
Part C

Generalized Recursion Theories



Each of the measures of complexity we have discussed in Parts A and B can
be seen as an analysis of the means required to define a class of relations into two
components — one constructive or effective and the other in some way
non-constructive. Recursive relations are from our point of view entirely
constructive. The arithmetical and analytical relations are generated from them
by the non-constructive operation of quantification over an infinite set. For the
relativized and boldface hierarchies, the parameters from ωω are another
non-constructive component. In the case of inductive definability, the operators
are defined non-constructively, but we have implicitly extended our concept of
constructivity to include the process of iteration over the ordinals.

The generalized recursion theories we study in this part are an elaboration of
this dichotomy. In each case the "recursive" functionals are those which are
computable by essentially the same constructive means as in Chapter II together
with some non-constructive one. In Chapters VI and VII the non-constructive
component consists in the introduction of various fixed functionals; in Chapter
VIII it is the extension of the fundamental domain from ω to various ordinals K
or to the class of all ordinals.

As might be expected, there are many connections with the earlier theory.
Let

ΓO, if 3m.α(m) = 0;
E(α) =

U, otherwise.

Then the relations (semi-) recursive in E are exactly the (ΓlJ) Δj relations
(Theorem VI. 1.7). The relations recursive in a normal operation Φ or a jump
operator J turn out to be exactly those encompassed by the hierarchies of § V.5.
(Π )̂ Δj is also exactly the class of relations which are (semi-) recursive when the
fundamental domain is enlarged from ω to ω, (Theorem VIΠ.3.4). If computa-
tions are carried out over the ordinal δ\ (or over Mj), the (semi-) recursive
relations on numbers are exactly the (X\) Δ2 relations (Theorem VΠI.3.7 and
Corollary VIII.5.10).



Chapter VI
Recursion in a Type-2 Functional

In the notes to § II.5 we described an alternative approach to ordinary recursion
theory in which the notion " F is partial recursive in β" is defined first for
functions F : ω —> ω and a fixed β and used to derive the notion of a recursive
functional. For the development of the theory of recursion with type-2 argu-
ments, we have the same choice "one type up". We may take as our primary
notion either partial recursiveness of functionals F: k ' u ω —> ω (with arguments
of type (m, α, I)) or the notion "F is partial recursive in I" for functionals
F : kJω —> ω and a fixed I. We choose the second course for two reasons. First,
the technical details of the theory involving only one fixed type-2 parameter are
considerably simpler. Second, the primary objects under study remain function-
als and relations on k /ω, and thus the theory forms a natural extension of that of
earlier chapters. Partial recursiveness for functions F: ' ω —» ω will be dis-
cussed in §7.

In § 1 we establish the simplest properties of recursion relative to a functional
and discuss the connections with the arithmetical and analytical hierarchies. The
most important technical feature which distinguishes recursion relative to a
functional from ordinary recursion is the absence of normal form theorems as in
§ II.3. This lack necessitates substantially longer and more involved proofs of
many of the results corresponding to those in §§ II.3—4 and these occupy §§2-4
of this chapter. The fact that Δj is the class of relations recursive in E suggests
that the class of relations recursive in other functionals may share some of the
properties of Δj. This is already evident in §§ 3 and 4 and is carried further by the
discussion of hierarchies in §5. In §6 we discuss a flaw in this analogy and an
alternative analogy related to the operator * of § V.4.

1. Basic Properties

To avoid unecessary complications we shall restrict ourselves to the study of
recursion relative to a single total functional I: ωω —> ω. Other cases may be
reduced to this one as indicated at the end of this section. Let us consider first the
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intuitive notion of a functional F being mechanically calculable relative to I. As
for recursion relative to a type-1 function, we imagine an idealized computer
prepared to accept inputs of the form (m, α) and connected to a memory device
M which contains the graph of I. Of course, the graph of I is a set of power 2*° so
this M must be larger than the memory units we have previously considered.
Somewhat more troublesome is the fact that in order to obtain from M a desired
value l(jβ), the computer must in some way present M with the argument β. As β
is an infinite object, it is not obvious how we should imagine this to be
accomplished. We have, however, a precedent in the mechanism for presenting
the computer with (infinite) inputs (m, a). Accordingly, we imagine a subsidiary
infinite memory unit M' large enough to store a single function β. Then to obtain
a value \(β) during the course of a computation, the computer "loads" Mf with
the graph of β, whereupon M responds with the desired value \(β).

This model leads immediately to two observations. First, computations
relative to I must in general be infinite, as the computer cannot be expected to
load M' with the graph of β in a finite time, and it must in general be decided
during the course of the computation for which β the value \(β) is needed, so
that M' cannot be loaded before the start of the computation. Second, during
any given computation the only values \(β) which may be obtained are those for
which β itself is computable — in fact, the calculation of the values of β is a part
of the computation. Thus if F is partial computable in I, the value of F(m, a)
depends on the values \(β) at most for β which are computable in I and a (cf.
Exercise 1.13).

The formal definition is very similar to that of § II.2 with an additional clause
to introduce values of I.

1.1 Definition. For any total functional I: ωω -> ω, the set Ω [I] is the smallest set
such that for all k, /, n, p, q, r, and 5, all i < k and j < /, and all (m, a) E kJω,

(or
(1) - identical to the corresponding clauses of Definition II.2.1;

(2).

(3) for any b and any β, if for all p, (6, p, m, α, β(p))E β[l], then

In contrast with 17, Ω[\] is not a closure under finitary functions. It is,
however, a closure under functions of rank ω, as clause (3) is equivalent to the
requirement that Ω[\] be closed under all the functions φβ, where

φβ({(b, p, m, α, β(p)) :pEω}) = ((3, k, /, b), m, α, 1(0)).

Hence the inductive operator is Krcompact and, by the intended result of
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Exercise 1.3.10, this implies that the inductive definition has closure ordinal at
most Nj. If we associate the ordinal of the level at which a given sequence
(a, m, a, n) occurs with the "length" of the corresponding computation
{α}'(m, a)— n, we see that although computations relative to I may be infinite,
they are all countable.

The first part of the theory of recursion relative to a functional I now
proceeds almost exactly as in § II.2. The proof that for all α, m, and a there is at
most one n such that (a, m, α, n) E Ω[I] differs from that of Lemma II.2.2 only in
that the induction is now on all countable ordinals. We write

{a}\m, a) =* n «-> (α, m, α, n) E β[l].

Ί ιA functional F is partial recursive in I iff for some α, F = {a} a is called an index
of F from I. F is recursive in I iff F is partial recursive in I and total, and R is
recursive in I iff KR is recursive in I. R is semi-recursive in I iff R is the domain of
some functional partial recursive in I, and co-semi-recursive in I iff ~R is
semi-recursive in I.

As in Remark II.2.4, it is easily verified that each clause in the Definition has
its intended meaning. Thus

{(3, k, /, b)}\m9 a) - l(λp. {b}\p, m, α)),

and the class of functionals partial recursive in I is closed under functional
composition. It is clear from the definition that Ω C Ω[\]. Hence if {α}(m, α) —
rc, then also {a}(m,a)—n. In particular, if {a} is total, {a} = {a}\ so every
recursive functional is recursive in I.

The functions Sb, of Lemma II.2.5 also have the property that

{Sb,(α, m 0 , . . ., mI)}l(raί+1,..., mk_u a) =* {a}\m, α),

and exactly the same proof as before establishes the \-Recursion Theorem: for
any functional F partial recursive in I, there exists an e EL ω such that for all

From this follows exactly as in § II.2 that the class of functionals partial recursive
in I is closed under primitive recursion, course-of-values recursion, and un-
bounded search. Hence by Corollary II.3.3, every partial recursive functional is
also partial recursive in I. Definition by cases with relations recursive in I and
functionals partial recursive in I is established exactly as for Theorem II.2.9.
Similarly, the class of relations recursive in I is a Boolean algebra closed under
composition with functionals recursive in I.
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Computations relative to I may also be thought of as being arranged in
labeled trees. Nodes corresponding to clauses (0)-(2) are as before, while for
clause (3) we have nodes of the form:

«3,fc,/,ί>>,m,α)

Of course, branching is no longer finite, so the tree may be infinite without
having an infinite branch.

Exactly as in Lemma II.4.2 we may prove that every relation recursive in I is
also semi-recursive in I, but not conversely. Similarly, the class of relations
semi-recursive in I is closed under finite intersection and bounded universal
quantification — in fact,

1.2 Lemma. For any I, the class of relations semi-recursive in I is closed under

universal number quantification (V°).

Proof. Suppose R(p, m, a)«->{a}\p, m, a) j . Then

Vp R(p, m, a)«•» \(λp. {a}\p, m, a)) |

so V°R = Dm{(3, k, /, α>}' and is thus semi-recursive in I. D

The remaining part of the theory of semi-recursive relations depends on the
normal form theorems of § II.3. As we have no analogue for these for recursion
relative to I, the corresponding results will be proved in a different way in §§ 2-4.

To illustrate the notion of recursion relative to a functional, we now consider
some examples. Consider the functionals defined as follows:

(0, if 3m.a(m) = 0;

1, otherwise;
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fθ, if 3j8Vn.α(/3(π)) = 0;
E,(«) =

[l, otherwise;

ΓO, if {fl}(m,α)|
θJ(«α,m»*α)= |

[l, otherwise;

where (as defined in §1.1) («α,m»* α)(0) = (α,m> and («α,m»*α)(p + 1) =
α(p). The functional oJ is of course just a natural encoding of the ordinary jump
operator of the same name:

θJ(«α,m»*α)=α o J «α,m».

1.3 Lemma. For all R,
(i) if R is arithmetical, then R is recursive in E;

(ii) // R E Σ J U Π } , then R is recursive in Ev

Proof. Consider the set X of all relations recursive in E. By the preceding
remarks, X contains all recursive relations, so for (i) it suffices to show that X is
closed under 3° (as it is then closed under V° by complementation). Suppose R is
recursive in E. Then

fθ, if 3p.KR(p,m,α) = 0;
KaoR(m,α) = I

U, otherwise;

= E(λp.KR(p,m,α))4

Hence if KR = {b}E, then K3oR = {(3, fe, /, b)}E, so 3°R is also recursive in E.
For (ii), if R E Σ j , then for some recursive S,

R(m,α)~3βVn S(jS(n),m, α).

Hence

KR(m, a) = E,(λp. Ks(p, m, «)),

so KR is recursive in Elf The result for ΓlJ again follows by closure under
complementation. D

Of course, it follows that E is recursive in Ev

1.4 Lemma. Each of E and oJ is recursive in the other.
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Proof. Let a be an index such that {a}(a)~ least m. a(m) = 0. Then clearly
E(α) = oJ(«α))*α), so if f> is an index such that { 6 ^ ( 0 , α ) = α and
{frΓV + 1, α) = α(p), then E = {(3,0,1, fc)}^; so E is recursive in oJ. On the
other hand from Theorem Π.3.1 we have

θJ(«α, m» * a) = E(λw. Kτ(α, <m>, u, (a)))

from which we similarly conclude that oJ is recursive in E. D

We shall prove below that the relations recursive in E are exactly the Δj
relations, but we can already guess that more than the arithmetical relations are
recursive in E. Recall the sets Dr of Theorem III. 1.13:

D o = {0} and Dr+^iD,)0".

It is not hard to see that there is a primitive recursive function / such that for all
r, f(r) is an index of Dr from E. Then the set

{(r,m):mEDr} = {(r,m): {/(r )}E(m) = 0}

is also recursive in E but, by III.1.13 and the Arithmetical Hierarchy Theorem, is
not arithmetical. Similarly, Lemma 1.3(ii) is far from optimal. We shall return in
§§5 and 6 to the class of relations recursive in E^

Upper bounds on the class of relations recursive in a given functional I again
follow from the fundamental results on inductive definability of § III.3. Let

1.5 Theorem. For any I,
(i) if I 6 Δ J , then V ' e Π j ;

(ii) for all r ̂  2, if I E Δj, then V1 G Δj.

Proof. For each / and each aGι(°ω), we define operators Γ α 0 , . . . , Γ β 3 and
Λa 3 as follows. Γaq corresponds to clause (q) of Definition 1.1. For any A C ω,

ΓΛt0(A) = {«0, fc, Z,0, n),<m>, n): k, n G ω Λ mG kω}

J,3JJ\(m\aj(mi)):k Gω ΛmGkω Λ

/ < k Λ / < /}

U U {((0, k + 2, /, 5>, </?, <7, m>, Sbo(p, q)):k,p,qEω,

mG ω};

= {«!> fc»', 6, c 0 , . . . , Cfc^Mm), n): for some fc', ̂ 0» »
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= {«2, k + 1, />,<fc,m>, n>: </>,<m>, n ) 6 A } ;

= {«3, fc, /, fc>, <m>, n):3β (Vp [<f>, <p, m>, /3(p)> 6 A ] Λ

= {((3, fc, I &>,<m>, κ>: Vp 3 9 [<fc,<p>m>,9>E A ] Λ

First, note that all of these operators are monotone. Hence, if we set

Γ(α>(A) = Γa,0(A) U Γ^,(A) U Γaa{A) U Γ

and

A<«>(A) = Γ^0(Λ) U Γα, ,(A) U ΓΛ,2(A) U ΛΛ,3

then Γ<Λ) and Λ< α ) are also monotone. Furthermore it is clear from the definition

of Ω[\) that

(α,m, α, n)EΩ[\]<r+ (a,(m), n>G f<Λ>

that is, V1 = Γ, where Γ is the decomposable monotone operator defined by the

family {Γ < α > :/Gω, aGι(ωω)}.

Although it is not in general true that Γa3(A) = Aa 3 (A), this is easily seen to

be true whenever A has the property

(*) <α,(m), n>G A Λ <α,(m), n')GA-*n = nf.

An easy inductive argument shows that for all ordinals σ, A°a) satisfies (*) and

hence coincides with Γ°a>. Thus V1 = A as well.

We complete the proof by evaluating the complexity of Γ and A. If I E Δj,

then Γ e Σ j and A G Π j . For all r ^ l this implies V ' G Π J and for all r ^ 2 ,

V'eΣj. D

1.6 Corollary. For any I,

(i) if I G Δ J , then for all R,

R semi-recursive in I—•RGΠj ,

R recursive in I —» R G Δj

(ii) /or any r^2, if \E Δj, ί/ι̂ n /or α// R,

R semi-recursive in I — » R G Δ J ;

in particular, {R : R recursive in 1} is a proper subset of ΔΓ.



266 VI. Recursion in a Type-2 Functional

Proof. If R is semi-recursive in I, then for some a,

R(m,α)o3nV'(α,(m),n,(α)),

and the implications are immediate from the theorem. D

In particular, we have

{R : R is recursive in E} C Δj and {R : R is recursive in EJ § Δ .̂

To prove the converse of the first of these, we must "borrow" two results from
later sections:

( t ) (Corollary 2.11) for any I, the class of functional partial recursive in I is
closed under functional substitution — that is, for any functional G and H
partial recursive in I, if

F(m, a)« G(m, α, λp. H(p, m, α)),

then F is also partial recursive in I;
( t t ) (Corollary 4.3) the class of relations semi-recursive in E is closed under

existential number quantification (3 ).
The basic tool is the following Ordinal Comparison Lemma:

1.7 Lemma. There exists a functional H partial recursive in E such that for all y

and δ,

(i) yeW and | |γ| |^| |δ| |->H(γ,δ)»0;
(ii) δG,W and | |δ| |<||y| |->H(γ,δ)«l.

Proof. Let the dual functional E° be defined by:

E » = l - E ( λ p [ l - α ( p ) ] )

so that

fO, if Vp.α(p) = 0;
E°(α) =

U, if 3p.

Let

fθ, if II y 11 = 0;
~ | l , if | | r |μθΛ| |δ | | = O;

lE°(λp.E(λq.{e}E(y \p9 δ\q))% otherwise.
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The relation | |γ | | = 0 is arithmetical, so by Lemma 1.3 and (t), F is partial

recursive in E. Hence we may apply the E-Recursion Theorem to obtain an

index e such that

If we set H = {e}E, then H is partial recursive in E and

fθ, if II y 11 = 0;
H ( γ , a ) « h , if | | γ | μ θ Λ | | δ | | = O;

[E°(λp. E(λq. H(γ \p, 8 \ <?))), otherwise.

In other words, if both || y || and || δ || are non-zero, then H(γ, δ) is defined just in

case H(γ fp, δ \ q) is defined for all p and q, and if so, then

(1)

(2) H(y,δ)~l+*3pVq.H(y\p,δ\q)~l.

Clauses (i) and (ii) are vacuous unless one of y and δ belongs to W. Hence we

may prove (i) and (ii) by induction o n σ = min{||γ||,||δ||} for σ < Mj. If σ = 0,

then either | |γ | | = 0, so H(γ, δ ) = l in accord with (i), or | |δ | | = 0 < | | γ | | , so

H(% δ)— 1 in accord with (ii). We assume now that σ>0 and as induction

hypothesis that (i) and (ii) hold for all y0 and δ0 such that min{|| γ0IUI ̂ o||} < <r.

Suppose first that γGW and | | γ | | ^ | | δ | | . Then by (8) of §1.1, for all p,

so from the induction hypothesis we have

(3) \\y\p\\*ί\\δ\q\\-*H(γ\p,δ\q)~0;

(4) \\δ\q\\<\\y\p\\^H(γ\p,δ\q)~l.

As o n e of these holds for each p and q, we have H ( γ \ p,δ\ q) defined for all p, q.

Since || γ ||

so by (1) and (3), H(γ,δ) = 0.

If δ E W and | | θ | | < | | γ | | , then for all q,\\δ\ q\\<\\δ\\ = σ, so again (3) and (4)

hold for all p, q. Furthermore, there exists a p such that || δ || «£ || γ \ p || and hence

II« f 9II < II y ί PII tor all q. By (2) and (4), H(γ, δ) - 1. D

1.8 Theorem. Δj = {R : R is recursive in E}.

Proof. The inclusion (D ) is immediate from Corollary 1.6. Suppose R £ Δ}, so
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both R and ~R are Πj. By Theorem IV. 1.1 there exist recursive functionals F
and G such that for all (m, α),

R(m, α)<-> F[m, a] E W and ~R(m, <*)<-• G[m, a] G W.

Then it is routine to check that for all (m, a),

KR(m,α)=H(F[m,α],G[m,α]),

which by ( t ) implies that KR is recursive in E. D

1.9 Corollary. For any R C kω,

R Ell\<r+R is semi-recursive in E.

Proof. The implication (<-) is part of Corollary 1.6. Let P(a)++{a}E(a) I.
Clearly P is semi-recursive in E and thus is Πj. However a diagonal argument
shows P is not recursive in E and hence by the preceding theorem not Δj. By
Theorem I V.I.8 there exists a recursive function / such that

P(a)+*f(a)<ΞW.

However, as P £ Δ j , it follows from Theorem IV.2.2 that

Thus we have for all c,

<->{c} is a total unary function and

3α(P(α)ΛH({c},{/(α)})-0).

The relation defined by the expression in parentheses is semi-recursive in E, so it
follows from ( t t ) that W is semi-recursive in E. Every R GΠj is many-one
reducible to W and thus is also semi-recursive in E. D

Exercise 1.16 provides an outline for extending Corollary 1.9 to all R C ' ω:

1.10 Corollary. Πj = {R : R is semi-recursive in E}. D

It is worth noting that Lemma 1.7 (together with Corollary 1.6) provides a
new proof of the pre-wellordering property for ΓlJ. Indeed, we have
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γ < δ ^ r £ W Λ H(γ, 6) - 0, and

We shall use a similar technique in § 3 to show that whenever E is recursive in I,

then the class of relations semi-recursive in I has the pre-wellordering property.

Recursion relative to several functionals is defined by the usual coding. We

call F partial recursive in I = ( l 0 , . . . , ln) iff F is partial recursive in the coded

sequence (I) where

<!>(«) = <lo(α),...,ln(α)>.

Similarly, a functional F is partial recursive in I and β iff for some G partial

recursive in I, F(m, a) — G(m, a, β).

Corresponding to the ordinary jump oJ on functions, we have for functionals

the super jump sJ:

ΓO, if {α} '(m,α) l ;
l S J («α,m»*α) = |

[ l , otherwise.

The following is proved just as is Theorem II.5.7:

1.11 Theorem. For any I and β and all R C M ω, if R is semi-recursive in I (and

β), then R is recursive in ISJ (and β). D

It follows that lsJ is not recursive in I. Note that by Theorem 1.5, if r ^ 2 and

I G Δj, then also ISJ E Δj.

1.12-1.20 Exercises

1.12. Show that the monotone operator which inductively defines Ω[\] has-

closure ordinal exactly H1.

1.13 (Tugue [I960]). Show that if H and I are two functionals such that

H(j3)= \(β) for all β recursive in I, then for all relations R on numbers, R is

(semi-) recursive in I iff R is (semi-) recursive in H.

1.14. The class of functionals primitive recursive in I is the smallest class of total

functionals which contains the initial functionals (of Definition II. 1.1) and is

closed under functional composition, primitive recursion, and I-Application,

(I-Aρk/), where for any functional G, I-Apk/(G) is the functional F of rank (k, I)

such that
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(a) if G is of rank (k + 1, /), then

F(m,α)-l(λp.G(p,m,α));

(b) otherwise, F(m, α ) - 0 .

Characterize the class of relations primitive recursive in E.

1.15. Give an alternative proof of Theorem 1.8 by constructing a primitive
recursive function / such that for all a E N (Definition IV.4.1), f(a) is an index
of Pα from E, and applying Theorem IV.4.12.

1.16. Using the fact that the relation {α}E(α, α) j is Πj~Δj, show that the
relation c E W[a] is semi-recursive in E. Then apply the result of Exercise
IV.1.24 to prove Corollary 1.10.

1.17. Suppose that F is partial recursive in E and F: W—> W. Show that there
exists a function G : W —> W partial recursive in E such that for all c E W,

1.18. Show that for any relation JR on numbers recursive in E1?

3βVpR(β(p),m)<r*(3β recursive in E1)VpJR(j3(p), m).

Does this also hold with E in place of Ex? Does it hold with I in place of E2 for
any functional I such that Ex is recursive in I?

1.19 (Hinman [1969]). For any I, let Iri (the set of l-recursive indices) be the
smallest set such that for u E Iri there exist functions [u] which satisfy the
following conditions:

(i) OElri and [0](m) = 0;
(ii) if v E Iri and a is an index of a partial recursive functional {a} such that

for all m, {α}(m,[ϋ])|, then <l,u,α>elri and [<1, v, a)](m) = {α}(m,[υ]);
(Hi) if ϋElri and for all m, [v](m)E Iri, then <2,υ)elri and [<2, ι?)](m) =

[[υ](m)](m);
(iv) if υ E Iri, then (3, υ)Elri and [<3, v)](m)= \([v]). Show that for any α, a

is recursive in I iff for some u E Iri, a = [u].

1.20 (Gandy). Prove that each of ESJ and Ej is recursive in the other.

1.21 Notes. The definition of recursive functionals with objects of types ^ 2 as
arguments is due to Kleene [1959]. The formulation here is somewhat different
from Kleene's. Kleene also proved Theorem 1.8 (by a method similar to that of
Exercise 1.15). The only other basic treatment of recursion in higher types in
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print is Gandy [1967]. The superjump was invented and studied in Gandy
[1967a]. Kleene also developed analogues of several of the other basic character-
izations of ordinary recursion theory for higher types and showed them all
equivalent (see Kleene [1963] for references).

2. Substitution Theorems

The first goal of this section is to establish that the class of functionals partial
recursive in I is closed under functional substitution ((t) of the preceding
section). Note that this is more than was true for ordinary recursion theory (cf.
Exercise Π.4.27 and Theorem II.3.9). As for ordinary recursion theory (cf.
Π.5.2), ( t ) leads directly to:

(I) If β is recursive in I (and γ) and F is partial recursive in I and β, then F is
partial recursive in I (and γ).

We are then led naturally to the following question — is it true also that
(II) if H is recursive in I and F is partial recursive in H, then F is partial

recursive in I?
We shall see that although (II) is true, it becomes false if reference to I is

omitted. Here we have only the weaker:
(III) if H is recursive and F is recursive in H, then F is recursive.
The proof of ( t ) is substantially more complicated than the corresponding

proof for ordinary recursion theory. This is due to the lack of simple normal
forms for recursion relative to a functional. We must, rather, rely directly on the
definition. A related complication is that we cannot prove the results as stated
but must first prove effective versions. For example, for ( t ) we show that there
exists a primitive recursive function / such that if a and d are indices of G and H
from I, respectively, then /(α, d) is an index of F from I. The definitions are all by
effective transfinite recursion.

First we see why (II) fails if the phrase "in I" is omitted:

2.1 Theorem. There exists a recursive functional H and a functional F partial

recursive in H such that F is not partial recursive.

Proof Let H be any (total) recursive functional, and R any Π° relation which is
not recursive. By Lemma 1.2, R is semi-recursive in H, so there exists a
functional F partial recursive in H such that R is the domain of F. Then Dm F is
not semi-recursive so F is not partial recursive. D

We shall approach ( t ) by way of a series of approximations. We first treat
one part of the special case in which H depends only on the function arguments
a:
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2.2 Lemma. There exists a primitve recursive function f0 such that for all I, α, d,
m, α, and n,

{α}'(m, α, λp.{d}\p, a))~n^{/0(α, d)}'(m, α ) « n.

Proof. We shall define first an auxiliary primitive recursive function h and then
apply the Primitive Recursion Theorem (Π.2.6) to obtain an index e such that for
all a and d,

{e} is the desired f0.
We define /i by course-of-values recursion on a and by cases according to the

clauses of Definition 1.1 as follows: for any α, d, e, fc, and /,
(0) if α = <0, fc, / + 1, i,...) for i = 0,1,2,4 or 5, then Λ(e, α, d) =

<o,fc,U...>;
if a = <0, fc, / + 1,3, ij) with j < Z, then h(e, α, d) = <0, fc, /,3, /,/);
if a = (0, fc, / + 1,3, i, />, then h(e, a, d) is an index such that

(1) if for some fc;, f>, c 0,.. .,ck,_1 ? a = <1, fc, Z + 1, ft,c0,... ,ck.-r)9 then
Λ(e, α, d) = (1, fc, /, h(e, b, d),h(e, c0, d ) , . . . , A(e, c^.!, d));

(2) if a = <2, fc + 1,1 + 1), let c be the natural index such that

{c}'(e, α, d, f>, m, α) - {{e}(b, d)}'(m, α)

and set h(e, α, d) = Sb2(c, e, α, d);
(by a natural index for a given computation we mean the index which codes
instructions to perform the computation in the manner indicated — in this case
to compute first {e}(b, d) and then use the result as an index applied to (m, a).
For the record we want here

where

e' = <l,k+4,U,<0,k+4,U,3>,<0,k+4,U,2»).

(3) if for some b, a = <3, fc, / + 1, &>, then h(e, a, d) = (3, fc, Z, h(e, fc, d)>;
(4) if a is none of these forms, h(e, α, d) = 0.
If λp.{d}'(p,α) is not a total function, the implication of the theorem is

trivial, so let d and a be fixed such that λp.{d}'(p, α) is a total function β. We
prove by induction over Ω[\] that for all α, m, and n,

{α}'(m, α, /B) - n -> {/0(α, d)}'(m, α) - n.
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Let X denote the class of sequences (α, m, α, β, n) in Ω[\] such that

{/0(α, d)}\m, a)— n. We must show that X satisfies the closure conditions which

define β[ l ] . If a is of the form (0, fc, / + 1,...) and {α}'(m, α, β) = n, then it is

obvious by inspection that for any e, {h(e, α, d)}'(m, at)— n so in particular,

{fo(a, d)}'(m, a) — n. Suppose next that a = (1, fc, / -I-1, t, c 0 , . . . , c^^) and for

each i < fc' there exists a <?, such that

(chm9a9β9qi)GX and (ft,q, α, β, n)G X.

Because X C ί ί [ l ] by definition, we have then

{cj'ίm, α, β ) « 4 and {fe}'(q, α, jS) =- n,

so

Furthermore, by the definition of X,

{/ofe ί/ j r tm^)-* and {fo(b9d)}\q,a)~n.

Hence, since

/0(α, d) = (1, fc, /, /0(ί>, d),fo(co, d),... ,/o(ck-!, d)>,

also

so (α,m,α,/3, n ) G X

If α = <2, fc + 1, / + 1) and (ί>, m, α, β, n) G X, then

and

In this case, /0(α, d) = Sb2(c, e, α, d) with c chosen exactly to make the following

true:

{/0(α, d)Ϋ(b, m, a) - {c}'(e, α, d, b, m, α )
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Hence (a, b,m, α, β, n)GX. (In an attempt to rescue the reader from total
confusion here we make two observations. First, the naturalness of c is not used
here and will be needed only in the proof of Theorem 2.8. Second, the reader
may be wondering why we did not use the simpler definition h(e,a,d) =
h(e, b, d) in this case. This is not possible because b comes from the argument
list and not from the index, as in case (3), so it is not necessarily true that b < a
as would be required for the course-of-values recursion.)

Finally, suppose a = (3, fe, / + 1, b) and γ is a function such that for all p,
(fc, p, m, α, β, y(p))G X. Then for all p,

{ft}'(p,m,α,i3)=r(p) and {a}\m,a, β) = l(γ).

Furthermore, for all p,

{/o(M)}'(p,m,α)=γ(p).

Hence, as /0(α, d) = (3, k, /, fo(b, d)\

{fo(a, d)}\m, a) = l(λp. {/0(ί>, d)}'(p, m, a))

so again (a, m, α, β, n) E X. •

2.3 Corollary. There exists a primitive recursive function fλ such that for all I, α,

d, m, α, and n,

{a}\m, α, λp. {d}\p, m, a))^n-+ {/x(α, d)}'(m, α) = n.

Proo/. Let ft be a primitive recursive function such that for all d, p, m, and α,

Then we take /^α, d) to be an index such that

{Λ(α, d)}\m, a) - {/0(α, h(d, (m)))}\m9 a).

The result now follows from Lemma 2.2 by a direct computation. D

With this corollary, we have in a sense completed half of the proof of ( t ) : if G
and H are partial recursive in I, say with indices a and d from I, and

F(m, a) = G(m, α, λp. H(p, m, α)),
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then we have shown the existence of a functional F' partial recursive in I (with
index ft(a, d) from I) such that F C F'. In fact F' may be properly larger than F.
We shall complete the proof by showing that for m and a such that
λp.H(p,m, α) is total, F(m, a)— F'(m, a), and then observing that

F(m, a)— n <->l(λp. H(p,m, a)) j Λ F'(m, a)— n

so that F itself is partial recursive.

2.4 Definition. For each I and each x E β[l], the set Sbc(x) of subcomputations
of x is defined recursively as follows: for any fc, /, m, α, and n,

(0) if x = «0, fc, /,...>, m, a, n), then Sbc( c) = 0 ;
(1) if for some fc', b, c 0 , . . . , ck._,, x = «1, fc, /, 6, c 0 , . . . , ck.-ι),m, α, n), and

<7o> >9k'-i a r e l ^ e unique numbers such that for all i<fc' yk =
(ch m, α, ̂ ,)E Ω[\] and z = (ft, q, α, n)E β[l], then

S b φ ) = U{Sbc(yf): i < fc'}USbc(z)U{yj : i < fc'}U{z};

(2) if for some b, x = «2, fc -I-1, /), b, m, α, n), then

y =(6,m,α, n)E/2[l] and Sbc(x) = Sbc(y)U{y};

(3) if for some b and /3, x = ((3, fc, /, b), m, α, l(/3)) and for all p, yp =
(ί>,p,m,α,j3(p))EΛ[l], then

Sbc(x) = U{Sbc(yp): p E ω} U {yp : p E ω}.

This recursive definition is justified by the monomorphic character of the
definition of Ω[\] as in Theorem 1.3.5 (cf. Exercise 1.3.13).

We use the notion of subcomputation to derive a new principle of proof by
induction over β[l] which is related to ordinary proofs by induction over β[l] as
course-of-values induction over ω is related to ordinary induction over ω (cf.
Exercise 1.3.12).

2.5 Theorem. For any X C Λ[l], if for all x E

then X = Ω[\].

Proof Suppose X satisfies the hypothesis of the theorem and set

y = {x:jcEXΛSbc(x)CX}.
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We show Y = Ω[\] by ordinary induction over β[ l ] . If x E Ω[\] is of the form

x = «0, fc, Z,... >, m, α, n), then Sbc(jc) = 0 C X s o x G X and thus also x E Y.

The three inductive clauses are treated similarly and we do only (3). Suppose

x = «3, fc, Z, fc>, m, α, l(/3)) and for all p, yp = (ί>, p, m, α, j3(p)) E Y. By the defini-

tion of y, Sbc(yp) C X for all p. Hence as yp E X, Sbc(jc) C X and thus JC E X

and x E Y. D

For a given JC = (α, m, α, n) E β[ l] , the set {x} U Sbc(x) consists of exactly

those sequences (ft, p, β, q) such that {b}'(p, β) — q and a node labeled (ί>, p, β)

occurs in the tree for the computation {α}'(m, a)— n. If we denote by ISbc(x)

the immediate subcomputations of JC — that is, those which appear in the tree

immediately below JC, then ordinary induction over β[ l] may be seen as deriving

the conclusion X = Ω[\] from the hypothesis ISbc(jc)C X—> x E X.

Another way to view Theorem 2.5 is in terms of the levels of the inductive

definition of Ω[\]. If Γ, is the monotone operator implicit in Definition 1.1 such

that Ω[\] = Γ,, then for any σ and JC,

Furthermore, if X C ί l [ l ] satisfies Γ\σ)C X-*Γ°Q X, then clearly X =

The hypothesis of 2.5 is a refinement or "localization" of this condition in that

membership of a given JC E Γ^ in X requires only that the "relevant part" of

Γ\σ\ Sbc(jc), be included in X.

Before establishing the rest of (t ) , we need two technical lemmas whose

proofs we leave to the reader (Exercise 2.20).

2.6 Lemma. For all x and y E β[ l] ,

y E Sbc(jc) -• Sbc(y) C Sbc(jc). D

2.7 Lemma. For any k, Z, i < k, a, n, and (m, a) E klω, if {α}'(m, a)— n, then

(a, m, α, n) E Sbc(Sb, (α, m0,..., m4), mi+u . . . , mk_l9 α, n). D

2.8 Theorem. For all I, α, d, m, α, and n, ifλp. {d}\p, a) is a total function, then

{/0(α, J)}'(m, α ) ~ π -> {α}'(m, α, λp. {d}'(p, α)) - n.

Proo/. We shall apply Theorem 2.5 to the set

X = {JC : x E β[ l] , and for all α, d, m, α, and n, if λp.{d}\p, a) is total

and x = (/0(α, d),m, α, n), then {α}'(m, α, λp.{d}'(p, α ) ) - n}.
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We need thus to prove that for all x G β[ l] , if Sbc(x) C X, then x G X. If x is not
of the form x = (/0(α, d),m, α, n) with λp.{d}'(p, α ) total, there is nothing to
prove, so we assume that it is of this form, that Sbc( c) C X, and let β be the total
function λp. {d}\p, a). We consider the cases (0)-(4) under which a may fall.

(0) If a = <0, k, I + 1,...), the result is clear.

(1) If for some k\ f>, c 0 , . . . , ck.-l9 a = (1, k, / + 1,6, c 0 , . . . , ck,_x)y then

/o(fl, d) = (1, fc, /,/cA d),/o(co, d),... ,/o(ck'-,, d)).
Since by assumption {/0(Λ, ^ ' ( m , a) — n, there exist g0,..., qk_ι such that for all

^ ) * * and {/0(6, <f)}'(q, α ) « n.

Furthermore, for all i < k\

(/0(c,(ί),m,α,(?j)GSbc(x)CX,

and

(/ 0 (M),q,α,n)eSbφ)CX.

Hence by the definition of X we have

{Ci}\m,a9β)^qi and {6}'(q, α, β ) - π

and hence {α}'(m, α,β)-n, soxGX.

(2) Suppose now that α = (2, k 4-1, / + 1),

x =(/0(α, d), fc,m,α, n)GΩ[\], and Sbc(x)CX

Let c be as in the definition of f0 so that

/0(α, d) = Sb2(c, e, α, d).

Thus

n = {/0(fl, d)}\b, m, α ) « {c}'(e, α, d, 6, m, α)

~{{e}(b,d)}\m9a)

It follows from Lemma 2.7 that

(c, ̂ , α, d, 6, m, α, n) G Sbc(x).
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The choice of c as the natural index for the indicated computation ensures that

(/0(ί>, d), m, α, n) E Sbc((c, e, α, d, b, m, α, n)).

Thus by Lemma 2.6, we have

(/0(f>, d), m, α, n) E Sbc(jc) C X.

Hence, by the definition of X, {b}\m, a,β)^n and thus also {a}\b,m, α, β) - n,
so x E X.

(3) If α = (3, fc, / + 1, b) for some fc, then fo(a, d) = <3, fc, /, /0(b, d)), and

n - {/0(α, d)}'(m, α ) « l(λp.{fo(b, d)}ι(p,m, a)).

Thus λp. {fo(b, d)}\p, m, α) is a total function γ (because I of it is defined) and for
each p,

(/0(fc, d), p, m, α, γ(p)) E Sbc(jc) C X,

so for each p, {b}'(p, m, α, β) - γ(p). Thus

(4) If a is none of these forms, /0(α, d) = 0, so x & Ω[\], D

2.9 Corollary. For α// I, α, d, m, α, and n, if λp.{d}\p,m,a) is total, then

{/j(α, d)}\m, a)^n^> {α}'(m, α, λp. {d}1 (p, m, a)) = n.

Froo/. Suppose λp.{d}'(p, m, a) is a total function β and {fι(a, d)}\m, a)~ n.
Then with notation as in Corollary 2.3,

and by the preceding theorem,

{α}'(m, α, λp. {h(d, (m»}'(p,«)) - n.

But /ι was chosen just so that for all p,

{hid, <m»}'(p, α) - {d}'(p, m, α) - β(p)

so that {α}'(m, a,β)^n. D
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Now to establish ( t ) it remains only to remove the hypothesis that
λp.{d}(p,m, a) be total. This we achieve by a simple trick.

2.10 Theorem. There exists a primitive recursive function f such that for all I, a, d,
m and α,

{/(α, d)}'(m, α) =- {α}'(m, α, λp. {d}\p, m, α)).

Proo/. We want f(a, d) to be an index such that

{f (a, d)}\m, a) - 0 l(λp. {d}\p, m, α)) + ft (a, d)}'(m, α).

Clearly such an / can be defined explicitly from fx and indices for + and from I.
Then

{/(α, d)}ι(m, a) - n ~ \(λp. {d}\p, m, a)) | Λ {Λ(α, d ) } 1 ^ *)~n

*+ λp.{d}\p,m, α) is total Λ {/i(α, d)}'(m, a)— n

«->{α} (m, α, λp.{d} (p,m, α))— n.

The last equivalence uses Corollary 2.9 and the fact that computations are
defined only for total arguments. D

2.11 Corollary ( t) . For every I, the class of functionals partial recursive in I is
closed under functional substitution. D

The reader should ontrast this with the result of Exercise II.4.27 to see that
the use of I in the proof of Theorem 2.10 is really essential.

To derive (I) from this we need that the class of functionals partial recursive
in I is closed under expansion. This could have been proved earlier, but the
method of proof is similar to that of Lemma 2.2 and at this point becomes an
exercise.

2.12 Lemma. There exists a primitive recursive function f2 such that for all I, d, k,
/, (m, α ) G M ω , p, and β,

{fi(d,k9l)}ι(p,m9a,β)~{dγ(p,β).

Proof. Exercise 2.21. D

2.13 Corollary (I). For any I, F, β, and y, if β is recursive in I (and γ) and F is
partial recursive in I and β, then F is partial recursive in I (and γ).
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Proof. We prove the version without γ. Suppose F(m, α ) ~ G(m, a, β) and a

and d are indices of G and β, respectively, from I. Then

F(m, a) ^{a}\m, a, \p.{dγ(p))

~ {α}'(m,«, λp. {f2(d, k, l)}\p, m, a))

-{/(α,/2(d,k,/))}'(m,«) •

We are now in a position to prove (the effective version of) (II). The

technique is an extension of that used above.

2.14 Theorem. There exists a primitive recursive function g such that for all I, α,

d, m, and α, if kβ.{d}\β) is a total functional H, then

Proof. We define g as in the proof of Lemma 2.2 via the Recursion Theorem and

an auxiliary primitive recursive function ft, which is defined by cases as follows:

for any α, d, e, fc, and /,

(0) if a = (0, fc, /,...), then ft (e, a,d)= a\

(1) if for some fc', b, c 0 , . . . , ck,_u a = (1, fc, Z, b, c 0 , . . .,ck _χ), then h(e,a, d) =

<1, fc, 1, ft (e, ί>, d), ft (e, c0, <*),..., ft (e, ck._,, d)>;

(2) if α = (2, fc -f 1, Z), then ft is defined exactly as in the corresponding case

in the proof of Lemma 2.2;

(3) if for some b, a = (3, fc, Z, b), then ft (e, α, d) is the natural index such that

{ft (e, α, <f )}'(m, α ) - 0 l(λp. {ft (e, ft, d)}'(p, m, a))

+ {f(f2{d9k,l)9h(e9b9d))}\m,a)9

where / and f2 are from 2.10 and 2.12, respectively;

(4) if a is of none of these forms, then ft(β, α, d) = 0.

It is clear that ft is primitve recursive, so let e be an index such that

{e}(α, d) = h(e, α, d) and take g = {e}. We need to prove that for all α, m, α, and

{g(α, d)}'(m, α ) « n <-*{α}H(m, α ) =- n

under the assumption that H = λβ.{d}\β) is total.

The implication («-) is proved by induction over ί2[H] much as in Lemma

2.2. Let X denote the set of sequences (α,m, α, n)E ίl[H] such that

{g(a, d)} (m, a) — n. We must show that X satisfies the closure conditions which

define Ω[H].

(0) if a =<0,fc,Z,...) and {α}H(m, α ) - n , then g(a,d)=a, so

{g(a, d)}'(m, α ) - {α}'(m, α ) - {α}H(m, α ) - n. Thus (α, m, α, n) G X.



2. Substitution Theorems 281

( D Ί
> These are treated exactly as in the proof of Lemma 2.2.

(2) J
(3) If for some b, a = (3, fc, /, b), then for some β, (ί>, p, m, α, β(p)) E X for all

p. Then for all p,

{g(b9d)}ι(p9m,a)~β(p)

so

{g(β, d )}'(m, α) - 0 1(0) + {/(/2(d, k, /), g(b9 d))}\m, a)

= {f2(d9k,l)}\m9a9β)

-H(λp. {*>}>, m , α ) ) - n .

Thus (α, m, α, rc) E X.
For the implication (—>) we apply Theorem 2.5 to the set X = {x : x E β[ l] ,

and for all α, d, m, α, and n, if

x = (g(α, d), m, α, n) then {α}H(m, α ) =* n}.

We need to prove that for all x E β[ l] , if Sbφc) C X, then x E X. If x is not of
the form x = (g(α, d), m, α, n )E β[ l] , then there is nothing to prove, so we
assume that it is of this form and that Sbφc)C X. We consider the case (0)-(4)
under which a may fall.

(0)]
(1) > These cases are treated as in the proof of Theorem 2.8.
(2)J
(3) If for some fc, a = (3, fc, Z, b), then since {g(α, d)}*(m, α) | , it follows from

the definition of g in this case that l(λp.{g(fc, d)}'(p, m, or)) | and thus that for
some β, {g(b,d)}(p,m,a)—β(p) for all p. Furthermore, for all p,

ί>, <f),p,m, α, β(p))<Ξ S b φ ) C X

(this is why h(e,a,d) must be a natural index in this case). Thus, for all /?,

- n ,
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by the computation in the first half of the proof.

(4) If a is of none of these forms, g(α, d) = 0 so x & β[ l ] . D

2.15 Corollary (II). For any F, H, and I, if H is recursive in I and F is partial

recursive in H, then F is partial recursive in I. D

Of course, we used the same trick in the induction step (3) of the definition of

g as we did in Theorem 2.11 and it is clear that the proof will not work without I.

2.16 Corollary. The relation "recursive in" is transitive among total

functionals. D

2.17 Corollary. For any H and I, if H is recursive in I, then HβJ is recursive in 1^.

Proof. Suppose H is recursive in I with index d. Then with g as in Theorem 2.14

HSJ(«α, m» * a) = 0 <->{α}H(m, a) is defined

+*{g(a, d)}\m, a) is defined

*+ lSJ(«g(α, d)\ <m» * a) is defined. D

2.18 Theorem. There exists a primitive recursive function g' such that for all α, d,

m, α, and n, if λβ.{d}(β) is a total recursive functional H, then

{α}H(m, a)— n-*{g'(a, d)}(m, a)— n.

Proof. Exercise 2.22. D

2.19 Corollary (III). // H is recursive and F is recursive in H, then F is recursive.

Proof. If F has index a from H and H is recursive with index d, then

FC{g'(α, d)} by the preceding theorem. Since F is total, these functionals are

equal. D

2.20-2.29 Exercises

2.20. Prove Lemmas 2.6 and 2.7. Along the same lines, show that if a is any

l-index for a functional F partial recursive in I and e is the natural index given by

the proof of the I-Recursion Theorem such that

then
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(α, e, m, α, F(e, m, a)) E Sbc(e, m, α, F(e, m, α)).

2.21. Prove Lemma 2.12.

2.22. Prove Theorem 2.18.

2.23. Let I be any functional such that Ej is recursive in I and denote by ωjl] the
least ordinal not the order-type of a well-ordering of ω recursive in I. Show that

(i) for any β recursive in I, ωt[β] < ωx[l];
(ii) for any σ < ωt[\], there exists a β recursive in I such that σ < ωx[β],

2.24. Show that for any I such that E is recursive in I and any relation P
semi-recursive in I, if

R(m,α)«V/B3pP(j8(p),m,α)

then also R is semi-recursive in I.

2.25. (Cf. Exercise II.4.31). For any I and any partial function / of rank 1, let
β[ l ,/] be defined as is Ω[\] with the following additional clause:

if /(p)-n, then «0, k + 1, /,6>,p,m, α, π ) e Λ[l,/].

We write

{a}\m,a,f)~n+*(a,m,a,n)eΩ[\9f].

We have thus defined the class of functional partial recursive in I with
arguments of type (m, α, /). Show that for any such functional F partial recursive
in I,

(i) there exists an ordinary functional G partial recursive in I such that

G(e,m,tt)-F(m, «,{*?}');

(ii) (First \-Recursion Theorem) there exists a function / partial recursive in I
such that for all p, F(p, /) = f(p) and for any Λ, if also for all p, F(p, h) ̂  ft(p),
then fCh.

(iii) Formulate and prove a version of (ii) which allows for the presence of
parameters.
Hint, (i) is immediate from a minor modification of Lemma 2.9. For (ii), show
that if G is chosen correctly in (i) with, say, index b from I, then if G(e, p) — n and
g is a partial function defined by:

g(q)^r*+(e,q,r)<Ξ Sbc((b, e, p, n)),
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then F(p, g)— n (i.e. all of the values of {e} which are "necessary" in order that

F(p, {e}) =* n are computed as subcomputations of the computation G(e, p) ~ n).

Then show that if e is defined as in the proof of the I-Recursion Theorem such

that {e}\m) — G(e, ra), then / = {£}' is the required solution.

2.26. For any I and any inductive operator Γ on ω, Γ is positive semi-recursive in

I iff there exists a functional F partial recursive in I in the sense of the preceding

Exercise such that for any m and /

(i) Use the First I-Recursion Theorem to show that for any Γ which is

positive semi-recursive in I, Γ is semi-recursive in I.

(ii) Prove that every ΐlί set of numbers is semi-recursive in I (for arbitrary I!).

(Hi) Discuss the relationship of this to Theorem 1.8 and Corollary 1.9. Does

it follow that every Δj set is recursive in an arbitrary I?

2.27. Characterize the classes of relations recursive and semi-recursive in the

functional λα.O.

2.28. A functional I is called effectively discontinuous iff there exists a function F

recursive in I such that the sequence of functions Fp = λm. F(p, m) converges to

a function G, but the sequence of values l(Fp) does not converge to \(G). Show

that I is effectively discontinuous iff E is recursive in I.

2.29. Show that for any I, E is recursive in I iff {a : a is recursive in 1} is closed

under the ordinary jump oJ. (Suppose E is not recursive in I so by the preceding

exercise I is not effectively discontinuous. For each 5 let βs =

((s)0,.. ,(5) lg(s)_1)*(λrn.O) and γ(s )= l(βs). Show that every a recursive in I is

recursive in γ^.)

2.30 Notes. (I), (II) for total F, and (III) and their effective versions are due to

Kleene [1963]. The improved versions 2.10 and (II) (2.14) first appear in Hinman

[1966]. Kleene [1963] gave the counterexample 2.1. Exercises 2.28 and 2.29 are

due to Grilliot [1971].

3. Ordinal Comparison

This section is devoted to the proof of a technical result, the Ordinal Comparison

Theorem, which is the key to the theory of relations semi-recursive in a type-2

functional. This theorem is closely related, in both statement and proof, to
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Lemma 1.7. There we were able, using E, to compare the ordinals assigned to

members of W, a set to which all relations semi-recursive in E can be reduced.

For an arbitrary functional I such that E is recursive in I, we shall compare the

ordinals assigned to members of U1, a relation universal for the class of relations

semi-recursive in I.

3.1 Definition. For any I and α,

(i) Ό\aΛm)Λ«))*+{a}Xm,a)l;
(ii) t/L={<α,m>:Ul(fl,<m>,<α»};

(iii) Uι=Uι

0.

To each element of U we assign an ordinal which intuitively measures how

"long" the corresponding computation is:

where, as usual, ^[1]^ is the cr-th stage of the inductive definition of Ω[\], If

~U'(α,(m),(a)), we set |(α, (m), (α)) | = Hλ. Similarly, for any α,

We often write | α, m, a | and | α, m\a and omit the sub- and superscripts when

they are clear from the context.

3.2 Lemma. For any I, α, fc, /, and (m, α ) G M ω ,

(0) if a =<0,fc, /,...) and <α,m)G &„ then |α ,m| [ ,= 0;

(1) if for some b, c 0 , . . . , ck.-ί9 a = (1, k, Z, f>, c 0 , . . . , ck^) and (α, m) G Uι

a,

then

11,= m a x { | c ί , m | l

β + l r i ^ k ' l U ί l 6, qlL+1},

where for all i < kf, {cj(m, α ) — q,\

(2) ifa=(2,k + 1, /), and (a, b, m> G Uι

a, then

α, b, m | α = I b, m | β H-1

(3) if for some b, a = (3, k, /, b) and (a, m) G Uι

a, then

Proof. Immediate from the definitions. D

3.3 Ordinal Comparison Theorem. For any I such that E is recursive in I,

ua functional H partial recursive in I 5McΛ tfiαί /or all u ,u , and a,
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r τ \ , I Oil

U' and u L(i) if uc

(ii) if u1 E [/« and

1 11

I X f i Oi

w L< u

then H(M°,M1,(α»-0;
then H(iι o , i ι\<α»~l.

/. To simplify things slightly, we shall give the proof for the case a = 0 ; the
general case merely requires including (a) as a parameter throughout. The basic
intuition behind the proof is the same as for Lemma 1.7: to compare the ordinals
I u°\ and | uλ |, H compares the ordinals assigned to the "immediate subcomputa-
tions" of u° and u \ If at least one of u° and ux belongs to u\ some of these will
be smaller than min{| κ° |, | w1!} and a recursion will be established. Of course,
the partial recursiveness of H is ensured by means of the I-Recursion Theorem:
we define first a functional F partial recursive in I, choose e such that
{e}\u°, w *) - F(e, u°, u% and set H = {e}1.

The definition of F is divided into 16 cases labeled (r, s), with 0 ^ r, s ^ 3 plus
two "otherwise" cases. In case (r, 5) we define F(e, u , u1) for all u and u such
that uι = (a\ m), a° is an index appropriate for the arguments m° under clause
(r) of the definition of β[l], and a1 is an index appropriate for the arguments m1

under clause (s). "Appropriate" means merely that (α )0 = r, (a )λ = lg(m ), and
(α°)2 = 0, etc., not that the corresponding computation is defined. If u1 is not of
the form (a\m) with a' an appropriate index, we say that u' is not of the proper
form.

First, if uλ is not of the proper form, we set F(e, w°, u *) — 0, while if u J is of
the proper form but u° is not F(e, u , w1)— 1.

Cases (0,s) with 0 ^ s ^ 3 . F(e, w°, M ^ ^ O .
Cases (r,0) with l ^ r ^ 3 . F(e, u°, M 1 ) - 1.
Case (1,2). The assumption of proper form for this case means that for some

fr°,c, and ί>\ fc° = lg(m°), and /c^lgίm1), u° = «1, Jk°,O, ί>°, c),m°> and w1 =
«2, /c1 + 1,0), ίΛm1) (for simplicity we have taken kOf = 1). Our aim is that the
computation of H should proceed according to the following "flow diagram":

H((c°,m°)Λb\m1))
0

| l | θ l l

where q° denotes the (possibly undefined) value of {c}'(m°). To effect this, we set

F(e, « ° ,H' ) = G({e}'«c°, m°>, (b\m1)), c, u°, u')

where

Γίe} 1^ 0^ 0)^*. 1^ 1}), if n = 0;

[l, if n = l.
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Case (1,1). In this and succeeding cases we shall give only the recursive
conditions we want H to satisfy — in some cases by means of a flow diagram as
above — and leave it to the reader to verify that F may be defined so that the
resulting H does indeed satisfy these conditions. Here again we assume for
simplicity that fc° = kι = 1. The computation of H (w°, M1) is to proceed
according to the diagram:

H«co,m°>,<cI,m1 0 0\ / 1 lv

,q ),(c ,m )

H«c°,m°>,<&V>

where q' denotes the (possibly undefined) value of {c'}(m').
Case (2,1).

Case (2,2). H((bo,m°),{b\m1)).
Case (1,3).

E(λq.H((c°, i

E^.Hίtf',

m°Ub

lo

1,<j, m

, ^, m
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Case (3,1)-

E

E

°(λp H(

°(λp.H(

(ί>°, p ,

1
mo),(c1,m1»)

1

Ov it 1 K\\

m ),(b ,q )))

1

Case (2,3).

Case (3,2). Eo(λp.H«ί>0,p,m0),(ί>1,m1»).

Case (3,3). E°(λp. E(\q.H((b°,pym\(b\q,m)))).

We first observe that F is indeed partial recursive in I as all case distinctions

are recursive and the indicated computations require I, E, or E° and are thus

recursive in I by the assumption that E is recursive in I. Thus the I-Recursion

Theorem applies and there exists an H which satisfies the stated conditions.

Clauses (i) and (ii) of the theorem are vacuous unless either u °oru 1 belongs

to U . Hence, it suffices to prove (i) and (ii) by induction on σ = min{ | u ° |, | uι \}

for σ < Hv If u * is not of the proper form, then | M°| ^ | uι | = N, and H(M°, U ι) —

0 in accord with (i). If u1 is of the proper form but u° is not, then H(w°, uι) — 1 in

accord with the fact that at most clause (ii) can apply. Hence, for the induction

we may assume that (w°, u!) falls under one of the cases (r, s) with 0 ̂  r, s ^ 3.

If σ = 0, then either | M°| = 0 or | uι\ = 0 or both. If | u°\ = 0 (cases (0, s),

0 ^ s ^ 3), then H(κ°, u!) - 0 in accord with (i). If | uι \ = 0 while | u°\ έ 0 (cases

(r,0), 1 ̂  r ̂  3), then H(w°, M 1 ) ^ 1 in accord with (ii).

Suppose now that 0 < σ = min{| iι o | , | iι 1 |}<Mi and that for any v° and v\

clauses (i) and (ii) hold for v° and v1 provided that min{| v°\, | υλ |} < σ. We treat

three of the nine remaining cases in some detail and leave it to the reader to

check the others.

Case (1,2). Let u and M1 be as in the definition of F for this case. Suppose

first that u°eU* and | I I O | ^ | I # ! | . Then for some q°, {c°}\m°)^q° and

{b°}\q°) i . Furthermore, by Lemma 3.2 (1),

(1) | c o , m ° | < | M ° | = σ and \b°yq°\ < \u°\ = σ.

From (1) and Lemma 3.2(2) follows

(2) |c°,m°| ^ l^1,™1! and \b°,q°\ ^ \b\mι\,

and from (1) it is obvious that

(3) min{ |c o ,m o | , | ί> 1 ,m 1 | }<σ and min{|b o,^ o | , |ί) 1,in 1 |}< σ.
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Then from (2), (3), and the induction hypothesis we have

(4) H((c°,m°>,<f>1,m1»-0 and H((b°,q°),(bl,ml))~0.

From (4) and the flow diagram for H in this case it is evident that H(M°, U ι) — 0 in

accord with (i).

Suppose now that u1 E. U* and | w * | <: | M°| SO that \b\mι\<\u1\ = σ. If

| 6 1 , m 1 | < | c o , m ° | , then we see as above that

in accord with (ii). Otherwise |c°, m°| ^ | ί ) 1 , m 1 | . Since | ft1, m1 ! < * * ! , also

I c°, m°| < Hl9 so <c°, m°> G Ux and there exists a number q° - {c°}\m°). Note that

in this case there is no necessity that {b°}\q°) be defined. If it were the case that

\bo,q°\^\b\mι\, we would have by Lemma 3.2(1,2),

|M0 | = max{|c°,m 0 |+ I9\bo

9q°\ + l}^\b\mι\ + l = u\

contrary to the present assumption. Hence Ift^m1! < |b°,q°|, and by the

induction hypothesis we have

H«c°,m°>,<61,m1»«0 and H((ft°,^°>,(ft1,m1»-1.

Referring again to the flow diagram, we see that H(M°, U ι) — 1 in accord with (ii).

Case (1,1). Let u1 = «1, k',0, ft \ c 1),^ 1 ')) and suppose first that w°G L/'and

I M 0 ! ^ ^ 1 ! . Then there exists a q° — {c°}\m°)y (1) holds, and by the induction

hypothesis, for any υ,

(5) | c o , m o | ^ | u H H ( ( c o , i n o ) , i ; ) - 0 ;

(6) | ϋ | < | c o , i n o H H « c o , i n o ) , ι ; ) - l ;

(7) | f t ° , ί ?

o | ^ | ι ; o o

(8) | ι > | < | f t V

Suppose first that | c°, m°| ^ | c \ m11 so that by (5), H«c°, m°), (c \ m1)) - 0. If

also I ft0, q°\ ^ | c 1 , m 1 | , then by (7) and the flow diagram,

H ( M

o , M

1 ) - H ( ( f t o , ^ ° ) , ( c 1 , m 1 » - 0

in accord with (i). If, on the other hand, | c 1 , m 1 | < \b°,q°\, then (c 1,m 1>G & so

there exists a ^ ^ { c V ί m 1 ) . If it were the case that \b\qί\<\b°,q°\, then
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contrary to assumption. Hence |ft°,q°\ ^ \bι,qι\, and by (8) and (7) we have

H({b°9q°)Λc\mι))~\ and H«fr°, 9°),<6 l, 9

1»«0,

so again H(u°, u1) —0 in accord with (i).

The other possibility under (i) is that | c 1 ,m 1 | < |c°,m°|, so that by (6),

H((c°,m°),(c1,m1))-1 and there exists a qι^{cι}\m). In this case it is

impossible that \b\qι\ < |c°,m°| or \b\q1\<\b°,q°\, as either leads to the

conclusion | u1| < | w°|, contrary to assumption. Hence by (5) and (7) we have

H((c°,m°Mb\ql))~0 and H((b°,q°)Λb\qι))~09

whence H(M°, M1) — 0 as required.

The argument for clause (ii) is similar and is omitted.

Case (3,3). This case is similar to the main case encountered in the proof of

Lemma 1.7. By the case hypothesis we have w1 = ((3, fc',0, bι), m). The defini-

tion of H in this case is such that H(M°, M1) is defined just in case for all p and q,

H((ft°,p,m°),(b\q,m1)) is defined, and if so, then for all p and q,

(9) o o 1 1

(10)

Suppose first that u°G £/' and l u 0 ! ^ ^ 1 ) . Then

{(3, Jk°, 0, fc0)}1^0) - l(λp {b°}\p, m0))

is defined, so for all p, (ft0, p, m°) E u\ Furthermore, by Lemma 3.2(3), for all p,

I ft ,p, m I < I w°| = σ. Hence, for all p and q,

min{|ft°,p, m°|, | ft1, q, m 1 | }< σ,

so from the induction hypothesis we have for all p and q,

(11) | f t o ,p,m o |^ | f t 1 ,^m 1 HH((ft°,p,m o >,(ft 1 ,( ? ,m 1 »-0;

(12) | f t 1 ,^m 1 |< | f t o ,p,m o | ^H«ft o ,p,m°>,(ft 1 ,( ? ,m 1 ))-l .

As one of these holds for each p and q, H((ft°, p, m°>, (ft1, q, m1)) is defined for all

p and q and thus H(u°, w1) is defined. If u 1 fέ U\ then for some q,{bι}ι(q,in) is

undefined and thus | ft1, q, m11 = Ht. In this case, H(w°, uJ) =* 0 by (9) and (11). If

w ! E ί/1, then by the assumption and Lemma 3.2(3), for each p,

,p,m°| < 114°I ̂  I uι\ = sup+{|ft1,q,m1 | :q E ω}.
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Hence for each p, there is a q such that \b ,p,m | ̂  |b , g, m | and thus again
H(ΪI° ,M ! )=-0 by (9) and (11).

The subcase (ii) is handled similarly by use of (10) and (12). D

At this point it may come as a shock to the reader to learn that the preceding
theorem is in fact a simplified version of the full Ordinal Comparison Theorem.
Fortunately, the proof of the latter is an obvious translation of the preceding
proof. To state it, we return to the notation of § V.I and set xι = (a\ (m1), (α1)).
Similarly, we write

3.4 Theorem. For any I such that E is recursive in I, there exists a functional H

partial recursive in I such that for all x° and x\

(i) if lΓ(x°) and | x ° | ' ^ |JC 1 |', then H ^ c 0 , * 1 ) - 0;

(ii) if U ' (χ ! ) and \χι\ι<\x°\\ then H(x°,χ1)^ 1.

Proof Follows the proof of Theorem 3.3 including everywhere a and a as
parameters. (Cf. Exercise 3.7). D

3.5-3.7 Exercises

3.5. Write out explicitly the definition of F for cases (1,1) and (1,3) in the proof
of Theorem 3.3.

3.6. Work out the flow diagram for arbitrary fc° and kλ for cases (1,2) and (1,1)
in the proof of Theorem 3.3.

3.7. Sketch the proof of Theorem 3.4 by indicating what modifications are
necessary to include the parameters α.

3.8 Notes. The method of ordinal comparison and its application to the Selec-
tion Theorem (4.1 below) were announced in Gandy [1967a]. Moschovakis
[1967] contains the first published proof.

4. Relations Semi-Recursive in a Type -2 Functional

The theory of relations semi-recursive in a type-2 functional I (such that E is
recursive in I) is a blend of the theory of (absolutely) semi-recursive relations and
the theory of classes of relations which have the pre-wellordering property. We
develop first that part of the theory which parallels the theory of semi-recursive
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relations of § II.4 and then study the effect of the pre-wellordering property.

Both parts depend heavily on the Ordinal Comparison Theorem of the

preceding section and we must therefore assume throughout that I is a fixed

functional such that E is recursive in I.

4.1 Selection Theorem (Gandy). There exists a functional Sel1 partial recursive in

I such that for all α, m, and a, the following are equivalent:

(i) 3p.{α}'(p,m,α) J
(ii) {a}ι(Sel\a,(m),(a))9rn,a)l.

Proof For any α, let α + denote an index such that

{a+}\p, m, a) - {a}\p + 1, m, a).

There is a primitive recursive function a H> a +. Let H be the functional defined in

the Ordinal Comparison Theorem (3.3) and F the functional computed accord-

ing to the following flow diagram:

H«α,O,m>,

H«α,O,m),(α,{e}'(

{e>'(« +

(e,

I
α + ,

I
,<»

0

1

1

By the I-Recursion Theorem there is an e such that

and we set Sel1 = {e}\

Let pamoιdenote the least p such that {a}\p,m, a) is defined if there is such

a p. We prove the implication (i)—>(ii) by induction on pama\ that (ii)—»(i) is

evident.

Suppose first that pα,m,« = 0 — that is, {α}'(0,m, α) is defined. Then

(α, 0, m) E (7^, so for n = 0 or 1,
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If n = 0, then

as is appropriate. If n = 1, then |e, α+,(m)| < |α,0,m| and thus for some q,
{e}\a+, (m), (α)) — q. Again because (α, 0, m) E (7^, we have that for r = 0 or 1,

If r = 0, we have again Sel!(α, (m), (a)) — 0 as is appropriate. If r = 1, it follows
that |α, q + l ,m |< |α,0 ,m | and thus that {α}'(^ + l,m,α) is defined. Further-
more, in this case

Sel'(α, <m>, <α» - {e}\a\ <m>, <α» + 1

which is thus a suitable value. Note that in this case it is not the least p which is
selected.

Now suppose that p α , m , α >0. By definition, pα,m, ( α= pα

+,m,«+ 1, s o by the
induction hypothesis there exists a q such that

{β}l(α+, (m), <α» - Sel V , (m), <α» - 9

and

{α}'(^ + 1, m, a) - {fl*}'̂ , m, α),

which is defined. In particular, (e, α+,(m))E ί/«. By the assumption,

(α, 0,m) ^ [/„, so |e, α+,(m)| < |α,0,m| and thus

Similarly, |α, <j + l,m| < |α,0,m|, so

H«α,0,m>,<fl,9 + l,m>,(α»

Then

Sel'(α, <m>, <α» - {β}'(α+, <m

which is a suitable value. D
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The proofs of the following corollaries are exactly the same as the proofs of

the corresponding results in § II.4.

4.2 Corollary. For any relation R semi-recursive in I, there exists a functional

SelR partial recursive in I such that for all m and a,

3p. R(p, m, α)«-»R(SelR(m, a), m, a). D

4.3 Corollary. The class of relations semi-recursive in I is closed under finite

union and existential number quantification (3 ), hence also under bounded

existential quantification (3<). D

4.4 Corollary. The class of functionals partial recursive in I and relations

semi-recursive in I is closed under definition by positive cases. D

4.5 Corollary. A relation is recursive in I iff it is both semi-recursive in I and co-

semi-recursive in I. D

4.6 Corollary. For any partial functional F, F is partial recursive in I iff GrF is

semi-recursive in I and F is recursive in I iff F is total and GrF is recursive in

I. D

In § V.I we defined the pre-wellordering property only for the classes Σj and

ΠΓ, but essentially the same definition applies to any indexable class of relations:

4.7 Definition. For any class X of relations, X has the pre-wellordering property

iff there exists a relation V universal for X and relations < , <+, and <_ such

that:

(i) < is a pre-wellordering with field 2 1 ω such that for all x and y,

(a) ~ V ( y ) ^ j c < y , and

(b) V(y)ΛX<y^V(x) ;

(ii) < + belongs to X and <_ is the complement of a member of X;

(iii) for any JC and y such that either V(JC) or V(y),

(x <+y)<-*(x <y)*+(x <_y).

4.8 Theorem. The class of relations semi-recursive in I has the pre-wellordering

property.

Proof With H as in Theorem 3.4, we set V = U1;
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Conditions (i) and (ii) of Definition 4.7 are immediate, and condition (in) is easy
to verify from the properties of H expressed in Theorem 3.4. D

Although we cannot now directly apply the results of § V.I, as they are stated
only for Σ* and Πj, in many cases the proofs depend only on properties shared by
the class of relations semi-recursive in I. In particular, the classes of relations
semi-recursive in I and recursive in I are closed under both kinds of number
quantification (3 and V ) (we continue to assume throughout that E is recursive
in I). Of course, for E itself, the results are just those of §§IV.l-2.

4.9 Theorem, (i) The class of relations semi-recursive in I has the reduction
property but not the separation property

(ii) the class of relations co-semi-recursive in I has the separation property but
not the reduction property.

Proof Exactly as for Theorem V.I.4. This could also be proved directly from the
Selection Theorem as in Exercise II.4.33. D

As in § V.I, let | |J, be the norm induced on ω x ω by the restriction of the
pre-wellordering < to sequences of type (α, (m),( )), so that

and set

(In fact, I α, <m> |ό = | α, <m>, < ) f (Exercise 4.27)).

4.10 Boundedness Theorem. For any set A co-semi-recursive in I, if A G U,
then suρ+{|w|': u EA}<κ\

Proof Similar to that of Theorem V.1.5. D

For any p, let Up = {u : u E U Λ | M | < ρ } .

4.11 Hierarchy Theorem. For all relations R on numbers,

R is recursive in I <-» R < Up for some p < K

<r± R = {m: (a, m) E Up} for some p< K ' and a E ω.

Proof As for Theorem V.I.6. D
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4.12. Upper Classification Theorem, {a : a is recursive in 1} is semi-recursive in I.

Proof. As for Theorem V.I.8 using the second part of Corollary 4.6. A different
proof is obtained from the equivalence

a is recursive in l<->3α Vran [a(m) = n -^>{a}(m)— n], D

4.13. Corollary. The set of functions recursive in I is not a basis for the class of
sets co-semi-recursive in I. D

There are, of course, some properties of the class of semi-recursive relations
which are not shared by the class of relations semi-recursive in I. For example it
is not true that every relation semi-recursive in I is of the form 3 P with P
recursive in I, as every such relation is itself recursive in I (remember, we are
assuming that E is recursive in I). All of the equivalences of Theorem II.4.15 fail
if we replace (semi-, partial) recursive by (semi-, partial) recursive in I. If a
function / : kω —» ω is recursive in I, then so is Im(/). On the other hand, from the
assumption that a functional F is recursive in I we can conclude only that Im(F) is
a non-empty set of the form 3*P for P a relation recursive in I:

n E Im(F)**3α [3m. F(m, a)— n].

This estimate cannot be improved, for if A is any non-empty set of the form 3 ! P
with P recursive in I, then A = Im(F), where

ί
m, if P(m, α);

m, otherwise;

where m is some fixed element of A. Thus, for example, we have by Theorem
1.8, for any A ^ 0 ,

Λ ε Σ ^ Λ = Im(F) for some functional F recursive in E.

By a similar argument we see that the images of functional partial recursive in I
are exactly those of the form 3*P with P semi-recursive in I. Hence by Corollary
1.10,

A EΣ2«-*A = Im(F) for some function F partial recursive in E.

One result of this sort remains:

4.14 Theorem. For any A C ω, A is semi-recursive in I iff A = Im(/) for some
function f partial recursive in I.
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Proof. If A is semi-recursive in I and

(m, if m E A
/ ( m ) « |

[undefined, otherwise;

then / is partial recursive in I by Corollary 4.4 and Im(/) = A. Conversely, if / is
partial recursive in I, then

n E Im(/)<-»3m./(ra)— n,

so Im(/) is semi-recursive in I by Corollaries 4.3 and 4.6. D

The astute reader will also have noticed that there is no result here
corresponding to the Lower Classification Theorem V.I.13. Instead, we have

4.15 Theorem. There exists a functional I such that E is recursive in I and {a : a
is recursive in 1} is recursive in I.

Proof Let I be the functional defined by:

fE(α), if aEA\;
\(a) = ]

[E(α) -I- 2, otherwise.

That E is recursive in I is evident from the fact that

E(α) = 0 iff (l(α) = 0orl(α) = 2).

For all a recursive in E (i.e. in ΔJ), E(α) = l(α), so by the result of Exercise 1.13

{a : a is recursive in \} = {a : a is recursive in E}.

Since a E Δj iff l (α)^ 1, this set is recursive in I. D

Corresponding to the result of Exercises IV.2.25 and V.I.27, we have the
following effective choice principle:

4.16 Theorem. For any relation R semi-recursive in I,
(i) if VmVα 3p R(p, m, α), then there is an F recursive in I such that

VmVα R(F(m, α), m, α);
(ii) if VmVα (3β recursive in I and a) R(m, α, β), then there is a G recursive

in I such that VmVα R(m, α, λq.G(q,m, a)).
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Proof. For (i) we take simply F = SelR. F is partial recursive in I and is total by

the hypothesis, so F is recursive in I. For (ii), let

S(α, m, α)<->R(m, α, λq.{a}(q, m, a)).

S is semi-recursive in I by Theorem 2.10 and we may set

g, m, a) — {Sels(m, a)}\q, m, a).

We turn next to characterizing the ordinal K (analogously to Corollary

V.I.17). Let ω^l] denote the least ordinal not the order-type of a well-ordering

of ω recursive in I.

4.17 Theorem. κ' = ω,[l].

Proof. To establish κl ^ ω,[l], we show that to every M G ( / ' there corresponds a

well-ordering of type | u f recursive in I. First note that for each u E U\ the sets

( D : D 6 &Λ\V\1<\U\) and {v : υ E U* A \ υ f = | u \)

are recursive in I (use the pre-wellordering property). For each u E U the first of

these sets is pre-wellordered in type | u |' by a relation which is recursive in I. We

obtain a we//-ordering of the same type by a refinement. Let

Λu = {v : υ E L/1
 Λ I v f < | u |' Λ VW (| w | ! = 11? |'—» ϋ ^ w)}.

ΛM is recursive in I and contains a unique notation for each ordinal less than | u | .

Hence if

then .RM is the required well-ordering.

For the converse, let γ be any element of W recursive in I. We recall that \p \y

denotes the ordinal || γ f p ||. Let p be such that \p\y = 0 . We shall find an index e

such that for all q, (e,q)E:U* and \e,q\ι^\q\y. From this it follows that

K *51| γ ||. As | | γ | | is an arbitrary ordinal less than ω^l], the result follows.

Let / and g be functions partial recursive in I defined as follows:

fP, if P<yQ\
f(P,q)=\

[.p, otherwise;

ΓO, if q=p;

g{e,q) = \

[\(λp.{e}'(f(p,q))), otherwise.
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By the I-Recursion Theorem there exists an index e such that g(e,q) — {e}\q).
We prove by induction on \q\γ that (e,q)E. t/' and \e,q\ι^\q\γ.

If I q \γ = 0, then q = p so

{*}(?)« g ( * , p ) « 0

and thus (e,q)G U and \e,q\ ^ 0 = \q \γ.
Now suppose | ^ | y > 0 . Note that for all p, \f(p,q)\Ύ<\q\Ύ so by the

induction hypothesis, (e,f(p,q))E. Ux. But then λp. {e}'(/(/?, q)) is total so g(e, q)
is defined and thus (e,q)E u\ Let b be a natural index for g from I — that is,
one such that

(e, f(p, q), {eγ(f(p, q))) E Sbc(fc, e, q,g(e, q))

and thus

From the proof of the Recursion Theorem it is easy to verify (Exercise 2.20) that
we may assume that e is chosen in such a way that

(b, e, q, g(e,q)) G Sbc(e, q, g(e, q))

and thus

\b, e,q | '< \e,q f.

By the induction hypothesis we have for all p <yq,

from which it follows that | q \γ ^ | e, q | . D

Of course, this, as well as most of the other results of this section, may be
relativized to yield theorems about the class of relations semi-recursive in I and
a. In particular, we obtain from the preceding theorem that κa= ωx[\, a] — that
is, sup+{| u |': u E JJ[J is the least ordinal not recursive in I and a. From this it
follows that

In other words, the inductive definition of Ω [I] has exactly Hι stages.
We conclude this section by establishing the analogue for recursion in I of the
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Spector-Gandy Theorem (IV.2.9). We denote by Σj'1 the class of relations R
such that for some relation P recursive in I,

R(m, α?)<-»(3/3 recursive in I, α)P(m, α, β).

4.18 Theorem. Σj'1 = {R : R is semi-recursive in I}.

Proof. If R E Σ J ' and satisfies the preceding equivalence for some relation P
recursive in I, then

R(m, P(m, α, λp.{a}ι(p, a))

and R is semi-recursive in I by Corollaries 2.11 and 4.3.
We shall prove the converse inclusion only for relations on numbers. For this

it will clearly suffice to show [ / ' E Σ J ' 1 . For any υ, let

i°\^\uι\
3Ό(u°,uι) = j l , if I w * I < I

[2, otherwise;

and 114 | < | υ |
and Iu11< I υI

yΌ((a,m)) =
if

0, otherwise.

We aim to define a relation P recursive in I such that for any v,
(i) if v G U\ then P(v, βυ, γυ) holds, and

(ii) if v £ U\ then for any β and γ such that P(v, β, γ), and any (α, m) E U\

From (i) and (ii) we can conclude that for all υ,
(iii) v EL Uι++(3β,y recursive in \)P(v,β,y)

as follows. For the implication (->) it suffices to show that for all υ E \j\ βυ and
yv are recursive in I. Using the ordinal comparison functional H of Theorem 3.3,
βv(u°, u1) may be computed according to the following flow diagram:
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Since υ E U\ the values in the left-hand boxes are defined, and if the right-hand
box is reached, also one of u° and w1 belongs to Uι. Hence βv is recursive in I.
Then

r{a}ι(m), if ft,«α,m>,<α,m» = 0;
γυ«α,m» = j

[O, otherwise;

so yυ is also recursive in I.
For the implication (<—) of (iii), suppose v £ Uι but that β and γ are

functions recursive in I such that P(υ, β, γ) holds. Then there exists an index a
such that for all ra, {a}\m)= y((m, m))+ 1. In particular, (a,a)E Uι so by (ii),

a contradiction.
To define P and establish (i) and (ii) we return to the proof of Theorem 3.3.

For P(v, β, y) to hold will require, roughly speaking, that β satisfy the recursive
conditions imposed on H in that proof and that y satisfy the recursive conditions
inherent in the definition of β[l], in each case only for arguments which precede
v in the pre-wellordering of U . In order that P be recursive in I and not merely
semi-recursive in I, we replace occurrences of {c}'(m) in the recursive conditions
on H by γ((c, m».

First, for 0 ̂  r, s ^ 4 we define relations QΓ s as follows. Qr S (H°, w1, β, γ)
holds only if (w°, u1) falls under case (r, 5), with "4" signifying "not of the proper
form". Then Qr S(M°, M1, β, γ) is to hold when, with β replacing H, the answer 0
is obtained from the flow diagram for the corresponding case of Theorem 3.3.
Thus, we set:

Qr,4(w°, u\ ftγ)oO = 0 (0 *Ξ r ^ 4);

Q 4 f S ( i Λ i Λ f t γ ) « 0 = l ( 0 ^ 5 ^ 3 ) ;

O,mo),(fe1,m1)) = 0 and

where q° = γ((c°,m°));

= 0 or
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where qι = γ((c\m1));

The relations QΓ s for the remaining cases are obtained similarly from the

corresponding cases in the proof of Theorem 3.3. Let

The conditions on γ are expressed by a relation S which may be thought of as

saying " γ is locally correct for β " :

S(ft γ ) * * f o r all w, k, and m Ekω, if β(u, M) = 0,

then the following hold:

(0) if u = ((0, fc, 0, . . . ) , m) and (0, fc, 0,. . .) is an index of the proper form for

m, then γ(iι) = {<0,k,0,...>}l(m);

(1) if for some b,co,...,ck._u u = «1, fc,0, b, c o , . . . , ck,_1),m), then γ ( u ) =

y((b, γ«c 0 , m » , . . . , γ«c k._ 1, m»»;

(2) if for some b, u = ((2, fc + 1,0), fc,m), then γ(w) = γ«6,m»;

(3) if for some b, u = «3, fc,0,fc),m>, then γ ( n ) = l(λp. γ«6,p,m»).

Finally, we set

3,γ) and for all u° and I I 1 ,

and

[j8(ii°, u ! ) = 1 « ~Q(M°, u\ ft γ) Λ -Q(υ, u\ ft γ)].

Since Q and S are each recursive in I, so is P.

Towards (i), suppose υ E U. Then it is obvious from the definitions that

ft, yυ) holds. We need thus only show that for all u° and u\

(iv) ft

and

(v) βv(u0,uί)=l~~Q(u0,u\β

These will, in turn, be derived from:
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(vi) mm{\u0\,\ut\}*\υ\^[\u0\*\ui\+*Q(u°,u\βwγo)].

The proof of (vi) is by induction on σ = min{ \u |, | ux \} and is closely parallel

to the corresponding part of the proof of Theorem 3.3. We examine only one

case to indicate the relationship between the proofs. Suppose u° =

((l,k o ,0, i o ,c O ),m o > and w1 = «2, k'+ l,0>, b\m\ min{| M ^ J M 1 ! } ^ | υ | , and

first that I w°| ^ | w11. Then | u°\ ^ \v |, for some q°, {c°}\m°)~ q°, and

| c ° , m ° | < l " Ί ^ M and \bo,q°\<\uo\^\υ\.

By Lemma 3.2,

| 0 O i ^ i i l 1 I j 1 , 0 0 ι _ , | i l 1 I

I c , m I ̂  I b , m | and | 6 , ^ | ^ | 6 , m | ,

and thus

Furthermore, since |c°,m°| < | ϋ | , yv((c°,m°))= q° and we have

Q, 2(M°, M1, βυ, γ υ ) and hence Q(u°, u1, βv, yv). If, on the other hand, | ι / | < | u° | ,

then Ifr1,™1! < | M 1 | ^ | U | . If | fc1, m11 < | c°, m°|, then j8ϋ«c0,m°),<ί>1,m1)) = 1

which implies ~ Q ( M ° , U\ βv, yυ). Otherwise, |c°, m°| ^ | 6 1 ,m 1 | , and thus

β o (<Λm\<fc\m 1 >) = 0 . B u t t h e n | Λ m ° | < | t ; | , s o { c 7 ( m 0 ) « r ^

(say) and necessarily | fe1, m11 < | b°,q°\ (by the assumption | w21 <c | w°|), so

βv((b°,q\(b\m1))=l and again we have ~Q(u°, u 1, βυ, yv).

Now to derive (iv) from (vi), suppose first that βυ(u°,uι) = 0 so that

I w ° | ̂  I w 1 ! a n d | w ° | < | ϋ | . S i n c e m i n { \ u o \ , \ u 1 \ } = m i n { \ u ° \ , \ v \ } = \ u ° \ < \ v \ ,

(vi) yields immediately the right-hand side of (iv). Conversely, since

min{|ι> | , | M O | } = ^ | U | , if the right-hand side of (iv) holds, then from (vi) and

~Q(ι;, M°, βv, yυ) we conclude that | M ° | < | υ\. Then also min{| w 0 ! , ^ 1 ! } ^ ^ 0 ^

| υ | , so from (vi) and Q(M°, M1, βυ, yv) we conclude that | w°| ^ | wx| and thus that

βυ (u , u ) = 0. The proof of (v) from (vi) is similar. This concludes the proof

of (i).

For (ii), suppose v g U and that β and γ are any functions such that

P(v, β, γ) holds. We propose to prove that for all «°, M1, α, and m,

(vii) M ° £ { 7 I Λ | U 0 | « | « Ή / 3 ( U ° , U 1 ) = 0 ;

(viii) u ' ε U{Ά\u1\<\u0\^β(u°,u1)=l;

(ix) (a, m) e U1^ γ{(a, m» = {α}'(m).

As in the proof of Theorem 3.3, the proof of (vii)-(ix) is again by induction on

min{|M0 | , |w1 |} = |<α,m>| = σ < N 1 . If | i ι° | = 0, then Qo, s(«°, u\β, γ ) holds for
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uι falling under any case (5) (0 ̂  s ^ 4) and ~QΓ 0(υ, w°, β, y) holds for r such

that v falls under case (r) (1 ̂  r ^ 4, because v$LU* and thus cannot fall under

case (0)). Hence by the definition of P, β(u°,uι) = 0 in accord with (vii). If, on

the other hand, | κ ! | = 0 < | n ° | , then ~Q r0(w°, u\ β, y) and ~Q Λ 0 (ι;, M\ β, γ)

for some r and r' (1 ̂  r, r '^4) representing the cases applicable to u and υ,

respectively. Hence β(u°,uι)= 1 in accord with (viii). Finally, if |(α,m)| = 0,

then it follows from (vii) that β((a, m),(α, m)) = 0 and thus from S(ι\ β, γ) we

have γ((a,m)) = {a}(m).
Now suppose σ > 0 and as induction hypothesis that (vii)-(ix) hold for all u ,

u\ a, and m with min{| M O | , | M 1 | } < σ and \(a,m)| < σ. We first claim that for all

u° and u\

(x) min{ |M° | , |M 1 | }^σ-^[ | M

0 | ^ |M 1 | ^Q(M°,M 1 ,β,γ )] .

As in the case of (vi), the proof of (x) by cases is virtually a copy of the

corresponding argument for Theorem 3.3. We omit details and only mention

that at those points in the argument where for (vi) we appealed to the fact that

some ordinal is less than | v \ to justify an assertion concerning βυ or yv1 we here

appeal to the fact that the corresponding ordinal is less than σ and apply the

relevant clause (vii)-(ix) of the induction hypothesis.

To complete the induction step in the proof of (vii)-(ix), let min{ | u ° |, | u11} =

σ and suppose first that | w°| =̂  | wx|. Then by (x), Q(w°, u\ β, γ) holds. Since

v£U\ min{|υ|,|M°|} = |M°| = or and thus as | U | ^ | M O | , by (x) again

~Q(υ, u°, β, γ). Hence j3(u°, u1) — 0 as required by (vii). If | uι\ < \ M°|, then

min{ |ϋ | , | i4 1 | } = | i ι 1 | = σ < | ϋ | ,

and two more applications of (x) yield ~Q(u°, u\ β, y) and ~Q(ϋ, u\ 0, γ), so

β(u ,M ) = 1 as required by (viii). Finally, suppose |α, m| = σ. If, for example,

a = (1, fc,0, b, c), then | c , m | < σ so by (ix) of the induction hypothesis

γ(<c,m» = {c}l(m). Also \b,{c}\m)\<σ so γ«fc,{c}l(m)» = {6}l({c}l(m)) By

(vii), β((a, m>,<α, m» = 0 so since S(/3, γ) holds, we have

γ«α, m» = γ(fc, γ«α, m») = {frl'ttc}1^)) = {a}\m).

The other cases are similar. D

4.19-4.31 Exercises

4.19. Can Sel1 be defined to have the additional property present in other cases
that

3p.{α}'(p,m, α ) | ^Sel'(m, a) I ?
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4.20. Modify the proof of the Selection Theorem 4.1 to obtain a functional Selό

with the additional property that for all p,

I a, Selό(α, <m>, (a », m | ^ | α, p, m |^.

4.21. Show that if we do not assume that E is recursive in I, the results of §§ 3 and

4 may fail. In particular, show that it may happen that both R and ~R are

semi-recursive in I but R is not recursive in I.

4.22. Show that for any I such that E is recursive in I, there exist functions / and g

recursive in I such that for all u and m,

(i) if u E [/' and | u f < ω, then f(u) = | u |'

(ii) g(m)GU* and | g ( m ) | ' = m .

4.23. Suppose E is recursive in I and F is a function partial recursive in I such

that F : Uι—> U\ Show that there exists a function G :[/'—» t/1 partial recursive

in I such that for all u G [ / '

\G(u)\ι^sap+{\F(υ)\ί:\υ\ι<\u\i}.

4.24. Prove the following Effective Boundedness Principle: there exists a primi-

tive recursive function h such that for any d, if Vp.{d}'(p)E u\ then h(d)E I/1

*ndVp.\{dγ(p)\ι<\h(d)\ι.

4.25. For any I such that E is recursive in I, there exists a well-ordering of ω of

order-type ωλ[\] which is semi-recursive in I.

4.26. Show that if E is recursive in I, then Wωi[l] is semi-recursive in I and if Ej is

recursive in I, then Wωi[l] is recursive in I. (Define a functional G partial recursive

in I such that for all γ E W and all u,

fo, if |κί<IMI;
G ( u , γ ) -

[l, otherwise.)

4.27. Show that | a, <m> |ό = | α, <m>, ( ) | ' .

4.28. For any I such that E is recursive in I, if A and B are sets of numbers both

semi-recursive in I but not recursive in I, then A is recursive in I and B and B is

recursive in I and A. (Cf. Corollary IV.2.13).

4.29 (cf. Exercise IV.2.24). The hierarchy of Theorem 4.11 is deficient in that it

may happen that for some p < σ < K no new relations are reducible to some Uτ
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(T < σ) that are not already reducible to some Uτ (T < p). This can be remedied
by omitting superfluous levels in the hierarchy. Let

X = {σ : σ < K ' Λ U*σΆ ϋ\ for any p < σ}

and

K1 = order-type of X.

Show that if E is recursive in I, then K = K .
Hint. Let

U = {u : u G U Λ I M I E X Λ Vϋ ( | ϋ | = |M | —> M ^ ϋ)}

and suppose that for some t G U\ K =\t\ < K . Set

P(I4, ϋ) « (I U I V I t f Λ ϋ = 0) V (I U f < I t I' Λ V G I/' Λ

Vα [if a is an ordinal-preserving map of

{r : I r I1 ̂  I M I1} into {5 : 5 G (71 Λ 15 f ^ | v |'},

then α ( « ) = υ]).

Show that P is semi-recursive in I, there is a function β recursive in I such that

V«P(u,β(M)) and

4.30. Show that for any v £ I/1 and any β and γ, if P(υ, β, y) holds (P from the
proof of Theorem 4.18), then β is not recursive in I.

4.31 (Gandy). Show that {a : a is recursive in EJ is a model of the Δ2
Comprehension schema.

4.32 Notes. To anyone who has reached this note legitimately — that is, by
following the proof of Theorem 4.18 — we offer our congratulations and suggest
that some strong refreshment is in order. Try combining some hard-frozen
strawberries, raspberries, or peaches in a blender with enough dark rum so that
the result is a stiff mush (add powdered sugar if the fruit was not sweetened).
Pour into a stemmed cocktail glass and relax! For an alternative, see the Notes to
Barwise [1975, §11.6].

A simpler proof of a weaker version of Theorem 4.18 is sketched in Exercise
6.26.
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5. Hierarchies of Relations Recursive in a Type-2

Functional

In § V.5 we constructed hierarchies of relations obtained by repeated application

of positive analytic operations Φ and jump operators J. Here we shall study the

relationship of these hierarchies with recursion in a functional. With any jump

operator J we associate the functional Ij defined by

and say that a relation or functional is recursive in J iff it is recursive in Ij. We

write {a}J instead of {a}]j. Recall that V(J) denotes the class of relations on

numbers which are recursive in some set DJ

U (u E O J ) of Definition V.5.5. The

main result of this section is that for any jump operator J,

V(J) = {R : R is recursive in J}.

Note that for oJ this equation follows from Theorem IV.4.21, Lemma 1.4 and

Theorem 1.8; both sides are Δj.

With any positive analytic operation Φ we may associate the functional l φ

defined by

and say that a relation or functional is recursive in Φ iff it is recursive in lφ. Then,

for example, \Ό = E and 1^ = E,. Similar methods lead to the result that for

normal Φ,

V(Φ) = {R : R is recursive in Φ},

but we shall not carry out the details. A crucial point is that if Φ is normal, then

E is recursive in Φ (Exercise 5.10).

5.1 Lemma. For any jump operator J, V(J)C{R : R is recursive in J}.

Proof. We shall define a primitive recursive function / such that for all u E O ,

{f(u)}J is the characteristic function of DJ

Um Let /ι be a primitive recursive

function which satisfies the following conditions for any J:
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{h(eX 5u)}\(m,p)) = {{e}({a}(pΛ{e}(u)}J))}J(m).

By the Primitive Recursion Theorem choose e such that for all u, {e}{u) =

h(e,u) and set / = {e}. It is straightforward to prove by induction on the

well-founded relation < J that / is as required. D

The proof of the converse will follow the pattern of IV.4.19-21.

5.2 Lemma. For any jump operator J, there exists a primitive recursive function g

such that for all u,v E O J , | u | J ̂  | υ | J, then DJ

U is recursive in DJ

υ with index

Proof. We shall define g by the Recursion Theorem simultaneously with an

auxiliary function / such that for w, v E O J ,

and

In the proof we shall use the following abbreviations:

Ku for {p:{g(u,v)}(p,Λ)^0},

Λip) for {m :(m,p)GA},

ya(p) for {a}(p,Av,u),

and

δb(p) for ( 0 )

Thus if g satisfies the conclusion of the Lemma, we have:

if K, υ e O J , | u | J ^ | ι ; | J , and A = DJ

υ, then

Λϋ)U =DJ

U and for all p, ya{p) = {a}(p, DJ

M);

and without any assumption,

if 3b5vEOJ and A=DJ

3*5»9 then Λ ( 0 ) = D J

υ , and
(**)

for all p9 δb(p) = {b}(p, DJ

υ) and A(p) = D '
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We require that / and g satisfy the following conditions: for all u, v, a, b, m,
and A,

(2) (a) {f(υ+)}(u\J(A))~{f(υ)}(u,Ay,

ΓF(M,ι>,α,J(J(A))), if {/(i>)}(iι,J(A))-O;
(b) {/(ι;+)}(3α5M,J(J(A)))=|

[l, otherwise;

where

fl, if 3p.{/(t>)}(γβ(p),J(A))«l;
F(M,ι;,α,J(J(A)))-]

[O, otherwise.

(0, if 3p.G(p, M,f?,A)=-0;

1, otherwise;

where

G(p,M,f>,A):

(4)

(5) (a) {g(M

+,ι;+)}(m,A)-{Λ(g(M,ι;))}(m,A),

where /ι is the function of Definition V.5.4;

(b) {g(3α5M,ϋ+)}(m,J(A))-{g(3α5u,ι;)}(m,A);

(6) (a) {g(ιι+,3b5β)}(m,A)«{g(ιι+,«b(p))}(m,ACίl)),

where p - "least" p. G(p, M +, fe, A) - 0 (G as in (3));

(b) {g(3α5",3b5ϋ)}((m,p),A)-{g(α(p),355 l ))}(m,A),

where α(p)-{α}(p, A3<>5%).

The proof that there exist primitive recursive / and g which satisfy these
conditions is essentially as for Lemma IV.4.20. The fact that oJ(A) is recursive
in J(A) is needed to account for the quantifiers. We prove by induction on | v \
( = I υ |J) that / and g have the required properties. If | v \ = 0 this is obvious, so
suppose it is true with v replaced by any w such that | w | < | υ +1. Then (*) holds
for this v and any u and

(1) | l | < | u + | istrueand{/(ϋ+)}(l,Di^)«O.
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(2) (a) If u + <ΞθJ, then u £ O J , so

= 0

(b) If Y 5" ε O J , then w <Ξ O J and for all p, {α}(p,D J

u )Gθ J . Thus

| 3 α 5 u | < | υ + | H " l < M and Vp.|{α}(p,D J

u) |< | » |

and Vp.{/(ι>)}({α}(p,DJJ,DJ

ϋ+)

The last equivalence follows from (*).

(5) (a) If |« + | s φ + | , then | « | « | u | , so

m EJ(DJ

U)

(b) If ϋ + |, then | 3 β 5 " | « | ι > | , so

Now suppose that the result holds with v replaced by any w such that
^ ~ιb r-v

< 3 5

(3) First note that by (**) and the induction hypothesis,

δb(p)+

Then as in the corresponding part of the proof of IV.4.20, for any u G O J and
any p,

I w I < I δb(p)\ «* G(p, M, 6, DJ

3tsv) - 0.

Hence

\u\<\3b5v\±*3p.\u\<\δb(p)\
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(6) We proceed by induction on \u\.

(a) If I u +1 =s 13" 5" I, then | u +| < 13fc 5" | so (by (**)) for some (least) p,
+ | . Then G(p, u+,b, D ^ ^ - O and

m (Ξ DJ

u^{g(u\δb(p))}(m,DJ

δbΦ))^0

(b) If | 3 β 5 " | s s | 3 * 5 " | , then | u | < | 3 b 5 u | and for all p, \{a}(p, D J

U ) | <

3 5" I. By the induction hypothesis on u,

so that a(p) = {a}(p,DJ

u). Then

(m,p)E. Di«5«*+m G D J

a(p)

5 u , 3 f > 5 t ' ) } « m , p ) , D J ^ 5 t ) - 0 . D

5.3 Lemma. For any jump operator J, there exists a partial recursive function +

such that for all u, v G O , u + t > E O , | w + υ\ =\u\ + | f | , and ifυ^ 1, then

Proof. We define + J by the Recursion Theorem to satisfy the following

conditions:

(1) w + J l - w ;

(2) M + J ϋ + ^ ( n + J ι ; ) + ;

(3) M + 3 5 υ — 3C 5 " + ϋ, where c is an index such that

That is, with g as in the preceding lemma,

{c}(p,A')^u+J{b}(p,λn.{g(v,u+Jυ)}(n,A)).

If follows easily by induction over O J that + J has the required properties. D

5.4 Corollary (Effective Boundedness). For any jump operator J, there exists a

primitive recursive function h such that for any u E O and any d, if for all p,
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{d}(p,DJ

u)eθJ, then h(d,u)GθJ, \u\J <\h(d,u)\J, and for all p,

\{d}(p,DJ

u)\J<\h(d,u)\J.

Proof. We set h(d, M) = 3 C 5M, where c is an index such that

{ C } ( 0 , Λ ) - M , and

The required properties of h follow easily from the properties of + J . D

5.5 Theorem. For any jump operator J, there exist primitive recursive functions f

and g such that for any a and m, if {a} (m) is defined, thenf(a,(m))E O and

Proof. We shall use the notation AtttU as in the proof of Lemma 5.2 and the

function h of the preceding Corollary. In particular if u £ O J and for all p,

{d}(p,DJ

u)<ΞθJ,

We require that / and g satisfy the following conditions for all α and m,

(0) If a = <0, k, 0,. . . >, then f(a, <m» = 1 and

(1) if a = <1, k,0,b,c,c2) (say), then /(α,<m» = h(duh{d0,1)), where

r/(c,,(m», if p = 0;

> ί ) -
L/(c2,<m», if p > 0 ;

{dt}(p, A) = f(b, ({gic^im, A Md(),,),/(C|,<m»), {g(c2)}(m, Λ M d ( ), ,),/(„

{g(α)}(m, A) -

where

(2) if α =<2,/c + l,0>, then /(α,<f>,m» = h(<i2,1), where

, m, Λ) =
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(3) if a = (3, k, I, b), then /(α,<m»= h(d3,1)+, where {d3}(p,D?) =
f(b,(p,m)); g(a) is an index such that

where

{d4}(p, m, A ) - {g(Z>)}(p, m, A A

The proof that there exist such / and g is again similar to the corresponding
proof in Lemma IV.4.20. We prove that / and g have the required properties by
induction on β[J] (= ί2[lj]).

(0) If a = (0, fe, 0,...), then the result is clear.

(1) If α=<l,k,0,fc,c1,c2>, {cJ J (m)-^ 0 = 1,2), and {α}J(m)^
{fc^Oh,^)— n> then by the induction hypothesis, /(ci5 (m))G O J . Hence for all
p, {d0}(p,Di)EOJ, h(d0,l)<ΞθJ, ifiqΛm^l^lhidoΛ)? (ί = 1,2), and

By the induction hypothesis for g, { g ί c ^ K m ^ ^ . ^ ) ^ qi9 so for all p,
{dι}(p,DiidoΛ))^ f(bAquq2))t θ\ and thus /(α,<m» = h(du h(d0,1))E O J .
Furthermore, by the induction hypothesis,

{g(α)}(m, D^(α,<m>)) - {g(ί>)}(ql9 q2, D
J

fibΛquq2>)) - {ft}^^ q2) - n.

(2) If α=(2,k + l,0) and {a}J(b,m) = {b}\m)~ n, then for all p,

{d2}(p,Di)-/(fc,(m))GOJ, so/(α,( fc ,m))-/ ι (41)£θ J . Furthermore,

{g(α)}(fe, m, DJ

f(aΛb,m)))

(3) If α=<3,k,0,6> and {α}J(m)=- \j(λp.{b}\p,m))^ n, then for all p,

{d2}(p, Di) - /(ft, (p, m» E O J, so /(α, <m» - h(d3,1)+ E O J . Then also

(α)}(m, DJ

/(α,<m>)) - J(λp.{d4}(p + 1,m, D ^

- J(λp.{g(f>)}(p + l,m,DJ

/(b,<p+1,m>)))({g(fc)}(0,m,DJ

/(5,<o,m>)))

fc}J(p,m))-n. D

5.6 Corollary. For any jump operator J and any R C kω, R is recursive in J iff for

some u E O J , i? is recursive in Du.

Proof Immediate from Lemma 5.1, Corollary 5.4, and Theorem 5.5. D
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Since for any jump operator J and any A, oJ(Λ) is recursive in J(A), it
follows that J(Λ) is not recursive in A. In particular, for all u G OJ,DJ

U+ is not
recursive in DJ

U, whence by Lemma 5.2, if | u | J < | v |J, then DJ

υ is not recursive in
DJ

Um Thus if we set

Δ^= {R : R is recursive in some DJ

U such that | u | J ^ σ},

the classes Δ^ form a properly increasing hierarchy of length

λ J = sup + {M J : M GOJ},

which includes exactly the relations on numbers which are recursive in J. The
evaluation of λ provides no surprise:

5.7 Theorem. For any jump operator J, λ = ω^J].

Sketch of proof. An easy induction over /2[J] shows that for all a and m, if
{α}J(m) is defined, then \(a, m)|J=^ |/(α, (m))|J, where the first ordinal is that
assigned in § 3, the second is the ordinal assigned to members of O , and / is the
function of Theorem 5.5. It then follows from Theorem 4.16 that λ J ^ ω 1 [ J ] .
Conversely, it is possible to define a primitive recursive function h such that for
all uGOJ, h(u) is an index from DJ

U of {(v, w): v < J w < J u) which is a
well-ordering of type | u | J and is recursive in J. It follows that ω1[J]2ϊλ J

(Exercise 5.11). D

These results provide a hierarchy for the relations on numbers recursive in
any jump operator. Happily, for any functional I in which E is recursive there is a
jump operator J, of the same degree (each of I and J, is recursive in the other) so
that we obtain a hierarchy for the relations on numbers recursive in any such I.

Let

ΓO, if p)
J,(α)«α,n» = j

U, otherwise.

5.8 Lemma. For any I, J, is a jump operator.

Proof. Let n0 = \(λp. 0) and / be a primitive recursive function such that for all α,
p, m, and α,

Then



6. Extended Functionals 315

a°J((a, m)) = 0<-»{tf}(m, a) is defined

~ Vp.{/(α,(m»}(p,α)-0

for an appropriate index d. Condition (ii) of Definition V.5.4 follows easily from
Theorem 2.10. D

5.9 Theorem. For any I, if E is recursive in I, ίtoen I ami J, are eac/i recursive in
the other.

Proof. Suppose that E is recursive in I. Then one can decide recursively in I
whether or not λp.{a}(p, a) is total and, if it is, whether or not \(λp.{a}(p, α)) =
n. Hence J, is recursive in I. For the converse, let a0 be an index such that
{αo}(m, a) = a(m). Then

so Gr, is recursive in J,. Since oJ is recursive in J,, so is E by L e m m a 1.4. H e n c e

by Corollary 4.6, I is recursive in J,. D

5.10-5.11 Exercises

5.10. Show that if Φ is a normal positive analytic operation, then E is recursive
in Φ.

5.11. Complete the proof of Theorem 5.7. Give an alternative proof of the
inequality λ J ^ ω^J] by showing that for any γ G W recursive in J, there exists a
function / recursive in J such that for all p GFld(γ), \p\γ =^|/(p)|J.

5.12 Notes. The construction of a hierarchy for the relations on numbers
recursive in a tyρe-2 functional is due independently to Hinman [1966] and
Shoenfield [1968]. The method here is Shoenfield's. A proof of the result
mentioned just before Lemma 5.1 may be found in Hinman [1969].

6. Extended Functionals

The notion of extended functionals arises from the following question. Recall
that a positive analytic operation Φ has a natural interpretation as a quantifier:
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(ΦR)(m,α)o(3AGB(Φ))(Vp6Λ)R(p,m,α) .

These would be natural objects of study even in the absence of their classical

origins. In § 5 we defined the notion of recursion relative to Φ. It is immediate

from the definition that for any positive analytic operation Φ,

(1) {R: R is recursive in Φ} is closed under the quantifier Φ.

Since "(semi-) recursive in U " coincides with "(semi-) recursive in E", it follows

from either Corollary 1.10 or Corollary 4.3 that

(2) {R: R is semi-recursive in U} ( = Πj) is closed under the quantifier

U(=3°).

We ask, therefore, if also (2) holds with " U " replaced by an arbitrary " Φ " . The

answer is no (Corollary 6.3). To restore the analogy we define a "functional" ΦΦ

with the property that {R: R is semi-recursive in ΦΦ) is closed under the

quantifier Φ. Φ # is not a functional in the sense that we have used the term as its

domain includes some partial unary functions from ω into ω as well as all total

unary functions. Although the previous definitions and results do not apply

directly, it turns out that the theory of recursion relative to Φ # is very much like

the theory of recursion relative to an ordinary functional. In the latter part of the

section we investigate the (close) connections among Φ # , Φ*, and Φ-positive

inductive definitions.

6.1 Lemma. For any functional I, there exists a relation P1 semi-recursive in I

such that for all M, V, and a,

(i) uςΞU^^PXu,υΛ<x))-*\vl<\ul^
(ii) u £ l/L-> 3t> [Ό £ Us

a Λ P\u, υ, (a))].

Proof. Intuitively, P\u, v, (a)) means that v represents a computation relative to

a which is an immediate subcomputation of that represented by u. We define

P'(u, v,(a)) to hold just in case one of the following holds for some fc,mE kω,

and / = lg(α):

(1) for some fc, c 0 , . . . , ck,_u u = «1, fc, /, b, c 0 , . . . , ck._x), m), and either v =

(chm) for some i<k' or there exist 90» >9k'-i s u c n t n a t f°Γ a 1 1 i<k',

{cj'ίm, a) - qi and υ = (b, q>;

(2) for some b, u = ((2, fc + 1, /), b, m) and v = (ft, m);

(3) for some b, u = ((3, fc, /, 6>,m) and for some p,

v = <6,p,m);

(4) u is of none of these forms, | u \ι

a^ 0, and v = 0.
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Suppose first that u E. U}

a and P'(w, u,<α» holds. Then u falls under one of
clauses (l)-(3) and it is clear from Lemma 3.2 that in each case | υ \ce< \ u \a. For
(ii), suppose that u £ Ux

a. If u is not of the proper form for α, then by clause (4),
P'(w,0, (a)) holds and (ii) is satisfied becasuse 0 £ Ua. Otherwise u satisfies the
hypotheses of one of (l)-(3). Suppose u = ((1, fc, /, 6, c0,..., ck'_j), m). If for some
i < fc', (ci? m) §£ U]

a, let v be such a (ci5m). Otherwise, there exist q0,..., ^ . j
such that {CiΫ(m, a)^qi and (b, q) £ £/«, as otherwise we would have u E U*a,
contrary to assumption. Thus v = (b, q) satisfies the conclusion of (ii). The other
cases are similar. D

6.2 Theorem. For any functional I and all a, m, and a,

{α}'(m, α) is dφied +*^3β\/p [Pι(β(p)9 β(p + 1),<α» Λ β(0) = <α,m)].

Suppose first that {α}'(m, a) is defined but for some β, β(0) = (a, m) and
for all p, P (β(p), β(p + 1), (or)). Since (α, m) E £/α by assumption, it follows by
induction from Lemma 6.1(i) that for all p, β(/?)E U^ and thus for all p,
|jβ(p + l)lL<|β(p)lL a contradiction.

If, on the other hand, {α}'(m, a) is not defined, clause (ii) of the preceding
lemma guarantees that there is a unique function β such that β(0) = (α, m) and
for all p,

β(p + 1) = least ϋ[ϋ ̂  C/̂  and P'(β(p), υ, <α»]. D

6.3 Corollary. For any functional I such that E is recursive in I, fftere exists α

relation R semi-recursive in I sudi ί/iαί ̂ R( = {(m, α) : 3β Vp R(/3(p), m, α)}) is
not semi-recursive in I. /n particular, the class of relations semi-recursive in si
(= semi-recursive in Ex) is not closed under si.

Proof Let

R(s, <m>, <α» «[(Vp < lg(s) - 1)P'((s)p, (s)p + 1, <α» Λ (S) 0 = (α, m>].

By the preceding theorem sέR = —U1. If s#R were semi-recursive in I, then by
Corollary 4.5, U1 would be recursive in I, a contradiction. D

For any positive analytic operation Φ, we define the extended functional ΦΦ

as follows: for any partial function / from ω into ω,

fO, if (3AEB(Φ))(VpEA)./(p)-0;
# j , if (VΛEB(Φ))(3pEΛ)(3n>0)./(p)-n;

undefined, otherwise.
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Note that Φ # is an extension of the functional lφ defined in §5. In fact, for
any partial function /,

Note also that Φ* is consistent — that is, if Φ*(f) — n and fCg, then also
Φ#(g) - n. We shall write E# for U # and Ef for si*. Thus, for any partial /

fO, if 3βVp./(/3(p)) = 0;_
Ef(/)= 1, if V β 3 p ( 3 n > 0 ) . / ( β ( p ) ) = n ;

I undefined, otherwise.

Recursion relative to extended functionals may be defined in nearly the same
way as for ordinary functionals:

6.4 Definition. For any extended functional Φ # , Ω[ΦΦ] is the smallest set such
that for all /c, /, n, p, q, r, and s, all i < /c, and / < /, and all (m, a)E. ' ω,

(0)]
(1) > identical to the corresponding clauses of Definition Π.2.1;

(2)J
(3)# for any b and any / such that Φ # ( / ) ^ n, if for all p and q,

then (<3,fc,/,fc>,m,α,n)e/2[Φ#].
The proof that for all α, m, and a there is at most one n such that

(α, m, a, n) E ί2[Φ#] depends on the consistency of Φ # but otherwise proceeds
as in the previous cases and we set

{α}Φ#(m, a)=-n*+ (a, m, α, n) E /2[Φ#]

and define the other relevant notions as in § 1. The remainder of the theory of
§§1 and 2 may now be carried over to recursion in an extended functional with
exactly the same proofs.

We show first that replacing Φ by Φ # has the intended effect.

6.5 Theorem. For any extended functional Φ , {R : R is semi-recursive in Φ } is
closed under the quantifier Φ.

Proof. Let R be semi-recursive in Φ , say with semi-index a from Φ , and
suppose S = ΦR. Then S(m, α ) ^ Φ#(λp.O -{α}Φ#(p,m, a)) is defined, so S is
also semi-recursive in Φ # . D
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Since ΦΦ is an extension of Φ, it is to be expected that functionals (partial)
recursive in Φ are also (partial) recursive in ΦΦ. For total functionals this is
evident as clause (3)# implies clause (3) for \φ and thus Ω[Φ] C Ω[Φ*]. Hence if
{a}Φ is total, {a}Φ = {a}Φ . Clearly, however, more indices define computations
relative to Φ # than to Φ.

Rather than investigate further the subject of extended functionals in full
generality we shall concentrate on the particular example Ef. The properties of
recursion relative to Ef are illustrative of those of all extended functionals and
the proofs which establish these properties will benefit greatly from the removal
of one layer of technical complexity (see the remarks following Corollary 6.16).
Et is also of particular interest because of its close connection with Xx inductive
definitions (Theorem 6.14) and the superjump (Theorem 6.11 and Theorem
VII.1.8).

6.6 Theorem. There exists a primitive recursive function g such that for all α, m,

and α,

Proof The proof is similar to that of Theorem 2.14. We define a primitive
recursive function h just as there except that in case (3) we take h(e,a) to be the
natural index such that

{h{e, a)}Et(m, a) - Ef (λs [0 {h(e, &)}Et(lg(s),m, «)])

+ EΦ(λp.{h(e,b)}E\p,m,a)).

Applying the Primitive Recursion Theorem we obtain an index e such that
h(e, a) = {e}(a) and set g = {e}.

We need to prove that for all α, m, α, and n,

{α}El(m, a) - n ~ {g(a)}E?(m, a) - n.

The implication (—>) is proved by induction over /2[EX]. Cases (0}-(2) are treated
E l

exactly as in Theorem 2.14. Suppose that a = (3, /c, /, b) and {α}El(m, a)— n.
EThen λp.{b}Eί(p, m, a) is a total function β and Et(β)= n. By the induction

hypothesis, for all p, {g(b)}Eί(p,m, a)— β(p). Hence

Furthermore, \g(β(p)) = p, and
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SO

3γ Vp [0 {g(ί>)}E?(lg(?(/>)), m, α) - 0],

and thus {g(a)}E* (m, a)~ n.
The converse implication is established by induction on subcomputations for

Ef. We leave the details to the reader. D

It now follows immediately that every functional partial recursive in Ej is also
partial recursive in Ef (in particular, E is recursive in Ef) and every relation
semi-recursive in Eι is also semi-recursive in Ef. In particular, U ' is semi-
recursive in Ef and from Theorem 6.5 and the proof of Corollary 6.3 we see that
also ~U E l is semi-recursive in Ef. We should like to conclude from this that UEl

is in fact recursive in Ef. For this we need the analogue of Corollary 4.5 and thus,
in turn, an ordinal comparison theorem.

We could proceed much as in §3 to compare directly the ordinals of
computations relative to Ef. The main additional complication is that in contrast
with Lemma 3.2(3) we have if a = (3, k, /, b) and {a} ι (m, a) — 0, then

I α, m| E ? = infβ sup* | f>, β(p),

whereas if {a} ι (m, a) — 1, then

I α, m | E Ϊ = sup£ infp | b,

Fortunately we have available here a somewhat simpler method akin to that
used in Lemma 1.7. We define inductively a relation M to which all relations
semi-recursive in Ef can be reduced. It then suffices to compare the ordinals
associated with elements of M.

We define M to be the smallest relation such that for all d E Pri and all α,
(i) (0,(β))6M;

(ii) if 3j8Vp.([d](/8(p),α),<α»eM, then «0,d>,<α»EM;
(iii) if Vj8 3p.([d]O(p),α),<α»GM, then ((U),(α))EM.

Then for each a we set

M Λ = { M :(M,(α))EM} and M = M0.

Of course, if M = Γ, then Ma = Γ<α>, where Γβ are the components of the
decomposable operator Γ. In view of the (relative) simplicity of the definition of
M, the following result is somewhat surprising:

6.7 Theorem. There exists a primitive recursive function g such that for all α, m,

α, and n,
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{ α } E ί (m, a) - n <-> g(α, <m>, n) G Mα.

Proa/. We shall prove the version without parameters (α = 0 ) . Note first that

there exist primitive recursive functions fιv and h3 such that for any d G Pri,

» G M <-• Vp. [d](p, m) G M,

and

h3 (d, <m» G M o 3 / ? . [ d ] (p, m) G M

Namely, M * <m» = <0,/(<* <m»> and Λ3(d,<m» = <l,/(d,(m))>, where / is a
primitive recursive function such that

Now we shall specify the recursion conditions that g should satisfy and leave

it to the reader to provide the details of application of the Recursion Theorem.

The conditions are as usual by cases corresponding to those in the definition of

Λ[Ef].
(0) If α=<0,fc,0,...>, then g(α,<m>, n) = Λ3(d0,<α,m, n», where

fO, if T(α,(m>;M,( » Λ ( M ) 0 = « ;

[do](u, α,m, n) = <
[l, otherwise.

(1) If a =<l,k,0,6,c o ,c 1 ), then g(α,(m>, n ) = h3(du(a,m, n», where

i, Λ, m, n»,

[d2] (9o> 9i» α» m

? Ό = Λv(d3, <^0) î» a> m, n», and

f
g(co,<m>,9o), if P = l;
gίc^m),^), if p ^ 2 .

(2) If a =<2,fc + l,0>, then g(α,(6,m>, n) = Λ3(d4,<6,m, n», where

[d4](p, 6, m, n) = g(ft, (m), n).
(3)# If α =<3,k,0,fc>, then g(α,(m>,0)=(0,/1(α,(m>,n)), and g(α,(m),l)

<l,Λ3(d5,<α,m,π»>, where

,0),
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and

fl, if q=0;
[ds](q,a,m,n) = \

[g(b,(s,m),q)9 if q>0.

T h e proof that if {a}Eι ( m ) — n, then g(α, (m), n ) E M is by induction on

ί2[Ef] with cases as follows.

(0) If {a}Eϊ ( m ) = n and a = (0, fc,0,...), then also { α } ( m ) ^ n and for some

u, T(α,<m), w,( )) and (u)0 = n. Hence for some w, [do](M> a,m,n) = 0EM and

thus g (α, <m), n ) E M.

(1) If {a}Eχ (m) — {fc}El (qθ 5 <?i)— w, where { c J E l (m) —^ ί ? then successively

3 ^ 0 3^j Vp. [d 3 ](p, ^o»^i» Λ, m, n ) E M,

3 ^ 0 3 ^ j . [d2](^o? ^1? β? m > w ) ^ ^»

3^j. [d1](^1, α, m, n) E M, and

g(α,(m), n)EM.

The cases (2) and (3)# are similar. The proof of the converse implication is by
induction over M and is left to the reader. D

6.8 Corollary. There exists a primitive recursive function f such that for all α, m,

α, and n,

{tf}EΪ(m,α) is defined ~/(α,<m»E Mβ.

Proof Let /(α, (m»= Λ3(d, (α, (m»), where d is an index such that

[d](n,α,<m>)=g(α,<m>,n),

with g and ft3 as in the preceding theorem. D

For u E Mα, | M | ^ denotes the least or such that u E M ^ ; otherwise,
I M l« = **i Then it is immediate that

|0 |* = 0, and if dEPri 1 ' ' , then

Kθ,d>|: = inf{sup+{|[d](iβ(p),α)|::pEω}:βEωω};

|(1, d)fa = sup+{inf{|[d](β(p), α ) | ; : p E ω } : ^ G ωω}.

In what follows we shall abbreviate these expressions by
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etc.

6.9 Ordinal Comparison Theorem. There exists a functional H partial recursive

in Ef swc/i that for all u, v, and a,

(i) if uEMa and \u\ζ^\v |*, then H(w, u, <α» - 0;

(ii) i/ υ E Mα and | u |* < | w |«, rten H(w, U, (a)) =* 1.

Proof. We shall again prove the version without parameters. For this proof only

we set

so that

ΓO, if Vβ3/
A f ( / ) - 1, if 3 β V p ( 3 n > 0 ) . / ( β ( p ) ) - n ;

[undefined, otherwise.

By the Eλ -Recursion Theorem there exists a functional H partial recursive in Ej

which satisfies the following conditions for all u and v, and all d and e E Pri ' :

(1) H(0,υ)~0;

(2) H(« + 1 , 0 ) ^ 1 ;

(3) H(u + 1, v + 1) - 0, if υ + 1 is not of the form (0, c) or <1, c) with c E Pr i 1 0 ;

(4) H(w + 1,(0, e))— H(w + 1,(1, e))— 1, if M + 1 is not of the form (0, c) or

<l,c) with c E P r i 1 0 ;

(5) H((0, d), (0, e))— Ef (λs. Af (λt. H([d](s), [e](t))));

(6) H((l, d),(0, e)) — Aj (λs.A, (λt. H([d](s), [e](t))))\

(7) H«0,d>,<l,e»-EΓ(λί.Ef(λ5.H([d](s),[β](0)));

(8) H«l,d),<l,β»-AΓ(λ5.EΓ(λί.H([d](s),[β](0))).

The proof that H satisfies (i) and (ii) is by induction o n σ = min{| u | # , | v |#}.

Clauses (1) and (2) of the definition of H correspond to the case σ = 0; (3) and (4)

correspond to cases in which either u or v does not belong to M by virtue of

being of the wrong form. Both of these are easily seen to be in accord with (i) and

(ii), so we consider the four cases u = (/, d) and v = (y, e), with d, e E P r i 1 0 and at

least one of u and υ a member of M. For the case i = j = 0, we have

I (0, d) f ^ I (0, e)Γ <-> infβ sup^ | d, 0, p | # ^ infγ sup^ | β, γ, q |*

«+dβVγ. supp \d,β,p\ ^ sup^ | e, γ, q |

<^ d p Vγ Vp dq. \ d, β, p | ^ | e, γ, q \

<-*3β Vp Vγ 3q. I d, β,p | ^ | e , γ, q | .
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If these hold, then 3β Vp.|d, β,p | # < σ, so by the induction hypothesis,

3β\/p\/y3q.H([d](β(pMe](y(q)))-0

and thus by clause (5), H((0, d), <0, e » ~ 0 as required by (i). On the other hand,

if these are false, then

soH«0,d>,<0,e»«l.
Consider next the case i = 0 and / = 1. We have

, d)f =s |<1, e > | # **infp s u P ; | d, β, p f « s u P ; inf, \e,y,q

+»3β 3γ. s u p ; I d, β, q f « inf, \e,y,q\*+l

~ 3 γ Vq 3β Vp. \d, β,p \* ̂  \e, γ,q \".

The last implication (—>) is by first-order logic. For (<—), for any γ() choose q0 to
minimize | e, y0, qo\

Φ and β() such that for all p, | d, j30, p Γ ̂  | e, γ(), ̂ { ) |
# . Then for

all p and q, \ d, β0, p \* ̂  | e, γ(), q | # . (Note that this sort of argument would not
suffice to obtain the prefix 3β Vp 3 γ V ,̂ which accounts for the interchange of 5
and t in clause (7) of the definition of H.) Now just as above we have, under the
assumption that one of (0, d) and ( l ,e ) belongs to Λf,

and

The other two cases are based similarly on the equivalences:

** V/3 Vγ. infp | d, β, p f < sup^ | e, y, q \*
p

<-• V/3 3p \fγ3q.\d,β,p\*^\ e, γ, q | # ;

and
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** V/3 3 γ . infp | d, β, p \* « inf J e, y, q \*

^\e,γ,q\Φ

^\e,y,q\*. D

From Theorems 6.7 and 6.9 we can derive results corresponding to theose of

§4 for the class of relations semi-recursive in Ef:

(i) There exists a functional Sel ι partial recursive in Ef such that for all a, m,

6.10 Corollary.

(i)

and α,

3p.{a} ι(p,m,a) is defined <^{α} ι (Sel λ (α,(m),(a)),m, α ) is

(ii) for any relation R semi-recursive in Έ.λ, there exists a functional SelR

partial recursive in Ef such that for all m and α,

3p R(p, m, α) ** R(SelR(m, α), m, α);

(iii) the class of relations semi-recursive in Et is closed under finite union and

bounded and unbounded existential number quantification

(iv) the class of functionals partial recursive in Ef and relations semi-recursive

in Ef is closed under definition by positive cases;

(v) a relation is recursive in Ef iff it is both semi-recursive in Ef and

co-semi-recursive in Ef

(vi) for any partial functional F, F is partial recursive in Ef iff GrF is

semi-recursive in Ef and F is recursive in Ef iff F is total and Gr F is recursive in

Ef

Proof. For (i) we proceed as for Theorem 4.1 except that in place of

H«α,m),(fr,n>,<α», we write H(/(α,<m»,/(f>,(n)),<α», with / the function of

Corollary 6.8. (ii)-(vi) then follow as in §4. D

In particular, it follows from (v) and the discussion following Theorem 6.6

that UE l is recursive in Ef. In fact,

6.11 Theorem. For any functional I, if I is recursive in Ef, then also ISJ is

recursive in Et .

Proof. Suppose that I is recursive in Ef. An obvious modification of the proof of
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Theorem 6.6 establishes that there exists a primitive recursive function g such

that for all α, m, and α,

Hence U1 and —U1 are both semi-recursive in Ef, so by 6.10(v), U1 is recursive in

Ej . Since

fθ, if U'(α,<m>,<α»;

[ l , otherwise,

also Is is recursive in Ej . D

Thus if we define a sequence of functionals Er by:

E 0 = E and E r + 1 = (E r)
S J,

then Er is recursive in E s iff r ^ 5 and all Er are recursive in Eλ (cf. Exercise

1.20). The functionals Er will play a role in § VIII.4, and in § VII.1. Theorem 6.11

will be extended to show that the tyρe-3 functional corresponding to the

superjump sJ is recursive in Ef (Theorem VII. 1.8).

We turn now to the relationship of Ef to inductive definability and the

*-operation.

6.12 Theorem. For any Σi monotone operator Γ over ω, Γ is semi -recursive in Eλ .

Proof. Suppose that Γ is Σx and monotone, say

with R recursive. Since Γ is monotone,

m <ΞΓ(A)++3B[B CA Am G Γ(B)].

Thus,

PΓ(m, a) ~ 3 β 3γ [Vn (β(n) = 0^a(n) = 0) Λ VpR(β(p), y(p),m)]

Let G be the function partial recursive in E2 which computes according to the

following flow diagram:
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G(e,β(n), m) > (β)o(n)
> 0

> 0

8)i(«).m)

Set H{e, m) ~ Ef (λs. G(e, s, m)) and let e be the natural index ^provided by the

proof of the f ) {}Eχ ( ) l i

that

^

Ef-Recursion Theorem) such that H(e, m)^ {e}Eχ (m). We claim

m

The implication (—>) is proved by a straightforward induction over Γ. The

implication (<—) is proved by an induction on subcomputations using the fact

that if {e}Eχ (m) — 0, then for some β and all n, the computation of

G(e, β(n), m) is a subcomputation and thus so is that of {£

such that (β) ( )(n) = 0. Hence all such n belong to Γ

hypothesis. D

λ (n) — 0 for all n

by the induction

The inductive definition of M (and of M) has both X\ and Uι clauses — that

is, there are monotone operators Γ0EXι and / ^ E Π j such that if for all Λ,

Γ(A) = Γ0(A) U Γ,(Λ), then Γ = M. Because of the special form of Γ, and the

fact that Πj relations are all Π" inductively definable, we can in fact replace Γ by

a Sj operator:

6.13 Lemma. Let Γo and Γι be monotone operators defined by

and

m GΓ1(Λ)^Vδ3^

where R() and Rj αr^ recursive relations and Rj satisfies:

(*) R,(5,m,Λ)ΛΛ C B - ^ R , ( s , m,B),

«nd set Γ(A) = Γ()(Λ )UΓ,(A) . Γ/zen r/iere ejc/5ί5 α Σj monotone operator A such

that for all m,

m 0, m)EΛ.
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Proof. For any set A, let Λ(0) = {m :(0, m)EΛ} and let A be the operator
defined by:

(1) <0,m>GΛ(A)«mGΓo(A(O))v<l,m,< ))GΛ;

(2) (l,m,s)6Λ(A)oR 1 (s,m,A ( P ) )vVn.(l,m,s ( n » 6 A .

Clearly A is Σj and monotone. We first establish that

(3) Vδ 3q R,(s * δfa), m,Λ(0))-»<1, m,s)6

(4) <1, m, 5> E Λ σ ^ Vδ 3 9 R^s * δfa), m,

For (3), suppose that <1, m, 5) fέ A. Then as in the latter part of the proof of
Theorem III.3.2 there exists a unique function δ such that

In particular, Vg ~ Rj(s * δ(g), m, Λ(0)).
For (4), we .proceed by induction on σ and assume as induction hypothesis

that (4) holds for all r < σ in place of σ. Suppose that (l,m,s)EAσ. Then either
R,(s, m, (Λ (σ)) (0)) or Vn.( l ,m,s*(n))G4 ( σ ) . In the first case, by the property
(*) of Ri,Rι(s,m,(Λσ\0)) and thus y/8Rί(s*δ(β)9m9(Λσ\0)). In the second
case, for each n there exists a τn < σ such that (1, m, s *(n))E ATn and hence,
by the induction hypothesis, Vδ 3q Rj(s * <n> * δ(g), m, (Λ Tn)(0)) Then, again by
(*), VnVδ3^R 1(5*(n)*δ(^),m,(Λσ) ( 0 )) and thus

_
To prove that Γ C Λ ( 0 ) we show that Γ(Λ ( 0 )) C Λ(0). First, if m E Γ0(Λ(0)), then

by (1), (0, m) E A (A) = Λ, so m E Λ(0). Suppose that m E Γ^Λ^)), so
Vδ 3q Ri(δ(^), m, Λ (0)). Then by (3), (1, m, ( » G Λ and thus by (1), (0, m) E Λ
so m E Λ(0).

For the converse, we prove by induction on σ that (A σ ) ( 0 ) C Γ. As induction
hypothesis we assume that (Λ ( < r )) ( 0 )C Γ. Then if m E(Aσ){0), either
m E Γ0((Λ ( t τ )) ( 0 )) or (1, m, < » E Λ ( t r ). In the first case we have by the induction
hypothesis and the monotonicity of Γo that m E Γ0(Γ) C Γ. In the second case,
there exists an ordinal τ<σ such that <l,m,< » E Λ T . By (4),
Vδ3<7 Rj(δ(^), m,(yl τ) ( 0 )), that is m E JΓi((Λτ)(0)). By the induction hypothesis
and the monotonicity of Γ1? m E Λ ( f ) C Γ . D

6.14 Theorem. For all R C kω, the following are equivalent:
(i) R is semi-recursive in Ef

(ii) R is reducible to the closure of a monotone Σj operator,
(iii) R E Uf.
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Proof. (i)-> (ii): The Γl] clause in the inductive defintion of M clearly satisfies the
condition (*) of the preceding lemma. Hence M is reducible to the closure of a
monotone Σj operator, and by Corollary 6.8, so is every JR semi-recursive in Ef.

(ii)—>(i): Immediate from Theorem 6.12.
(iii)-> (ii): From Definition V.5.2 we see easily that a relation R is Γlf * just

in case there is a recursive relation P such that

(**)

Let Γ be the monotone operator defined by:

(m, s) E Γ(D)**3qP(s, <?,m) v Vβ 3q 3γ Vq.(m, s *<jS(p), γ(<?)»G D.

The proof of Theorem V.4.10 (with obvious simple modifications) shows that

Λ(m)~<m,< » e f .

As it stands, Γ is nowhere near being a Σj operator. However, it is not hard
to see that this equivalence holds also for the operator Γ defined by:

v[lg(s) is evenΛV/3 3p.(m, s*(β(p)))GD]

v[lg(s) is oddΛ 3γVq.(m,s*(y(q)))ED].

This Γ is in the form specified in the hypothesis of Lemma 6.13 and thus may be
in turn replaced by a Σj monotone operator.

(ii)—»(iii): Let Γ be a monotone Σj operator, say

for a recursive relation R. Because Γ is monotone, we have

m E Γ ( Λ ) o 3 β [ B C Λ Λm G Γ(B)]

For any A / ω w e have then

m 6 Γ ( Λ ) o 3 B 3γ Vq Vr [(r ̂  B Λ R(γ(fl), m, B)) v r 6 A ] .

Hence for a suitable recursive relation S,

(t) m ]
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Let P and Q be recursive relations such that

Q«s 0,. . ., 5Π>, m ) « S(s0, " 0 v (3i < π) S(5 i+1, ( l g t e M

P((s0), m) is always false, and for all n, s0,..., s2n+2,

s0,..., s2n+2), m)+*P((s0,..., s2n+1), m)«-» Q((su s3, s5,..., 52n+1), m).

We shall show that

m

which by (**) above implies that f GΠj .
First observe that by formula (8) of § V.4, the right side of this equivalence is

equivalent to

and hence to

(3β0 Vpo)(3iβ1 VPl)(3/32 Vp2) • 3n Q((βo(po),..., j8n(pn)>, m),

which we abbreviate by: m E O*. We recall from § V.4 that m E Q* just in case
player I has a winning strategy in the game (Sm played as follows: the players
play alternately, at his n-th turn player I chooses βn and player II chooses pn,
and player I wins just in case 3nQ((βo(po),..., βn(pn)), m). Thus we need to
prove:

m E Γ<-> player I has a winning strategy for $m.

Suppose first that m £ Γ; we shall describe a winning strategy for player II in
»m. Since m &Γ(Γ), we have by (t),

Vβo3po[~S(/3o(po), m) Λ (po)o £ f ]

so let player II at his first turn respond to Γs choice of β0 with such a p0. Then,

since (po)o £ Γ(f), again by (f),

Vfr 3 P l [~S(βλ(Pι),(p0)0) A (Pl)Q £ Γl

and player II at his second turn responds to player Γs choice of βλ with such a pλ.
It is clear that by following this strategy, player II ensures that for all n,

~S(βo(po),m)Λ<y/i < n)
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and thus that for all n, ~Q(</30(/?0),..., 0n(pn)), ra). Hence this is a winning
strategy for player II.

For the converse implication we prove that Γ(Q*)CQ*. Suppose that
m<ΞΓ(Q*) so by (t),

Then by the definition of Q*,

3γ Vα [S(γ(q)> m) v

or equivalently,

3yVq[S(y(q),m)v(3β0Vp0)---3n

By a rule of first-order logic, which is easily seen to apply also to the current
situation involving infinite strings of quantifiers,

v S(βo(po), (q0)) v (3ΐ < n

From this follows immediately that m E Q*, as required. •

6.15 Corollary. For α// R C k ω, ί/ie following are equivalent:

(i) 1? is recursive in Ej

(ii) 1? and ~ i ? are eac/i reducible to the closure of aXγ monotone operator;

(iii) RϊΞΔf.

Proof. Immediate from Theorem 6.14 and Corollary 6.10(v). •

6.16 Corollary. V(^/) is a proper subclass of Δj .

Proof UEι is recursive in Ef, hence belongs to Δf , but C/El is not recursive in

Eλ and thus by the results stated at the beginning of § 5, UEι does not belong to

D

We note that the proof of Theorem 6.14 shows that a relation R is reducible
to the closure of a Xj monotone operator iff it is in the form

3β0VpoBβ! VPl '3nP((βo(po),..., A,(pn)>,m),

with P recursive. The reader should contrast this with Exercise III.3.23.
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We conclude this section with a brief discussion of what is needed to extend

6.6-6.16 to extended functionals Φ # other than Ef. For 6.6 it will suffice that Φ

be a normal operation — the crucial point is to have the power of E available

during a computation to check that certain functions are total, and if Φ is

normal, then E # is recursive in Φ # . The same is true for 6.7-6.10. Theorem 6.11

depends on the special property of the quantifier sέ expressed in Corollary 6.3. It

holds for any extended functional Φ # which arises from an operation Φ which is

strongly normal: Φ is strongly normal iff Φ is normal and there exists a primitive

recursive function h such that for any family (Pp : p E ω) of relations,

st(Pp:p<Ξω)=Φ(Ph(p):pEω).

When Φ is strongly normal, Ef is computable in terms of Φ # and thus if I is

recursive in Φ # , so is ISJ. The remaining results are summarized in

6.17 Theorem. For any normal positive analytic operation Φ and all R C ω, the

following are equivalent:

(i) R is semi-recursive in Φ # ;

(ii) R is reducible to the closure of an effective Φ-positive inductive operator

(iii) R G Π ? \

Sketch of proof. That (i)—»(ii) is immediate from the observation that the

inductive operator which defines M[ΦΦ] is Φ-positive. The proof that (ii)—»(i) is

nearly the same as that of Theorem 6.12, where the main trick was to observe

that every Σj monotone operator is in fact a Xj positive operator. The

implication (iii)—>(ii) is just the effective version of Theorem V.4.10. For the

implication (ii)—»(iii), the main difficulty lies in showing that every Φ-positive

operator has a normal form similar to ( t ) in the proof of Theorem 6.14. This can

be done and the proof completed much as before. D

6.18 Corollary. For any normal positive analytic operation Φ and all R C kω, the

following are equivalent:

(i) R is recursive in ΦΦ\

(ii) R and ~R are each reducible to the closure of an effective Φ-positive

inductive operator;

(iii) R G Δf \ D

6.19 Corollary. For any strongly normal positive analytic operation Φ, V(Φ) is a

proper subclass of Δf*. D

6.20-6.26 Exercises

6.20. Show that the set of relations semi-recursive in Ef is a proper subset of Δ2.
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6.21. Show that for any relation R on numbers semi-recursive in Ef,
BβVpR(β(p),m)++(3β recursive in E*)VpR(β(p),m). (cf. Exercise 1.18)

6.22. Show that M is semi-recursive in Ef without using 6.12-6.14. (Show that if
A is semi-recursive in Ef but not recursive in Ef, and A C M , then {| u \* : u E
A} is unbounded in {| u | # : u E M}. Then

6.23. Give another proof that for any Σj monotone operator Γ, Γ is semi-
recursive in Ef (6.12) by the method of Exercises 2.25-26.

6.24. Show that in Lemma 6.13 the hypothesis (*) is superfluous; every
monotone operator Γ, E Π} may be defined in the given form by a recursive
relation Rx which satisfies (*).

6.25. Use the method of Exercises VI.2.26 to show that in contrast with
Corollary 6.3, if E is recursive in I, R is semi-recursive in I, and

then also S is semi-recursive in I.

6.26. Fill in the following sketch of an alternative proof for Theorem 4.18 for
any functional I such that E, is recursive in I. Let P be a relation such that
P(w, υ, (a), y) holds under exactly the same conditions as does P'(w, t>, (a)) in the
proof of Lemma 6.1 except that in clause (1) we replace the condition

{ci}
l(m>«):=sί. by y((chm)) = qi.

Clearly P is recursive. Let <a γ denote the transitive closure of the relation <^γ

defined by:

t> < « , γ " <-»P(κ, u,<α>, γ).

Say that a function δ is closed for a, y iff for all u and v,

δ is well-founded for α, y iff



334 VI. Recursion in a Type-2 Functional

Finally, say that γ is locally correct for α, δ iff for all /c, m E ω, and / = lg(α), and

all u such that δ(u) = 0:

(0) if u = ((0, fc, / , . . . ) , m) and (0, fc, /,...) is an index of the proper form for

(m, α ) , then γ(n) - {<0, fc, /,... >}'(m, α ) ;

(1) if for some fc, c 0 , . . . , <V_l9 w = ((1, fc, /, b, c 0,. ., <V-i), m) then γ(n) =

(2) if for some /?, M = «2, fc + 1, />, b, m), then γ(n) = γ«ft, m»;

(3) if for some b, u = «3, fc,/, 6),m>, then γ(π) = l(λp. γ((b,p,m))).

Now it suffices to show that for all u and α,

γ, δ recursive in \,a) [y is locally correct

for α, δ Λ δ(u) = 0 Λ δ is closed for α, γ Λ δ is

well-founded for α, γ] .

For the implication (—>), consider the functions

( {a}\m,a), if | a, m|'α ^ | u \ι

a;

0, otherwise;

and

For the implication (<—), suppose that γ and δ are recursive in \,a and satisfy

the condition in brackets. Prove by induction on <a y that for all a and m, if

δ((α, m)) = 0 and (a, m) <ay u, then (a, m) E C/α and

6.27 Notes. The functionals Φ # were introduced in Hinman [1969] to prove

Corollary 6.19. Many of the results of this section appear there. The key

Theorem 6.2 is inspired by a similar result of Moschovakis [1967] (Theorem

VII.2.10 below). The connections between Ef and X\ inductive definability are

due to Aczel [1970]. The implication (ii)—>(iii) of Theorem 6.14 was originally

(or Moschovakis [1974, Chapter 4]). Exercise 6.26 is due to Gandy and

Moschovakis.
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7. Recursive Type-3 Functionals and Relations

Recall that a functional F is of type 3 iff it has arguments (m, α, I) of types 0, 1,

and 2 — that is F is a function from k'1'1 ω = (kω) x '( ω ω) x ' (( ω ) ω ) into ω.

Similarly a relation U is of type 3 iff it is a subset of some k ' ' ' ' ω. In this section we

study the notion of such functionals and relations being recursive or definable

from recursive relations by quantification over ω, ωω, and ω ω. In Chapter VII

we shall study the properties of recursion relative to a fixed type-3 functional.

The definition of recursiveness for type-3 functionals is essentially the same

as that of recursiveness relative to a fixed functional I. The main difference is that

we now explicitly allow for a finite sequence of type-2 arguments (rather than

one) and think of them as genuine arguments (rather than parameters). In

keeping with the discussions in the Notes to § II.5 and the Introduction to this

chapter, it will be obvious that for a fixed I, a functional F is partial recursive in I

iff for some partial recursive tyρe-3 functional G,

F(m, a) — G(m, α, I).

7.1 Definition. Ω3 is the smallest set such that for all k, /, /', p, q, r, and 5, all

i <k, j < /, and y' < /', and all (m, α, I) G k U ' ω .

(0) «0,k,/,/',0, n),m,α, l,n)G Ω the remaining parts of (0) and clauses (1)

and (2) are similar modifications of the corresponding parts of Definition II.2.1

to accomodate the sequence I of Γ type-2 arguments;

(3) for any b and any β, if for all p, (6, p, m, α, I, β(p))G i l 3 , then

«3,k,/,Z',y',6>,m,α,l,l r(i8))Eί2 3 .

Just as in previous cases we can prove easily that for all a, m, α, and I, there is

at most one n such that (a, m, α, I, n)G Ω3 and set

{α} 3 (m,α, l )-n iff (a, m, α, I, n) G Ω3.

In particular, it follows from clause (3) that

{<3, fc, /, /',/', b)}\m, α, I) - \r(λp. {b}\p, m, α, I)).

A type-3 functional F is partial recursive iff F = {a}3 for some a and recursive iff it

is partial recursive and total. A type-3 relation U is recursive iff its characteristic

functional Kn is recursive and semi-recursive iff R = DmG for some partial

recursive G.

The Recursion Theorem and the consequent closure properties may be

established just as in § 1. In particular,

7.2 Lemma. For any partial recursive functional F, if
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F(m,α,l)-F(m,α),

then F is also partial recursive. Conversely, if F is partial recursive of rank (k, /, 0)

then F is partial recursive in the previous sense. D

The techniques of § 2 yield the following substitution results:

7.3 Theorem. For any partial recursive functionals G and H,

(i) // F(m, α, l)^G(m, α, λp.H(p,m, a, I), I) and lg(l)>0, then F is also
partial recursive

(ii) there exists a partial recursive functional F such that for all m, n, α, and I,

G(m, α, I, λβ . H(m, α, ft1)) =* n -» F(m, α, I) =« n,

and if lg(l)>0 and λβ. H(m, α, /3,1) /s roία/, ί/ien α/so

F(m, α, I) =* n -> G(m, α, I, λβ . H(m, α, β, I)) - n.

Proo/. The proof of (i) may be obtained by a suitable adaptation of that of

Theorem 2.10. The hypothesis lg(l) > 0 is necessary because of Theorem 2.1. (ii)

is proved by a similar modification of the proof of Theorem 2.14. (Cf. VII.1.6(ii)

below.) D

7.4 Corollary. For any recursive functionals G and H, if

F(m, α, I) - G(m, α, I, λ/3. H(m, α, ft I)),

then F is tf/so recursive. D

T h e results of §§3 an(|. 4 cannot be generalized to recursion over k U ω

because of the hypothesis in these theorems that E be recursive in I. In fact, we

have

7.5 Theorem. There exists a relation R C u l ω such that both R and ~R are

semi-recursive, but R is not recursive.

Proof. Let G be a partial recursive function such that

{m : λp.G(p,m) is total} is Π? but not recursive

and set

R(m, l)«-»l(λp. G(p, m)) is defined.
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Clearly R is semi-recursive. Furthermore, by the assumption and Lemma 7.2,
since

~R(m, l)«-»λp. G(p, m) is not total,

~R is also semi-recursive. Suppose, however, that U is recursive and set

F(m) = IKR(m,λβ.0). It follows from 7.2 and 7.4 that F is a recursive function,

but

F(m) = 0 +*R(m, λβ.0)<+ λp. G(p, m) is total,

which contradicts the assumption on G. D

We consider next the relations over kjUl ω obtained from the recursive ones

by quantification. The classes of arithmetical and analytical relations and the

subclasses Σ°, Σj, etc. may be defined exactly as in §§ III.1-2. We shall write ΣJ.

etc. ambiguously to refer also to these classes of relations over kJtl ω. Let 3 2P

denote the relation U defined by

R(m,α,l)~3H.P(m,α,l,H)

and similarly for V2R. Then we set, for all r,

ΣQ = Πo = the class of analytical relations over kJJ ω\

Π2

+1 = {V2P:PeΣ2};

Δ2 = Σ 2 n π 2 .

The properties of the arithmetical hierarchy expressed by III. 1.4-7 hold here

with appropriate modifications by the same proofs. Similarly, the properties of

the analytical hierarchy expressed by ΠI.2.4-7 are easily extended to the

analytical hierarchy over κ 11 ω. The situation concerning universal relations and

hierarchy theorems is, however, somewhat more complicated. On the one hand,

the arithmetical and analytical hierarchy theorems follow immediately from

those of §§ III. 1-2, since a relation R which is Σ^~ Δ^ in the previous sense is still

Σ,~ Δ^ as a relation over kΛOω. This approach does not, however, suggest any

way to prove that Σ2 is properly larger than Δ 2 . The proofs of these results in

§§ III.1-2 all spring from the fact that there is a universal Σ? relation U?. Not too

surprisingly, this is no longer true in the present context:

7.6 Lemma. There is no relation universal for the class of Σ? relations over κ u ι ω.

Proof. Suppose U were such a universal relation and let U be defined by
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Then clearly U would be universal for relations Σi in E — that is, of the form 3 R
with R recursive in E. But if R is recursive in E, so is 3°R, so in fact U would be
universal for the class of relations recursive in E. A standard diagonal argument
shows that this is impossible. D

In find a universal relation, we must go to ΓlJ.

7.7 Theorem. There exists a relation V1C ' ' ω which is universal for the class of

Πi relations over ω.

Proof. Let

U1

1(α,<m>,<α>,<l»«Vβ3p[{α}3(p,m,α,ftl) is defined].

It is clear that for any Πj relation R there is a number a such that

and it remains to show that v\ is Πj. This is accomplished by defining a U\ family
of monotone operators A{a)ΛX) over ω such that

{a}3(m, a,ϊ)^n*+ (a, <m>, n) G A {ot)Λxy

A is defined much as in the proof of Theorem 1.5:

Λ<β>t<l>(A) = ΓaX0{A)U UΓα ) l, 2(Λ)UAα ) l i 3(A)

where, for example,

AaX3(A) = {(O,KU'J\b)Am\n):

Vp3 ?[(6,(p,m),ί>6A]Λ

If follows easily that A is as required and that A G U\. Thus also v\ isUι. D
We may now define, for all r ̂  1, relations uj such that Όι

r is universal for the
class of Πr relations over ' ' ω:

The following analogue of Lemma III.2.9 will allow us to extend this to the
classes X2

r:
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7.8 Lemma. Σ2 = (32P>: PG U\}.

Proof. The inclusion ( D ) is immediate from the definitions. For the converse we
show that the class of relations of the form 32P with PE Yί\ is closed under 3 1,
V1, and 3 2. This follows easily from the equivalences:

3/3 3H P(m, α, ft I, H)^3H P(m, α, λp. (H)p+1(λq. 0), I, (H)°);

3G 3H P(m, of, I, G, H) « 3H P(m, α, I, (H)°, (H)1);

Vβ 3H P(m, a, β, I, H)~3H VjS P(m, α, ft I, (H)β);

where (H)p(α) = H((p)*α) and (H)β(α) = H«j8, α». D

Thus if we set, for r ^ 1,

and

U2

+1(α, <m), (α>, <l»~3H ~ U2(α, <m>, <α>, <l, H»

and

Uί+1(a, <m>, (a), (l» «• 3H ~ V2

r(a, <m>, <α), (I, H»

we have relations UΓ universal for Σ r and ~Ur universal for ΠΓ. Then just as in
§§ΠI.l-2,

7.9 Theorem (The Functional Quantifier Hierarchy). For all r ^ 1,
(i) tέtfand Π2£Δ2;

(ii) Δ 2

+ 1 £Σ 2 UΠ 2 . D

We turn now to the consideration of inductive definitions of subsets of kJω
which we were forced to abandon in § III.3. For simplicity we restrict attention to
inductively defined subsets of ωω extension to the general case is obtained by
the usual codings. If Γ is an operator over ωω, we set

P Γ ( α , l ) « α 6 Γ ( Z , ) ,

where Z, = {β : \(β) = 0}, and classify Γ as Σj., etc. according to the classification
of P Γ . Parallel to Theorem III.3.1, we have:

7.10 Theorem. For any r > 0 and any monotone operator Γ over ωω,
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en*.

Proof. We have

0 ] ^ l ( α ) = 0). D

To obtain further results of this sort, we shall need to examine the closure
ordinals of operators over ωω. By Lemma 1.3.2, \Γ\ is less than the least cardinal
greater than 2H°. Hence the ordinals < | Γ | can be coded as well-orderings of
subsets of ωω. For any I, let

and let

W = {I: ^, is a well-ordering}.

In contrast to the fact that WGΠj~Δl (Corollary IV.1.2), we have here

7.11 Lemma. WE A*; in fact, w ε i ^ .

Proof. To express that ^, is a linear ordering clearly requires only function
quantifiers. That ^, is well founded is expressed by: —ι3α Vp.(α)p + 1 <,(α)p,
which is also analytical. D

For I G W, we denote by ||l|| the order-type of ^, and define I \ y and | y |, in
the natural way so that the analogues of (8)—(11) of §1.1 hold. Then for any Γ
over ωω,

O V I ( I G W Λ Γ1"" C Γ ( I | I | I ) -» a G Γm)

and to classify Γ it remains to evaluate the complexity of Γ1'1" and

7.12 Theorem. For any r > 0 and any inductive operator Γ GΔj over ωω, there
exist relations V^ and VΣ G X2

r and V^ and Vπ G Π? such that for α/ίlEW and
all a,

(i) α G
(ii) α G

Proof. Similar to that of Theorem ΠI.3.9. D
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7.13 Corollary. For any r >0 and any inductive operator Γ over ωω,

Parallel to Theorem III.3.13 we have

7.14 Theorem. For any r > 0 and any monotone operator Γ E Σ, (Π,), there exist
relations V ( } and V E Σ, (Π*) such that for all I E W and all α,

(i) α e
(ii) αEΓIIMI^V(α,l). D

7.15 Corollary. For any r > 0 and any monotone operator Γ over ωω,

rεϊ2

r^reϊ2

r. D

Very little more is known about the classes Σ, and Π,. It follows from the
Hypothesis of Constructibility (V = L) that there is a Δj well-ordering of ( ω)ω
and thus that for all r ^ 1, Σr has the pre-wellordering property. Determinacy of
all subsets of ωω also implies that Σi has the pre-wellordering property and the
proposition that U1 has the pre-wellordering property is known to be consistent
with ZFC.

For investigations under the Hypothesis of Determinacy or some other
hypothesis which contradicts the Axiom of Choice, it is useful to note that the
theory of the functional quantifier hierarchy can be developed without this
axiom (cf. discussion preceding Theorem V.3.1). One use of choice is in the last
of the three equivalences used in the proof of Lemma 7.8. Unfortunately, choice
seems essential for the lemma and to avoid it we must find a new way to define
the Σ^ universal relations. The idea is provided by Theorems IΠ.3.6-7. Following
the pattern of these theorems we may define a Σί inductive operator Γ such that
\Γ\ = ω and Γ is a relation U ^ which is universal for Δ ^ . Although U ^ cannot
be Δ(ω), it is easily seen to be Δj. Hence we may take

and ϋ2

r+ι as before.
The same equivalence is required to show that Σ, and U2 are closed under

function quantification (3 1 and V1). Here we cannot avoid choice altogether, but
can replace it with the weaker Collection Principle:

V/3 3H . R(m, α, ft I, H)-> 3H V/3 3γ. R(m, α, ft I, (H)y).

This principle holds in L[ωω], the class of sets constructible from ωω (cf.
Moschovakis [1970]). Many people have conjectured that some strong form of
determinacy also holds in this model.

The final use of the Axiom of Choice occurs in the discussion of the closure



342 VI. Recursion in a Type-2 Functional

ordinals of inductive definitions over ωω. If ωω is not well-orderable, then "the
least cardinal greater than 2N°" is meaningless and we need a new bound for
these closure ordinals. Fortunately, this is easy to compute. Any inductive
operator Γ over any set X induces a pre-wellordering =^Γ of X of type | Γ | + 1:

x ^Γy « Vσ [y G Γσ -> x G Γσ].

Hence if we set

o(X) = sup+{σ : there exists a pre-wellordering of X of type σ},

then \Γ\< o(X). Furthermore, it is no harder to code ordinals with pre-
wellorderings. Thus 7.11-12 and 7.14 may be proved with W replaced by
pW = {I: ss, is a pre-wellordering}, so 7.13 and 7.15 hold also in a set theory
without the Axiom of Choice.

7.16-7.22 Exercises

7.16. Sketch a proof of Theorem 7.3.

7.17. Does there exist a subset of ( ω)ω which is Σ? but not recursive?

7.18 (Tugue [I960]). Show that the class of X\ relations over kJJ'ω does not
have the separation property.

7.19. Formulate and prove substitution theorems for recursive type-3 function-
als analogous to those of § 2.

7.20. Formulate and prove substitution theorems for the functional quantifier
hierarchy analogous to those for the arithmetical and analytical hierarchies
(III. 1.11 and III.2.11). Consider substitution for both type-1 and type-2 argu-
ments.

7.21. Suppose that F is defined from G and H by the following recursion:

F(O,m,α,/B)«G(m,α,0),

F(p + 1, m, α, β) - H(p, m, α, β, Λγ. F(p, m, α, γ)).

If G and H are recursive, does it follow that also F is recursive?

7.22. Prove the fact mentioned following Corollary 7.15 that if V = L, there is a
Δj well-ordering of ( ω )ω and for all r, X2

r has the pre-wellordering property.

7.23 Notes. The results of this section are largely from the folk literature.




