results characterize
l-env(l) and the collection of all 1-envelopes of normal type-2 functionals among
all Spector classes. A class X of relations is called closed under {-application iff
for any partial function FGX (that is, Gr(F)EX), if G{m)^ \(λp. F(p, m)),
then also G E X. Moschovakis [1974a] shows:

(15) for any normal type-2 functional I, l-env(l) is the smallest Spector class
closed under l-application.

For any Spector class X, let Δ(X) denote the symmetric class X Π cX and let
ω^X] denote the least ordinal not the order-type of a Δ(X) well-ordering of ω.
For two Spector classes X C Y, set

X< y^X

(the equivalence is a generalization of Theorem IV.2.14). A Spector class X is
called Mahlo iff for any I such that X is closed under l-application, there exists a
Spector class Y < X also closed under l-application. Harrington-Kechris [1975]
and independently Simpson show:

(16) A Spector class X is the 1-envelope of some normal type-2 functional
iff X is not Mahlo.

These results have generalizations to higher types. For example, a type-3
functional D is called normal iff E is recursive in 0 and 2-env(0) and 2-sc(0) are the
analogous classes of type-2 relations R. The criterion for X to be a Spector class
over ωω includes the conditions that X be closed under 3 1 and V1, so Corollary
VII.2.11 implies that in general l-env(O) is not a Spector class. It is, however, a
semi-Spector class, defined by replacing closure under 3 1 by the weaker closure
under deterministic 3 1 : if P, Q E X, P Π Q = 0 and
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R(m, α ) ~ Vβ [P(m, α, β) v Q(m, α, β)] Λ 3β P(m, α, β),

then also REX. Moschovakis [1974a] proves

(17) for any normal type-3 functional D, 2-env(0) is the smallest semi-Spector
class over ωω closed under O-application,

and Kechris [1973a] shows

(18) a semi-Spector class X is the 2-enveloρe of some normal type-3
functional iff X is not Mahlo.

The extensions to types 4 and higher are now straightforward.
Sacks [1974] and [1978] has established parallel characterizations of the

k -section of a normal type-n functional. For fc = 1 and n = 2 this goes as
follows. Let Code be the smallest class of subsets of ω such that {0} E Code and if
for all n, An E Code, then also {(m, n):m E An} E Code. To each A E Code,
assign a set by:

set({O}) = 0, and for A^{0},

set(A) = {set({m :(m,n)GA}):n E ω}.

The hereditarily countable sets are exactly those of the form set(A) for some
A E Code. Let Asx (abstract 1-section) denote the theory in the language i?Z F

generated by the following axioms: Pair, Union, Δ0-Separation (Definition
VΠI.7.3) and

(Local Countability) VJC. X is countable;

(Δ0-DC) Vx 3y 21—»3/[/ is a function with domain ω and

Vn 2l(/(n)/x, f(n + l)/y)]

for all Δo formulas 91.

Sacks then proves by a forcing argument:

(19) a countable class X of relations over ω closed under "recursive in" is
the 1-section of some normal type-2 functional iff the structure
({set(A): A E X}, E ) is a model of Asx.

In particular, this implies that all of the following classes of relations are
1-sections of normal type-2 functional: Δj (Γ ̂  1), {R : R E Lκ} for any counta-
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ble admissible K, and the 1-section of any normal functional of type ^ 2. The

extension of this last fact to higher types yields the following result known as the

Plus-One Theorem:

(20) for any k > 0, the k -section of any normal functional of type ^ (k + 1)

is also the k -section of some normal type-(fc +1) functional.

Moschovakis [1974a] shows that there is no corresponding result for en-

velopes — indeed:

(21) for any normal tyρe-3 functional D, l-env(D) is not the 1-enveloρe of any

normal tyρe-2 functional.

The same technique shows that the classes Xj (r ^ 1) and ΓlJ (r ^ 2) are not

1-envelopes of normal type-2 functionals. However, Harrington [1973] proves

the following Plus-Two Theorem:

(22) for any fc>0, the k -envelope of any normal functional of type

^(fc +2) is also the fc-envelope of some normal type-(fc + 2) func-

tional.

Before we leave the subject of recursion in higher types, we should mention

the elegant Kechris-Moschovakis [1977]. Here is given an exposition of the basic

notions and facts of this theory in the context of the general theory of inductive

definability. Many of the difficult results are derived from simpler, more general

results about inductive definitions.

One of the most surprising developments in recent years is that a large part of

the theory developed for the type-structure over ω can be extended to the

type-structure over an arbitrary set. The two basic tools for the development of

this theory are inductive definability and admissible sets (with urelements).

Indeed, many parts of the theory can be viewed from either point of view. The

basic references here are Moschovakis [1974] and Barwise [1975]. The theory is

quite complex by now and we can give here only a few examples of its scope.

Let 2)ϊ= (M,R0,...,Rn_ι) be a relational structure for some first-order

language «S£ Add to ££ names for the elements of M and second-order variables

U, V, W,... ranging over relations. A formula SI is called first-order positive iff

all occurrences of second-order variables are free and positive. If SI is first-order

positive with JC0, . . . , xk-ί9 U free, then SI defines a monotone operator Γ^ over
fcM: for R C kM,

(Monotonicity follows from the fact that U occurs only positively.) A relation
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5 C kM is Wl-positive -Inductive (Sft-pos-Ind) iff for some operator Γn over k + / M
and some b G 'M, for all a G kM,

5 is yJl-positive-Hyperelementary (2)ΐ-pos-Hyp) iff both K and kM ~ JR are Wl-
pos-Ind. Much of the general theory is motivated by the examples of the two
structures:

9ί0 = (ω, R+, R.) = standard (relational) structure for arithmetic;

31, = (ω U ωω, ω, R+, R., Apl) = standard (relational) structure for
analysis,

where R+ and R. are the graphs of the functions + and and
Apl(m, n, a)<+a(m)= n. For these we have

(23) 9ΐ0-pos-Ind = Π j = l-env(E);

SRrpos-Ind = U{2-env(E#, β): β G ωω}.

This second equality should be contrasted with (14); here arbitrary parameters
from ωω may be introduced in the reduction.

For any structure 93Ϊ we call a class X of relations over M an W-Spector-class
iff it contains the SW-elementary (first-order definable over Wl) relations, is closed
under Π , U , 3 M , VM, and relational composition with ϋDΪ-elementary functions,
is M-indexable (contains a universal relation) and has the pre-wellordering
property. Moschovakis [1974] shows that for an arbitrary 33Ϊ, the class Sft-pos-Ind
has all of these properties except perhaps M-indexability. Note that in the
absence of a universal relation the pre-wellordering property may be established
in the form of Exercise V.1.20(ii); the proof is along the lines of Exercise III.3.33.
To secure indexability he restricts to the class of acceptable structures, which
have the requisite coding ability. Tt is acceptable iff there exist N C M ,
< C N x N , and a one-one (coding) function ( ) from the set of all finite
sequences from M into M such that < orders N in type ω and N, < , and the
following relations and functions are all 2R-elementary:

«-*β belongs to the range of (•);

lh(α) = 0, if -ιSeq(α);

= ή, if α = <α1,...,αn>;

q(α,m)=α m , if a = <α,,..., an) and

= 0, otherwise;
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where ή denotes the n-th element of N in the ordering < .
For an acceptable structure 9ft the proof that 9ft-pos-Ind is M-indexable

proceeds by showing that this is exactly the class of relations definable over 9ft by
a game formula:

with 31 elementary. This fact is a generalization of Exercise III.3.22. Then
Moschovakis [1974] shows:

(24) for any acceptable structure 9ft, 9ft-pos-Ind is the smallest 9ft-Spector
class.

One of the most interesting results of the theory is a very broad generaliza-
tion of (23). A relation 5 C kM is called 9ft- Π| iff it is definable over 9ft by a
second-order formula with parameters in which the second-order variables are
quantified only universally. Then Moschovakis [1974, 8A.1] proves

(25) for any countable acceptable structure 9ft,

3ft-pos-Ind = 9ft-Π}.

Note that the assumption of countability is really necessary here since 9^-pos-
Ind is a proper subset of Π1 = 3ί?1 —Πj (cf. discussion following VII.2.11).
Barwise [1975, VI.5.2] shows that the hypothesis of acceptability in (25) (and
elsewhere) may be replaced by the weaker requirement that M admit an
M-pos-Ind pairing function.

We consider now the approach via admissible sets. For the moment we
restrict attention to transitive E -structures — that is, structures of the form
9ft = (M, E , Ro,..., Rn-ι) where M is a transitive set and E is the restriction of
the membership relation to M. Below we mention how this restriction may be
removed. For such 9ft, set

HYP(9ft) = Π{N : N is an admissible set and M, JR0,..., R^ E JV}.

It turns out that HYP(3ft) is itself admissible and is thus the smallest admissible
set containing M,R0,..., Rn_lm Then Barwise [1975, IV.3.1,3 and VI.5.1] shows

(26) for any countable transitive E -structure 9ft and any S C kM, 5 is
9ft-Πj iff S is X definable over (HYP(9ft), E);

(27) for any transitive E -structure 9ft which admits an 9ft-pos-Ind pairing
. k

function and any 5 C M, S is 9ft-pos-Ind iff S is X definable over
(HYP(9ft), E).
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Note that in (27) since M G HYP(Sft), it follows by Δ-Separation that S is
2R-pos-Hyp iff S G HYP(3W). In view of Barwise [1975, VI.5.8], (27) provides an
alternative method for proving that 3K-pos-Ind is a Spector class.

Applying (26) to the case 3Ji = (LK, G), we obtain the following pretty
generalization of Theorem VIII.3.4:

(28) for any countable admissible ordinal K, and any R C kκ,
(i) R is K +-semi-recursive iff R is K — Tlι;

(ii) R is K +-recursive iff R is K ~ Δ J ;

where κ+ is the least admissible ordinal greater than K and i? is K — Πj iff for
some K-recursive relation PC ' K (cf. VIII.2.26),

R(μ)~(\/f:κ-*κ)(3π<κ)P(π,μJ).

The characterization (27) of a particular 3JΪ-Spector class in terms of
definability over an admissible structure can be extended to give a representa-
tion for arbitrary 33Ϊ-Spector classes via the notion of a companion. For any
Xft-Spector class X, let

Cmp(X) = Π{N : N is an admissible set and Δ(X)C N}.

Cmp(X) is called the Companion Set of X. By way of abbreviation, for any
C C Cmp(X), let us write Σ[C] (Δ[C]) for the class of all relations on Cmp(X)
which are Σ-definable (Δ-deίinable) over the structure (Cmp(X), G, C). A
structure of this type is called admissible iff it satisfies the axioms and schemata
Pair, Union, Δ0-Separation, and Δ0-Collection formulated in the appropriate
language, ifZF with an additional unary relation symbol. The Companion
Theorem, Moschovakis [1974, 9E.1] asserts

(29) for any 33ί-Spector class there exists a set Cx C Cmp(X) such that
(i) (Cmp(X), G , Cx) is admissible;

(ii) Cmp(X) is Cx-ρrojectible on M (that is, there exists a Δ[CX]
function / which maps a subset of M onto Cmp(X));

(iii) Cmp(X) is Cx-resolvable (that is, there exists a Δ[CX] function
g : o(Cmp(X))-> Cmp(X) such that Cmp(X) = U{g(σ): σ <
o(Cmp(X))}).

(iv) for any 5 C kM, 5 G X iff S G Σ[CX].

Furthermore, if C x i s any other set satisfying (i)-(iv), then Σ[CX] = Σ[CX].
The class Σ[CX] is called the Companion Class of X and the pair

(Cmp(X), Σ[CX]) is the Companion of X. Result (27) may now be restated as
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(30) for any transitive G -structure Tt which admits an SW-pos-Ind pairing
function, the Companion of 3W-pos-Ind is (HYP(Sft), Σ[0]).

Moschovakis [1974] and [1974b] computes the companions of many other
Spector classes. We shall discuss here just one further class of examples which
generalizes (6). A structure Wl is almost acceptable iff there exist relations and
functions N, < , Seq, lh, and q as before which are 2ft-pos-Hyp (instead of
$Dΐ-elementary). Let j£* be the first-order language for the expanded structure
Wl* = (M, Ro,..., Rn-ι, < , Seq, lh, q) together with names for the elements of M
and second-order variables U, V, W,... . The classes of 3? and V? formulas of
££* are defined as in III.5.3 with < playing the role of ^ for bounded
quantifiers. If 21 is a formula of if* with xo> > *k-i> U free, then 21 defines an

k. k.

inductive operator Γ9l over M by: for R C M,

Γ«(R) = R U {a: 2ft* 1= 2l[a, R]}.

Of course, Γ^ is in general no longer monotone. A relation S C kM is called Ti-
ll0,-Inductive (2R-Σ?-Inductive) iff for some V̂  (3^) formula 21 and some b G Άf,
for all a G kM,

Theorem 11 of Moschovakis [1974b] verifies that this is independent of the
particular N, <, Seq, lh, and q chosen. He further shows:

(31) for any almost acceptable structure 9W,
(i) aW-Σrlnd = 2tt-pos-Ind;

(ii) for all r 2*2, 2K-Π^Ind = 3JΪ-Σ^+1-Ind and is an 3K-Spector class.

In fact, 3JΪ-Π?-Ind is chatacterized as the smallest SW-Spector class satisfying
either one of two natural additional conditions. Note that the restriction to r ^ 2
is again necessary because by (13),

9ΐrΠ?-Ind = Πj-Ind = U{2-env(E, β): β G ωω}

is not a Spector class by VII.2.11. However by Moschovakis [1974b, Theorem 29]

(32) for any acceptable structure 2)ϊ, 2)Ϊ-Π?-Ind is the smallest 5DΪ-semi-
Spector class.

As for companions, Moschovakis [1974b, Theorem 23] shows
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(33) for any almost acceptable transitive G -structure 2)ΐ and any r ̂  2, the
companion of SK-ltf-Ind is (HYP(3W, Π% Σ[0]), where

HYP(9K, Π?) = (Ί{N : N is a V?+1-reflecting admissible set and

M,R0,...Rn_ίEN}.

Similar but more complicated characterizations are given for SDΐ-Σ -̂Ind and 39Ϊ-
ΠΓ-Ind for all m, r 2*1.

At any given level of definability the class of monotone operators is
intermediate between the class of positive operators and the class of arbitrary
inductive operators. In many cases there are strictly more relations definable by
arbitrary operators than by positive operators. For arithmetical operators over ω
the relations definable by positive or by monotone operators coincide; a general
version of this follows easily from (25):

(34) for any countable acceptable structure 2K, 3K-pos-Ind = 3W-mon-Ind.

On the other hand it was known from (7) (and earlier) that over ω, Σ r Ind = Σj-
mon-Ind. Harrington-Kechris [1976] show that this situation is not at all
infrequent. They call a class Z of inductive operators over an almost acceptable
structure 93Ϊ adequate if it satisfies certain mild definability conditions, which in
particular are satisfied by all of the classes 2)ΐ-ΣΓ and Wl-Ilk

r (k + r^ 1). We say
well-foundedness is cZ over Wl iff the second-order relation "S is not well-
founded" belongs to Z. Then Harrington-Kechris prove

(35) for any almost acceptable structure 9K and any adequate class Z, if
well-foundedness is cZ over 272 and

cZ C SDΐ-Zmon-Ind,

then

3K-Z-mon-Ind = Wl-Z-lnd.

In particular, it follows that if well-foundedness is Π? over 2JZ, as it is for 31 u then
for all r ̂  2, 3ft-Π?-Ind = 3W-Π?-mon-Ind, and 9W-mon-Ind = SJί-Ind. As another
application, note that for any almost acceptable 3JΪ, well-foundedness is Il\ over
2W. Thus if Tt is also countable, it follows from (24) and (25) that aJί-Σj-mon-
Ind = SDΪ-Σplnd. A similar result holds for uncountable almost acceptable Έl if
we replace ΊlJ' by 'SK-pos-Ind'.

To extend the methods involving admissible sets to arbitrary relational
structures 2JΪ, Barwise [1975] develops the theory of admissible sets with
urelements. The elements of M are treated as initially given objects and a class
VM of sets over M is defined recursively by:
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vM(O) =

= P ( M U V M ( σ ) ) ;

M (T) : r < σ} for limit σ.

Let if* be a first-order language which includes the language of 3JΪ, unary

relation symbols U ("is an urelement") and S ("is a set"), and the membership

symbol E . Any set A E VM determines a structure

AgR = ( M U A, Λo> » #n-i> Af, A, 6 )

for if*. Such an A is called admissible over 3R iff M U Λ is transitive and A^

satisfies the axioms and schemata Pair, Union, Δ0-Separation, and Δ0-Collection

formulated in ϊ£*. If in addition the set M of urelements belongs to A, then A is

called admissible above Wl. Much of the theory of admissible sets carries over to

admissible sets with urelements. As an example, define

HYPaκ= Π{A : A is admissible above Wl}.

Then HYPaπ is itself admissible above 372 and the following extension of (27)

holds:

(36) for any structure 9PΪ which admits an 3J?-pos-Ind pairing function and

any S C kM, 5 is 3ft-pos-Ind iff S is X-definable over

Still another approach to the study of definability over arbitrary structures is

through abstract and axiomatic computation theories. Moschovakis [1969]

develops a theory of computations over a structure 5DΪ by working in a larger set

M* obtained by closing M U{0} under a pairing function. Since Af* may not

have a natural wellordering, he is forced to deal with multiple-valued functions.

A relation {e}(x)—»y is defined inductively and the functions so indexed are

called Wl-search computable because of the inclusion of the following clause in

the inductive definition:

if {*>}(y,x)^0, then {<9,fc,6>}(x)-*y.

Gordon [1970] shows that 272-search computability coincides with Σ-definability
over HF^, the structure over 3ft whose sets are the hereditarily finite sets in VM.
If a schema of the form

if Vy3u.{b}(y,x)-*u and 3y.{ί>}(y,x)-+0,

then {<10,fc,f>>}(x)-+0;

if Vy3iι[iι^θΛ{fc}(y,x)->ιι], then {<10,fc,fr)}(x)-»l;
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is added to those for search computability, the resulting functions are called
^Si-search computable in E. Combining the results of Moschovakis [1969] and
[1974] and Barwise [1975]

(37) for any structure 9ft which admits an 9ft-pos-Ind pairing function and
any 5 C kM, S is 9ft-semi-search computable in E iff S is Σ-definable
over HYP^ iff S is 9ft-ρos-Ind.

If the E-schema is left in but the search schema is removed, the resulting
functions are called 9ft-prime computable in E. For $ll this is equivalent to
recursion in E (as opposed to E# for search computability in E) and in general
Grilliot [1971a] shows essentially

(38) for any acceptable structure 9ft, 9ft-Πi-Ind is the class of relations 9ft-
semi-prime computable in E.

Axiomatic computation theories have been studied by several people.
Wagner [1969] and Strong [1968] developed much of the elementary theory.
Moschovakis [1971] introduced axioms concerning the (ordinal) length of a
computation and Fenstad [1974] adds the relation "is a subcomputation of".
There is a natural notion of a Spector computation theory such that a class of
relations is a Spector class iff it is the envelope of a Spector theory. Many of the
deepest results of recursion theory on higher types such as the Grilliot Selection
Theorem and the Plus-One and Plus-Two Theorems have been generalized to
the axiomatic setting. The current state of the theory is surveyed in Fenstad
[1975] and treated in detail in Moldestad [1977] and Fenstad [1980?].






