Part B

The Analytical and Projective
Hierarchies



Most of the results of Chapter 111 have in common that their proofs rely heavily
on a direct analysis of the number and kind of quantifiers needed to define
certain concepts. With these methods we were able to establish the main
structural features of the arithmetical hierarchy, but were much less successful
with the corresponding questions concerning the analytical hierarchy. In the two
chapters of Part B we shall introduce several new techniques — pre-
wellordering, uniformization, and construction of transfinite hierarchies —
which will provide answers for many of the questions left open in the preceding
chapter. These by no means exhaust the tools which are useful in studying the
analytical and projective hierarchies and we shall return to these questions from
time to time in Part C. On the other hand, the results of §§ V.2-3 indicate that
some questions about analytical and projective relations cannot be decided on
the basis of the current axioms of set theory.



Chapter 1V
The First Level

We shall study in this chapter the classes 31,105, and A| and their relativized and
boldface counterparts. Not only are these classes more amenable to analysis than
the higher levels of the analytical hierarchy, but they have played a much larger
role in the development both of descriptive set theory and of generalized
recursion theory.

Among the early objects of study in Descriptive Set Theory were the Borel
sets and the projective classes 3! and II). Although the Borel sets were easily
proved to have many pleasant properties, the operation of projection (3') used
in defining the projective classes seemed too non-constructive to allow much to
be proved about these sets. In 1915 Suslin discovered that the 3| (analytic) sets
could all be constructed by use of the much more explicit operation & (cf.
Exercise 111.2.19) and that A coincides with the class of Borel sets (cf. Theorem
IV.3.3). These results stimulated much of the later development of the theory. In
particular, the structure of I1, and A| is reflected in many other pairs of classes of
relations to be studied in this book.

From the side of recursion theory, the notational analogy of A} with A}
together with the transitivity of the relation “a € A}[8]”, leads to the conjecture
that the A] relations are in some sense ‘‘generalized recursive”. This is supported
by the results of §2 below which show a great similarity between the properties
of 3 and II} (not 3;!). One such similarity has already been noted: for any
monotone operator I, if I’ €39 (1), then also I € 59 (II:). The conjecture will
be verified in § V1.2, where we show that the (I1;) A} relations are exactly those
(semi-) recursive in the type-2 functional E, and in § VIII.3 where we see that the
(H:) A: relations on numbers are exactly those which are w,-(semi-) recursive.

1. TIi and Well-Orderings

The basic tool in the study of I1} relations is a characterization of this class in
terms of W, the set of well-ordering functions. Recall that for a total functional F
of rank (k +1,1), F[m, @] denotes the function Ap.F(p,m, &) so that F serves
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also as a functional from “'w into “w. A relation R is called (many-one)
reducible to a set A (R <A) iff for some recursive functional F,

R(m, @) < F[m, a] EA.

We also say R is reduced to A via F. Note that by the Analytical Substitution
Theorem (111.2.12), if A€ 3} (I1!) and R<A, then also RE 3! (I1}).

1.1 Theorem. For all R, REIl; o R<W.

Proof. W € 11, by the examples of [11.2.3,soif R<W also RE I1;. Suppose now
that REII,. Then there exists a recursive relation P such that

R(m, @) VB In P(B(n),m, a).
We shall associate with each (m, @) a linear ordering s;,a such that

(1) R(m, a)eS':a is a well-ordering;
(2) the functional F defined by

0, ifs<" _t;

F((s, 1), m, @) ={ e

1, otherwise

is recursive.
Then R is reduced to W via F.
First, let = be the recursive linear ordering defined by:

sDtes,teSqA(tCs v (In<lg(s))[n <lg(?) A
(Vi <n)((s)i = (1)) A (5)n < (D)a))-
The ordering s':,,a is a restriction of <. Let
P'(sm, &) (3u <s)[ueSqaruCsaP(um,a)].
Then also P’ is recursive and
R(m, @) VB InP'(B(n),m, a).
We set

s tes<tA~P'(s,;m, @) A ~P'(t,m, a).

Claim (2) is obvious. For the implication (<) of (1), suppose ~R(m, &) so
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that for some B, Vn ~ P'(8(n), m, a). Then for all n, B(n + l)s;,ag(n) and by
condition (4') of 1.1.6, 5‘:,.. is not a well-ordering.

Suppose now that S'.Pn,a is not a well-ordering and let A =
{s:sESqA~P'(s;m,a)}. Then A = Fld(s:a) and it suffices to show

3B Vn.B(n)E A. Note that by the definition of P’, for any s and ¢,
3) SEAANICs—>LtEA.

By assumption there exists a non-empty set B C A with no s;a-least
element — that is, (Vs € B)(3t € B) t<1:,',,s. We may assume that (3) holds
also with B in place of A. Let f be a partial function defined by

f(n)=least p((3s € B)[f(n) G s A (5)n = P)).

Clearly either f is total or for some A, f(n) is defined exactly for n < 7. In the
first case we have that for every n, f(n)& s for some s € B C A. Hence by (3),
Vn.f(n)E A and we have the desired conclusion: 38 Vn. 8(n) € A. Suppose,
on the other hand, that f(n) is defined exactly for n < A. As B has no s: o least
element, there is some s € B with s <, . f(A). If f(7i) S s, then f(/i) would be
defined, contrary to assumption. Hence for some n < 7,

(Vi <n)((s)i = (F(R))i = f(0)) A (8)n < (F(A)), = f(n).

But then f(n) & s so by the definition of f, f(n) <(s),, a contradiction. Thus this
case does not arise. []

1.2 Corollary. W £ 3.

Proof. If W € 31, then by the Theorem every I relation is also 3, contrary to
the Analytical Hierarchy Theorem. []

From Theorem 1.1 we can already begin to see why I1; rather than 3, plays the
role of the class of generalized semi-recursive relations. If P is a recursive
relation of rank (k +1,1), let

least p. P(p, m, &), if any;
- |

w, otherwise;

order-type of S';a , if this is a well-ordering;
Im, e} = {

N, otherwise.

Then
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dp P(p,m, @) < | m, alf<w
and
VB3Ap P(B(p).m, @)= |m, aff <N,.

In these terms, the proof that the class of semi-recursive relations has the
reduction property (11.4.17) proceeds by defining

R*(m, @) R(m, a)r|m al, <|m, a|], and

S*(m, @) S(m, a)A|m, ald < |m, al;.

To establish similarly the reduction property for I1;, we need only evaluate the
complexity of the relation |m, &} < |m, a|C.
We recall from Examples I111.2.3 the 3| relation < defined by:

y <8 & =<, and <; are linear orderings and < is isomorphic

to a subordering of <,

o =<, and <; are linear orderings and

JaVpVq[a is 1-1 on Fld(y) A (p<,q— a(p)s;a(q))]
We define also a 3 relation < by

v <8 e =, and <; are linear orderings and <, is isomorphic

to a subordering of a proper initial segment of <
o <_ and <; are linear orderings and
Ja3IrVpVq[a is 1-1 on
Fld(y) A (p <,q9 = a(p)<sa(q) <5r)].

If both vy and & belong to W, then clearly
y<é<|yl=<|8] and y<se|y[<|s].

We shall need, however, relations which have this property whenever at least
one of y and & belongs to W.

1.3 Definition. For all y and §,
(1) y<s8y<8VEEZW;
(ii) y<s8oy<86vEEW,;
(i) y<pdo1(8<sv);
(iv) y<nde1(8=<s7).
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Note that <y and <j are 3 relations, whereas <, and <y are I1; relations.
None is A}, but part of the import of the following theorem is that each is “A} on
W,

1.4 Theorem. For all y and §, if either y EW or 8§ EW, then
() y<sde[yeWn|y|<|slloy=<us;
(i) y<s8olyeWnrlyl <[]y <ns

Proof. Suppose first that y <y 8. If y € W then either § 2 W, so ||y || <N, = 8],
or §EW and y<3§, so [[y[|<|8]<N,. If §EW, then y <§, so as any
subordering of a well-ordering is also a well-ordering, also y EW and | y| <
I81l.

Suppose now that the middle condition of (i) holds: y EW and ||y| < | &].
Then either 8 €W, or § €W and <; is a well-ordering of type at least ||y ||. In
either case 18 < vy, which together with y € W implies y <;; 6.

Next suppose that y <6 — ie.,, T1(6§<y) and y EW. If § & W, then
v <3 6. If 6 €W then by the comparability of well-orderings, y < é and again
v <5 4.

The implications (ii) are proved similarly. [J]

1.5 Theorem. (i) I} has the reduction property but not the separation property ;
(i) 2, has the separation property but not the reduction property.

Proof. By Lemmas I1.4.19 and I1.4.21 it suffices to show that I1} has the
reduction property. Let R and S be any two 11} relations of the same rank. By
Theorem 1.1 there exist recursive functionals F and G such that

R(m, @) > F[m,@¢]EW and S(m,a)<G[m,a]EW.
We set

R*(m, @) < R(m, @) A Fim, @] < G[m, a];

S*(m, @) & S(m, @) A G[m, a] < F[m, a].

Observe that if (m, @) € R U S, then at least one of F[m, @] and G[m, «] belongs
to W so that either F[m, @] <;; G[m, @] or G[m, «] < F[m, «]. With this it is
straightforward to verify that (R*, S*) reduces (R,S). O

In the proof of Theorem 1.1, the relation < :,a is a well-ordering recursive in
a. In particular, if P is a recursive relation and w, denotes the least non-
recursive ordinal (Definition 1I11.3.11), then |m|} is either a recursive ordinal or
N, so that

VB 3pP(B(p), m)< m| < w,.
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Hence if for any ordinal o we set
W, ={y:yEWrly|<a},

then in the notation of Theorem 1.1,
R(m)<VB3IpP(B(p),m)<>FlmeW,, .

Thus we have proved the implication (—) of

1.6 Theorem. For all R C*w, REI; <> R < le.

Proof. 1t suffices to show le € 1I1,. This follows from the equivalences:

yEW, <385 EW A S is recursive A lyl<l8l]
< 3c[{c} is a total function of rank 1 A
{c}eWry=<p{c}]. O
The same proof shows that every I1; relation on numbers is reducible to the

denumerable set W,..={y :y €W A y is recursive}. It will, however, be more
convenient to use the set of indices of recursive well-orderings.

1.7 Definition. W ={c :{c} is a total function of rank 1 A {c} € W}. For c € W,
llell={c}H.

1.8 Theorem. For all R C*w, REI} >R < W.

Proof. That W and hence all R reducible to it are I1} is immediate from the
Analytical Substitution Theorem. If R € I1} and F is a recursive function which
reduces R to W, let a be an index such that {a}(m, p) = F(p, m). Then

R(m) < Ap.{a}(m,p) EW < Ap . {Sb,_,(a,m)}(p) EW < Sb,_(am)e W. [J
1.9 Corollary. Neither le nor Wis 3. O

All of the preceding results have relativized and ‘‘boldface’” extensions which
we sketch below. In most cases the proofs are straightforward and are left to the
Exercises.

1.10 Definition. For any B,R, A, and A,
(i) o,[B]=sup™{|ly]l: ¥ EW Ay is recursive in B};
(i) W[B]={c:Ap.{c}(p,B)EW};
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(iii) for all c € W[B], [lcllg =llAp.{c}(p. B)I;
(iv) R<gA iff for some functional F recursive in B,

R(m,a)>Fm, a)E A;
(v) R<g A iff for some functional F recursive in g,
R(m, a) o F[m, a] EA;
(vi) R<€ A iff for some continuous functional F,
R(m, @)« F[m, a] €EA.
1.11 Theorem. For all B, R, and R,
() REM[BloR<, W;
(i)) R €IL[B] < R <4 W, 15 R < W[B];
(iii) REM, <R <XW;
(iv) neitherl W,, (s nor W[B] is S1B:
vywegs,. O
1.12 Corollary. For all B
(i) T1,[B] and 11 have the reduction property but not the separation property ;

(i) S1[B] and 3, have the separation property but not the reduction
property. [

1.13-1.25 Exercises

1.13. Show that = is a dense linear ordering with greatest element but no least
element.

1.14. A set A C Sqis called a tree iff there is no sequence s, s,, . .. such that for
all iy s; €A and s; &s;,,. Let

Tr={A : A is a tree}.
Show that for all R,RE ] iff R<Tr.
1.15. For any tree A and any s, let

A, ={t:tEAAsGL}
Set
Tro,= U{Tr,: 7 <o} U {S}
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and
AETr,oVs. A €Tr,.
Show that Tr = Tr,,, but that for all o <N,, Tr& Tr,
1.16. For A € Tr, let
|A|=least 0. A ETr,.
Show that there exist relations Xy and X; which satisfy an analogue of Theorem

1.4. It follows that Tr could be used in place of W for all the results of this
section.

1.17. For which ordinals o is W, arithmetical? Classify as many W, as you can
(cf. Exercise 111.1.17).

1.18. Show that for every r =0, there exists an ordinal o, < w, such that every
3, relation is reducible to W,,,.

1.19. Show that a relation R is IT} iff it is reducible to {y : y € W a y is primitive
recursive}. Conclude that w, is also the least ordinal which is not primitive
recursive.

1.20. Show that there exists a recursive function F such that for all m,
F(m)EW and [F(m)|=m.

1.21. Let
Ply ={(a,b,c):a,b,c € Walall+[lbl=[c]},

and
Tiw ={(a,b,c):a,b,c € W allal-|b] =|c]}

Show that Pl,, and Tiy, are H: sets.

1.22. Show that there exists a I1; set W* C W such that for all o < w, there is
exactly one a € W* such that |lal|= 0.

1.23. Prove Theorem 1.11 and Corollary 1.12.
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1.24. Show that REII; iff R is uniformly reducible to W[a] — that is, there
exists a recursive function G such that for all (m, @)

R(m, @) < G(m) € W|[a].

1.25. Show that every 3, relation is expressible in the form (3y € W)P(m, a, v)
with PE A;.

1.26 Notes. The representation of I, relations in terms of well-orderings is one
of the oldest and most fundamental results of Descriptive Set Theory. It
essentially originates with Lebesgue in 1905 and is studied further by Luzin,
Suslin, and Sierpinski from 1915 on. Luzin [1930] is a good exposition of the state
of knowledge then. Kleene [1955a] rediscovered the technique in his proof that
the set O of notations for constructive ordinals (Definition 4.16) is a complete I,
set. Spector [1955] was the first explicit statement that every I1; set of numbers is
reducible to W.

Alternative developments of the theory of this section are sketched in
Exercises 1.14~16 and Exercises 111.3.33-34.

2. The Boundedness Principle and Other Applications

2.1 Boundedness Theorem. For any AC “w and any A C w,
() AES AACW—sup{|lyl:y EA}<N;;
(i) AES AACW—sup{|ly[:y EA} < oy;
(iii) AESAACWosup{|c|:cEA}<w,.

Proof. Suppose, contrary to (i), that AE3;, ACW, but {||y[: y €A} contains
arbitrarily large countable ordinals. Thus any & belongs to W just in case
8] <[ v for some y €A. Since A C W, this yields

SEWoIy[yEANS<s7v]

which implies W € 3, contrary to Theorem 1.11.
Next, suppose that A were a counterexample to (iii). Then,

Seleeac[c E A AS<z{c}],

which implies that W,, € S contrary to Corollary 1.9.
Finally, if A were a counterexample to (ii), then

A ={c:{c} is a total unary function A 3y [y EAr{c}=<s7y]}

would be a counterexample to (iii). [J
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For p < w,, we set
W,={c:c€ Walc|<p}

2.2 Theorem. For all R and all R,
(i) REA] >R <XW, for some p <N;
(ii)) Re A}<—)R<Wp for some p < wy;
(iii) REAIoR < W, for some p < w,.

Proof. 1f p is any countable ordinal, let 8 be an element of W such that || 8] = p.
Then for all v,

YEW, oy <58y <6

Hence W, € A}, which yields the implication (<) of (i). If p < w;, 8 may be
chosen to be recursive and we thus have (<) of (ii) and (iii).

For the implications (—), suppose first that REA!. Since REI], there
exists by Theorem 1.1 a continuous functional F such that R(m, «) & F[m, a] €
W. Let

A={y:3m3a (R(m, a) A y = F[m, a])}.

Since also RE 3] we have A€ 3, and clearly AC W. Hence by the Bounded-
ness Theorem there exists a p <N, such that all y €A have ||y| < p. Hence
R(m, @)« F[m, «] €W, and thus R €W,_. The argument for (ii) and (iii) (—) is
nearly identical. [J

The import of this theorem is that the A} (A}) relations may be naturally
arranged in a sort of hierarchy of length w, (N,). Let X, ={R: (37 <p)R<W._}.
Then if p < 0, X, C X, and A; = U {X, : p < w,}. Similarly there are classes X,
such that A} = U {X, : p <N,;}. In §§ 3-4 we shall construct other hierarchies on
A: and A}. See also Exercise 2.24.

We aim next to show that the set of A} functions is I1] but not A}. This will
complete the proof of Lemma II1.4.8 that A} is not a basis for I1?. We need first
some technical lemmas. We extend the relations <y, etc. to W in the obvious
way:

¢ <sd < {c} and {d} are total functions of rank 1 and {c} <s{d}
and similarly for <, <5, and <.

2.3 Lemma. There exist relations P* and P" in S| and I1; respectively, such that
for any a, b, and c, if c € W, then
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Gr, < W, via{b} < P*(b,c,a) > P"(b, ¢, ).
Proof. Let

Pz(b, ¢, a) <> {b} is a total function of rank 2 A
AVmYn[a(m)=n—{b}(m,n)<sc]a

AYmVn[{b}(m,n)<gc— a(m)=n].
Then for ¢ € W and {b} a total function of rank 2,
P¥(b,c,a) > Vm Vn (a(m)=n<|{b}(m,n)| <|cl)
as required. P" is obtained by interchanging <5 and <. O

2.4 Lemma. For every p < w,, there exists a set B € A} such that B< W, for no

og=p.

Proof. Let p be any ordinal < @, and d € W such that |d| = p. Set
A={ac):aceWnla|<|clrlc|<]al}.

Since for any a and c,
(a,c)EAva<scrc<gdea<pgcAc=<pyd,

A EA}.Hencealso B =A%, the jump of A, is A}. Suppose that for some o < p,
B < W,. Then there is a recursive function f and a ¢ € W such that||c| = o and

mEB < f(m)E W <(f(m),c)E A.

But then B < A, a contradiction, since A® is not recursive in A, hence not
reducible to A. O

2.5 Selection Theorem. For any I1, relation R, there exists a partial functional
Selg with T, graph such that for all m and e,

3p R(p, m, @) < R(Selg(m, @), m, «) < Selg(m, @) | .

Proof. Suppose R € l'I: and is reducible to W via the recursive functional F. We
define

Selg(m, a) = least p[R(p, m, a)
A|[F[p, m, @]|| = min{||F[g, m, a]|: ¢ € @ A R(g, m, @)}].
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It is clear that Selg has the required property. That its graph is I1; follows from
the easily proved equivalence:

Selz(m, @)= p <> R(p,m, «) AVq (F[p,m, ] <, F[g, m, a])
A (Vg <p)(F[p,m, a]<;F[gm a]). O

2.6 Theorem. {a:a €A}ET ~A,.
Proof. To show that the set is I1, we have, with the notation of Lemma 2.3,

€A« (A0 <w,).Gr,<W,
< (3ce W).Gr, < Wy
<3b3c[c € W AP (bc a)l

Now for a contradiction suppose {a: a € A}}EA;. Let R be defined by:

R(c,a)<>c € WA ([a €A A3bP" (b, c, a)]
viaZ A AYm. {c}(m)=1]).
Clearly R€E IT;, and by Theorem 2.2, Va 3¢ R(c, a). Hence the functional Selg is
total and thus by Corollary 111.2.7 has A} graph. Let A =ImSels. A € 3} and
A C W so by the Boundedness Theorem (2.1) there exists a p < w, such that for

all c € A, | c|| < p. But then Va 3¢ [R(c, @) A || c|| < p] from which it follows that
for all « €A}, Gr, < W, for some o < p. This contradicts Lemma 2.4. [

By Theorem 1.6 any H: relation on numbers can be represented in the form
(30 < w,)F[m] € W_. Our next theorem gives another ‘‘existential’’ representa-
tion of l'[} relations.

2.7 Lemma. For any y and 8 € W N A}, if Fld(8) # w, then

Iyl <l8ll<(3BEA)VPVq[p<,q<B(p)<:B(q)]

Proof. The implication (<) is immediate. Suppose y, 8 EW N Ajand ||y | < | 8|
and suppose m & FId(8). Set

A={B:YpVq[p<,q < B(p)<;B(q)] » B mapsFld(y)
onto an intial segment of FId(8) A (Vp &€ FId(8))B(p) = m}.

A is arithmetical in y and &, hence is Aj. A has exactly one element S, By
Corollary I11.2.7(vii), B, €A}. O
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2.8 Definition. Ei‘Hyp is the class of relations R such that for some arithmetical
relation P,

R(m, &) < (38 € Ai[a])P(m, o, B)
(“‘Hyp” stands for “‘hyperarithmetical’’).

2.9 Spector-Gandy Theorem. 3" =II;.

Proof. We shall give the proof only for relations on numbers where the theorem
takes the form: R € H} iff for some arithmetical relation P,

R(m) < (3B € A})P(m, B)

(cf. Exercise 2.28).
Suppose first that R and P satisfy this equivalence and let

S(b,c)«> c € W A {b} is a total function of rank 2 A

Then S € II} and

R(m)<3B3c(c € WAGrg < W AP(m,g))
<3b3c (S(b,c) AVB[P(b,c, )~ P(m, B)))

with P* from Lemma 2.3. Thus R € H}.
For the converse implication, it suffices to show W € 3;"™?. By Theorems
2.6 and 1.1, there exists a recursive functional F such that

a EAjo>Fla]EW.

Since {a:a € A}} is not A}, it is not reducible to any W, with p < w,. Hence the
ordinals ||F[a]| for « € A} are unbounded in », and we have

c € Wo (Ia€r) (el < Fle]l)
©(3a€A)(IBEANP Y [P <()q < B(P) <ria) B@))-
It is easy to verify that the last expression defines a set in 3P, [

We say R€ A;™P just in case both R and ~R€ 3™

2.10 Corollary. For all R,REA;&ReEA™?. O
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These last two results have a natural interpretation in terms of the second-
order comprehension axioms discussed in § II1.5:

“o N A} Al-Comprehension but “w N A} ¥ 3}-Comprehension.
Exercise 2.15 also asserts that
“w N A} = 3}-Choice.

Turning now to the well-orderings of @ which occur in the various classes, we
have the somewhat surprising

2.11 Theorem. (i) For any R, if R is a 3} well-ordering relation, then | R || < w;;
(ii) there exists a T1; well-ordering relation R such that |R| = w,.

Proof. Suppose, contrary to (i), that R is a 3; well-ordering of type p = w,. Then

W, ={y:3aVpVq[p<,q9—> R(a(p),a(q))r a(p) # a(q)]

A <, is a linear ordering}

so that W, € 3., which contradicts the Boundedness Theorem.
For (ii), let

W*={c:ce WaMd<c)[{c}<n{d}v{d}=<u{c}}

Then W* € I} and for each o < w,, there is a unique ¢ € W* such that|[c| = &
Hence if we set

R(c,d)ec,d € W* a{c}=<py{d},
then R is a II; well-ordering of type w,. [

Note as a consequence that 6:, the least non-A: ordinal, is just w; (cf.
Corollary 111.3.12).

2.12 Theorem. For any R, A, and a,
(i) A€ ~A AR EI}—>REAI[A];
(i) w,[a]>w, AR EIN}—> R EA][a].

Proof. For (1) let F be a recursive function such that A is reducible to W, via F.
Since A £ A;, A is not reducible to any W, with o < w, so the ordinals || F[m]ll
with m € A are unbounded in w,. Hence, for any c,
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cEWeo(Ime A)({c} <z F[m])).
From this follows W € 31[A]. If R €11}, then R < W so also R €3;[A]. But
II;CII;[A] so also R €A[A].

For (ii), if w;[a]> w,, then there is a function & recursive in a with 8] = w,.
Then for any c

¢ € W {c}is a total unary function A {c} <5 &
and thus W € 3}[a]. The rest of the proof is as for (i). [

Part (i) of the theorem has a natural interpretation in terms of Aj-degrees,
usually called hyperdegrees (cf. I1I11.2.13 and the paragraph following). Let

A <|Bo A €EA|[B]
and
A<!BoA<!BAB®IAY
so that
hydg(A)={B:A <|B AB <, A}.

The hyperdegrees inherit a natural partial ordering also denoted by <}. The
hyperdegree 0 ={A : A € A} is the least element of this partial ordering.

2.13 Corollary. For all A, B €11}~ A}, hydg(A) = hydg(B).
Proof. Immediate from 2.12(i). [

This points out an imperfection in the analogy of A} and IT} with the classes of
recursive and semi-recursive relations. The Friedberg—-Muénik Theorem men-
tioned at the end of § II.5 asserts the existence of semi-recursive sets A and B
such that dg(A) and dg(B) are not only different but incomparable. We shall
return to this point in § VIIL3.

In § V.6 we shall need a relativized version of Theorem 2.12 which we state
here but leave the proof to Exercise 2.33.

2.14 Theorem. For any R, A, a, and B, if B € A}[A] and B € A}[a], then
(i) A €eM;[B]~Ai[B]ARE[B]—= R EA[A];
(i) @,[a]>w,[B]A R EM[B]— R €A [a];
(iii) w,[a]>w,[B]—>B <i a. O
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We conclude this section by establishing a precise bound for the closure
ordinals of II} monotone operators and II inductive operators over w (cf.
Exercise 111.3.34).

2.15 Theorem. For any operator I' over w,

I monotone AT €11} - |T'| < w,.

Proof. Let I" be any I1, monotone operator. It will suffice to show I'* C re».
Let m be a fixed element of I''. We first observe that for any p,

(1) mEr” o»VA[I'CA—m€eTr(A))
oVA[mETr(A)—>(3o<p)[°Z A].

Hence if we define
leastoc<w, . T’ A, if mgr(A),
e(A) =
0, otherwise;
then ¢ is a total function defined on all A C w. Let
p=sup’{¢(A): A Cw}

Clearly p < w, and by (1), i € I'’; we shall show j < w,.
If i € I'° we are done. Otherwise, for any o

o<poIAmMETA)ANVNT<w)"ZA—>o=<r1)
In other words, if
A={y:JA[mETA)ANVT<o)"ZA-=>|yl<]}

then p = sup’{||y||: ¥ € A}. Let V be the IT; “coding relation” whose existence is
claimed by Theorem II1.3.13. Then

YEASIA[MET(A)AVc(cEWATp[V(p,{cHrp & A]—=y <sg{c})].
Thus A € 3, so by the Boundedness Theorem, < w,. [J

2.16 Theorem. For any inductive operator I' over w,

rem|—|ri<ow,.
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Proof. Suppose I' €I1{ and let R be a recursive relation such that
Pr(m,a)<>VnR(m,a(n)).
As in the proof of Theorem 1.1 we may assume that
) R(m,s)AtCs— R(m,t).
Let m be a fixed element of I'“"; we shall prove m € I'*“".

For all ordinals o, let (for typographical reaons) f, (f.,)) be the characteristic
function of I'°(I'’). We note first that for any n and any limit ordinal p

3) (Fo<p)(Vr<p)lo<t—f, (n)=f, ()]

To see this, let

{leastf.ielﬂ, it ier®;
r =

0, otherwise;

and take o = max{r; : i < n}. ~
From the assumption m € I'*", we have Vn R (m, f w(n)) and thus by (3),
Vn (3o < w,)R(m, f, (n)). Let

¢(n)=least o < w,.R(m, f, (n))

and

p =sup {¢(n):n € w}.

As in the proof of the preceding theorem, p < w, and p =sup'{[y|:y €A}
where

yEAeIn(Vr<w)[R0A, f, (n)—yl<7]
<3nVc[c € WAR(m, f(n)— vy <s{c}].
First note that AC W as if y € A because the condition is satisfied for n, then

lyll< ¢(n)< w, so y €W. To see that AE 3, let V}; and V5 be respectively the
1'[: and 3, “coding relations” from Theorem II1.3.9. Then for c € W,

R(m, f—”C“(n))eas (seSqnalg(s)=naMi<n)({(s)isA
R(Y;l,S) A (V’ < n)[(s),- =0—‘)V“(i,{C})
A Vs (i {c})— (s); = 0]).
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Thus this relation is I1; from which it easily follows that A€ 3. and thus by
Boundedness that p < w,. To complete the proof we show m € re.

We first observe that the function ¢ is monotone. If n<p, then
R(rh,fq,(p)(p)) so by (2) also R(m, fw(p)(n)). As ¢(n) is the least o such that
R(m, f, (n)), it follows that ¢(n)=< ¢(p).

Case 1. p is a successor ordinal. Then for some n,, p = ¢(n,)+ 1 and for all

¢(n) < ¢(n,). Because ¢ is monotone, ¢(n)= ¢(n,) for all n = n,. Hence for
a]l n = n,, R(m, f¢(n )(n)) But then it follows from (2) that this holds also for all
n < ny and thus for all n. Thus P r (M, f o) and m € rare")=re.

Case 2. p is a limit ordinal. Let n be a fixed natural number and o be as in
(3) such that o < p and

(4) (V7 <p)o <7 fr(n)=f4(n)

Since ¢ is monotone and g-=sup {¢(p): p € w}, there is an n,=n such that
o< ¢(ny,). By the definition of ¢, R(m, fw(,, )(no)) But then by (2),
R(m, f¢(nl))(n)) and by (4), R(m, f(p)(n)) As n was arbitrary, we have
VnR (m, f;)(n)) and thus m € rarey= O

2.17 Corollary. For any H? inductive operator I', T € ;.
Proof. For any II inductive T, the following equivalences hold:

melo(Fo<w)mer’)o(3ce Wyimer'
(—)(HCE W)vﬂ(m’{c}) D

Similar techniques lead also to a kind of boundedness theorem for inductive
definitions:

2.18 Lemma. For any inductive operator I over  and any 3| set A C TV, if
either I' is A} or I' is I} and monotone, then for some p < w,, A CT”.

Proof. Suppose A and I satisfy the hypotheses, define |m | =least c.m € I'°
for m € I'“”, and set s =sup*{|m|.:m € A}. Clearly A C I'* and by defini-
tion p < w,.

If A=(, then A CT°. Otherwise 5 =sup™{||y|:y €A} where

YEAe(BmeEeA)Vr<w)[mET —|vy|=s1]
< (@Am € A)(Vc € W)[V(m,{ch—y <s{c}],

with V as in II1.3.13if I is H: monotone and V=V, asin [11.3.9if I is A: . Then
AE3) and ACW, so by the Boundedness Theorem, p < w,. 0O
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2.19 Corollary. For any inductive operator I' over w and any Sy set ACT, if
either I is l'l? or I is H: and monotone, then for some p <w,, ACTI® [

2.20 Corollary. For any inductive operator I over w, if either I' is 19 or I'is T;
and monotone, then

() if FEZ), then |T|< wy;

(i) for any R €3, if R < T, then for some p < w,;, R<I*". [

2.21. Corollary. For any inductive operator I over w, if either I is M orTis A}
and monotone, then

FeA, iff |T<eo,.
Proof. By Corollary 2.20 and Corollary 111.3.12. []

2.22 Corollary. Forany R € A}, there exists an implicitly I1° function & such that
R is recursive in 8.

Proof. Suppose R € A;. Then by Theorem II1.3.2 there exists a I[I; monotone
operator I such that R < I. By Corollary 2.20, R < I'” for some p < w,. Let S
be the relation defined in the proof of Theorem II1.3.9; as P is m, S is
arithmetical. Let y be a recursive function such that ||y||=p+1 and set
e =(a,, B,). Then ¢ is the unique function which satisfies the arithmetical
relation S((¢),,(¢),, v), so ¢ is implicitly arithmetical. Furthermore, if p is the
unique element of Fld(y) such that [p|, = p, then m € I'’ & (¢),({p, m)) =0 so
that I'* and hence R is recursive in . Finally, by Lemma I11.4.4, ¢ is recursive in
some & which is implicitly I1}. [

2.23-2.38 Exercises

2.23. Prove the following Effective Boundedness Principle : there exists a primi-
tive recursive function h such that for any q, if a is a 2: index foraset A C W —
that is

cEA U (alc)

— then h(a)€ W and |[h(a)| = sup™{|c||:c € A}. Formulate and prove a
corresponding result for | subsets of W.

2.24. The hierarchy of A| relations described following Theorem 2.2 is deficient
in that it may happen that for some p < o < w,, no new relations are reducible to
some W, (7 < o) that are not already reducible to some W, (7 < p) — that is,
X, = X,. This can be remedied by omitting superfluous levels in the hierarchy,
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and for relations on numbers, the resulting hierarchy may be seen still to have
length w,. Let

Z={0:0<w rW,%£W, for any p < o}
and

@, = order-type of Z.

Show that @, = w,.
Hint. Let

W={c:ceWn|c|l€ezZrn3dd<cnl|c|=|d|}
and suppose that for some e € W, &, = |le| < w,. Set

P d)o([c|£lelnd=0)v(lc|<[elrdeWa
Va [if « is an ordinal-preserving map of
{a:llal<llc|}into {b:bE Wab] <]d]},
then a(c) = d}).

Show that P €11, there is a function B € A; such that Vc¢ P(c,B(c)) and
d€WeIc(lcl<lelnBlc)=d).

2.25 (Kreisel [1962]). Prove the following two effective choice principles: for any
H} relation R,

(i) if YmVYa 3p R(p,m, @), then there exists a A} functional F such that
VYmVea R(F(m, &), m, a);

(i) if VmVea (38 EA:[a])R(m, a, B), then there exists a A} functional G
such that VmVa R(m, @, Aq. G(g, m, @)). Conclude in particular that {a : « € A}
is a model for 3;-Choice.

2.26. Show that there exists a set AE 2; such that ANW = le.

2.27. Show that if a function 6 : “w — “w has A} graph, then Dm 8 € A}. If 9 is
one-one, then also Im 6 € A}.

2.28. Prove the general case of the Spector-Gandy Theorem (2.9).
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2.29 (Spector [1959]). Show that a relation R is II; iff for some 119 relation P,
R(m, @) <>3!8 P(m, a, B). (Hint: In one direction (<) use the Spector-Gandy
Theorem. For the other, P will have the property that YmVa 38 P(m, @, 8).)
2.30. Show that for any A €1II;, A €A| iff w,[A]= w,.

2.31. Show that if y € A;, then w,[y] is the order-type of a A; well-ordering
of w.

2.32. For any A C w, the hyperjump of A is the set
A™ = {(a,m): Uj(a, (m),(A))}.

Show that if A <| B, then also A™ <] B™ so that the hyperjump is well defined
on hyperdegrees.

2.33. Prove Theorem 2.14.

2.34. Show that
(i) for any o < w,, there exists a [1{ inductive operator I' such that | I'| = o;
(ii) any A € A: is reducible to I" for some I'I? inductive operator I" such that
IT|< w,.

2.35. Show that for any monotone arithmetical operator I, {(c,m):c €
Wame F'C'} is implicitly IT; (cf. proof of Theorem I11.3.7). Conclude that
every 11} relation on numbers is reducible to an implicitly I1; set and hence that
A} is not a basis for the class of II| singletons.

2.36. Show that for any a, @ € A iff for some function &, {a, 8) is implicitly IT3.

2.37. Construct an arithmetical monotone operator I" such that for all o < w,,
r’=w,.

2.38. The partial functionals with IT; graph may be indexed as follows. Let
V(n, a,(m),(a)) < ~U;(a,(n,m),(a))

and set
{a}*(m, @) = Sely (a; (m), {a)).

Which properties of the class of partial recursive functionals are shared by the
class of IT; functionals with this indexing? Does the Recursion Theorem hold?
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2.39 Notes. The boundedness principle 2.1 (i) is also an old result of Descriptive
Set Theory — the effective versions 2.1 (ii) and (iii) are implicitly in Spector
[1955]. The Spector-Gandy Theorem was conjectured by Mostowski and proved
independently by Spector [1959] and Gandy [1960]. The proof here is due to
Moschovakis. Theorems 2.12 and 2.14 are due to Spector [1955] and 2.15 to
Spector [1959]. Theorem 2.16 was proved by Gandy [unpublished] essentially as
done here. Another quite different proof appears in Richter [1971].

3. The Borel Hierarchy

In the Introduction we discussed briefly the notion of a hierarchy as a
decomposition of a class of objects into levels indexed by ordinals in such a way
that members of higher levels are in some sense more complex than members of
lower levels. The main examples to this point have been the arithmetical and
analytical hierarchies and their relativized and boldface counterparts. The
“hierarchy” discussed following Theorem 2.2 suffers from the fact that some
levels with different indices coincide. In this and the next section we shall
construct hierarchies for the A: and A: relations which do not have this failing
(see also Exercise 2.24).

The first of these, the Borel hierarchy, is both the simplest and historically
the first transfinite hierarchy. Recall that the class Bo of Borel relations is the
smallest class containing the open relations (equivalently, the closed-open
relations) and closed under countable union and intersection of relations of the
same rank. This is an inductive definition and the corresponding hierarchy
consists essentially of the stages. The actual definition will differ slightly from
this idea as we shall define classes 22 and Hg for all p <WN; such that
Bo= U {Eg:p < N;}. Thus the Borel hierarchy is a natural extension of the
boldface arithmetical hierarchy.

Although these results appear in this context to depend heavily on recursion
theory, in fact they were first derived long before the development of recursion
theory. It is only in hindsight that we see that the hierarchies of recursion theory
are refinements of those of Descriptive Set Theory and that many of the
techniques of recursion theory were known already in some form to the early
descriptive set theorists. This section and the next have been arranged to
emphasize the relationship between the classical hierarchy and its effective or
recursion-theoretic counterpart. These constructions also serve as paradigms for
several others in later parts of the book — those of §§ V.4, 5 which involve
operations more complex than countable union and intersection, and those of
§ VLS5, § VL6, and § VIL3.

3.1 Lemma. The class of Borel relations is closed under complementation and
composition and substitution of continuous functionals.
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Proof. Let F and G be continuous and consider
X ={R:{(m, @):R(F(m, @), m, a, Ap. G(p, m, a))} is Borel}.

By I1.3.9 and I1.5.5, X includes the class of closed-open relations and it is trivial
to show that X is closed under countable union and intersection. Hence Bo C X.
The proof for complementation is similar. [J

3.2 Lemma. For all countable ordinals p, W, is Borel.

Proof. We proceed by induction on p. Clearly W= J and W, are Borel. If pis a
limit ‘ordinal, then W, = U{W, :a <p}. If p is countable, then this is a
countable union so if all W, (o <p) are Borel, sois W,. If p = o + 1> 1, then
y EW, iff for all p, y[p EW,,. Since W,, is Borel, it follows from Lemma 3.1
that also for each p,A,={y:yIp€W,} is Borel. Hence so is W, =
N {A,:p€EW} O

3.3 Theorem (Suslin). Bo=A].

Proof. The inclusion (C) is Corollary 111.2.16. If R€ A;, then by Theorem 2.2,
R<W, for some p <N,. Hence by Lemmas 3.1 and 3.2, R is Borel. O

3.4 Definition (The Borel Hierarchy). For all p >0,
i) 28 Iy = the class of closed-open relations;

(i) 2(,,) U (2% r<pk H(p) uml:r<ph

(iii) 2,,— (U {P, : p € w}: all P, have the same rank and belong to H?p)};

(iv) Hg={ N {P, : p € w}: all P, have the same rank and belong to Z?p)};

(v) AY=30NT0; AL, = U{A%: 7 <p).

It is immediate by induction on p that all of the classes X, and 1) are
included in the class of Borel relations. The following lemma together with
Theorem II1.1.16 implies that this definition is consistent with the former
definition of X for p < @ (IIL.1.15).

3.5 Lemma. For all p >0 and all R,
(i) REX)>~RETIL;
(i) X, U n?p)cA
(iti) 20,01y =3p; My, py =0,

Proof. The proof of (i) is an easy induction on p. If R Ezm, then R € X2 for
some 7 < p: Hence for some P, €Il,), R= U {P, :p € w}. But I,,C H(p), SO
also R EE On the other hand let Q, =R for all p. Then all Q EE(p) SO
R= ﬂ{o :p Ew}E H (i) now follows from (i) and (m) follows
immediately. []
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Many of the properties of the Borel hierarchy mirror those of the arithmeti-
cal hierarchy and we state in the following lemma some of the more important of

these. The proofs are easy adaptations of previously used techiques and are
omitted.

3.6 Lemma. For all p >0,
@) 22 is closed under countable union, finite intersection, expansion, bounded

quantification, existential number quantification, and composition and substitution
of continuous functionals;

.o 0 . - . . . .

(ii) IL, is closed under countable intersection, finite union, expansion, bounded
quantification, universal number quantification, and composition and substitution
of continuous functionals. [

(1]
3.7 Theorem. Bo=A,.

Proof. 1t suffices to show that A(()m) is closed under countable union and
intersection. Suppose that for eachp € 0, P, € A?,,l), say P, € A?,p with o, <N,.
Then if p =sup{o,:p € w}, p <N, and by Lemma 3.5 for all p,P, € A‘,’,=
E?pﬂ) n H?PH). Hence U{P,:pE w}€ 22“ c Ag+2g A?,,l). O

3.8 Corollary. A} = A((),,l).

Proof. Immediate from 3.3 and 3.7. O

We want now to show that all of the levels of the Borel hierarchy are distinct.
We proceed analogously to Theorem II1.1.9 (the Arithmetical Hierarchy) and
define relations U which are universal for Zg—— that is, such that U(;E 2,0, and for
every RE 3 there exists a f € “w such that

R(m, a) < U?,((m), (a), B)

(cf. Exercise 11.5.11).
We set

US((m), (@), B) <> UT(B(0), (m), (e Ap. B(p + 1)));
for p >0,

Up 1 ((m), (@), B) <> 3p~U; ((m), (@), (B));
and for limit p,

Uo(m), (a), B) < 3p (3o < p)[|(B)ll = o A ~Uo(m), (a), (B)))].



3. The Borel Hierarchy 159
3.9 Lemma. For all p <8, W, EA‘;H.

Proof. Follow the proof of Lemma 3.2 with this stronger induction hypothesis.
This shows in fact that for successor p, W, € H?, and for limit p, W, € 22. O

3.10 Borel Indexing Theorem. For all p such that 0 <p <N;,
() U f)s universal for 22;0
(ii) ~U, is universal for II,,.
Proof. That U] € X! is obvious. Suppose that U)€ X). Then ~U,€ l]g and

U, = Uf{(m),(a), B) : ~UL((m), (@), (B)")}: p € w}

so that U(;H € 22“. If p is a limit ordinal, then by the preceding lemma,
{y:lvll=0}=W,, ~W, EAL,,, so that for all o < p this set is in IT,,. As p
is countable this shows that U?, is a countable union of H?p) relations, hence is 22.

Again it is obvious that UY is universal for 39 Suppose that U?, is universal for
Ez and Re 22+1, so for some relations P, € Hg, R=U {P,:p € w}. By
hypothesis, there exist functions B, such that

P, (m, @) <> ~U;((m), (@), B,).
Then if B is a function such that for all p, (B)” = B,, then
R(m, @) < U, ,((m), (@), B).
Finally, suppose that p is a limit ordinal, for all & < p, U is universal for £, and

R=U{P,:pEw}EX, For each p there is an ordinal o, <p such that
P, € H?,p and thus a function B, such that

Pp (m’ a)(—) "‘U?,.p((m), (a>v Bp)'

Then if B is a function such that for all p, [(B);] = o, and (B) = B,, we again
have

R(m, a) <> U ((m), (@), B)

so that Uz is universal for 22. O

3.11 Borel Hierarchy Theorem. For all p such that 0<p <N,,
. 0 0 (1] 0
O e a; and NG A3
(i) A, ., 23, VI,
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Proof. 1t suffices for (i) to show that Ug Z Ag. Suppose the contrary and let
A={a:U0( ){a)a)).

Then by Lemma 3.6, AEAg so in particular, ~A € Eg. Since Ug is universal,
there exists a B such that for all a,

aZ AU ) (a),B).

In particular,

BEA<U( )(B),B)=>BLEA,

a contradiction.
For (ii), let

R(m,a)e(m=0ra€A)v(m=1ra &A).
Then as in the proof of Theorem I11.1.9, R is A?,,,, but neither 22 nor ﬂg. O

By the homeomorphism discussed in §1.2, all of these results apply equally
well to the space BIr of binary irrationals in the real interval (0, 1) with the
induced topology: Y C Blr is open iff Y = BIrN Z for some open subset Z of
(0, 1). Of course, it is not in general true that if BIr N Z is open in Blr, then Z is
open in (0, 1). In fact, if Z = BIr, then Z is not open or even an F,-set in (0, 1)
(Exercise 1.2.11), but BIrN Z = BIr which is open in Blr.

Let BIr-Zg, etc., denote the Borel hierarchy on Blr and (0, 1)-2?, denote the
Borel hierarchy defined similarly over (0, 1), starting with (0, 1)-3 = class of
open subsets of (0, 1).

3.12 Theorem. For all p =3 and all Z C (0, 1),
BIrN Z is BIr-3) (I}) < Z is (0, 1)-3 (T1)).

Proof. The implication (<) is immediate by induction on p (for all p). For (—),
it is first easy to prove by induction that for all p >0,

X €BIr-3) ()= X =BIrN Y for some Y € (0, 1)-X (IT)).

Then if BIr N Z is BIr-30, BIrN Z = BIrN Y for some Y € (0, 1)-30. But then
there exist (countable) sets of binary rationals Y, and Y, such that Zi=
(YU Y,)~ Y,. Since any countable set is F, ((0, 1)-2‘2’), if p=3, Z is also
0, 1)-=. O
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We can now see that (i) and (ii) of Corollary 3.11 hold also for (0, 1)-22 for all
p = 1. For p = 1, this is because & and (0, 1) are the only closed-open subsets of
(0, 1). For p =2 we have that Blr is (0, 1)-I; but not (0, 1)-33. For p =3, it
follows from Theorem 3.12.

Of course, the theorem applies to relations as well as sets. For any
RC“"(0,1), let 3> "R denote the relation P(x)<>3y [y € (0,1) A R(y, x)] and
3®"R the relation Q(x)<> 3y [y €BIra R(y,x)]. The (0, 1)-2} relations are
those of the from 3 "R for R in (0, 1)-Borel and the BIr-E{ relations are those
of the form 3%"R for R BIr-Borel. The other classes of the projective hierarchy
are defined similarly. Clearly (0, 1)-A} contains all (0, 1)-Borel relations.

3.13 Theorem. For all r >0 and all Z C (0,1),
BIrN Z is BIr-3! (I1}) < Z is (0, 1)-3! (IT)).

Proof. 1f BIrN Z is BIr-X}, then BIrN Z = 3°"R for some R in BIr-Borel. But
since RC *BIr, 3®"R=3""R and by Theorem 3.12, R is also (0, 1)-Borel.
Hence BIrN Z is also (0, 1)-%;, and since Z differs from BIr N Z by a countable
set, also Z is (0, 1)-3;.

Conversely, if Z is (0, 1)-2:, then for some (0,1)-Borel relation R, Z =
3 "R. Then

BIrn Z = 3°">BIr N R] U (BIr N 3°%*R)

where 37" means “there exists a binary rational”’. By Theorem 3.12, ’BIrNRis
BIr-Borel so the first term is BIr-2}. 3®%R is a countable union of (0, 1)-Borel
relations, hence is (0, 1)-Borel. Thus the second term is BIr-Borel and BIrN Z is
BIr-3,.

The extension to larger r is by induction. []

3.14 Corollary. For all X C(0,1), X is (0,1)-Borel iff X is (0, 1)-A;,. O
3.15-3.19 Exercises

3.15. Complete the following outline of an alternative proof that A;CBo and
that 3 has the separation property (cf. Exercises 1.2.7 and 11.4.32). For any

RC“w X “w, let

R®” ={(a, B):R(s * a, t * B)}.

Two sets are called Borel separable iff they can be separated by a Borel set. Show
(i) if for all m, n, and p, 'R and 3'S“™”® are Borel separable, then
3'R and 3'S are Borel separable;
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(i) if for all a, B, and 7, there exists an n such that 3'RE™-PC) apq
3'g@™- 7" are Borel separable, then 3'R and 3'S are Borel separable;

(iii) any two disjoint %, sets are Borel separable;

(iv) every A; set is Borel.

3.16. For any indexed family (P, : p € w) of relations of the same rank, let
Lim(P,)(m, @) 3p (Vg =p)P,(m, a)

and

Lim(P,)(m, @) > Vp (3¢ =p)P, (m, a).

When Lim(P,) = Lim(P,,), we denote the common value by Lim(P,); otherwise
Lim(P,) is undefined. For all p, let

A, = the class of closed-open relations;
A, =U{A, 17 <p};
A, ={Lim(P,):Vp.P, €A}
Prove for all p:
(i) Ap g Ag««»l 5
(ii) A, is a Boolean algebra;
(iii) if Vp.P, EA,), then both U{P,:p € w} and n{Pp :p € w} belong
to A,;
(iv) if R="U{P,:pE w}= ﬂ{Qq :q € w} where for all p and ¢,P, and Q,
belong to A, then also REA,;
V) A, =A%, .
Hint for (iv). Suppose P, = Lim(P, ,, : m € w) and Q, = Lim(Q, ,, : n € w)
with all P, ., Q. , €A, Let

S,=(Py,NQ)UP,,NQy,NQ, )U...UMP,,NQy,,N...NQ,,).
Show that RC Lim(S,) and ~RC ~ Lim(S,).
3.17. Let S and H be, respectively, a Borel relation and a Borel functional, and
Q(m, @) © S(m, @, Ap.H(p, m, a)).
If Se 22 and He A?,, what can you conclude about the level of Q?

3.18. Show that for all p <N;, 22 has the reduction property.
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3.19. Show that every (0, l)-E: set is the projection of a (0, 1)-112 relation.

3.20 Notes. It might fairly be said that Suslin’s Thorem (3.3), proved in 1917,
was the result that put Descriptive Set Theory on the map. It was a tremendous
breakthrough in its time and is still today the model for most results which give
equivalent characterizations of a class of relations “from below” and “from
above”.

4. The Effective Borel and Hyperarithmetical Hierarchies

We want now to define a similar extension of the arithmetical hierarchy to obtain
classes 22 and I]g (p < w;) such that A?w,)=A:- This construction is called
the effective Borel hierarchy because it is derived from that in the preceding
section by replacing the generating operation of countable union by recursively
enumerable union. Roughly, the idea is to attach to each relation P as it is
generated an index ¢(P) and admit unions only of those families (P, :p € w)
such that the function Ap. «(P,) is recursive. The details differ from this sketch in
that we shall first define the set of indices and then assign relations to the indices.

In the second part of the section we consider an alternative method for
constructing a hierarchy of the Aj relations. This is based on a notion of iterating
the ordinary jump operator oJ over a set of ordinal notations and should be
considered as an extension of the ideas of Theorem III.1.13.

4.1 Definition. For each k and |/, N*'is the smallest subset of @ such that for all
a and b,

(i) if (b), = k and (b), = I, then (7,b)E N*';

(i) if for all p, {a}(p) € N*', then a € N*'

As usual we denote by N) and N the sets ' and I'?, where T is the
monotone I1] operator such that I" = N ' We also put N = UIN® !kl € v}
and N, U{N“ k,| € w}. By Theorem 2.15, || < w,, so N*'= N(w) It is
easy to check that if (k I)#(k’,I'), then N*' N N*""=0. Note that N
recursive and if a € N*' by virtue of clause (ii), then (a),#7 so a € N&

We next assign to every a € N“' a relation P, C “'w. The assignment is
recursive over N*' and may be justified by an extension of the technique used in
the proof of Theorem 1.3.5.

4.2 Definition. For each k and ! and any a € N*',
(i) if a € Ng', then P, = Dm{(a),};
(i) if a & Ng'', then P, = U{~P,)(,,:p € 0}.
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4.3 Definition. For all p,
(l) 22:)+p_—. {Pa -a e Np};
(i) l'IOHp;-‘ {~Pa :a €N,}
(iii)) A )= ﬂl'[
(iv) z?,,) Ui 0<r<p): Mg, = U{Ny:0< 7 <ph

Agy=UfAY:0<r<pk
(v) EfBo= A?w y = the class of effective Borel relations.
1

Note that for p < w, 1+ p = p + 1, while for p = w, 1 + p = p. A relation is in
50 (p > 2) just in case it is of the form U{~P,,,,,: p € w} where all ~P,,,, are
in I1,,. Slmllarly if R=~P,, isin IT,, then R=({P,,.,,: p € w} and all P ,,,,
are in 2(,,.

We want first to show that the notation here is not in conflict with that of
Definition I11.1.2 (arithmetical hierarchy) — that is, the classes 22 for0<p<ow
are just those previously defined.

4.4 Lemma. For all p >0,
(l) 2gp) U H(()P) c A
(i) 21 = 2 H(pﬂ) = H

Proof. 2?,,)c_:2‘,’, by definition as N, C N,. If R€ H?p,, then R= ~P, for some
a € N(,,. Thus if b is an index such that for all p, {b}(p) = a, then b € N, and
R=U{~Py,4: P € w} = P, which isin %, Thus Z¢,, UTI(,, C =7 and (i) follows
from the fact that E?P)UH?,,) is closed under complementation. (ii) is then
immediate. [

4.5 Lemma. For all p >0, Eg is effectively closed under recursively enumerable
union and finite intersection — that is, for each k and | there exist primitive
recursive functions f and g such that for any a,m, a, and any p >0,
@i) if for all p,{a}(p)E N, then f(a)E N*' and
Pf(a)(mv a) “"3[’ P(a}(p)(m, a)a
(ii) if a,b € N%', then g(a,b)E N;' and
Petaby=Pa NP,

Proof. Let h be a primitive recursive function such that for all g, p, and g,

{h(a,p,q)}(m, @) iff ~T({a}(p)):,(m),q,(a)).
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Then choose f to be a primitive recursive function such that

(7,h(a,p,q)), if {a}(p)E N,;
{fa)}(p,q)) =
{{a}(p)}(q), otherwise;

and for r not of the form (p, q),{f(a)}(r)=(7, a,), where Dm{a,} = “'w.
Suppose that for all p,{a}(p)EN::". For any p such that {a}(p)E N§",
clearly also {f(a)}({p,q)) € Ng". For other p we have for all g, {{a}(p)}(q)€E
Nf,;;, hence also for all q, {f(a)}({p, q)) € N:“;;. Thus for all r, {f(a)}(r) € N:“;; so
f(a)eN,".
For p such that {a}(p) € N§' we have

Py (m, @) < {({a}(p))}(m, @) |
<3q T(({a}(p));, (m), g,{(a))

<39 ~ Pyayp gn(m, @).

For other p,

Playpy(m, @) 39 ~Pya)p))q) (M, @)

<39 ~Piayp.qn (M, @).
Hence

3p. Piaypy(m, @) ©3p 3G ~Pys a3y, g1 (M, @)
< 3r ~Pyaym(m, a)

©Pj)(m, @).

We define g by the following four cases:
(1) if a, b € N,, then g(a, b) =(7, c), where

{c}(m, @) ={(a),}(m, @) +{(b),} (m, @);

(2) if a € N, but b € N, then g(a, b) is an index ¢ calculated from an index
of the function f of (i) such that if {a}(p) € N,

P(C)(p) = P{a}(p) U ~Dm{(b)1};
(3) if a € N, but b & N, then similarly

Pigca by = ~Dm{(a)} UPy 0
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(4) if a,b & N, then

Pleca 3 = Prarepy Y Py o)

The proof that g satisfies (ii) is straightforward. For example, if a € N(',‘" and
beE N~ Ng'
0 »

P, NP, =Dm{(a)} N U{~Py,,,:p € w}
= U{~ [~Dm{(a),} UPyy,)]: P € 0}
= U{~Pigabp 1 P € 0}
=P O

Before proceeding, we make a few remarks on the methods of proof we shall
use in the remainder of this section and often in later parts of the book. In
establishing closure properties of the classes 2?, we shall in most cases need to
prove that the classes are effectively closed. In the preceding lemma the
definition of g depends on the fact that f is primitive recursive, and this would be
so even if we were not requiring that g be primitive recursive. In the next and
many succeeding lemmas we shall need to define functions by effective transfinite
recursion. In outline, the method is as follows. Suppose < is a well-founded
transitive relation on w. For any function F and any u € Fld( <), let F [ u denote
the partial function g such that

F(v,p), if v<u;
g(v,p) =

undefined, otherwise.

The set-theoretic principle of definition by transfinite recursion asserts that for
any function ¢ there is a function F such that for all u € FId(<),

F(u,m)= ¢ (Flu,u,m),
and that the values of F for u € Fld(<) are uniquely determined. Roughly
speaking, the principle of effective transfinite recursion asserts that if ¢ is partial
recursive, then F may also be chosen to be partial recursive.

In practice, when we apply the method ¢ will be such that there exists a
partial recursive function H such that for all ¢ and m and all u € FId(<),

o({e}l u,u,m)=H(e,u,m)

and we shall apply the Recursion Theorem to obtain an index € such that
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{e}(u,m)=H(é, u,m).
Then clearly

{e}Yum)=o({e}lu,u,m)

and F = {¢€} is partial recursive.

A variant of this method defines a function f such that for u € Fld(<),
{f(u)}(m)=F(u,m). In a typical such situation there will be a primitive
recursive function h such that

e({{e}rul,u,m)={h(e,u)}(m),

where

{{e}(@)}(m), if v<u;
{{e}fu}(v,'n)Z{

undefined, otherwise.

Then if ¢ is chosen by the Primitive Recursion Theorem such that {¢}(u)=
h(é, u), the function f ={é} is in fact primitive recursive and has the desired
property.

This leads also to an extension of the principle in which the value F(u, m)
may depend not only on the values F(v, p) for v < u but also on indices for the
functions Ap.F(v,p). In such a situation we have a function ¢ such that
U (f I u, u, m) depends both on values f(v) for v < u and on the partial functions
{f(v)} that they index and a primitive recursive h such that

Y(flu,u,m)={h(e, u)}(m).
Again € is chosen so that {€}(u)=h (&, u), f ={€}, and F(u, m)={f(u)}(m).

There are many variations on these paradigms and mastery of the method
comes only with practice. Rogers [1959] is also helpful.

4.6 Lemma. There exists a primitive recursive function f such that for any p and
any a € N¥*"' for all p, f(a,p)EN"' and

Pf(a,p)(m, a) «> Pa (p, m, a),
Proof. Let h be a primitive recursive function such that
(7,Sbo((a). p)), if a € Ng;

h(e a,p) = {an index ¢ such that for all g,
{c}(q)={e}({a}(q),p), otherwise.
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By the Primitive Recursion Theorem there exists an index € such that
h(e a,p)={e}(a,p). We take f ={€}. If a € N,, then

Pf(a»p)(m’ a) e{SbO((a)l’ p)} (m’ a) ]/
<{(a)}(pm, a)l
<P, (p,m, a).

If a € N~ N, and we assume as induction hypothesis that for all g,

Prtar @), p(m, @) &Py, (p,m, @),

then

Pf(a,b)(m’ a)<3dq ~ Pf({a)(q),p)(m’ @)

© 39 ~Puyg(p,m, a)

<P, (pma). O
4.7 Corollary. For all p >0, 2?, is effectively closed under existential number
quantification (3% and Hg is effectively closed wunder universal
number quantification (Y°) — that is, there exists a primitive recursive function f
such that for all p and all a € N';H", f(a)e Nﬁ" and

Pf(a)(m’ a)(—)ap' Pa (P, m, a)'

Proof. It suffices to set f(a) = fs(Sbo(bs, a)), where f; is the function f of Lemma
4.5 and by is an index for the function f of Lemma 4.6. O

For the next corollary, let the finite levels of the effective Borel hierarchy be

denoted by 3, and I1° to distinguish them from the levels of the arithmetical
hierarchy.

4.8 Corollary. For all r>0,3°=3% and II°=11°.

Proof. For each k, I, and r, and all (m, @) € k"w, let
Vf"(a, ma)eoac€ N A P.(m, a).

We prove by induction on r the stronger assertion

(*) 3)=37, Ny'el], and Vi'E3’

Clearly (*) holds for r =1 as
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k1
Vi(ama)e(a)y=7r(a)o=kr(a),=1r{(a)}(ma)].

Suppose (*) holds for r. If REZ?,,, then R=13°S for some S &I’ Then
Sen?cs?,, by the induction hypothesis and Lemma 4.4 so R€E 3%, by
Corollary 4.7. Hence 37,,C 37, ..

Next we observe that a € Nf;'le\?’p. {a}(p) e Nf" so that if Nf"E I'l?, SO 1S
N f;’l‘ Then

Vii(am a)<a € NP a3p ~ V) i({a} (p), m, @).

Hence V¥, € 32, ,. Since V¥, is universal for £, ,, this yields3?,,C3°,,. O
We aim next to establish the equation A} = A2, ..
q 1= B)
[} 1
4.9 Lemma. A(wl)gAl'

Proof. For a fixed pair (k, 1), let
V(a,im a)<>a EN*' A[i=0AP,(m, a)]v[i=1r~P,(m, a)]

It will suffice to show V €11, as then for all a € N*', both P, and ~P, are I1; so
P, € A;. For this we define a decomposable monotone arithmetical operator I'
such that I" = V. T is essentially simply a combination of definitions 4.1 and 4.2.
For any RC ***'w, all i, and all (m, @) € o,
(i) if (b), =k and (b), =1, then
(1) if {b}(m, @) |, then ((7,b),0,m, @) € I'(R);
(2) if {b}(m, @) ?, then ((7,b),1,m, @) € I'(R);
(i) if for all p (i <1) ({a}(p),i,m, @) ER, then
(1) if 3p.({a}(p),1,m, @) ER, then (a,0,m, @) € I'(R);
) if Vp.({a}(p),0,m, @) ER, then (a,1,m, @) € I'(R).
T is clearly monotone, arithmetical, and decomposable; we leave it to the reader
to verify that I’ is as claimed. [J

See Exercise 4.25 for an alternative proof of Lemma 4.9. Toward the
converse inclusion we establish some further closure properties of the effective
Borel hierarchy.

4.10 Lemma. For all p >0, 2‘; and Hg are effectively closed under composition
and substitution of recursive functionals — that is, for any recursive functionals F
and G, there exist primitive recursive functions f and g such that for all p >0 and
all a and b,

(i) if a € NS, then f(a)E N, and

Pfay(m, @) < P, (F(m, &), m, a);
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(i) if bE N&'"", then g(b)ENX' and
Pg(b)(m’ a) <> Pb(my «, )\P . G(p, m, a))

Proof. For (i), let h be a primitive recursive function such that

(7, b), where {b}(m, @)={(a)}(F(m, «),m, @), if a € Ny;
h(e,a) = {an index ¢ such that for all p, {c}(p)={e}({a}(p)),
otherwise.
By the Primitive Recursion Theorem choose € such that h (¢, a) = {€}(a) and set
f =1{&}. A straightforward induction over N**"'' shows that f satisfies (i). The
construction of g is very similar. [J

4.11 Lemma. For all p < w,, W, is effective Borel (A‘()‘":))‘

Proof. Let p be any recursive ordinal and 6 € W a recursive function such that
8]l = p + 1. We shall show the existence of a primitive recursive function f such
that for all r € F1d(8), f(r)€ N> and W, ,= Pj,.

Choose a, €N ! such that P“o = and let G be a partial recursive function
such that

{{e}(p), if p<,r;
G(e,P,’)z

a,, otherwise.

By Lemmas 4.5, 4.7, and 4.10, there is a primitive recursive function h defined as
follows. If | r|s = 0 or 1, h(e, r) is any index such that P, ,,=W,,,. For all other
r, h(e, r) is such that if for all p, G(e, p,r) € N*, then also h(e,r) € N> and

Ph(e,')(‘)’)“’ap Vq Pc(e,p,r)(Y lq).

By the Primitive Recursion Theorem choose & such that h (g, r) = {€}(r) and set
f ={€}. We prove by induction on |r |, that f has the required property. This is
clear if [r|; =0 or 1 so suppose |r|; =2 and for all p <sr, f(p)E N> and
W, 15 = Py Then for all p, G(é,p,r)E N®' so f(r)=h(e,r)€ N”', and for
all v,

YEW,,<(3p<;r)Vq.vIqE Wil
<—-)3p Vq PG(e’,p,r)(Y rq)

< Puen(v)
oPi(y). O
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4.12 Theorem. EfBo = A;.

Proof. The inclusion (C ) is Lemma 4.9. By Theorem 2.2, for any R € A} there
exists a p < w; such that R <W,. By the preceding lemma, W, € EfBo and by
Lemma 4.10 so is R. [

To complete the picture of the effective Borel hierarchy, we shall show that
the levels are distinct. The method is again essentially the same as before — to
find universal relations for each level.

4.13 Lemma. For all p >0, Eg and Hg are effectively closed under expansion —
that is, for all k' and l', there exist primitive recursive functions f,. ,. such that for
all n,B)E“""w, all k,1 and all a € N¥', fi. [(a)E NE™ """ and

Pfk',l'(a)(m’ n, a, B) « Pa (m’ a)

Proof. For each k'’ and I, let

an index ¢ such that for all p,

(7, b) such that {b}(m,n, @, B)={(a),}(m, @), if a € N;;
hi: (e, a) = {
{c}(p)={e}({a}(p)), otherwise.

Set f.. ;(a) ={€}(a), where ¢ is chosen by the Primitive Recursion Theorem so
that hy. (€ a)={e}(a). O

4.14 Theorem. For all p such that 0<p < w, and each (k,1), there exists a
relation U?,E 2‘; which is universal for 2(;.

Proof. Let p be any recursive ordinal greater than 0 and fix (k, /). We shall
construct a special recursive well-ordering & such that ||§{|> p and a primitive
recursive function f such that for all u € FId(6), f(u)EN,kuJ',;" and Py, is
universal for 37, ,.

Let y be any recursive well-ordering such that || y[|> p and define § by

pr<s(gs)eops,qr(p=q—r=<s).

Clearly 8 is also a recursive well-ordering with ||8]|>p — in fact, |8]|= @ - | |
(ordinal multiplication). Furthermore, for all u € F1d(8), |u |5 is a limit ordinal
or 0 iff u=(p,0) for some p EFld(y) and |u|; is a successor ordinal iff
u ={p,r+1) for some p € Fld(y) and then [{p,r + 1)|5 = |(p, r)|5 + 1.

Before proceeding to the definition of f, we define an auxiliary primitive
recursive function g with the property that for all u € Fld(8), g(u) E N ,1 ;‘;aﬂ and
Nf‘;',5= ~P,wy — in short, g verifies that Nf,"E [I',’+,,+,. We obtain g via the
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Primitive Recursion Theorem and a primitive recursive h defined as follows. If
|uls =0, then h(e,u) is any index in N(',’0 for the recursive set Ng". If
u ={p,r+1), then h(e, u) is chosen by Lemmas 4.5-7, 10 such that whenever
{e}{p,rN) E N(l[,(;, then h(e,u)€ N.° and

NPh(e,u)(a)(—)vn [{a}(n)| A ~P{e}((p,r))({a}(n))]‘
If u=(p,0) and |u|s >0, choose a, € Ny such that Po = o, let

{e}(v), if v<,u;

G(e,v,u) = {

a,, otherwise;

and let h(e, u) be chosen such that whenever for all v, G(e,v,u)E N :;,0), then
h(e,u)€ N.° and

~Ph(e,u)(a)(_)vn [{a}(n)‘l’ A av ~PG(e,v,u)({a}(n))]'

We leave to the reader the easy proof by induction on |u |5 that if € is chosen by
the Primitive Recursion Theorem such that h(é, u)={€}(u), then g = {€} is as
required.

We now define f via the Recursion Theorem and a primitive recursive
function H defined as follows. If |u|;=0, then H(e,u)=(7,b) where
{b}(a,m, @)={a}(m, @) for all (m,a)E€*'w. If u=(p,r+1), then H(eu) is
chosen such that whenever {e}((p,r)) € ij)l", then H(e,u) € N "' and

PH(e,u)(a, m, a)<—>Vn {a}(n) ‘L A gn ~ P(e}((p,r))({a}(n)’ m, a)

If u=(p,0) and |ul|;>0, choose H(e,u) such that whenever for all v,
k+1,1

G(e,v,u)E N, ", then H(e,u)E N and

Phew(@am a)eVn {a}(n)l A3n3vlv <su A
{a}(n) € N[y}, A ~Poenuwal(n), m, @)].
Now if f = {€}, where ¢ is chosen by the Primitive Recursion Theorem such that

H(é,u)={e}(u), then it is straightforward to prove by induction on | u |5 that f is
as required. O

4.15 Effective Borel Hierarchy Theorem. For all p such that 0<p < w,,
. (1] o (1] 0
O 224 and g4
(i) A, 22, UII,

Proof. Exactly as for Theorem I11.1.9. [J
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In the remainder of this section we sketch another approach to constructing a
hierarchy for A}. This method applies only to relations on numbers and has no
descriptive-set-theoretic analogue. The idea arises from the fact established in
Theorem II1.1.13 that R EA‘,’+1 iff R is recursive in the set D, obtained by
applying the jump operator r times to a recursive set. We would like to extend
this by defining a notion of iterating the jump operator a transfinite number of
times and show that R € A: iff R is recursive in D, for some p < w,. This is not
quite possible: although we may take D, ., = Dzd, there is no canonical way to
define D, for limit ordinals p. What is missing is a way to “‘piece together’’ the
sets D, (o < p) to form a set D, which contains essentially just the sum of the
information contained in the D,’s. To get around this difficulty we shall index
our sets not by ordinals, but by natural numbers which serve as notations for
ordinals. This will be arranged in such a way that to any notation_for a limit
ordinal p is canonically associated a recursive function whose values are
notations for a sequence of smaller ordinals with limit p. Although the sets D,
and D, assigned to two notations u and v for the same ordinal will not coincide,
they will be recursive in each other.

4.16 Definition. <, is the smallest subset of w X w such that for all a, u, and v,
() 1<02;

(i) if u < ov, then v < 52°%;

(iii) if {a} is a total unary function and for all p {a}(p) <o, {a}(p + 1), then for
all p, {a}(p) <o 3%;

(iv) if u <ov and v <o w, then u <gw.

This is clearly a monotone arithmetic definition and thus has at most w,
stages (Theorem 2.15). Furthermore, it is easy to check that <, is a well-
founded partial ordering (Exercise 4.27). We denote the field of <, by O and
assign ordinals |u |, to elements u of O according to their positions in this
ordering. Thus, |1]o =0, 2“0 =lulo +1, and [3%]0 =
sup{|{a}(p)|o : p € w}. Except for o <w, the o-th stage of the inductive
definition of <, consists of those u such that |u |, < 0. In the following we write
u” for 2"

4.17 Definition. For all u € O,
(i) D,={0}

(i) D,+=DY’;

(iii) if u = 3% then D, ={{m,p):m € D 4}
4.18 Lemma. Forall u€ O, D, € Al

Proof. We proceed similarly as for Lemma 4.9. Let

V(i im)ouceOar([i=0rmeD,)v[i=1amg&D,)).
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We can define a monotone arithmetical operator I" such that
TF={ui,m): V(u,i,m}U{(u,2,v): u <o,v}

by combining definitions 4.16 and 4.17. Once this is done, it follows that V is I,
and hence that each D, is A].

The clauses (1)-(4) of the definition of I’ corresponding to 4.16 are
straightforward and we leave it to the reader to write them out. Corresponding
to 4.17 we have

) (1,0,0)0eI'(R); forall m>0,(1,1,m)ETI'(R);
6) (@) if (u,w,u")E R and Iw As [(Vn <Ig(s)). (4, (s)., ) ER
A T(a,{m), w,(s))]
then (u*,0,(a, m))E I'(R);
() if (,2,u”)E R and VYw Vs [(Vn <lg(s))(Vi.(4,i,n)ER —
—(s), =i)— ~ T(a,{m), w,(s))]
then (u”,1,(a,m))E I'(R);
(c) if n is not of the form (a, m), then (u",1,n) € I'(R);

(7)  (a) if for all p, {a}(p),2,3")ER and ({a}(p),i,m)E R,
then (3% i,(m,p)) € I'(R);

(b) if n is not of the form (a, m), then 3°,1,n)E'(R). O

To establish that each A: relation on numbers is recursive in some D,, we
shall define primitive recursive functions F and G such that for all a € N*°,
F(a)€ O and P, has index G(a) from Dg,). The result then follows from
Theorem 4.12. We need two technical lemmas.

4.19 Lemma. There exists a partial recursive function +, such that for all
UWVE O, Uu+ovE O, lu+tov|o=lulo+|v|o and if v#1, u<g (u+ov).

Proof. We define +, by the Recursion Theorem to satisfy the following
conditions:

1) u+o1=u;
Q) utov =+ov)";
() u +, 3% =3, where {c}(p)=u +, {b}(p).
It follows easily by induction over O that + has the required properties. [

4.20 Lemma. There exists a primitive recursive function g such that for all
u,v €O, if |u|o <|v|o, then D, is recursive in D, with index g(u,v).
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Proof. We shall define g by the Recursion Theorem simultaneously with an
auxiliary function f such that for u,v € O,

' u IO < ' v IO “){f(v)}(u, Dv+) = O,
and

lu 'O = ' v 'O <—>{f(v)}(u, Dv+): 1'
To increase legibility, we shall use the abbreviations:

A, . for {p:{g(u,v)}(p,A)=0}
and

A® for {m:(mp)E A}
Thus if g is as in the statement of the lemma, we have
(%) if wv€EO,|u|lp<|v|lp, and A =D, then A,,=D,;
and without any assumption,
(»x) if 3€0 and A =Dy, thenforall p A® =Dy,

We shall require that f and g satisfy the following conditions: for all u, v, a, b,
m, and A,

1) O}, A)=1; if v#1, {f(v)}(1,A)=0;
Q@ @ {fO N, AT ={f(o)u A);

. L (b i 3 {f0)ldale), A)=1;
®) FNE,A™) ~

0, otherwise;

, . [0 it 3p.G(pub A)=0;
3 {fG )} (u,A™) =

1, otherwise,
where G(p, u, b, A) = {f({b} (P )} (AP )iy o1y, by 0y* )5

4) {g(1, 0)}(m, A)=sg(m);

5) (a) {g(u”,v")}(m, A)={h(g(u, v))}(m, A), where h is a primitive recur-
sive function such that

{h(a)}(m,A™)= (An.{a}(n, A)>(m)
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whenever both sides are defined;

(b) {g(3% v )} (m, A%)={g(3% v)}(m, A);
(6) (a) {g(u+,3")}(m,A)z{g(uﬂ{b}(p))}(m’A(m),

where p = “least” p.G(p, u*,b,A)=0 (G as in (3));

(b) {g(3%3°)}((m, p), A)={g({a}(p),3")}(m, A).

To see that such f and g exist, rewrite equations (1)-(6) with the following
changes:
on the left-hand sides, replace f(v) by H(e, 0,0, v)
and g(u,v) by H(e, 1, u, v);
on the right-hand sides, replace f(v) by {e}(0,0, v)
and g(u,v) by {e}(1, u, v).
Then it is not hard to verify that there is a primitive recursive function H which
satisfies these rewritten equations. Note that the quantifiers on the right-hand
sides of (2)(b) and (3) are accounted for in the changing of A% to A. By the
Primitive Recursion Theorem, there exists an é such that H(¢, i, u,v)=
{€}(i, u, v) and we set f(v)={e}(0,0,v) and g(u,v)={€}(1, u, v).

We prove by induction on |v | (dropping the subscript) that f and g have the
required properties. If [v|=0 this is obvious, so suppose it is true with v
replaced by any w such that |w|<|v"|. Then
) [1]<|v"| is true and {f(v")}(1, D,++)=0.

2 (a) if u" €O, then u € O, so
lu|<|v"|e|u] <]v]<{f()}(4, D,*)=0
<{f(" W u", Dy+)=0.

(b) if 3* € O, then for all p, {a}(p) € O and

13| <[v"| > Vp. [{a}(p)| <[o]
< Vp.{f(2)}(a} (p), D,) =0
< {f(v"}(3", D,++)=0.

) {g(,v" )} (m,D,+)=0m =0<m € D,.
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5) @) If |u*|<|v"|, then |u|<|v], so
m € D,+ < m € (D,)” < (An.{g(u,v)}(n, D,))>(m)=0
< {h(g(u, v)}(m,(D,)™)=0
< {gu”,v")}(m,D,+)=0.

(b) If |3%|<|v"][, then |3%|<|v], so
m € Dja 9{8(3“’ U)}(m’ D,)=0
<{g(3% v")}(m,D,+)=0.

Now suppose that the result holds with v replaced by any w such that
lwl<[3"].

(3)  We first compute that as for all p, [{b}(p)| <|3”|, for any u € O,

[u| <|{b}(p)| = {f{b}(P)} (U, D 4y,y) =0
< {f{b} PN} An {g(b}(P) ", {b} (P + 1)} (1, D hyp1))) =0
< {f(b} ()}, An.{g({b}(p)",{b}(p + 1)} (n,(D3»)* ")) =0
< {f B PNH (D2)7 Yoo+ 1. 51y") = 0
< G(p,u, b, D;»)=0.

The second equivalence uses the induction hypothesis, the third uses (**).
Then if u € O,

lu|<|3"| o 3p.|ul <[{b}(p)
< 3p.G(p,u,b,D;»)=0
< {f(3")H(u, D3) =0.

©) We proceed by induction on | u |. For u = 1, the result is obvious by (4).
(a) If |u*|=<|3%]|, then |u™| <|3"] so for some (least) j, |u™| < |{b}(p)|.
Then G(p,u”, b, D;+)=0 and
n€ D, < {g(u",{b}(P)Hm, Dypyp)) =0
<{g ", {b}E)}Hm, (D3)P)=0  (by (**))
<{g(u",3")}(m, Dyr) = 0.

(b) If [3*| <|3°], then for all p, [{a}(p)|<|3|=<|3°], so
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(m,p)€ Dya &m € D,
< {g({a}(p),3")}(m, Dyp)=0
<{g(3%3")}(m,p),D)=0. O

4.21 Theorem. Forall R C“w, Ris A} iff R is recursive in D, for some u € O.

Proof. We define primitive recursive functions F and G such that for all k and
alla € N*°, F(a)€ O and P, is recursive in Dg,, with index G(a). As usual, F
and G are defined by effective transfinite recursion and we shall give only an
informal description of the construction.

If a € N, let F(a)=2 and G(a) be an index for the semi-recursive set P,
from D, ={0}*. If a & N,, set F(a)=(3°)", where ¢ is an index such that

{c}0)=F({a}(0) and {c}(p+1)={c}(p)+oF({a}(p +1)).

The properties of +, ensure that if for all p, F({a}(p)) € O, then F(a) € O and
|[F({a}(p))lo <|3°|o <|F(a)|o. By 4.20 there exists a recursive function y such
that if for all p, F({a}(p)) € O, then D g,y is recursive in D;c with index
v(p). We take G(a) to be an index such that

0, if 3p.{G{a}(P)}(m, An.{y(p)}(n, Dy))=1,
{G(a)}(m, Dk =

1, otherwise.

For the induction step in the proof that F and G are as desired, we have as
induction hypothesis that for all p,

{G({a}(p)}(m, An.{y(p)}(n, Dsc))={G ({a}(p))}(m, D p(a)py) = 1

© ~Pa)py(m).

Hence
{G(a)}(m7 DF(a))zo(_)ap'~P{a)(p)(m)(_)Pa(m)' D

This characterization provides us with a new hierarchy of the A} relations on
rnumbers known as the hyperarithmetical hierarchy. Let
57 ={R :R is many-one reducible to some D, with |ul, <p};
0, _ . 0,
II)={R:~R€EZ}
0 _ 50, 0,
Ay=3NII,.
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If R is a relation recursive in D,, then both R and ~ R are many-one reducible
to DS’ = D,+. Hence
A= U{AY:p<w}

Furthermore, if p < o < w,, then Ay $ AY (Exercise 4.31). By Theorem I11.1.13,
22’ = 2?, for p < w, but this is not in general true for all p < w,.

4.22-4.32 Exercises

4.22. Formulate and prove a theorem which justifies recursive definitions over
the sets N*' of Definition 4.2.

4.23. Show that for all p < w,, Eg and Hg are closed under bounded number
quantification (32 and V(l).

4.24. Show that for all p < w,,
30, ={3Q:Qem.

4.25. Give a different proof of Lemma 4.9 by defining by effective transfinite
recursion a primitive recursive function f such that for all a € N*', f(a) is an
index for P, as a A} relation — that is,

U1 ((f(@))o, (m), (@)) <> P, (m, @) < ~U; ((f(a));, (m), (a)).
4.26. Show that N*' (any k and !) and O are I} complete.
4.27. Show that <, is a well-founded partial ordering.

4.28. Show that there exists a primitive recursive function h such that for any
u € O and any d, if for all p, {d}(p)€ O, then h(d)€ O and for all p,

Hd}p)lo <[h(d)lo.

4.29. Show that the ordinals |u |, for u € O are exactly the ordinals less than
w,. (For each u € O, show that the restriction of <, to v<ou is a
well-ordering of type |ulo. For the other direction, let y € W be recursive.
Construct as in the pioof of Theorem 4.14 a recursive 8§ EW such that
|8]|= ||yl and use effective transfinite recursion to define a recursive
function f such that for all p €FId 8, f(p) € O and |f(p)lo =|pls.)

4.30. Give a new proof of Corollary 2.22 by showing that for all u € O, D,, is
implicitly IT. (Construct by effective transfinite recursion a partial recursive
function F such that for all u € O and all A
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A =D, o ~U3(F(u),( ).(A)).
Use an effective version of Exercise 111.4.25 for defining F(2*) from F(u).
4.31. Show that for all p < o < w;, AY S AL

4.32. Recall that U?a,) ={{r, a,m): U’ (a, (m))}. Show that for any R, the follow-
ing are equivalent:
() RE;
(i) R(m)<3p.{f(p),amE U?,_,) for some a and some primitive recursive
f;
(ili) R < T for some E‘l) inductive operator I
(Cf. Theorems, II1.3.6-7). How does this compare with 2?,,’?

4.33 Notes. The idea of an effective version of the Borel hierarchy was
developed by Addison in his thesis, Addison [1954], and announced in Addison
[1955], although at that time not all of the details of the transfinite levels had
been worked out. Indeed, they were never published and may not have been
completely written down until the Spring of 1964 when Addison conducted a
seminar on the material at Berkeley. The hyperarithmetical hierarchy based on
O and the set D, and Theorem 4.21 are due to Kleene [1955b], but Lemma 4.20
is from Spector [1955].

5. Cardinality, Measurability and Category

One of the benefits for analysts in dealing with constructively defined sets and
relations is that they are more likely to be “well-behaved’”. We consider here
some of the pleasant properties of %, and II} relations. To simplify some of the
arguments we shall deal explicitly only with subsets of “w (relations of rank
(0, 1)), but all of the results hold also for relations of arbitrary rank.

5.1 Theorem. Every Il or 2: set is both the union of an N,-sequence of Borel sets
and the intersection of an N-sequence of Borel sets.

Proof. 1f suffices to prove the result for A €1I1;. Let P be a closed-open relation
such that a EA< VB 3In P(B(n),a), and < and s'z the relations defined in the
proof of Theorem 1.1. For any ¢ set

P,t P
ulg, veuss vAavst

a

and
A, ={a : <0 has order-type < p}.
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Thus as in the proof of Theorem 1.1,

a€Ae<tVsa well-ordering
o(Fp<N)a €E Ai,).

For any p <N;, choose y such that |y[|=p and let F be a continuous
functional such that

0, if u=

Fu,v),t, ) = {

1, otherwise.
Then

a EA:,Q Flt,a]<sy o Flta]<py

so that for all ¢, A:, is A:, i.e., Borel. In particular, A = U{Ai,) p<N}is a
representation of A as a union of N, Borel sets.
For the intersection, let

B, =AYUU{A,, ~AL: 1 € ).

Again B, is clearly Borel for all countable p, and we claim that A = n{Bp p<

N,}. Suppose first that & € A, so that <" ¢’ is a well-ordering, say of order-type o.

For any p <o there exists a ¢ such that <P’ has order-type p +1 so that
a €EA,,,~A.CB,. For p =0, a €AY’ CB,. Hence a €B, for all p <N,.
For the converse, suppose a € B, for all p <N,. For each ¢ let

order-type of <", if this is an ordinal;
"ﬂ', =
0, otherwise;

and set p=sup{o,:t € w}. Then p <N, and for all 1, <.'* does not have
order-type p + 1so a € A, ,; ~ A,. Since a € B, it follows that a € Af_,)g A.O

5.2 Corollary. Every 2; set is the union of an N,-sequence of Borel sets.
Proof. Suppose A is 3, and a € A<>3B S(a,B) for some SEI;. By the
preceding theorem (extended to relations) there exist Borel relations S, such

that S = U{S, : ¢ <N,}. Then

a€EA-IB (o <N)S,(a,B)
(3o <N)IABS,(a, B).
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By the theorem again there exist Borel sets A,, such that
{a : aﬁ Sa(a7 B)} = U{Atm' T< “1}

and thus A = U{A_, : o, 7 <N,}. Since N, X N, is of power N,, there is a pairing
function on N, with (say) inverses ( ),and ( );. ThenA= U {A(")o(")l 1o <N}
as required. [

The converse of this Corollary is not provable without some additional
set-theoretic assumption, since if 2= N,, then every set is the union of N,
singletons (and singletons are Borel). (Cf. Exercise V.3.25).

We turn next to the measurability of 2; and ﬂi relations. We have discussed
only Lebesgue measure on “w, but the proof will depend only on the following
four properties of the measure:

(1) The class of measurable sets contains the open sets and is closed under
complementation and countable union and intersection;

(2) the union of countably many sets of measure 0 has measure 0;

(3) every subset of a set of measure 0 is measurable and has measure 0;

(4) in any family of N; pairwise disjoint measurable sets, at most countably
many sets have positive measure.

Properties (1) and (2) are direct consequences of the countable additivity of a
measure and (3) is the completeness property. For (4), if (A, : o < N,) is a family
of pairwise disjoint measurable sets and x, = mes(\U{A, : 7 < o}), then x,<
X< +<Xx,<Xx,,;.... The strict inequality, x, < x,.,, holds just in case
mes(A,) >0 and in this case there is a rational number y, such that x, <y, <
X 4+1. Clearly this can happen for at most countably many o.

5.3 Theorem. Every 3, or I, set is measurable with respect to any measure
which satisfies (1)~(4).

Proof. As the complement of a measurable set is measurable, it suffices to
consider AETI;. Let A, be as in the proof of Theorem 5.1 and for each t
consider the family (A:,+1 ~A,:p <N,). This is a family of N, pairwise disjoint
Borel sets (hence measurable sets by (1)) so all but countably many have
measure 0. Hence there is an ordinal o, such that for all p = o, mes(A},; ~A) =
0. Let p = sup™{o, : t € w}. Then p <N, and for all £, mes(A;,,;~A;)=0. In the
proof of Theorem 5.1 we showed A C B;. Hence

A=ASUANUALL ~AL € o))

Thus A is the union of Af-, >, which is Borel, hence measurable, and a subset of a
countable union of sets of measure 0, which is measurable by (2) and (3). O



5. Cardinality, Measurability and Category 183

This result cannot be extended even to A, relations; we shall indicate a proof
of this in §V.2. Of course, countable unions and intersections of X; and II}
relations are measurable. We shall discuss further extensions of this sort in § V 4.
We turn next to the topological analogue of measurability, the Baire

property.

5.4 Definition. A set A has the Baire property iff there exists an open set B such
that both A~ B and B ~ A are meager.

We aim to show that all 3 and II] sets also have the Baire property. The
proof is nearly identical to that of Theorem 5.3 once we establish the following
analogues of (1)-(4):

(1) The class of sets which have the Baire property contains the open sets
and is closed under complementation and countable union and intersection;

(2') the union of countably many meager sets is meager;

(3') every subset of a meager set is meager and has the Baire property;

(4) in any family of pairwise disjoint sets which have the Baire property, at
most countably many sets are non-meager.

We denote the topological closure of a set A by A. Note that a € A iff, for all
n, [@(n)]NA# . Ais dense in an interval [s] iff [s] C A. Hence A is nowhere
dense iff no interval is included in A iff ~A is dense iff ~A = “w. Properties (2')
and (3') are immediate from the definitions.

5.5 Lemma. For any open set B, B~ B is nowhere dense.

Proof. If B is open, then B ~ B is closed so by the preceding remarks, it suffices
to show that ~(B ~ B) is dense. This is clear from:

~(B~B)=~BUB=~BUBD~BUB="w. O

5.6 Lemma. The class of sets which have the Baire property is closed under
complementation and countable union and intersection.

Proof. Suppose first that A has the Baire property and B is an open set such that

A~ B and B ~ A are both meager. Then ~B is open,
(~A)~(~B)=B~AC(B~A)UB~B),

and

(~B)~(~A)=A~BCA~B.

By Lemma 5.5 both of these sets are meager and thus ~A also has the Baire
property.
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Now suppose that for all n, A,, has the Baire property and B, is an open set
such that both A, ~ B, and B, ~ A, are meager. Then U{B,, : n € w} is open,

U{A,,:nEw}~U{B,,:nEw}QU{A,,'vB,,:pEw},
and

UB,:n€w}~U{A,:n€w}cU{B,~A,:n€ w},
so it follows by (2') and (3') that U{A,, : n € w} also has the Baire property. [

Since all open sets obviously have the Baire property, this establishes (1). It
follows immediately that all Borel sets have the Baire property.

5.7 Lemma. For any set A which has the Baire property and any s, there is some
t D s such that one of AN[t] and (~A)N|[t] is meager.

Proof. Suppose that A has the Baire property and B is an open set such that
A~ B and B ~ A are meager. For any set C et

C*={a :for all n,CN[a(n)] is not meager}.

Clearly C* C C. Since the meagerness of A N [@(n)] will not be affected by the
addition or removal of a meager set, A* = B* and (~A)* = (~B)*. Hence

A*N(~A)*=B*N(~B)*CBN<~BCB~B,

which is nowhere dense by Lemma 5.5. In particular, for every s there exists a
function « € [s] such that either a € A* or a & (~A)*. If a & A*, then for some
n, AN[a(n)] is meager, and clearly n may be chosen such that a(n)2Ds. If
a & (~A)*, then for some n, (~A)N[a(n)] is meager. [

5.8 Lemma. For any A, if A is non-meager and has the Baire property, then for
some s, (~A)N[s] is meager.

Proof. Suppose that A has the Baire property but for all s, (~A)N[s] is
non-meager. Then by the preceding lemma, for every s there exists a t D s such
that AN[t] is meager. Let C= U{[t]:AN[t] is meager}. Clearly ANC is
meager. But ~C is nowhere dense so AN (~C) is also meager and thus A is
meager. []

5.9 Lemma. In any family of pairwise disjoint sets which have the Baire property,
at most countably many sets are non-meager.
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Proof. Let X be a family of pairwise disjoint sets which have the Baire property
and Y the subfamily of X consisting of all non-meager sets. By the preceding
lemma the function

¢ (A) = least 5. (~A) N [s] is meager

is defined for all A € Y. It will suffice to show that ¢ is one-one as Im ¢ C w and
hence is countable. Suppose ¢ (A) = ¢(B)=s. Then (~A)N[s] and (~B)N[s]
are both meager. Since A N B = J, the union of these sets is [s], which is thus
meager in contradiction with the Baire Category Theorem (1.2.2). [0

5.10 Theorem. Every 3., or I set has the Baire property.

Proof. Follow the proof of Theorem 5.3 substituting “‘has the Baire property”
for ‘““is measurable” and “is meager” for ‘“‘has measure 0”. [

Finally, we consider the question of the cardinality of 3 and I sets. It is
well known that the usual axioms of set theory, even including the Axiom of
Choice, do not determine the power of the continuum. That is, it is consistent
with these axioms (assuming that they alone are consistent) either that 2'° = N,
or that there are one or more distinct cardinals between N, and 2™°. What we
shall show is that these intermediate cardinalities cannot be realized by 3 sets
nor, except for N,, by ) sets.

5.11 Lemma. For any uncountable set A C “w, there exist s, and s, such that
[s)] N [s;] = and both AN [sg] and AN [s,] are uncountable.

Proof. Let A be uncountable and set

B ={s:s €SqaAnN{s] is uncountable}.
Clearly ( )€ B.Since AN [s] = U{AN[s*(n)]: n € w}, if AN [s]is uncounta-
ble, so is some A N [s *(n)]. Hence there there exists a unique function B such
that for all k,

B(k) = least n[B(k)*(n) € B].

Suppose that the conclusion of the lemma is false. Then for every s, if B & [s],
then AN [s] is countable. But

Ac U{AN[s]: BZ [sHU{B}

and thus A is countable, contrary to assumption. [
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At this point the reader should attempt to show for himself that any
uncountable closed set has power 2'. The proof of the following theorem is
merely a two-dimensional version of this construction.

5.12 Theorem. For all AE 3}, if A is uncountable, then A has power 2™.

Proof. Let A be an uncountable 2} set. Obviously the power of A is at most 2" so
it suffices to find a subset of A of power 2™. Let R be a relation such that

a EAIBVnR(a(n), B(n)),
and

R(s,t)as'Csat'Ct—R(s',1).

By Lemma 5.11 choose s, and s, such that AN[s,] and AN{[s,] are both
uncountable and [s,] N [s,] = &. For i = 0 and 1 we may represent A N [s;] in the
form

aEAN[s]eac[s]AItIAB[Ig()=1g(s)
B E[t] A¥YnR(a(n), B(n))).

As there are only countably many ¢ of length Ig(s;), there is at least one, say ¢,
such that

Ai={a:a E[s]A(IB E[L])VnR(&(n), B(n))}

is uncountable.
For the next stage, choose for i =0 and 1, s, and s;; such that A; N [s; ;] is
uncountable, and then ¢, and ¢, ; extending ¢ such that

Aj={a:a€[s;]A(3BE[t,;)VnR(a(n), B(n))}

is uncountable. Continuing in this way, we define for each (code for a) finite
sequence u of 0’s and 1’s, sequences s, and ¢, with the following properties:

(1) R(sy t.);

2)uCv—s,Cs, and 1, Ct,;

(3) s, Cs,~ucCuv;

(4) 1g(s.) = 1g(r.) = 1g(u).

For each y € “2, let a, be the limit of the sequences s;,, and B, the limit of
the t;,) — that is, @, (n) = (5;¢,+1))» and B, (n) = (t;(n+1))n- From (3) it follows
that if y# 8, then a,# a;, so the mapping y» a, is 1-1. Hence B=
{a, 1y € “2} has the same power as “2, that is, 2'.

We claim that B C A. Note first that for every y and n, R(s;5(n), t3(n)) SO that
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also R(a,(n), Ey(n)). In particular, for every v, 3B VnR (&, (n), B(n)) and thus
a, €EA. O

5.13 Corollary. Forall AE 3, if A is uncountable, then A has power either R, or
2%,

Proof. By Corollary 5.2, every 3, set A is the union of N, Borel sets A, (p <N)).
The sets A, may clearly be chosen pairwise disjoint. By the preceding theorem,
each A, is either countable or of power 2™, There are three possible cases:

(1) for some p, A, has power 2": then A has power 2™;

(2) A, is countable for all p and A, is non-empty for uncountably many p:
then A has power N;;

(3) A, is countable for all p but A, is non-empty for only countably many p:
then A is countable. [

By Theorem 3.13 all of the theorems of this section hold also for 3, and IT;
and X} subsets of the real interval (0, 1).

5.14-5.16 Exercises

5.14. Is the following “lightface” version of Theorem 5.1 true: every 3, or I1] set
is both the union of an w,;-sequence of A} sets and the intersection of an
w,-sequence of A} sets? Consider separately sets of functions and sets of
numbers.

5.15. Show that for any a, {8 :a € Aj[B]} has measure either 0 or 1 (use
Exercise 1.2.10).

5.16 (Harrison). Show that for any Ei set A,if AZ A}, then A is of power 2",
(Apply a variant of the technique used for Theorem 5.12 to the 3] set A~ A}.)
Conclude that there is no largest countable 3; subset of “w. Note that the
relativized version of this result implies Theorem 5.12.

5.17 Notes. An excellent and thorough account of the analogies and similarities
between the theories of measure and category may be found in Oxtoby [1971].

As with many of the results of this chaptr, much effort went into attempts to
extend Theorems 5.3, 5.10, and 5.12 to higher levels of the analytical and
projective hierarchies. The attempts were futile because the extensions are
independent of ZFC. Indeed, this was forseen as early as Luzin [1930] where we
read as the final paragraph:

“Ou bien, les problémes indiqués sur les ensembles projectifs (of measure,
category, and power) resterons a jamais sans solutions augmentés de quantité de
problémes nouveaux aussi naturels et aussi inabordables. Dans ce cas il est clair
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que le jour serait venu de réformer nos idées sur le continu arithmétique.”

In §§ V.2-3 we consider the situation under the additional hypotheses of
Constructibility or Projective Determinacy. The hypothesis that there exist a
measurable cardinal has the somewhat surprising effect of pushing the results of
this section exactly one level further: all 2; sets are measurable, have the Baire
property, and satisfy the Continuum Hypothesis (see Solovay [1969] and
Shoenfield [1971b]).

6. Continuous Images

We have explored in §§1 and 2 the analogy between the classes 59 and I1;. There
are, however, some ways in which 3° resembles 3}. Consider the following two
facts: for any non-empty A Cw and A C “o,

1) A€ S9iff A is the image of a recursive set under a recursive function
from @ into w,

(1) A€ 3} iff A is the image of a {Borel

} set under a continuous functional
closed

from “w into “w.

(1) is just a slight variant of part of Theorem I1.4.15 and (1') follows from
Lemma 6.1 below and the fact that projection is a continuous functional together
with the relativized version of Lemma III.2.8. We shall investigate here
corresponding analogues for the following related facts:

(2) A €3] and A#J< A is the image of a total recursive function;

3) A€ 2?<—>A is the image of a recursive set under a one—one recursive
function;

(4) A €3 and A is infinite > A is the image of a total one-one recursive
function (Exercise 11.4.30);

(5) A €32 A is the domain of a partial function with recursive graph.

We shall use letters 6, ¢, x, and i to denote (partial) functionals from “w into
“w. Such a functional is continuous iff 6 '([s]) is an open set for every interval
[s]. Note that it is not true that the graph of a continuous functional 6 is a
closed-open subset of “w X “w as clearly no such functional has open graph.

6.1 Lemma. For any 6, if F(p, a)= 6(a)(p), then 0 is partial continuous iff F is
partial continuous.

Proof. Suppose first that F is partial continuous. Then

87 ([s) ={a : (Yp <Ig(s))F(p, @) = (5),},

and thus 8 '([s]) is a finite intersection of open sets and is open. On the other
hand, if 6 is partial continuous,
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F(nh=U{lp}x 67 'da:a(p)=n}:p E w},
so F'({n}) is open and thus F is partial continuous. [J

We first establish an analogue of (2). The following lemma is a refinement of
Lemma 5.11.

6.2 Lemma. For any uncountable set A C “w, there exists an infinite set A C Sq
such that
(i) for all s€ A, AN[s] is uncountable;
(i) forall s, t€ A, if s#1t, then [s]N[t]=;
(i) A~ U{AN[s]:s € A} is countable.

Proof. Let B and B be defined as in the proof of Lemma 5.11. For each k set

Acr={s:sE€Balg(s)=k+1aANi<k)[(s); = B@{)] rB(k)<(s)}
and

A =U{A, : k €E w}.

By definition A C B and thus satisfies (i). For (ii), suppose s, t € A and s # t.
If s and ¢ belong to the same A, then (s), # (t), so [s] N [t] = &. Otherwise, for
some k </ (say), s E A, and t € A, so (t), = B(k)<(s), and again [s]N[¢t] =
. Hence (ii) is satisfied. For (iii), suppose « € A~ U{AN[s]:s € A}. Either
a = B or else for some k, @(k)= B(k) but a(k)# B(k). If a(k)< B(k), then
a(k + 1) £ B by the definition of B. If B(k) < a(k), then again @(k + 1) € B, as
otherwise a(k + 1) € A, contrary to the assumption that a belongs tono A N [s]
with s € A. Hence

a € U{AN[s]:AN[s] is countable} U {B}.
This set is countable so (iii) is established.

Finally, suppose that A were finite so that for some k, A, = for all | > k.
Then for all s such that lg(s) > k, if A N [s] is uncountable, then B € [s]. But

AN[BR)C{BIUU{ANs]:1g(s)> k A BE[s]}.

The right-hand side is countable, but 8(k) € B so AN [B(k)] is uncountable, a
contradiction. [

6.3 Lemma. For any uncountable closed set A C “w, there exists a one—one total
continuous functional 8 such that Im@ C A and A~ Im 6 is countable.
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Proof. Let A be an uncountable closed set and set A, = A. We shall define for
each u €Sq a set A, such that for all 4 and v,

(i) A, is uncountable;

(i) uZvrvZu—A,NA, =C;

(i) A, ~ U{A, ...y : n € 0} is countable;

(iv) uCv—>A,CA,;

(v) for any B, ﬂ{AB(k): k € w} contains a single element.

Suppose that A, is defined and let A, C Sq be as in the preceding lemma
applied to the uncountable set A,. If s, denotes the n-th element of A,
enumerated in numerical order, set

A=A, N[s,.]

Properties (i)-(iii) now follow immediately from (i)~(iii) of the lemma, respec-
tively, and (iv) is evident from the construction. (v) follows from the fact, easily
proved by induction on the length of u, that A, is closed and for all s € A,
lg(s) = lg(u).

Now set 8(B) = the unique element of ﬂ{AE(k): k € w}. For all B, 0(B) €
A=A_,. That 9 is one-one follows from (ii). If B8 € 6 '([s]), then Az ey C [5]
so [B(1g(s))] C 6 '([s]) and thus 6 is continuous. Finally, if « € A~ Im 6, then
for some u, « €A, ~ U{A,.,: n € w}. Hence

A~Imoc U{A, ~U{A,..,:n € w}:u €Sq}
which is countable by (iii). [

Note that the provision that Im # may differ from A by a countable set is
essential as it is easy to see that Im 6 cannot contain isolated points (« is isolated
in Im @ iff for some n, « is the only member of Im 6 N [&@(n)]). Note that a set
can have at most countably many isolated points.

6.4 Corollary. Every non-empty closed set is the image of a total continuous
functional.

Proof. 1f A is countable, say A={B, : n € w}, we simply set x(a)= B, and
A=1Imy. If A is uncountable, let § be as in the preceding lemma a one-one

continuous functional such that Im@ CA and A~Im#@ is countable, say
A~Im6 ={B, :n € w}. Then if

9(Am.a(m +1)), if a(0)=0;
x(a) = {

Bay-1s if a(0)>0;

clearly y is continuous and A=Imy. O
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6.5 Theorem. For any non-empty set AC “w, A €3, iff A is the image of a total
continuous functional.

Proof. First, if A=1Im 6 for some total continuous 6, then

a €AIBVp.6(B)(p)= a(p)

so it follows from Lemma 6.1 that A € 3;. The converse is immediate from (1')
and Corollary 6.4. O

Consider now the following possible analogues for (3)-(5):

(3) Ae 3 <> A is the image of a Borel set B under a continuous functional

which is one-one on B; )

(4) AEX] and A is uncountable & A is the image of a total one—one

continuous functional;

(5) AEZ, & A is the domain of a partial functional with Borel graph.
The implications (<) are trivially true in each case, but we shall show that all of
the implications (—) are false. (This also follows from Exercise 2.27.) Of course,
as we pointed out following 6.3, (4)'(— ) fails for any A which has isolated points,
but the following shows that it would be false even if we allowed for the
exclusion of such points.

6.6 Theorem. The image of any total one—one continuous functional is a Borel
set.

Proof. Let 6 be a total one—one continuous functional. The graph of 8 is Borel
so there exists a A, relation R and a function y such that for all a and B,

6(a)=B<>R(aB, 7).

Then because 0 is one-one,

BEImO & 3a R(e, B,y)
o A'aR(aq, B, v)
< (3a €48 YDR(x B 7).

The first equivalence shows that Im@ is 3. The third shows that it is IT}
(Theorem 2.9). [

The result of Lemma 6.3 can be extended to all Borel sets. First we give a
new characterization of the class of Borel sets.
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6.7 Lemma. The class of Borel sets is the smallest class containing all closed sets
and closed under countable intersection and countable disjoint union.

Proof. Let X be the class described. Clearly X C Bo so it suffices to prove by
induction that for all p, Egg X. For p = 0 this is true by hypothesis $o we assume
p >0 and Z?D)Q X. As X is closed under countable intersection we have
immediately that IIC X. Let R= U{P, : p € w} be any element of 22 with all
P,e H?p). For each p, let

Q,=P,~U{P, :q<p}

By Lemmas 3.5 and 3.6, each Q, € A‘;g Ilf,g X. The Q, are pairwise disjoint
and R = U{QP:pEw} soReX 0O

6.8 Lemma. Every Borel set is the image of a closed set C under a continuous
functional which is one-one on C.

Proof. Let X be the class of sets which are images of closed sets as described.
Clearly all closed sets belong to X so it will suffice to show that X is closed under
countable intersection and countable disjoint union.

Suppose that for all p € w, A, € X, C, is closed, 6, is a continuous functional
which is one-one on C,, and 6, C, = A,. If the sets A, are pairwise disjoint and
B=U{A,:p€Ew}, let C={a:am.a(m+1)EC,, and 6O(a)=
0,0)(Am.a(m +1)). Then C is closed, 6 is continuous and one-one on C, and
60"C =B.

Now let B= N {A, :p € w}. Then we set

C={a:VpVq[(a)’ €C, A 6,((a)") = 6,(()")]
AVE[t&Sqvig(t) #2— a(t)=0]}

and 6(a)= 00((a)°) and claim that @ is continuous and one-one on C, C is
closed, and 8”C = B. That C is closed follows easily from Lemma 6.1. 6 is clearly
continuous. If B8 € #”"C then for some a €C, B = 00((a)°) = 6,((a)”) for all p.
Since 6,((«)?) € 6,C, = A,, B € B. On the other hand for any B € B there exists
for each p a function a, € C, such that 6,(«,) = B. But then there isan « €C
such that (a)® = a, for all p and thus B € §"C. Finally suppose for some
a, B €C that 6(a)= 6(B). Then for all p, 6,((a)?)= 6,((B)") which implies
(a)’ = (B)® since 6, is one-one on C,. Thus for all p and m, a((p,m))=
B({p, m)) and by the final condition on C, @ = B. Hence 6 isone-oneon C. [

We now have, in contrast with the proposed (3') and (4'):

6.9 Theorem. The following are equivalent for all AC “w,
(i) A is Borel;
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(ii) A is the image of a Borel set B under a continuous functional which is
one-one on B;

(iii) A is the image of a closed set C under a continuous functional which is
one-one on C;

(iv) A is countable or for some one—one total continuous functional 6, Im 9 C A
and A~ 1m0 is countable.

Proof. If A is Borel then it is the image of itself under the identity function, so (i)
implies (ii). (iii) follows from (ii) by Lemma 6.8. Now suppose (iii) holds, say
A = x"C, and by Lemma 6.3 let ¢ be a one-one total continuous functional such
that In¢ CC and C~Ime¢ is countable. Then 6 = y°¢ clearly has the
required properties. Finally, if A satisfies (iv), Im 8 is Borel by Theorem 6.6 and
any countable set is Borel, so A is Borel. [J

Finally, in contrast with the proposed (5'), we have

6.10 Corollary. For any partial functional 6, if the graph of 8 is a Borel relation,
then the domain of 6 is a Borel set.

Proof. Let 6 have Borel graph and set

B={a,B):0(a)=pB} and ¢(y)= (7)o

Then ¢ is continuous and one-one on the Borel set B and ¢ "B is the domain of
6. By the preceding theorem this is a Borel set. [J

6.11-6.14 Exercises

6.11. Show that AC “w is 3] iff it is the image of some partial continuous
functional with closed domain.

6.12. Prove that every Borel set is the domain of a functional with closed graph.

6.13. Show that if # is continuous and 1-1 on A, then
(i) if AEZ], then also 8"AE 3;;
(ii) if A Z A], then also 8"A £ A;.

6.14. Establish the following analogue of Lemma 6.1: for any 6, if F(p,a)=
0(a)(p), then the following are equivalent:
(i) Gr, is Borel,;
(ii)) Gr is Borel;
(iii) for all s, 7 '([s]) is Borel.
What happens if ‘““Borel”” is replaced by ‘3’2 by “I1}’? (cf. Theorem 7.11 below).
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6.15 Notes. The results of this section are all “‘classical” — that is, they
appeared before the era of Recursion Theory. The proof of Theorem 6.6 is more
modern, depending as it does on §2. There is, of course, a classical proof which
goes in outline as follows: if @ is a total one—one continuous functional, use
Corollary 1.12 to find for each s € Sq a Borel set A, such that

0"([sDCA, C ~6"(~[s])
and if s C¢, then A, CA,. Then
a€EImoVnVs(lg(s)=nara€A,NO"(s])]

For the flavor of this sort of Descriptive Set Theory as it was done in the good
old days, peruse Ljapunov-Stschegolkov—-Arsenin [1955].

7. Uniformization

The notion of a selection functional Selg for a relation R played an important
role in § I1.4 and § 2 of this chapter. Selg selects a number p such that R(p, m, a)
holds whenever there is such a p. We consider here the analogous problem of
selecting a B such that R(m, @, ). The letters 6, ¢, x, and ¢ denote functions
from “'o into “o in this section.

7.1 Definition. For any two classes X and Y of relations, X is Y-uniformizable
(or Y uniformizes X) iff for every RE X, RC"“'"'w, there exists a partial
functional 6 : “'@ — “@ with Gr, € Y and such that for all (m, &),

3B R(m, a, B) > R(m, @, 6(m, a)) < 6(m, a) | .

The functional 6 is said to uniformize R. X has the uniformization property iff X
is X-uniformizable.

The main result of this section is that ITj, II;[8], and II] all have the
uniformization property. As background we examine uniformization for simpler

classes.

7.2 Theorem. 3 is Aj-uniformizable.

Proof. Suppose RE 3}, say R(m, a,8)<3p S(B(p), m, @) with S recursive.
Then the functional 6 defined by:
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0(m,a)=pB<>3IAsS(s;m,a)AVs[S(sma)Ar(VI<s)~S(t,m, a)
— B(g(s)) = s A (Ym =1g(s))B(m) = 0]
has Aj graph and uniformizes R. [J

Of course 37 cannot have the uniformization property since no non-empty
functional @ has open graph. The same argument shows that 3[B] is AS[B]-
uniformizable and hence X is AJ-uniformizable.

The following simple observation allows us to apply the results of § II1.4.

7.3 Lemma. Forany X and anyr >0, if X is Et-uniformizable, then Al is a basis
for X.

Proof. Suppose X is S!-uniformizable and A is a non-empty set in X. Let
R(p, B)« B €A and 6 uniformize R with Gr, € 3!. Then if y is defined by

y(m)=n<3B[0(0)=B A B(m)=n]
<VB[6(0)=B— B(m)=n],

8(0)=y€E€ANA. O
7.4 Theorem. I1| is not 3.-uniformizable.
Proof. By Theorem I11.4.8, A} is not a basis for H?. O

Again this lemma and theorem can be easily extended to show that IT{[B] is
not 3;[B]-uniformizable. However Al is trivially a basis for II} (since “o C AY),
so we use a different approach to prove
7.5 Theorem. IIS is not Aj-uniformizable.
Proof. Let A be any set in 3;~A; and R a II] relation such that a €
A< 3B R(a, B). Suppose R were uniformizable by a A} functional 6. Then
A =Dm 6 is Borel by Corollaty 6.10, a contradiction. [J

7.6 Lemma. For any functional 6 € 3| (3}), there exists a functional ¢ € Al (A)
such that 6 C .

Proof. Let 6 be any 2} functional and set

R*(m, a, ) <3y Ip [6(m, @)=y A 7(p) = B(P) n Y(P) < B(P)];
R** = R*U Gr(6);
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S**(m,a, B) <3y Ip [6(m, @)=y A 7(p) = B(P) A B(p)<y(P)];
S* = S** U Gr(f).

All of these relations are clearly S and they satisfy
R*NS*=@=R**NS**.
By Theorem 1.5 there exist relations P* and P** € A; such that
R*CP*C~S* and R**CP**C~S**

Let P = P** ~ P* Clearly Gr(6) C R** N S* C P. P is not in general the graph of
a functional, so let

U(m, a, B) <> P(m, @, B) A (3y # B)P(m, @, 7).

U€E3; and Gr(8) NU =0, so we again apply Theorem 1.5 to obtain a relation
Q € A; such that Gr(8) C Q~U. Then PN Q is the graph of a functional ¢ as
required. [
7.7 Corollary. II{ is not 3}-uniformizable.
Proof. By Theorem 7.5 choose R to be a l'l(,) relation which is not Aj-
uniformizable and suppose 6 € 3| uniformizes R. Then if ¢ is any A} extension
of 6, RNGr(y) is a A, function which uniformizes R, contrary to
assumption. [

Thus the following is the best possible result.

7.8 Uniformization Theorem. H: and TI; have the uniformization property.

Proof. To simplify notation suppose that R Cc®%w is a I} relation, say
R(a, B)«>Vy 3n P(4(n), B(n),a). Let P’ be as in the proof of Theorem 1.1,

s ptos<tnt<nn ~P(sBg(s)), @) A ~ P'(t, BIg(1)), @),

and

|n, &, B| = order-type of <, ,.
We define recursively relations R, as follows: R, = R;

Uy, = min{B(n): R, (a, B)};
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0o =min{[n, a, B[:R,(a, B) A B(n) = Uy u};
Rusi(e, B) < Ro(a B) A B(n) = U o A|n 0 B = o, .
Let Q(e, B) < Vn R, (a, B). We shall show that Q € IT; and Q is the graph of
a functional @ which uniformizes R. First note that if ~38 R(a, B), then also
~3B Q(a, B). Suppose that R(a, 8). Then for all n, |n, a, 8| is an ordinal and
there is a unique function vy, such that for all n, ¥,(n)=u,, Clearly
Q(e, B)— B = v, so it suffices to prove that if 38 R(a, B), then Q(a, v,,).
To this end we first establish the following technical lemmas:
(1) for any a such that 38 R(a, B), any p such that ~P'(p, y,(1g(p)), @), and

any gq,
lp’a’ 7a,<'q, a, ‘Ya '_)o-a,p <0.a,q;

(2) there exists a relation S € H} such that for all n, a, and B,

R.(a, B)—=[Ra+i(a B) < S(n, o, B)].

Suppose the hypotheses of (1) are satisfied, let r = max{p, q} + 1, and let 8 be
any function such that R,(a,8). Then B(lg(p)) = 7.(g(p)) so also
~P'(p, B(Ig(p)), @). Since p<gq, |p,a,B|<|q,aB|. But since R,.\(a,pB),
|p,a,B|= o0, , and as also R_,(a, B), |q, @, B| = 0, , and (1) is proved.

For (2) we first observe that for any n, a, and B such that R, (e, B),

Vy (Ru(ay) o (Vp<n)[¥()<BP)rlp,a,y|<|p o B]])

and

Rn+1(a’ B)*‘)V‘Y [Rn(a’ 'Y)'_: _
B(n)<¥(n)A(B(n)=¥(n)—>|n e B|<|navy|)]

Using the relations <y and =<y of Theorem 1.4, we can define relations Us € ph
and Uy €11, such that if |p,a, B| and |n, a, y| are ordinals, then

lp,a,‘)'|slP,G,B""UE(P,a’Ba 7)’

and
In,a,B|<|na y|eUynapB,y).

Hence the requirements of (2) are met by

S(n, a, B) =V [(Yp <n)[7(p)<B(p) A Us(p, @, B, 7)]
— B(n)=<7(n) A (B(n)=7(n)—>Un(n o B, y)).
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From (2) we have immediately that
Q(e, B) <> R(a, B) A Y1 S(n, @, B)

and thus Q € I} . Suppose now that 38 R(a, B); we shall show Q(a, y,) and for
this we first prove by induction on the ordinal o, , that |n, a, v, | < o, ,. Suppose
this holds for all p such that o, , <o, , Then by (1) and the induction
hypothesis, if |p, &, v,|<|n, & v,|, then o, , <o, . Hence |na,v,|<0,,
Now R(a, v,) holds because |[{ ),a,v,|<0,(, s0 |{ ), a v,| is an ordinal.

Similarly, from R, (a,y,) we conclude immediately that R, (e, v,). Thus
Qa, y,). O

7.9 Basis Theorem. A} is a basis for 3.

Proof. Immediate from the preceding theorem, Lemma 7.3, and Lemma
I1.4.7. 0O

We have given this result the important title, the Basis Theorem, because it
will see extensive application in the latter four chapters of this book. Here we
give two applications to questions arising in earlier sections. The first concerns
closure ordinals for inductive operators and should be compared with Theorems
2.15 and 2.16. Here 8, is the least ordinal not the order-type of a A} wellordering
of w.

7.10 Theorem. For any inductive operator I,
(i) I'€a;—|T|<83;
(i) I monotone A" €3,—|I'| < 53.

Proof. For (i), suppose I" € A;. Using the relations defined in Theorem I11.3.9
we have for all y EW

IT|<|lyll&Vm [Va(m, y)— VE(m, v)).

Thus {y : y EW A |T|<|y||} is a non-empty 3, set and by the Basis Theorem
contains a A; element y,. Thus |I'| < || y,| < 83.
For (ii), suppose I' is monotone 3; and m € I". Then using Theorem I11.3.13,

{y:'yEWAmEl’"y"}={y:y€WAV(m,y)}

is a non-empty 2; set which therefore has a A} element Yo- Thus m eI’ ""’"g
re® so Fcre®. g

The second application is to continuous images. By the same resoning used to
derive (1') at the beginning of § 6, we have for any A C “o,
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1 . . . .
AE 3, oA is the image of a II: set under a continuous functional from
w . w
w into “w.

In contrast with Theorem 6.9 ((i) <> (ii)), this equivalence holds also if the
functional is required to be one-one on the I, set (cf. also Corollary 6.10).

7.11 Theorem. For all AC “w, A is 3, iff A is the domain of a functional
6 :“w — “w which has I, graph.

Proof. The implication (<) is obvious. Conversely, if A is {a : 38 R(a, 8)} with
REI,, let § be a functional with I, graph which uniformizes R. Then
A=Dmé. [

7.12 Corollary. For all AC “w, A is 3, iff A is the image of a 11, set B under a
continuous functional which is one-one on B.

Proof. If A=Dm @ with 6 €I, it suffices to take B = {{(a, B): 8(a) = B} and
e(y)=(y) O

The relativized version of the Basis Theorem also gives a trivial generaliza-
tion of the Spector-Gandy Theorem IV.2.9: a relation R is 1 iff for some
relation P € H: s

R(m, @) <> (3B € Aj[a]) P(m, a, B).
Finally we have the following easy extension:
7.13 Theorem. 3} and ) have the uniformization property.
Proof. Let R(m, @, B) <>3y P(m, @, B, v) be a 3, relation with P € IT}. Let

Q(m, @, §) <> P(m, @, (8)o, (8),)

and by the Uniformization Theorem let ¢ be a functional with 1, graph which
uniformizes Q. Then if

8(m, a) =B <3y [¢(m, a)=(B,v)],
9 has 3} graph and uniformizes R. The proof for 3, is the same. [J
7.14-7.20 Exercises

7.14. Give an alternative proof for Corollary 7.7 by showing
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(i) if TI0 were Xi-uniformizable, then 3| would have the uniformization
property;

(i) if 2} had the uniformization property, then 3,; would have the reduction
property.

7.15. Give a simple proof that I} uniformizes IT9.
7.16. Find a 3| subset of “@ which has no non-empty II; subsets.

7.17. Use the Basis Theorem to give a two-line proof of a weaker version of
Exercise 5.16: every countable 3} set of functions contains only A} elements.

7.18. Show that for any A C “w, if A is a model of A;—Comprehension, then A is
also a model of 3}-Choice. (Show that the Uniformization Theorem holds in any
model of A-Comprehension.)

7.19. Show that A; is a model of the A;—Comprehension schema (hence also of
3)-Choice by Exercise 7.18).

7.20. Show that A} has the uniformization property.

7.21 Notes. The Uniformization Theorem for I, is due to Kondd [1938]. The
lightface version was announced by Addison in 1959 but never published. It has
since appeared in (at least) Rogers [1967] and Shoenfield [1967].

Exercise 111.3.34 suggests an alternate proof for Theorem 7.10(i).





