
Part B

The Analytical and Projectiυe
Hierarchies



Most of the results of Chapter III have in common that their proofs rely heavily
on a direct analysis of the number and kind of quantifiers needed to define
certain concepts. With these methods we were able to establish the main
structural features of the arithmetical hierarchy, but were much less successful
with the corresponding questions concerning the analytical hierarchy. In the two
chapters of Part B we shall introduce several new techniques — pre-
wellordering, uniformization, and construction of transfinite hierarchies —
which will provide answers for many of the questions left open in the preceding
chapter. These by no means exhaust the tools which are useful in studying the
analytical and projective hierarchies and we shall return to these questions from
time to time in Part C. On the other hand, the results of §§ V.2-3 indicate that
some questions about analytical and projective relations cannot be decided on
the basis of the current axioms of set theory.



Chapter IV
The First Level

We shall study in this chapter the classes Σ}, Πj, and Δj and their relativized and
boldface counterparts. Not only are these classes more amenable to analysis than
the higher levels of the analytical hierarchy, but they have played a much larger
role in the development both of descriptive set theory and of generalized
recursion theory.

Among the early objects of study in Descriptive Set Theory were the Borel
sets and the projective classes Σ* and Πj. Although the Borel sets were easily
proved to have many pleasant properties, the operation of projection (31) used
in defining the projective classes seemed too non-constructive to allow much to
be proved about these sets. In 1915 Suslin discovered that the X\ (analytic) sets
could all be constructed by use of the much more explicit operation sd (cf.
Exercise III.2.19) and that Δ,1 coincides with the class of Borel sets (cf. Theorem
IV.3.3). These results stimulated much of the later development of the theory. In
particular, the structure of IlJ and Δ j is reflected in many other pairs of classes of
relations to be studied in this book.

From the side of recursion theory, the notational analogy of Δ,1 with Δ°
together with the transitivity of the relation "α E Δ|[β]", leads to the conjecture
that the Δj relations are in some sense "generalized recursive". This is supported
by the results of §2 below which show a great similarity between the properties
of Σj and Πj (not Σi!). One such similarity has already been noted: for any
monotone operator Γ, if Γ E Σ? (Πj), then also Γ E Σ? (Πj). The conjecture will
be verified in § VI.2, where we show that the (Πj) Δ,1 relations are exactly those
(semi-) recursive in the type-2 functional E, and in § VIII.3 where we see that the
(Π|) Δj relations on numbers are exactly those which are ωr(semi-) recursive.

1. Πl and Well-Orderings

The basic tool in the study of Πj relations is a characterization of this class in
terms of W, the set of well-ordering functions. Recall that for a total functional F
of rank (k + 1, /), F[m, a] denotes the function λp. F(/?, m, a) so that F serves
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also as a functional from kJω into ωω. A relation R is called (many-one)
reducible to a set A (R < A) iff for some recursive functional F,

We also say R is reduced to A via F. Note that by the Analytical Substitution
Theorem (IΪI.2.12), if AGX| (Πj) and R<^A, then also R e Σ j (Πj).

1.1 Theorem. For all R, RG Π j ^ R <ι W.

Proof. WGΠjby the examples of III.2.3, so if R <̂  W also R G ΓlJ. Suppose now
that R e Π } . Then there exists a recursive relation P such that

We shall associate with each (m, a) a linear ordering ^m,« s u c n t n a t

(1) R(m «) ** ̂ i s a wellordering;(1) R(m, «) *~* ^m,« i s a well-ordering;
(2) the functional F defined by

fθ, ifs<βί;

LI, otherwise

is recursive.
Then R is reduced to W via F.

First, let ^ be the recursive linear ordering defined by:

v(3n <lg(s))[n < lg(ί) Λ

The ordering =^ m α is a restriction of ^ . Let

P'(5,m, a)++(3u ^ s)[u G Sq Λ U C S Λ P(u,m,α)].

Then also P' is recursive and

We set

Λ ~

Claim (2) is obvious. For the implication (<—) of (1), suppose ~R(m, α) so
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that for some β, Vn ~ P'(/3(n),m, a). Then for all n, β(n + l)^C,ttj3(n) and by
condition (4') of 1.1.6, ^m,« *s n o t a well-ordering.

Suppose now that ^m,« *s n o t a well-ordering and let A =
{s : 5 E Sq Λ ~P'(s, m, α)}. Then A = Fld( ̂  a) and it suffices to show
3/3 Vn./3(n)E A. Note that by the definition of P\ for any s and ί,

(3) 5 E A Λ ί C s -» ί E A.

By assumption there exists a non-empty set β C A with no ^ t β -least
element — that is, (Vs E £)(3 ί E £ ) ί <m,«5 We may assume that (3) holds
also with B in place of A. Let / be a partial function defined by

f(n) - least p((3s E B)[/(n) 5 5 Λ (s)n = p]).

Clearly either / is total or for some n, f(n) is defined exactly for n < n. In the
first case we have that for every n, f(n)^s for some s E B C A. Hence by (3),
Vn. f(n)G A and we have the desired conclusion: 3/3 Vn. j8(n)E A. Suppose,
on the other hand, that f(n) is defined exactly for n < ή. As £ has no ^m α-least
element, there is some s E B with 5 <lm,α/(n). If /(ή)5s, then /(n) would be
defined, contrary to assumption. Hence for some n < ή,

(Vi < n)((s), = (/(«)), = /(I)) Λ (s)π < (/(«))„ = /(n).

But then /(n) 5 5 so by the definition of /, /(n) ̂  (5)n, a contradiction. Thus this
case does not arise. D

1.2 Corollary. W £ Σ | .

Proof. If W E Xj, then by the Theorem every ΓlJ relation is also Σj, contrary to
the Analytical Hierarchy Theorem. D

From Theorem 1.1 we can already begin to see why Πj rather than ^ plays the
role of the class of generalized semi-recursive relations. If P is a recursive
relation of rank (k + 1, /), let

(least p. P(p, m, a), if any;

ω, otherwise;

(order-type of =̂ m,« > ^ t m s ιs a well-ordering;

H,, otherwise.

Then
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and

3p P(p, m, a) <r> | m, a |0 < ω

Vj3 3pP(j8(p),m,α)«|in,α|Γ<H1.

In these terms, the proof that the class of semi-recursive relations has the
reduction property (II.4.17) proceeds by defining

R*(m, α) <->R(m, α) Λ |m, a \ζ ̂  |m, a |°, and

S*(m, tt)<-»S(m, α) Λ |m, a |° < |m, a \ζ.

To establish similarly the reduction property for Πj, we need only evaluate the
Pi O

complexity of the relation |m, a , ^ |m, a x.
We recall from Examples IΠ.2.3 the Σj relation < defined by:

γ < δ <-^^Ύ and ̂ δ are linear orderings and ̂ 7 is isomorphic

to a subordering of ^ δ

«^=^y and = δ̂ are linear orderings and

3a\/pVq[a is 1-1 on Fld(γ) Λ (p ̂ Ύq -> a(p)^δa (q))].

We define also a Σj relation < by

γ < δ ++^γ and ̂ δ are linear orderings and ̂ r is isomorphic

to a subordering of a proper initial segment of = δ̂

<->^7 and = δ̂ are linear orderings and

3α3rVpVg[α is 1-1 on

Fld(γ) Λ (p ̂ yq^ a(

If both γ and δ belong to W, then clearly

and γ < δ « | | γ ||

We shall need, however, relations which have this property whenever at least
one of γ and δ belongs to W.

1.3 Definition. For all γ and δ,
(i) γ < Σ δ ~ γ < δ v δ £ W ;

(ii) γ < Σ δ < - * γ < δ v δ £ W ;
(Hi) γ < π δ ~ - i ( δ < Σ γ ) ;
(iv) γ < π δ ~ - i ( δ < Σ γ ) .
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Note that < Σ and < Σ are ΣJ relations, whereas < π and < π are ΓlJ relations.
None is Δj, but part of the import of the following theorem is that each is "Δj on
W".

1.4 Theorem. For all y and δ, if either y G W or δ E W, then

(ii) r < s δ ~ [

Proof. Suppose first that y < Σ δ. If γ G W then either δ fέ W, so || y || < M, = || δ ||,
or δGW and y < δ, so | |γ | | ^ | |δ | | < M,. If δ G W, then y < δ, so as any
subordering of a well-ordering is also a well-ordering, also γ E W and || γ || ^

llδll
Suppose now that the middle condition of (i) holds: y G W and | |γ | | ^ | | δ | | .

Then either δ ̂  W, or δ E W and ^ δ is a well-ordering of type at least \\y\\. In
either case ~~ιδ < γ, which together with γ G W implies γ < π δ.

Next suppose that γ < π δ — i.e., ~π(δ<γ) and γ G W. If δ £ W, then
γ < Σ δ. If δ G W then by the comparability of well-orderings, γ < δ and again

The implications (ii) are proved similarly. D

1.5 Theorem, (i) ΠJ has the reduction property but not the separation property,
(ii) Σj has the separation property but not the reduction property.

Proof. By Lemmas II.4.19 and II.4.21 it suffices to show that ΠJ has the
reduction property. Let R and S be any two H1 relations of the same rank. By
Theorem 1.1 there exist recursive functionals F and G such that

R(m, a)+*F[m, a] E W and S(m, a)*+G[m, a] G W.

We set

R*(m, a)*+ R(m, a) A F[m, a] <π G[m, α ] ;

S*(m, α)**S(m, a) A G[m, a] < π F[m, a].

Observe that if (m, a) G R U S, then at least one of F[m, a] and G[m, a] belongs
to W so that either F[m, a] <πG[m, a] or G[m, a] <π F[m, a]. With this it is
straightforward to verify that (R*,S*) reduces (R,S). D

In the proof of Theorem 1.1, the relat ion^^ α i sa well-ordering recursive in
a. In particular, if P is a recursive relation and ωλ denotes the least non-
recursive ordinal (Definition IΠ.3.11), then |m|f is either a recursive ordinal or
Hi so that
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Hence if for any ordinal σ we set

then in the notation of Theorem 1.1,

K(m)~V/3 3 p P ( β ( p ) , m ) ~ F [ m ] G W ω i .

Thus we have proved the implication (—>) of

1.6 Theorem. For all R C kω, R G Π}«+ R < Wω j .

Proof. It suffices to show Wω GΓlJ. This follows from the equivalences:

γ G Wω j «*3δ [δ G W Λ 8 is recursive Λ | |y || ̂  ||δ ||]

++3c [{c} is a total function of rank 1 Λ

{ c } G W Λ γ < π { c } ] . D

The same proof shows that every Πj relation on numbers is reducible to the

denumerable set Wrec = {γ : γ G W Λ γ is recursive}. It will, however, be more

convenient to use the set of indices of recursive well-orderings.

1.7 Definition. W = {c : {c} is a total function of rank 1 Λ {c} G W}. For c G W,

\\c\\ = \\{c}\\.

1.8 Theorem. For all R C kω, R G Πj ̂  R < W.

Proof. That W and hence all R reducible to it are ΓlJ is immediate from the

Analytical Substitution Theorem. If R G Π} and F is a recursive function which

reduces R to W, let a be an index such that {α}(m,p)= F(p,m). Then

jR(m)<-» λp. {α}(m, p ) G W o λp. {Sb^^α, m)}(p) G W +*Sbk_,(α, m) G W. •

1.9 Corollary. Neither Wω nor W is Σ j . D

All of the preceding results have relativized and "boldface" extensions which

we sketch below. In most cases the proofs are straightforward and are left to the

Exercises.

1.10 Definition. For any 0,R,A, and A,

(i) ωλ[β] = sup+{|| γ | | : γ G W Λ γ is recursive in β}\

(ii) W[β] = {c:λp.{c}(p,β)e\N};
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(iii) for all c E W[β]9 \\c\\p = ||λp.{c}(p, j8)||;
(iv) R ^ β A iff for some functional F recursive in β,

R(m, a) <r+ F(m, a) E Λ

(v) R<^β A iff for some functional F recursive in β,

R(m, α)<-»F[m, α ] E A;

(vi) R < A iff for some continuous functional F,

1.11 Theorem. For all 0, R, and R,

(i) REΠ}[i3]~R<^W;

(ii) REU\[β]^R <β Wωi[β]+»R < W[β] 9

(iii) REΠ|^R<W;

(iv) neither \Nωι[β] nor W[β] is X}[β];

(v) W£Σί. D

1.12 Corollary. For all β

(i) Πj [β] and Π | hαυe ίfie reduction property but not the separation property

(ii) Σj[j3] and X\ have the separation property but not the reduction

property. D

1.13-1.25 Exercises

1.13. Show that ^ is a dense linear ordering with greatest element but no least

element.

1.14. A set A C Sq is called a tree iff there is no sequence s0, s 1 ? . . . such that for

all i, st E A and s, 5 s i + 1. Let

Tr = {A : A is a tree}.

Show that for all R,RG Πj iff R <̂  Tr.

1.15. For any tree A and any s, let

As={t:tEA Λ 5 $ ί } .

Set

Tr(cr)= U{Tr τ:τ<σ}U{0}



142 IV. The First Level

and

Λ G T r σ o V 5 . Λ s e T r ( σ ) .

Show that Tr = Tr(Nl), but that for all σ < Hu Tr£Tr ( o r ).

1.16. For A E Tr, let

\A I = least σ.A E Trσ.

Show that there exist relations = Σ̂ and = π̂ which satisfy an analogue of Theorem
1.4. It follows that Tr could be used in place of W for all the results of this
section.

1.17. For which ordinals σ is Wσ arithmetical? Classify as many Wσ as you can
(cf. Exercise III. 1.17).

1.18. Show that for every r ^ 0 , there exists an ordinal σr < ωλ such that every
Xr relation is reducible to W^.

1.19. Show that a relation R is ΓlJ iff it is reducible to {γ : γ E W Λ γ is primitive
recursive}. Conclude that ωλ is also the least ordinal which is not primitive
recursive.

1.20. Show that there exists a recursive function F such that for all m,

F(m)<ΞW and \\F(m)\\=m.

1.21. Let

and

T i w = {(a, b, c): α, b, c E W Λ \\a || || ft || = || c \\}.

Show that Plw and T i w are Γl] sets.

1.22. Show that there exists a Πj set W* C W such that for all σ < ωγ there is
exactly one a E W* such that \\a || = σ.

1.23. Prove Theorem 1.11 and Corollary 1.12.
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1.24. Show that REΠj iff R is uniformly reducible to W[a] — that is, there
exists a recursive function G such that for all (m, a)

R(m,α)**G(m)E W[a].

1.25. Show that every Σ2 relation is expressible in the form (3γ E W)P(m, α, γ)
with PGΔj.

1.26 Notes. The representation of Tίx relations in terms of well-orderings is one
of the oldest and most fundamental results of Descriptive Set Theory. It
essentially originates with Lebesgue in 1905 and is studied further by Luzin,
Suslin, and Sierpinski from 1915 on. Luzin [1930] is a good exposition of the state
of knowledge then. Kleene [1955a] rediscovered the technique in his proof that
the set O of notations for constructive ordinals (Definition 4.16) is a complete II,1

set. Spector [1955] was the first explicit statement that every Πj set of numbers is
reducible to W.

Alternative developments of the theory of this section are sketched in
Exercises 1.14-16 and Exercises III.3.33-34.

2. The Boundedness Principle and Other Applications

2.1 Boundedness Theorem. For any AC ω ω and any A Cω,
(i) AGΣίΛACW^sup + { | | γ | | : γGA}<H i ;

(ii) A E Σ} Λ A C W-> sup+{|| γ ||: γ E A} < ωx\
(in) A E Σ J Λ Λ C W-*sup+{ | |c | | :ce A}<ω l β

Proof. Suppose, contrary to (i), that A E Xx, A C W, but {|| γ ||: γ E A} contains
arbitrarily large countable ordinals. Thus any δ belongs to W just in case
| |δ | | ^ | | r | | for some γ E A. Since AC W, this yields

which implies WGjJ, contrary to Theorem 1.11.
Next, suppose that A were a counterexample to (iii). Then,

δ E Wω ^ 3 c [c E A Λ δ < Σ { c } ] ,

which implies that Wω E Σ| contrary to Corollary 1.9.
Finally, if A were a counterexample to (ii), then

A = {c : {c} is a total unary function Λ 3γ [γ E A Λ {C} < Σ γ]}

would be a counterexample to (iii). D
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For p < ωx, we set

WP={C:CGWA\\C\\<P}.

2.2 Theorem. For all R and all R,

(i) R G Δ} <-> R < Wp /or some ρ<Hί;
(ii) R G A J O R ^ Wp /or some p < ωx\

(iii) R G Δj «-» i? <̂  Wp for some p < ωv

Proof. If p is any countable ordinal, let δ be an element of W such that || δ || = p.
Then for all γ,

Hence Wp EΔj, which yields the implication (<—) of (i). If p < ωu δ may be
chosen to be recursive and we thus have (<—) of (ii) and (iii).

For the implications (—>), suppose first that RGΔj. Since RGΠj, there
exists by Theorem 1.1 a continuous functional F such that R(m, α)«-»F[m, a] G
W. Let

A = {γ : 3 m 3 a (R(m, a) Λ γ = F[m, α])}.

Since also R G Xj we have A G Xj, and clearly A C W. Hence by the Bounded-
ness Theorem there exists a p < Hx such that all γ E A have || γ || < p. Hence
R(m, a)*+ F[m, α] G Wp and thus R < Wp. The argument for (ii) and (iii) (-*) is
nearly identical. D

The import of this theorem is that the Δj (ΔJ) relations may be naturally
arranged in a sort of hierarchy of length ωλ (Hx). Let Xp = {R : (3τ ^ p)R <̂  Wτ}.
Then if p ^ σ, Xp C Xσ and Δ} = U {Xp : p < ωx}. Similarly there are classes Xp

such that Δ} = U {Xp : p < Hx}. In §§ 3-4 we shall construct other hierarchies on
Δ} and Δ}. See also Exercise 2.24.

We aim next to show that the set of ΔJ functions is ΓlJ but not Δj. This will
complete the proof of Lemma III.4.8 that Δ? is not a basis for Π?. We need first
some technical lemmas. We extend the relations < Σ , etc. to W in the obvious
way:

c <xd<r+{c} and {d} are total functions of rank 1 and {c}<x{d}

and similarly for < π , < Σ , and < π .

2.3 Lemma. There exist relations PΣ and P π in Σj and U\ respectively, such that
for any α, b, and c, // c G W, then
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Grα <̂  W((c|| via{b}**PΣ(b, c, α)~Pπ(ί>, c, a).

Proof. Let

Pτ(b, c, a)++{b} is a total function of rank 2 Λ

Λ Vm Vn [α(m)= n—»{b}(m, n ) < Σ c ] Λ

Λ Vm Vn [{6}(m, n)< π c—»α(m)= n].

Then for c 6 W and {b} a total function of rank 2,

as required. P π is obtained by interchanging < Σ and < π D

2.4 Lemma. For every p < ωl9 there exists a set B E Δj such that B <ζ Wσ for no
σ ^ p.

/. Let p be any ordinal < ωί and d E W such that \\d || = p. Set

Λ = {(α, c >: α E W Λ || α || < || c || Λ || c

Since for any α and c,

Λ E Δj. Hence also B = A °J, the jump of A, is Δj. Suppose that for some σ ^ p,
2? <̂  Wσ. Then there is a recursive function / and a c G W such that || c || = σ and

m EB**f(m)e W,,c,,«</(m),c)E A.

But then £ <̂  A, a contradiction, since A° is not recursive in A, hence not
reducible to A. D

2.5 Selection Theorem. For any Il\ relation R, there exists a partial functional
SelR with Π) graph suc/z that for all m and a,

3p R(p, m, a)«-»R(SelR(m, a), m, a)<-*SelR(m, a ) | .

Proof. Suppose REllJ and is reducible to W via the recursive functional F. We
define

SelR(m, a) ^ least p[R(p, m, a)

Λ || F[p, m, a] || = min{|| F[q, m, α] ||: q E ω Λ R(q, m, a)}].
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It is clear that SelR has the required property. That its graph is Γl| follows from
the easily proved equivalence:

SelR(m, a)^p*+ R(p, m, a) A Vq (F[p, m, a] <π F[q, m, a])

A(V?<p)(F[p,m,α]<πF[ 9,m,α]). D

2.6 Theorem, {a : a G Δj} G ΓlJ ~ ΔJ.

Proof. To show that the set is Πj we have, with the notation of Lemma 2.3,

\ ω ι ) . G r a < Wσ

+*3b3c[c<Ξ W A?π(b,c,a)].

Now for a contradiction suppose {a: a GΔjjGΔj. Let -R be defined by:

R(c, a)+* c G W A ([a G Δj Λ 3b Pπ(6, c, a)]

v[α£Δ|ΛVm.{c}(m)-l]).

Clearly R G ΓlJ, and by Theorem 2.2, Vα 3c R(c, a). Hence the functional SelR is
total and thus by Corollary IΠ.2.7 has ΔJ graph. Let A = ImSelR. A G Σj and
Λ C W so by the Boundedness Theorem (2.1) there exists a p < ωι such that for
all c G A, ||c || < p. But then Vα 3c [R(c, α) Λ ||c || < p] from which it follows that
for all α GΔ\, Grα <̂  Wσ for some σ < p. This contradicts Lemma 2.4. D

By Theorem 1.6 any ΓlJ relation on numbers can be represented in the form
(3σ- < ω,)F[m] G Wσ. Our next theorem gives another "existential" representa-
tion of Tίι relations.

2.7 Lemma. For any y and δ G W Π Δj, if Fld(δ)^ ω, then

\\y\\^\\δ\\**(3βeA\)\/p\/q[p<Ύq~β(p)<δβ(q)].

Proof The implication (<-) is immediate. Suppose γ, δ G W Π Δj and || γ || ̂  || δ ||
and suppose m ̂ Fld(δ). Set

A = {β : Vp Vq [p <γq ** β(p) <δβ(q)] A β mapsFld(γ)

onto an intial segment of Fld(δ) Λ (Vp 0. Fld(δ))/3(p) = m}.

A is arithmetical in γ and δ, hence is Δj. A has exactly one element β0. By
Corollary III.2.7(vii), β0 G Δ}. D
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2.8 Definition. Σ | ' H y p is the class of relations R such that for some arithmetical
relation P,

R(m, a)+*(3β G Δ|[α])P(m, α, β)

("Hyp" stands for "hyperarithmetical").

2.9 Spector-Gandy Theorem. Σ } H y p = Πj.

Proof. We shall give the proof only for relations on numbers where the theorem
takes the form: R G Πj iff for some arithmetical relation P,

(cf. Exercise 2.28).
Suppose first that R and P satisfy this equivalence and let

S(b, c ) o c E W Λ { t } i s a total function of rank 2 Λ

Vm3!n({ί>}(m,n)GW | | c | |).

Then 5 G Πj and

R(m)**3β 3c (c£ W Λ G Γ ^ WM Λ P(m, β))

with P x from Lemma 2.3. Thus R GllJ.
For the converse implication, it suffices to show WGΣ}'H y p . By Theorems

2.6 and 1.1, there exists a recursive functional F such that

Since {a : a G Δ}} is not Δ}, it is not reducible to any Wp with p < ωx. Hence the
ordinals | |F[α]|| for a G Δ} are unbounded in ωλ and we have

cew-(3αεΔl)(||c||«||F[α]||)

~ ( 3 α E Δ})(3β G Δj)Vp Vq [p <{c]q **β(p)<Fla]β(q)].

It is easy to verify that the last expression defines a set in Σj ' H y p . D

We say R e Δ } H y p just in case both R and ~ R e Σ l ' H y p .

2.10 Corollary. For all R, R <Ξ Δj «• R G Δ | H y p . D



148 IV. The First Level

These last two results have a natural interpretation in terms of the second-
order comprehension axioms discussed in §111.5:

ωω Π Δjl=Δj-Comprehension but ωω Π Δ}M3|-Comprehension.

Exercise 2.15 also asserts that

ωω(ΊΔlh3l-Choice.

Turning now to the well-orderings of ω which occur in the various classes, we
have the somewhat surprising

2.11 Theorem, (i) For any R, if R is a X] well-ordering relation, then \\R || < ωx\
(ii) there exists a ΓlJ well-ordering relation R such that ||i? || = ωv

Proof. Suppose, contrary to (i), that R is a Σj well-ordering of type p ̂  ω1. Then

Λ = 7̂ is a linear ordering}

so that Wp E Σ J , which contradicts the Boundedness Theorem.
For (ii), let

W* = {c : c G W Λ (Vd < c)[{c} <n{d} v {d} <π{c}]}

Then W* G Πj and for each σ < ωί9 there is a unique c G W* such that \\c\\ = σ.
Hence if we set

then R is a ΓlJ well-ordering of type ωx. D

Note as a consequence that δ}, the least non-Δ} ordinal, is just ωλ (cf.
Corollary IΠ.3.12).

2.12 Theorem. For any R, Λ, and α,
(i) A EU\-A\AR Ell\-+R GΔ![A];
(ii) ωι[a]>ω1/\Ren\^>REA\[a].

Proof. For (i), let F be a recursive function such that A is reducible to Wω via F.
Since A £ Δj, A is not reducible to any Wσ with σ < ωλ so the ordinals | |F[m]| |
with m G A are unbounded in ωx. Hence, for any c,
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cG W«+(3m <ΞA)({c}<lιF[m]).

From this follows WEΣ}[Λ]. If R GΠ},then R < W so also R GΣj[A]. But
ΠίcΠ}[A] so also R (= Δ\[A].

For (ii), if ωλ[a] > ωu then there is a function δ recursive in a with \\δ\\ = ωί.
Then for any c

c G W*+{c} is a total unary function Λ {c}<xδ

and thus W G Σj[α]. The rest of the proof is as for (i). D

Part (i) of the theorem has a natural interpretation in terms of Δ}-degrees,
usually called hyperdegrees (cf. ΠI.2.13 and the paragraph following). Let

and

A <\B**A ^\B ΛB^IA: '

so that

hydg(A) = {£ : A *z\ B Λ B ^\A}.

The hyperdegrees inherit a natural partial ordering also denoted by ̂ }. The
hyperdegree 0 = {A : A G Δj} is the least element of this partial ordering.

2.13 Corollary. For all A, B G Πj ~ Δ}, hydg(A) = hydg(B).

Immediate from 2.12(i). D

This points out an imperfection in the analogy of Δ} and Πj with the classes of
recursive and semi-recursive relations. The Friedberg-Mucnik Theorem men-
tioned at the end of § II.5 asserts the existence of semi-recursive sets A and B
such that dg(A) and dg(B) are not only different but incomparable. We shall
return to this point in §VΠL3.

In § V.6 we shall need a relativized version of Theorem 2.12 which we state
here but leave the proof to Exercise 2.33.

2.14 Theorem. For any R, A, α, and β, if β G Δj[A] and β G Δj[α], then
(i) AEΠί[/8]~Δl[/8]ΛRGΠl[/8]->ΛGΔl

(ii) ω,[a] > ωλ[β] A R G Π}[j8]-> R G Δ}[α];
(iii) ω 1 [ α ] > ω 1 [ β ] ^ β < j α . D
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We conclude this section by establishing a precise bound for the closure
ordinals of Πj monotone operators and Π° inductive operators over ω (cf.
Exercise III.3.34).

2.15 Theorem. For any operator Γ over ω,

Γ monotone A Γ E Πj—»|Γ| ^ ωί.

Proof. Let Γ be any ΠJ monotone operator. It will suffice to show Γω i C Γ(α>l).
Let m be a fixed element of Γω i. We first observe that for any p,

(1) m<ΞΓp+*\/A [Γ ( P )C A -> m E Γ(Λ)]

«VΛ [m £ Γ(A)^(3σ < p)Γσ£A].

Hence if we define

[least σ < ωλ. Γ
σ£ Λ, if m £ Γ(A);

φ(Λ) = \

tθ, otherwise;

then φ is a total function defined on all A C ω. Let

p = sup+{φ(Λ): A C ω}.

Clearly β ̂  ωx and by (1), m Gf p ; we shall show p < ωj.
If m E f we are done. Otherwise, for any σ

σ<p++3A[m£ Γ(A) Λ (VT < ωx)(Γτ £ A -» σ ̂  r)].

In other words, if

A = {γ : 3Λ [m £ Γ(A) Λ (VT < ωλ)(Γ£ A^\\y\\^ r)]},

then p = sup+{|| y | |: γ E A}. Let V be the Πj "coding relation" whose existence is
claimed by Theorem III.3.13. Then

[m£Γ(A)Λ\/c(c<= W Λ

Thus A E Σ! so by the Boundedness Theorem, p < ωλ. D

2.16 Theorem. For any inductive operator Γ over ω,
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?Proof. Suppose Γ E Π? and let R be a recursive relation such that

As in the proof of Theorem 1.1 we may assume that

(2) R(m,s)Λ tCs-^R(mj).

Let m be a fixed element of Γω i; we shall prove m E Γ(α>l).

For all ordinals σ, let (for typographical reaons) fσ (/(ίτ)) be the characteristic

function of Γσ(Γ(σ)). We note first that for any n and any limit ordinal p

(3) ( 3 σ - < p ) ( V τ < p ) [ σ ^ τ - > / τ ( π ) = 7 ( p ) ( n ) ] .

To see this, let

Πeast τ.i<ΞΓ\ if i E Γ ( p );
τ« = 1

tθ, otherwise;

and take σ = max{τ, : t < M}.

From the assumption m E Γω i, we have Vn/?(m,/(ω }(n)) and thus by (3),

,/ ( r(π)). Let

φ(n) = least σ < ω,. R(m,fσ(n))

and

p = sup+{(,p(n): n E ω}.

As in the proof of the preceding theorem, p ̂  ω, and p = sup+{||γ||: γ E A}

where

**3n VC[CEWΛ R(mJιlcl](n))-+ y <Σ{c}].

First note that A C W as if γ E A because the condition is satisfied for n, then

^ ( π ) < ω I so γ E W. To see that AEΣί, let Vπ and VΣ be respectively the

Πj and Σj ''coding relations" from Theorem IΠ.3.9. Then for c E W,

R(m, /j, c„(*))«3s (s E Sq Λ lg(s) = n Λ (V/ < n)((5), ^ 1) Λ
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Thus this relation is ΓlJ from which it easily follows that A G Σ | and thus by

Boundedness that p < ω,. To complete the proof we show m G Γp.

We first observe that the function φ is monotone. If n ^ p, then

R(m,fφ(p)(p)) so by (2) also R(m,fφip)(n)). As φ(n) is the /eαsί σ such that

R(m, / σ (n)), it follows that φ(n)^ φ(p).

Case 1. p is a successor ordinal. Then for some n0, p = φ(n o)+ 1 and for all

n, φ(n)^ φ(n0). Because φ is monotone, φ(n) = φ(n0) for all n ^ n0. Hence for

all n ^ n0, i?(m, fφ{n )(«)). But then it follows from (2) that this holds also for all

n < n0 and thus for all n. Thus PΓ(m,/„<„„)) and m G Γ(Γφ(n°) = Γβ.

Case 2. p is a limit ordinal. Let n be a fixed natural number and σ be as in

(3) such that σ < p and

(4) ( V τ < p ) [ c r « τ - > / r ( n ) = 7W )(n)].

Since <p is monotone and p = sup+{<p(p):p G ω}, there is an n0^ n such that

σ^φ(n0). By the definition of φ, R(m,fφ(n)(n0)). But then by (2),

R(m,fψ(no)(n)) and by (4), R(m,f(β)(n)). As n was arbitrary, we have

7 thus m EΓ(Γ(β))=Γβ. Π

2.17 Corollary. For any Π? inductive operator Γ, Γ G Γl].

Proof. For any Π, inductive Γ, the following equivalences hold:

m 6 Γ o ( 3 σ < ω,)(m G Γ σ ) ^ ( 3 c G W)(m G ΓIMI)

^ ( 3 c G W)Vπ(m,{c}). Π

Similar techniques lead also to a kind of boundedness theorem for inductive

definitions:

2.18 Lemma. For any inductive operator Γ over ω and any X\ set A C Γ(α>l), if

either Γ is Δ, or Γ is ΓlJ and monotone, then for some p < ω,, A C Γp.

/. Suppose Λ and Γ satisfy the hypotheses, define \m\Γ = least σ\ m G Γσ

for m G Γ ( ω i ), and set p = sup+{|m \Γ : m G A}. Clearly A c Γ and by defini-

tion p ^ ωλ.

If A = 0 , then A C Γ°. Otherwise p = sup+{|| γ ||: y G A} where

< ω i ) [ m G Γ τ - ^ | | γ | | ^ r]

6Λ)(VcG

with V as in IΠ.3.13 if Γ is Πj monotone and V = Vπ as in III.3.9 if Γ is ΔJ. Then

A G Σ} and ACW, so by the Boundedness Theorem, p < ωλ. D
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2.19 Corollary. For any inductive operator Γ over ω and any Σ} set A C Γ , if
either Γ is Π? or Γ is ΓlJ and monotone, then for some p < ωu A C Γp. D

2.20 Corollary. For any inductive operator Γ over ω, if either Γ is Π? or Γ is ΓlJ
and monotone, then

(i) ifΓGl], then | Γ | < ω ^
(ii) for any Rel\, if R < Γ, then for some p < ωx, R < Γp. D

2.21. Corollary. For any inductive operator Γ over ω, if either Γ is Πι or Γ is Δt

and monotone, then

ΓEΔ\ iff \Γ\<ωx.

Proof By Corollary 2.20 and Corollary IΠ.3.12. D

2.22 Corollary. For any R E Δj, there exists an implicitly Π° function δ such that
R is recursive in δ.

Proof. Suppose R E Δ | . Then by Theorem IΠ.3.2 there exists a Π° monotone
operator Γ such that R < Γ. By Corollary 2.20, R <= Γp for some p < ωλ. Let S
be the relation defined in the proof of Theorem III.3.9; as P Γ is Π?, S is
arithmetical. Let γ be a recursive function such that | |γ | | = p + l and set
ε = (αr, βγ). Then ε is the unique function which satisfies the arithmetical
relation S((ε)0, (ε),, γ), so ε is implicitly arithmetical. Furthermore, if p is the
unique element of Fld(γ) such that \p \γ = p, then m E Γp <^(ε)ι((p,m)) = 0 so
that Γp and hence R is recursive in ε. Finally, by Lemma IΠ.4.4, ε is recursive in
some δ which is implicitly Π?. D

2.23-2.38 Exercises

2.23. Prove the following Effective Boundedness Principle: there exists a primi-
tive recursive function h such that for any a, if a is a Σ} index for a set A C W —
that is

— then h(a)EW and ||ft(α)|| ^ sup+{||c||: c E A}. Formulate and prove a
corresponding result for X\ subsets of W.

2.24. The hierarchy of Δ} relations described following Theorem 2.2 is deficient
in that it may happen that for some p < σ < ωx, no new relations are reducible to
some Wτ (r ^ σ) that are not already reducible to some Wτ (τ ^ p) — that is,
Xp = Xσ. This can be remedied by omitting superfluous levels in the hierarchy,
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and for relations on numbers, the resulting hierarchy may be seen still to have
length ωv Let

Z = {σ : σ < ω, Λ Wσj£ Wp for any p < σ)

and

ώλ = order-type of Z.

Show that ώλ = ωλ.
Hint. Let

W = {c : c G W Λ || c || G Z Λ - Ί 3 d (d < c Λ || C || = \\d \\)}

and suppose that for some e G W, ώλ = | |e || < ωλ. Set

P ( c , d ) « ( | | c | | >ί | | β | | Λ d = 0 ) v ( | | c | | < | | e | | Λ d e W Λ

Vα [if a is an ordinal-preserving map of

{a :\\a\\ ^ \\c\\} i n t o {b : b G W A\\b\\ ^ | | d | | } ,

then α(c)= d]).

Show that PGΓlJ, there is a function jβGΔj such that VcP(c,β(c)) and

d E W « 3 c ( | | c H | | e | | Λ β ( c ) = d).

2.25 (Kreisel [1962]). Prove the following two effective choice principles: for any
Πj relation R,

(i) if VmVαBp R(p, m, or), then there exists a Δ} functional F such that
Vm Vα R(F(m, α), m, a);

(ii) if VmVα(30 G Δ}[α])R(m, α,/3), then there exists a ΔJ functional G
such that VmVα R(m, α, λq.G(q, m, α)). Conclude in particular that {α : α G Δj}
is a model for 3j-Choice.

2.26. Show that there exists a set A G Sj such that A Π W = Wωj.

2.27. Show that if a function θ : ωω —» ωω has Δj graph, then Dm θ G Δj. If θ is
one-one, then also Im θ G Δj.

2.28. Prove the general case of the Spector-Gandy Theorem (2.9).



2. The Boundedness Principle and Other Applications 155

2.29 (Spector [1959]). Show that a relation R is ΓlJ iff for some Π° relation P,
R(m, a)++3\β P(m, <*, β). (Hint: In one direction ( ^ ) use the Spector-Gandy
Theorem. For the other, P will have the property that VmVα 3β P(m, α, β).)

2.30. Show that for any A E ΓlJ, A E Δj iff ω^A ] = c^.

2.31. Show that if γ GΔj, then ω^γ] is the order-type of a Δ2 well-ordering
of ω.

2.32. For any A C ω, the hyperjump of A is the set

Show that if A ^] B, then also A h =̂ ] BhJ so that the hyperjump is well defined
on hyperdegrees.

2.33. Prove Theorem 2.14.

2.34. Show that
(i) for any σ < ω,, there exists a Π? inductive operator Γ such that \Γ\ = σ\

(ii) ar

IΠ<ω,
(ii) any A E Δj is reducible to Γ for some Π? inductive operator Γ such that

2.35. Show that for any monotone arithmetical operator Γ, {(c,m):cG
W Am GΓlc) is implicitly ΓlJ (cf. proof of Theorem III.3.7). Conclude that
every Il\ relation on numbers is reducible to an implicitly ΓlJ set and hence that
Δj is not a basis for the class of ΓlJ singletons.

2.36. Show that for any α, a E Δj iff for some function δ, (a, δ) is implicitly ΠίJ.

2.37. Construct an arithmetical monotone operator Γ such that for all σ < ωλ,
Γ = Wσ.

2.38. The partial functionals with Π, graph may be indexed as follows. Let

and set

{fl} (m,α)~Selv(α,<m>,<α».

Which properties of the class of partial recursive functionals are shared by the
cla£s of Πj functionals with this indexing? Does the Recursion Theorem hold?
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2.39 Notes. The boundedness principle 2.1 (i) is also an old result of Descriptive
Set Theory — the effective versions 2.1 (ii) and (iii) are implicitly in Spefctor
[1955]. The Spector-Gandy Theorem was conjectured by Mostowski and proved
independently by Spector [1959] and Gandy [I960]. The proof here is due to
Moschovakis. Theorems 2.12 and 2.14 are due to Spector [1955] and 2.15 to
Spector [1959]. Theorem 2.16 was proved by Gandy [unpublished] essentially as
done here. Another quite different proof appears in Richter [1971].

3. The Borel Hierarchy

In the Introduction we discussed briefly the notion of a hierarchy as a
decomposition of a class of objects into levels indexed by ordinals in such a way
that members of higher levels are in some sense more complex than members of
lower levels. The main examples to this point have been the arithmetical and
analytical hierarchies and their relativized and boldface counterparts. The
"hierarchy" discussed following Theorem 2.2 suffers from the fact that some
levels with different indices coincide. In this and the next section we shall
construct hierarchies for the Δ] and Δ} relations which do not have this failing
(see also Exercise 2.24).

The first of these, the Borel hierarchy, is both the simplest and historically
the first transfinite hierarchy. Recall that the class Bo of Borel relations is the
smallest class containing the open relations (equivalently, the closed-open
relations) and closed under countable union and intersection of relations of the
same rank. This is an inductive definition and the corresponding hierarchy
consists essentially of the stages. The actual definition will differ slightly from
this idea as we shall define classes X°p and Π^ for all p < Nj such that
Bo= U {Σ°:p <N1}. Thus the Borel hierarchy is a natural extension of the
boldface arithmetical hierarchy.

Although these results appear in this context to depend heavily on recursion
theory, in fact they were first derived long before the development of recursion
theory. It is only in hindsight that we see that the hierarchies of recursion theory
are refinements of those of Descriptive Set Theory and that many of the
techniques of recursion theory were known already in some form to the early
descriptive set theorists. This section and the next have been arranged to
emphasize the relationship between the classical hierarchy and its effective or
recursion-theoretic counterpart. These constructions also serve as paradigms for
several others in later parts of the book — those of §§V.4, 5 which involve
operations more complex than countable union and intersection, and thos$ of
§VI.5, §VI.6, and §VII.3.

3.1 Lemma. The class of Borel relations is closed under complementation and

composition and substitution of continuous functionals.
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Proof. Let F and G be continuous and consider

X = {R : {(m, a): R(F(m, α), m, α, λp. G(p, m, a))} is Borel}.

By ^1.3.9 and II.5.5, X includes the class of closed-open relations and it is trivial
to show that X is closed under countable union and intersection. Hence Bo C X.
The proof for complementation is similar. D

3.2 Lemma. For all countable ordinals p, Wp is Borel.

Proof. We proceed by induction on p. Clearly Wo= 0 and \Nt are Borel. If p is a
limit Ordinal, then Wp = U{W σ :σ-<p}. If p is countable, then this is a
countable union so if all Wσ (σ < p) are Borel, so is Wp. Ifp = c r + l > l , then
y E- Wp iff for all p, y \p G W,,.. Since Wσ is Borel, it follows from Lemma 3.1
that also for each p, Ap = {y : y \ p G Wσ} is Borel. Hence so is Wp =
Π{Ap:pG4 •

3.3 Theorem (Suslin). Bo = Δj.

Proof The inclusion (C) is Corollary IΠ.2.16. If R G Δj, then by Theorem 2.2,
R <l Wp for some p < Hv Hence by Lemmas 3.1 and 3.2, R is Borel. D

3.4 Definition (The Borel Hierarchy). For all p > 0,
(i) ΣQ = ΠQ = the class of closed-open relations;

(ϋ) %L = U {X°τ: r < p}; Π°p) = U {Π°τ: x < p};
(iii) S p = { U {Pp : p G ω}: all Pp have the same rank and belong to Π°p)};
(iv) Πp = { ΓΊ {Pp : p G ω}: all Pp have the same rank and belong to Σ(p)};
(v) Δ° = Σ°ΠΠ°;Δ°p ) = U { Δ ° : τ < p } .

It is immediate by induction on p that all of the classes X°p and Πp are
included in the class of Borel relations. The following lemma together with
Theorem III. 1.16 implies that this definition is consistent with the former
definition of Σ p for p < ω (III. 1.15).

3.5 Lemma. For all p > 0 and all R,

( i i ) ^ p ) U < , C Δ ° ; "'

Proof The proof of (i) is an easy induction on p. If R G Σ°p), then REX" for
some τ <p. Hence for some Pp G Π°τ), R = U {Pp : p G ω}. But Π°τ)C Π°p), so
also R G Σ P . On the other hand, let Qp = R for all p. Then all Qp GΣ°p ) so
R = Π{Qp :p G ω}GΠp. (ii) now follows from (i) and (iii) follows
immediately. D
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Many of the properties of the Borel hierarchy mirror those of the arithmeti-
cal hierarchy and we state in the following lemma some of the more important of
these. The proofs are easy adaptations of previously used techiques and are
omitted.

3.6 Lemma. For all p > 0,
(i) Σ p is closed under countable union, finite intersection, expansion, bounded

quantification, existential number quantification, and composition and substitution
of continuous functionals

(ii) Πp is closed under countable intersection, finite union, expansion, bounded
quantification, universal number quantification, and composition and substitution
of continuous functionals. D

3.7 Theorem. Bo = Δ°Nl).

Proof. It suffices to show that Δ°Kl) is closed under countable union and
intersection. Suppose that for each p E ω, Pp E Δ°Ml), say Pp E Δ°p with σp<Hι.
Then if p = sup{σp : p E ω}, p < Mj and by Lemma 3.5 for all p, P p E Δ p =
Σ?P + 1 )ΠΠ?P + 1 ). Hence U{Pp :p E ω}E Σ°p+1 CΔ°p+2CAjMl). D

3.8 Corollary. Δ ^ Δ ^ ^ .

Proof. Immediate from 3.3 and 3.7. D

We want now to show that all of the levels of the Borel hierarchy are distinct.
We proceed analogously to Theorem III. 1.9 (the Arithmetical Hierarchy) and
define relations U° which are universal for X°p — that is, such that U°E X°p and for
every RGXj there exists a β E ωω such that

R(m,α)~U°p«m>,(α>,β)

(cf. Exercise II.5.11).
We set

U?«m),<α>,β)«U?(j8(0),<m>,-<α,λp.j8(p + l)»;

for p > 0,

and for limit p,
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3.9 Lemma. For all p < Hl9 Wp G Δ°+ 1 .

Proof. Follow the proof of Lemma 3.2 with this stronger induction hypothesis.

This shows in fact that for successor p, Wp G Π p and for limit p , W p G j J . D

3.10 Borel Indexing Theorem. For all p such that 0 < p < Hl9

(i) Up is universal for Σ°;

(ii) —Up 15 universal for ΐl°p.

Proof That U ' G Σ ? is obvious. Suppose that U ° e Σ ° . Then ~U°p6Π°p and

U°p+1 = U{{«m>, <α>, β): ~U°«m>, <«>, (β)p)}: p G ω}

so that Up+,EΣp + 1 . If p is a limit ordinal, then by the preceding lemma,

{y : | | γ | | = σ} = W σ + r W σ 6 Δ ° σ + 2 , so that for all σ<p this set is in Π°p). A s p

is countable this shows that Up* is a countable union of Π°p ) relations, hence is X°p.

Again it is obvious that U? is universal for X?. Suppose that Up is universal for

Σp and R6X° p + 1, so for some relations P p GΪI° p , R = U { P p : p G ω } . By

hypothesis, there exist functions βp such that

Then if β is a function such that for all p, (β)p = βp, then

Finally, suppose that p is a limit ordinal, for all σ < p, U^.is universal for X°σ, and

R *= U{P p :p G ω} G 2°. For each p there is an ordinal σp < p such that

P p G Π ^ and thus a function β p such that

Then if β is a function such that for all p, ||(j8)S|| = σp and ()8)ί = )Sp, we again

have

R(m,α)«U°«m>,<tt>,j8)

so that Up is universal for X°p. Π

3.11 Borel Hierarchy Theorem. For all p such that 0 < p <HU
ϋ ° o
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Proof. It suffices for (i) to show that Up £ Δ°. Suppose the contrary and let

A = {α:U°p« >,<α>,α)}.

Then by Lemma 3.6, A e Δ ° s o in particular, -AEXj. Since Up is universal,
there exists a β such that for all α,

In particular,

a contradiction.
For (ii), let

R(m, α) <-» (m = 0 Λ α E A) v (m = 1 Λ α £ A).

Then as in the proof of Theorem III.1.9, R is"Δ°+1 but neither X°p nor Π°. D

By the homeomorphism discussed in § 1.2, all of these results apply equally
well to the space BIr of binary irrationals in the real interval (0, 1) with the
induced topology: Y C BIr is open iff Y = BIr Π Z for some open subset Z of
(0, 1). Of course, it is not in general true that if BIr Π Z is open in BIr, then Z is
open in (0, 1). In fact, if Z = BIr, then Z is not open or even an F^-set in (0, 1)
(Exercise 1.2.11), but BIr Π Z = BIr which is open in BIr.

Let BIr-Σp, etc., denote the Borel hierarchy on BIr and (0,1)-Σp denote the
Borel hierarchy defined similarly over (0, 1), starting with (0, 1)-Σ° = class of
open subsets of (0, 1).

3.12 Theorem. For all p ^ 3 and all Z C (0, 1),

BIr Π Z is BIr-Σp (Π°p) ~ Z is (0, 1)-Σ° (Π°).

Proof. The implication (<—) is immediate by induction on p (for all p). For (—•),
it is first easy to prove by induction that for all p > 0,

X G BIr-Σp (Πp)^ X = BIr Π Y for some Y E (0, \)-X°p (11°).

Then if BIr Π Z is BIr-Σp, BIr Π Z = BIr Π Y for some Y G (0, 1)-X°p. But then
there exist (countable) sets of binary rationals Yo and Yλ such that Z\ =
(YU Yo)~ γι- Since any countable set is Fσ((0,1)-Σ°), if ρ ^ 3 , Z is also

°p. D
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We can now see that (i) and (ii) of Corollary 3.11 hold also for (0, 1)-Σ° for all
p 2* 1. For p = 1, this is because 0 and (0,1) are the only closed-open subsets of
(0, 1). For p = 2 we have that BIr is (0, 1)-Π2 but not (0, 1)-Σ° For p ^ 3 , it
follows from Theorem 3.12.

Of course, the theorem applies to relations as well as sets. For any
R ς k + 1 ( 0 , l ) , let 3(0'1)R denote the relation P(x)«+3y[y E (0,1) Λ R(y, x)) and
3BIrR the relation Q(x)++3y [y G BIr Λ R(y,x)]. The (0, 1)-Σj relations are
those of the from 3 ( 0 ' υR for R in (0,1)-Borel and the BIr-Σj relations are those
of the form 3BIrR for R BIr-Borel. The other classes of the projective hierarchy
are defined similarly. Clearly (0, 1)-Δ} contains all (0,1)-Borel relations.

3.13 Theorem. For all r > 0 and all Z C (0,1),

BIr Π Z is Blr-Σj (ΠJ) ~ Z is (0, 1)-Σj (Πj).

Proof. If BIr Π Z is Blr-Xj, then BIr Π Z = 3BlτR for some R in BIr-Borel. But
since RC2BIr, 3B I rR = 3(CU)R and by Theorem 3.12, R is also (0,1)-Borel.
Hence BIr Π Z is also (0, 1)-Σj, and since Z differs from BIr Π Z by a countable
set, also Z is (0, 1)-Xj.

Conversely, if Z is (0, 1)-Σj, then for some (0,1)-Borel relation R, Z =
3 ( 0 1 )R. Then

BIr Π Z = 3BIr[2BIr Π R] U (BIr Π 3B R aR)

where 3 B R a means "there exists a binary rational". By Theorem 3.12, 2BIr Π R is
BIr-Borel so the first term is BIr-Σj. 3B R aR is a countable union of (0,1)-Borel
relations, hence is (0,1)-Borel. Thus the second term is BIr-Borel and BIr Π Z is
BIr-Σl.

The extension to larger r is by induction. D

3.14 Corollary. For all X C (0,1), X is (0,1)-Borel iff X is (0, 1)-Δj. D

3.15-3.19 Exercises

3.15. Complete the following outline of an alternative proof that ΔJ C Bo and
that X\ has the separation property (cf. Exercises 1.2.7 and Π.4.32). For any
Rς ω ωX ωω, let

R(s'° = {(α,j3):R(s*α, t * β)}.

Two sets are called Borel separable iff they can be separated by a Borel set. Show
(i) if for all m, n, and p, g 1 ^ 1 " ^ " " and 31S(<m><p>) are Borel separable, then

3 ^ and 3 ! S are Borel separable;
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(ii) if for all α, β, and γ, there exists an n such that ^tf*™-*™ and
gis(«(n),r(n)) a r e β o r e l s e p a r a b l e > t h e n g i R a n d 3 i s a r e B o r e l separable;

(iii) any two disjoint X\ sets are Borel separable;

(iv) every Δ | set is Borel.

3.16. For any indexed family (P p :p E ω) of relations of the same rank, let

Lim<Pp>(m, a)*+3p (V<? ^ p ) P q (m, α )

and

Lim<Pp>(m, α ) « V p (3<? ^ p ) Pq (m, α).

When Lim(Pp) = Lim(Pp), we denote the common value by Lim(Pp); otherwise

Lim(Pp) is undefined. For all p, let

Δ o = the class of closed-open relations;

Δ ( p )=U{Δ τ:τ<p};

Δ p = { L i m ( P p ) : V p . P p G Δ ( p ) } .

Prove for all p:

( i ) Δ p C Δ ° + 1 ;

(ii) Δ p is a Boolean algebra;

(iii) if V p . P p E Δ ( p ) , then both U { P p : p E ω } and Π { P p : p E ω } belong

to Δ p ;

(iv) if R = U { P p :pEω}= Γ\{Qq : q E ω} where for all p and q, P p and Q,,

belong to Δp, then also R E Δ p

(v) Δ p = Δ°p+1.

Hint for (iv). Suppose P p = Lim(Pp m : m E ω) and Qq = Lim(Qfl „ : n E ω)

with all P P i m , Q , n E Δ ( p ) . Let

s Γ = ( P o i Γ n Q o , Γ ) u ( P l f Γ n Q o , r n Q l f Γ ) u . . . u ( P Γ i Γ n Q O i r n . . . n Q r i Γ ) .

Show that R C Lim(SΓ> and ~ R C ~ Lim(Sr>.

3.17. Let S and H be, respectively, a Borel relation and a Borel functional, and

Q(m, α ) <-* S(m, α, λp. H(p, m, a)).

If S E Σ p and H E Δ^, what can you conclude about the level of Q?

3.18. Show that for all p <N,, Σ p has the reduction property.
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3.19. Show that every (0, 1)-Σj set is the projection of a (0, 1)-Π2 relation.

3.20 Notes. It might fairly be said that Suslin's Thorem (3.3), proved in 1917,
was the result that put Descriptive Set Theory on the map. It was a tremendous
breakthrough in its time and is still today the model for most results which give
equivalent characterizations of a class of relations "from below" and "from
above".

4. The Effective Borel and Hyperarithmetical Hierarchies

We want now to define a similar extension of the arithmetical hierarchy to obtain
classes Σ° and U°p {p < ωλ) such that Δ°ω) = Δj. This construction is called
the effective Borel hierarchy because it is derived from that in the preceding
section by replacing the generating operation of countable union by recursively
enumerable union. Roughly, the idea is to attach to each relation P as it is
generated an index ι(P) and admit unions only of those families (Pp : p E ω)
such that the function λp. t(Pp) is recursive. The details differ from this sketch in
that we shall first define the set of indices and then assign relations to the indices.

In the second part of the section we consider an alternative method for
constructing a hierarchy of the Δj relations. This is based on a notion of iterating
the ordinary jump operator oJ over a set of ordinal notations and should be
considered as an extension of the ideas of Theorem III.1.13.

4.1 Definition. For each k and /, NkJ is the smallest subset of ω such that for all

a and
(i)

(ϋ)

if

if

(b)

for
ι =
all

k and (b)2

{a}(p)G
= 1
Nκ

then (7, b)e

, then a E \

: N

NkJ.

As usual we denote by Nk

p) and N^'' the sets Γ ( p ) and Γp, where Γ is the
monotone Π? operator such that Γ = Nκι. We also put N = U{N k / : fe, / E ω}
and Np = U{Nk

p

ι: /c, / E ω}. By Theorem 2.15, | Γ | ^ ω , , so NkJ=Nk^y It is
easy to check that if (fc,/)^ (ίc',/'), then NkJ ΠNk'J> = 0. Note that Wj-1 is
recursive and if α E N k / by virtue of clause (ii), then (a)0/ 1 so a & NkJ

We next assign to every
recursive over NkJ and may t
the proof of Theorem 1.3.5.

We next assign to every a E NkJ a relation Pa CkJω. The assignment is
k. I

recursive over N ' and may be justified by an extension of the technique used in

4.2 Definition. For each k and / and any a G N k l ,
(i) if β £ JV0

M, then Pa = Dm{(α),};
(ii) if a £ N0

M, then Pα = U{~P { α } ( p ) :p e ω}.
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4.3 Definition. For all p,

(i) Σ ? + p = { P α : α ε N p } ;

(ii) Π ? + p = { ~ P α : α e N p } ;

(iii) Δ°=Σ°nΠ°;

(iv) Σ?p) = U{Σ?: 0 < T < p}; U°(p) = U{Π°T: 0 < r < p};

Δ?p) = U{Δ°T:O< τ<p};

(v) EfBo = Δ ( ω ) = the class of effective Borel relations.

Note that for p < ω, 1 + p = p + 1, while for p ^ ω, 1 + p = p. A relation is in

Σ p (p ̂  2) just in case it is of the form U { ~ P { α } ( p ) : p E ω} where all ~P{α}(P) are

in Π°p). Similarly if R = ~ P α is in Πp, then R = Π { P { α } ( p ) : p E ω} and all P { α } ( p )

are in Σ°p ).

We want first to show that the notation here is not in conflict with that of

Definition III. 1.2 (arithmetical hierarchy) — that is, the classes Σ p for 0 < p < ω

are just those previously defined.

4.4 Lemma. For all p > 0,

Proof. Σ?p ) C Σ p by definition as JV(p) C JVp. If R E Π°p), then R = ~ P α for some

a E N ( p ) . Thus if b is an index such that for all p, {b}(p) = α, then b E Np and

R = U { ~ P { b } ( p ) : p E ω} = Pb which is in Σ p . Thus Σ°p ) U Π°p) C Σ p and (i) follows

from the fact that Σ^ p ) UΠ° p ) is closed under complementation, (ii) is then

immediate. D

4.5 Lemma. For all p > 0, Σ p is effectively closed under recursively enumerable

union and finite intersection — that is, for each k and I there exist primitive

recursive functions f and g such that for any α, m, α, and any p > 0,

(i) if for all p, {a}(p)ENk

p\ then f(a)ENk

p

ι and

P / ( β )(in, a)++3p. P { f l } ( p ) (m, α ) ;

(ii) if a, bE Nk

p\ then g(a, b) E Nk

p

ι and

, = Pa Π Pb.

Proof. Let h be a primitive recursive function such that for all α, p, and q,

, α U iff ~1
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Then choose / to be a primitive recursive function such that

ί(7,h(a,p,q)\ if {a}(p)GN0;

{a }(/>)}(<?), otherwise;

and for r not of the form (p, q),{f(a)}(r) — (7, α0), where Dm{αo} =
 k / ω.

Suppose that for all /?, {a}(p)G Nk

p '. For any p such that {fl}(p)6No

k''
clearly also {f(a)}((p,q))E. No" . For other p we have for all q, {{a}(p)}(q)G
N(

k

pJ, hence also for all q, {f(a)}((p,q)) G N ^ . Thus for all r, {/(α)}(r) E N(

k

p' so
/(α)GNp

k ' /.
For p such that {α}(/?)E NQ w e have

For other p,

, α ) « • 3g ~P {{α ) ( p ) ) ( < ?)(m, α )

Hence

P { / ( α ) K < P i < ? > )(m, α )

We define g by the following four cases:
(1) if a, b e N o , then g(α, ί») = (7, c), where

{c}(m, a) = {(α),}(m, α ) + {(ί>),}(m, α ) ;

(2) if α (έ No but ί> G No, then g(α, fe) is an index c calculated from an index
of the function / of (i) such that if {α}(p)G N,

(3) if a £ N o but 6 £ N o , then similarly

ll U
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(4) if a, b <£ No, then

P{g(α,b)}(p)= PfαKp)1-1

The proof that g satisfies (ii) is straightforward. For example, if a e No' and

Pa Π Pb = Dm{(α),} Π U { ~ P W ( p ) : p e ω}

= U{ ~ [~Dm{(α),} U P { b H p ) ) : p E ω}

= Pg(α,b> •

Before proceeding, we make a few remarks on the methods of proof we shall
use in the remainder of this section and often in later parts of the book. In
establishing closure properties of the classes Σ p we shall in most cases need to
prove that the classes are effectively closed. In the preceding lemma the
definition of g depends on the fact that / is primitive recursive, and this would be
so even if we were not requiring that g be primitive recursive. In the next and
many succeeding lemmas we shall need to define functions by effective transfinite
recursion. In outline, the method is as follows. Suppose < is a well-founded
transitive relation on ω. For any function F and any u E Fld( < ), let F \ u denote
the partial function g such that

(F(v,p), if v < u\

g(v>P) =* I
[undefined, otherwise.

The set-theoretic principle of definition by transfinite recursion asserts that for
any function φ there is a function F such that for all u EFld(<),

F(u, m)^φ(F\u, M, m),

and that the values of F for u E F l d ( < ) are uniquely determined. Roughly
speaking, the principle of effective transfinite recursion asserts that if φ is partial
recursive, then F may also be chosen to be partial recursive.

In practice, when we apply the method φ will be such that there exists a
partial recursive function H such thart for all e and m and all u EFld(<),

φ({e}\u, u,m)^H(e, u,m)

and we shall apply the Recursion Theorem to obtain an index e such that
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{e}(u, m)^H{e, w, m).

Then clearly

and F = {e} is partial recursive.
A variant of this method defines a function / such that for u EFld(<),

{f{u)}{m) — F(u, m). In a typical such situation there will be a primitive
recursive function h such that

where

[{{e}{v)}{m\ if υ < u ;

{{e}\u}(υ,m)~\

I undefined, otherwise.

Then if e is chosen by the Primitive Recursion Theorem such that {e}(u) —
h(e,u), the function f = {e} is in fact primitive recursive and has the desired
property.

This leads also to an extension of the principle in which the value F(u,m)
may depend not only on the values F(v,p) for v < u but also on indices for the
functions λp.F(υ,p). In such a situation we have a function ψ such that
ψ(f \ M, M, m) depends both on values f(v) for v < u and on the partial functions
{f(v)} that they index and a primitive recursive h such that

ψ(f\u,u,m)~{h(e,u)}(m).

Again e is chosen so that {e}(u)— h(e,u), / = {£}, and F(w, m) — {/(«)}(m).
There are many variations on these paradigms and mastery of the method

comes only with practice. Rogers [1959] is also helpful.

4.6 Lemma. There exists a primitive recursive function f such that for any p and

any a G JV*+1/, for all p, /(α, p) G N * ' and

Proof. Let h be a primitive recursive function such that

((7,Sbo({a)lP)),
< an index c such
l{c}(q)~{e}({a}

if aGN(

h(e, a,p) =* \ an index c such that for all q,
ι}(q),p), otherwise.
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By the Primitive Recursion Theorem there exists an index e such that
e,a,p) = {e}(a,p). We take f = {e}. If a E No, then

If a E N ~ No and we assume as induction hypothesis that for all q,

A m, α),

then

n, a) *+ 3q ~ P / ( { α } ( q X p ) ( m , a)

<-» P α (p, m, α ) . D

4.7 Corollary. For all p > 0, Σ° is effectively closed under existential number
quantification ( 3 ) and Π p is effectively closed under universal
number quantification (V°) — that is, there exists a primitive recursive function f
such that for all p and all a E Nk

p

+h\ f(a) E Nk

p

:

P/(β)(m, a)*+3p. Pa (p,m, a) .

/. It suffices to set f(a) = /5(Sb0(ί>6, a)), where /5 is the function / of Lemma
4.5 and b6 is an index for the function / of Lemma 4.6. D

For the next corollary, let the finite levels of the effective Borel hierarchy be
denoted by X°r and Π? to distinguish them from the levels of the arithmetical
hierarchy.

4.8 Corollary. For all r>0,l°r = Σ?' and Π°r = U°r'.

Proof. For each fc, /, and r, and all (m, α)E f c / ω, let

VΓ

M(α,m, a)+*a<= N ^ Λ Pβ(m, a).

We prove by induction on r the stronger assertion

(*) Σ? = Σr,Nr

MeΠ?, and V? 'eΣ?.

Clearly (*) holds for r = 1 as
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\j\\a, m, a)*+(a)0 = 7 Λ (a)uo = k Λ (α)1 } x = / Λ {(α^Km, α) | .

Suppose (*) holds for r. If R E Σ ? + 1 , then R = 3°S for some SEII?. Then
S G Π j c Σ?+χ by the induction hypothesis and Lemma 4.4 so R E Σ?'+1 by
Corollary 4.7. Hence X°r+1C2?+1.

Next we observe that a E Nj c; z

1^Vp.{α}(p)E N^'so that if NkJE. Π?, so is
N ^ . Then

V^ίfl, m, α ) ~ a E N Γ

M Λ 3p ~ Vr

k/({α}(p), m, α).

Hence V ^ E Σ?+1. Since V ^ is universal for t?+1, this yields Σ?'+i C Σ°+1. D

We aim next to establish the equation Δj = Δ^ω }.

4.9 Lemma. Δ ^ ω j

Proof. For a fixed pair (k, Z), let

V(α, f , m , α ) ^ α E N M Λ [i = 0 Λ Pα(m, a)] v [i = l Λ ~ P α ( m , α ) ] .

It will suffice to show V E Π} as then for all a E N M , both Pα and ~ P α are Πj so

Pα E Δ| . For this we define a decomposable monotone arithmetical operator Γ

such that Γ = V. Γ is essentially simply a combination of definitions 4.1 and 4.2.

For any R C k + 2 > ω, all /, and all (m, a)E. ' ω,

(i) if {b\=k and (b)2=Z, then

(1) if {b}(m,α) 4, then «7,6>,0,m,α)EΓ(R);

(2) if {fr}(m,α)t, then «7,6>, l ,m,α)eΓ(R);

(ii) if for all p (3/ ̂  1) ({α}(p), i,m, α ) E R, then

(1) if 3p.({α}(p), l ,m,α)ER, then (α,0,m, α ) E Γ(R);

(2) if Vp.({α}(p),O,m,α)ER, then (α,l ,m,α)EΓ(R).

Γ is clearly monotone, arithmetical, and decomposable; we leave it to the reader

to verify that Γ is as claimed. D

See Exercise 4.25 for an alternative proof of Lemma 4.9. Toward the

converse inclusion we establish some further closure properties of the effective

Borel hierarchy.

4.10 Lemma. For all p > 0, Σp and U°p are effectively closed under composition

and substitution of recursive functionals — that is, for any recursive functional F

and G, there exist primitive recursive functions f and g such that for all p > 0 and

all a and b,

(i) ifaE Nk

p

+h\ then f(a) E Nk

p

! and

P/(β)(m, α ) ^ Pα(F(m, α),m, a);
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(ii) if bE Nk/+\ then g(b) G Nk

p'
1 and

Pg(b)(m, α) <-• Pb(m, a, λp. G(p, m, a)).

Proof. For (i), let h be a primitive recursive function such that

Γ(7,f>), where {f>}(m,α)-{(Λ)1}(F(m,α),m,α), if a G No;
h(e,a) = <an index c such that for all p, {c}(p)- W({α}(p)),

t otherwise.

By the Primitive Recursion Theorem choose e such that h(e,a) = {e}(a) and set
/ = {e}. A straightforward induction over Nk+hl shows that / satisfies (i). The
construction of g is very similar. D

4.11 Lemma. For all p < ωu Wp is effective Borel ( Δ ^ }).

Proof. Let p be any recursive ordinal and δ E W a recursive function such that
|| δ || = p + 1. We shall show the existence of a primitive recursive function / such
that for all r G Fld(δ), /(r) G N0'1 and W | r | δ = P / ( r ).

Choose α0 G N 0 ' 1 such that Pα = 0 and let G be a partial recursive function
such that

ί{e}(p), if p<Br;
G(e,p,r)~ I

lα 0, otherwise.

By Lemmas 4.5, 4.7, and 4.10, there is a primitive recursive function h defined as
follows. If I r | δ = 0 or 1, h(e, r) is any index such that P h ( e > r ) = W|r(δ. For all other
r, /ι (e, r) is such that if for all p, G(e, p, r) G N0 ' \ then also h (e, r) G N 0 ' x and

Ph(e, o (r)^3p V<j PG ( e,p, r )(γ r^)

By the Primitive Recursion Theorem choose e such that h(e, r) = {e}(r) and set
/ = {e}. We prove by induction on | r \δ that / has the required property. This is
clear if | r | δ = 0 or 1 so suppose ] r | δ ^ 2 and for all p <δr, fip)^^0'1 and
W\Pl8=PHpy τ h e n f o r a 1 1 P> G(e,p9r)eN° \ so f(r)= h(e,r)e N°\ and for
all γ,

γ G W | r | δ ~ ( 3 p <δr)Vq. y \ q G W | p | δ
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4.12 Theorem. EfBo = Δ1

1.

Proof. The inclusion ( C ) is Lemma 4.9. By Theorem 2.2, for any R E Δj there

exists a p < ωι such that R < Wp. By the preceding lemma, Wp E EfBo and by

Lemma 4.10 so is R. D

To complete the picture of the effective Borel hierarchy, we shall show that

the levels are distinct. The method is again essentially the same as before — to

find universal relations for each level.

4.13 Lemma. For all p > 0, Σ p and Π p are effectively closed under expansion —

that is, for all k' and /', there exist primitive recursive functions /k, v such that for

all ( n , β ) E k ' / ' ω , all kj and all a<=Nk

p

ι, / k % Γ (α)E ]Vp

+k''z+/' and

P / k . , Γ («)( m ' n ' α ' β)** P " ( m ' α )

Proof For each k' and /', let

{(7, b) such that {fe}(m,n,α, β)^{{a\}(m, α), if α E N x ;
an index c such that for all p,
{c}(p)~{e}({a}(p))9 otherwise.

Set fk'j{a) = {e}(α), where e is chosen by the Primitive Recursion Theorem so

that hk.j{e,a) = {e}{a). D

4.14 Theorem. For all p such that 0 < p < ωx and each (fc, /), there exists a

relation UpΈΣp1 which is universal for Σ p .

Proof. Let p be any recursive ordinal greater than 0 and fix (fc, /). We shall

construct a special recursive well-ordering δ such that || δ || > p and a primitive

recursive function / such that for all wEFld(δ), f(u)E N^l'1 and P / ( M ) is

universal for Σ1+jMjβ.

Let γ be any recursive well-ordering such that || γ || > p and define δ by

Clearly δ is also a recursive well-ordering with || δ \\ > p — in fact, || δ \\ = ω

(ordinal multiplication). Furthermore, for all u E Fld(δ), \u\δ is a limit ordinal

or 0 iff u = (p,0) for some p E F l d ( γ ) and \u\δ is a successor ordinal iff

u = (py r + 1) for some p E Fld(γ) and then \(p, r + l ) | δ = |(p, r)\δ + 1.

Before proceeding to the definition of /, we define an auxiliary primitive

recursive function g with the property that for all u E Fld(δ), g(u)E N^ ( J δ + 1 and

N| ku|δ= ~Pg(u) — i n short, g verifies that N* f l GΠ? + C Γ + 1 . We obtain g via the
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Primitive Recursion Theorem and a primitive recursive h defined as follows. If
| w | δ = 0 , then h(e,u) is any index in JV '̂0 for the recursive set NQ'1. If
u = (p,r + 1), then h(e,u) is chosen by Lemmas 4.5-7, 10 such that whenever
{e}((p, r» E Nι

{σl then h(e, u) E Nιf and

If u = (p,0> and | u | θ > 0, choose ^ G iV '̂0 such that P = ω, let

f{e}(ϋ), if u < δ u ;

[α l 5 otherwise;

and let h(e,u) be chosen such that whenever for all v, G(e,v,u)G N('σ), then
h(e,u)<ΞN];0 and

We leave to the reader the easy proof by induction on | u | δ that if e is chosen by
the Primitive Recursion Theorem such that h(e,u) = {e}(u), then g = {e} is as
required.

We now define / via the Recursion Theorem and a primitive recursive
function H defined as follows. If | u | δ = 0, then H(e, u) = (7, b) where
{fc}(α,m, α) = {α}(m, a) for all (m, α ) E k Z ω . If u = (p, r + 1), then H(e,u) is
chosen such that whenever {e}«p, r))G N ^ 1 ' ' , then H(e, M ) E N k + 1 / and

P H ( e u ) (α,m,α)oVn.{α}(n) | Λ 3n ~ P{β}(<PfΓ>)({α}(n),m, α).

If w=(p,0) and | M | 5 > 0 , choose H(e,u) such that whenever for all υ,
G(e, υ, M)GN(

k

ff

+)U, then H(e, κ)G N £ + 1 > I and

P H ( e u ) (α,m,αί)oVrt.{α}(n) | Λ3n3ϋ [U < 8U Λ

Now if / = {e}, where e is chosen by the Primitive Recursion Theorem such that
H(e, u) = {e}(u), then it is straightforward to prove by induction on | u \s that / is
as required. D

4.15 Effective Borel Hierarchy Theorem. For all p such that 0 < p < ωu

(i) l°p£A°pand Π ^ °
( i i ) Δ ^ ^ "

Proof. Exactly as for Theorem III. 1.9. D
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In the remainder of this section we sketch another approach to constructing a
hierarchy for Δj. This method applies only to relations on numbers and has no
descriptive-set-theoretic analogue. The idea arises from the fact established in
Theorem III.1.13 that R 6A?+ 1 iff R is recursive in the set Dr obtained by
applying the jump operator r times to a recursive set. We would like to extend
this by defining a notion of iterating the jump operator a transfinite number of
times and show that R E Δ} iff R is recursive in Dp for some p < ω1. This is not
quite possible: although we may take D p + 1 = D° J, there is no canonical way to
define Dp for limit ordinals p. What is missing is a way to "piece together" the
sets Dσ (cr < p) to form a set Dp which contains essentially just the sum of the
information contained in the Dσ 's. To get around this difficulty we shall index
our sets not by ordinals, but by natural numbers which serve as notations for
ordinals. This will be arranged in such a way that to any notation for a limit
ordinal p is canonically associated a recursive function whose values are
notations for a sequence of smaller ordinals with limit p. Although the sets Du

and Dv assigned to two notations u and v for the same ordinal will not coincide,
they will be recursive in each other.

4.16 Definition. <o is the smallest subset ofωXω such that for all α, w, and υ,

(i)l<o2;
(ii) if u <o ϋ, then v < o 2V

(iii) if {a} is a total unary function and for all p {a}(p)<o {a}(p + 1), then for
allp, {a}(p)<o3

a;
(iv) if u <ov and v < o w, then u <ow.
This is clearly a monotone arithmetic definition and thus has at most ωx

stages (Theorem 2.15). Furthermore, it is easy to check that < o is a well-
founded partial ordering (Exercise 4.27). We denote the field of < o by O and
assign ordinals \u\o to elements u of O according to their positions in this
ordering. Thus, | l | o = 0 , |2M | o = |u \o + 1, and | 3 β | o =
sup+{\{a}(p)\o :p Eω}. Except for σ < ω, the σ-th stage of the inductive
definition of < o consists of those u such that | u \o ^ σ. In the following we write
u+ for 2M.

4.17 Definition. For all u G O,

(0 Di = {0};
(ii) DM+ = D ^ ;

(iii) if u = 3α, then Du = {(m,p): m E D{a}(p)}.

4.18 Lemma. For all u E O, DUS^.

Proof. We proceed similarly as for Lemma 4.9. Let

V(M, J, m)<-> u E O Λ ([i = 0 Λ m E Du] v [i = 1 Λ m £ D J ) .
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We can define a monotone arithmetical operator Γ such that

Γ = {(II, U m): V(M, i, m)} U {(w, 2, t>): w < O V}

by combining definitions 4.16 and 4.17. Once this is done, it follows that V is ΓlJ
and hence that each Du is ΔJ.

The clauses (l)-(4) of the definition of Γ corresponding to 4.16 are
straightforward and we leave it to the reader to write them out. Corresponding
to 4.17 we have

(5) ( l ,0 ,0)εΓ(«) ; for all m >0, (1,1, m ) e Γ ( Λ ) ;

(6) (a) if (II, w, u+)GR and 3w 3s [(Vπ < lg(s)). (u,(s)π, n)GR

Λ T(a,(m),wΛs))]

then (iι+,0,<β,m»eΓ(Λ);

(b) if (iι,2, u+)ER and Vw Vs [(Vπ < lg(s))(V/.(iι, i, n ) e Λ ->

then( M

+ , l ,(α,m»GΓ(i?);

(c) if n is not of the form (a,m), then (« + , l ,n)£Γ(]?) ;

(7) (a) if for all p, ({α}(p),2,3fl)Gl? and ({α}(p),ί,m)€ Λ,
then(3α,i,<m,p»eΓ(K);

(b) if n is not of the form (a,m), then (3α, 1, n)GΓ(i?). D

To establish that each Δj relation on numbers is recursive in some Du, we
shall define primitive recursive functions F and G such that for all a E Nkj0,
F(a)E O and Pα has index G(a) from D F ( α ) . The result then follows from
Theorem 4.12. We need two technical lemmas.

4.19 Lemma. There exists a partial recursive function +o such that for all

u,vGO, u+ov G O, I II +ov\o = I " l o + Mo> and if υ^ 1, u <o (u +o*>)

Proof. We define + o by the Recursion Theorem to satisfy the following
conditions:

(1) W + O 1 - M ;

(2) u + o ι ; + = (M+ o υ) + ;
(3) M + O 3 ^ 3C, where {c}(/>) - u + o {fr}(p).

It follows easily by induction over O that + o has the required properties. •

4.20 Lemma. There exists a primitive recursive function g such that for all

M, v E O, if I u | o ^ I v | o , ίfcen DM 15 recursive in Dυ with index g(u, v).
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Proof. We shall define g by the Recursion Theorem simultaneously with an

auxiliary function / such that for u,v E O,

and

I « l o > M o ••{/(»)}<«, IV) « i

To increase legibility, we shall use the abbreviations:

Λυ,M for {p:{g(u,v)}(p,A)~0}

and

Λ ( p ) for {m:(m,p)<ΞA}.

Thus if g is as in the statement of the lemma, we have

(*) if i ι , t>eθ, | i ι | o ^ M o a n d A = D W then Λ ϋ M = D M ;

and without any assumption,

(**) if 3b G O and A = D3*, then for all p , Λ ( p ) = D { b } ( p ) .

We shall require that / and g satisfy the following conditions: for all w, v, a, b,
m, and Λ,

(1) {/(1)}(M,Λ)-1; if ι ^ l , { /

(2) (a) {/(»+)}(iι+,Aαl)-{/(ϋ)}(iι>A);

Π, if 3p.{/(t;)}({fl}(p),A)-l;
(bJίfίOKS-.A^1)-]

[θ, otherwise;

(0, if 3p.G(p,κ,6,A)~0;

1, otherwise,

where G(p,«,M)»{/({*}(?))}(«,(A ( p + 1 )) { b K p + I M M ( p )+);

(4) {g(l,υ)}(m,Λ)-sg(m);

(5) (a) {g(κ+, v+)}(m,A) — {h(g(u,v))}(m,A), where /i is a primitive recur-
sive function such that
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whenever both sides are defined;

(b) {g(3α, v+)}(m, A0") « {g(3a, »)}(m, A);

(6) (a) {g(u+,3b)Hm,A)^{g(u+,{bHp))Hm,Aφ)),

where p = "least" p.G(p, u+,ί>, A) = 0 (G as in (3));

(b){g(3a,3b)}((m,p),A)^{g({aKp),3b)}(m,A).

To see that such / and g exist, rewrite equations (l)-(6) with the following
changes:

on the left-hand sides, replace f(v) by H(e,0,0, v)

and g(u, v) by H(e, 1, w, υ);

on the right-hand sides, replace f(v) by {e}(0,0, ϋ)

and g(w, υ) by {e}(l,w, υ).

Then it is not hard to verify that there is a primitive recursive function H which
satisfies these rewritten equations. Note that the quantifiers on the right-hand
sides of (2)(b) and (3) are accounted for in the changing of Λ ^ to A. By the
Primitive Recursion Theorem, there exists an e such that H(e,i,u,v) =
{e}(i, M, υ) and we set f(v) = {e}(0,0, v) and g(w, v) = {e}(l, w, v).

We prove by induction on | υ \ (dropping the subscript) that / and g have the
required properties. If | v | = 0 this is obvious, so suppose it is true with v
replaced by any w such that | w | < | υ + |. Then

(1) | l | < | ϋ + | is true and {f(v+)}(hDυ++)~0.

(2) (a) if u+ G O, then « 6 O , s o

(b) if 3 α e O, then for all p, {a}(p)Gθ and

(4)
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( 5 ) (a ) If | u + | « | ι > + | , t h e n | M | « | » | , s o

+»{g(u+,v+)}(m,DΌ+)^0.

α | = ε | ι > +(b) If | 3 α | = ε | ι > + | , then | 3 α | « | u | , so

Now suppose that the result holds with v replaced by any w such that

| w | < | 3 f t | .

(3) We first compute that as for all p, \{b}(p)\ < \3b\, for any « 6 θ ,

The second equivalence uses the induction hypothesis, the third uses (**).

Then if u e O,

\u\<\3b\+*3p.\u\<\{b}(p)\

(6) We proceed by induction on | u |. For u = 1, the result is obvious by (4).

(a) If Iu + \ « |3"I, then |M + | < | 3 6 | so for some (least)p, \u + \ < \{b}{p)\.

Then G(p, u +, b, Dj) - 0 and

,D{bm) = 0

,(D3>) ( p )) = 0 (by (••))

^{g(u + ,3 f r ) }(m,D 3 6 ) = 0.

(b) If | 3 a | « | 3 b | , then for all p, | {α}(p) |< \3a \ « | 3 6 |, so



178 IV. The First Level

(m,p)eD3a*+m G D{a}(p)

~{g(3α,36)}«m,p),D3>)-0. D

4.21 Theorem. For all R C kω, R is Δ j iffR is recursive in Du for some u G O.

Proof. We define primitive recursive functions F and G such that for all k and
all a G Nk'°, F(α) G O and Pα is recursive in DF(a) with index G(α). As usual, F
and G are defined by effective transfinite recursion and we shall give only an
informal description of the construction.

If a G No, let F(a) = 2 and G(a) be an index for the semi-recursive set Pα

from D 2 = {0}°̂  If a £ No, set F(a) = (3C)+, where c is an index such that

{c}(0)-F({α}(0)) and {c}(p + l)-{c}(p)+oF({a}(p + 1)).

The properties of + o ensure that if for all p, F({α}(p)) G O, then F(a) G O and
|F({α}(p))|o < |3C | o < \F(a)\o. By 4.20 there exists a recursive function γ such
that if for all p, F({a}(p))E O, then D F ( { α } ( p ) ) is recursive in D3<= with index
yip)- We take G(α) to be an index such that

(0, if 3p.{G({fl}(p))}(m,An.{y(p)}(n,D3c))«l,
{G(α)}(m,D F ( α ) )- |

[l, otherwise.

For the induction step in the proof that F and G are as desired, we have as
induction hypothesis that for all p,

{G({α}(p))}(m,λn.{γ(p)}(n,D3c))-{G({α}(p))}(m,DF({α}(p)))-l

Hence

)}(m,D F ( α ) )-O^3p.~P { α } ( p ) (m)^P α (m). D

This characterization provides us with a new hierarchy of the Δj relations on
numbers known as the hyperarithmetical hierarchy. Let

Σp = {R : R is many-one reducible to some Du with | u \o ^ p};
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If R is a relation recursive in Du, then both R and ~R are many-one reducible
}M+. Hence

\ = U{Δ0;:p<ωJ.

to D°U

J = DM+. Hence

Furthermore, if p < σ < ωλ, then Δ°'5Δ°' (Exercise 4.31). By Theorem IΠ.1.13,
Σ°' = Σp for p < ω, but this is not in general true for all p < ωx.

4.22-4.32 Exercises

4.22. Formulate and prove a theorem which justifies recursive definitions over
the sets NkJ of Definition 4.2.

4.23. Show that for all p < ω1? Σ° and U°p are closed under bounded number
quantification (3< and V<).

4.24. Show that for all p < ωλ,

4.25. Give a different proof of Lemma 4.9 by defining by effective transfinite
recursion a primitive recursive function )
index for Pα as a Δ| relation — that is,
recursion a primitive recursive function / such that for all a E Nκ , f(a) is an

4.26. Show that N M (any fc and /) and O are Γl} complete.

4.27. Show that =^o is a well-founded partial ordering.

4.28. Show that there exists a primitive recursive function h such that for any
uEO and any d, if for all p, {d}(p)GO, then h(d)GO and for all p,

4.29. Show that the ordinals | u \o for u E O are exactly the ordinals less than
ω,. (For each u E O, show that the restriction of < o to v<ou is a
well-ordering of type |w | o For the other direction, let γ E W be recursive.
Construct as in the pioof of Theorem 4.14 a recursive δ E W such that
|| δ || = ω || γ || and use effective transfinite recursion to define a recursive
function / such that for all p EFldδ, /(p)E O and | / ( p ) | o ^Iplβ )

4.30. Give a new proof of Corollary 2.22 by showing that for all u E O, Du is
implicitly Π2. (Construct by effective transfinite recursion a partial recursive
function F such that for all u E O and all A
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Use an effective version of Exercise IΠ.4.25 for defining F(2M) from F(u).

4.31. Show that for all p < σ < ω,, Δ°'£Δ°'.

4.32. Recall that U°(ω) = {<r, α, m): U°r(a, <m»}. Show that for any R, the follow-
ing are equivalent:

(i) «eXl;
(ii) JR (m)«-> 3p. </(p), α, m) e t7"ω) for some a and some primitive recursive

/;
(Hi) R < Γ for some Σ? inductive operator Γ.

(Cf. Theorems, IΠ.3.6-7). How does this compare with Σ°'?

4.33 Notes. The idea of an effective version of the Borel hierarchy was
developed by Addison in his thesis, Addison [1954], and announced in Addison
[1955], although at that time not all of the details of the transfinite levels had
been worked out. Indeed, they were never published and may not have been
completely written down until the Spring of 1964 when Addison conducted a
seminar on the material at Berkeley. The hyperarithmetical hierarchy based on
O and the set Du and Theorem 4.21 are due to Kleene [1955b], but Lemma 4.20
is from Spector [1955].

5. Cardinality, Measurability and Category

One of the benefits for analysts in dealing with constructively defined sets and
relations is that they are more likely to be "well-behaved". We consider here
some of the pleasant properties of Σj and Πj relations. To simplify some of the
arguments we shall deal explicitly only with subsets of ωω (relations of rank
(0,1)), but all of the results hold also for relations of arbitrary rank.

5.1 Theorem. Every ΓlJ or X| set is both the union of an Hrsequence of Borel sets
and the intersection of an Hλ-sequence of Borel sets.

Proof. If suffices to prove the result for A E ΓlJ. Let P be a closed-open relation
such that a G A<-»V0 3n P(jS(n), a), and ^ and ^ the relations defined in the
proof of Theorem 1.1. For any t set

and
Ap={a : ̂ ' has order-type ^ p}.
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Thus as in the proof of Theorem 1.1,

g ^ > is a well-ordering

For any p<Hu choose γ such that | |γ | | = p and let F be a continuous
functional such that

ΓO, if κ < ' υ ;
F«iι,i;Uα) = I

Ll, otherwise.

Then

α G A ; β F [ ί , α ] < x y o F[ί, α ] < π y

so that for all f, Ap is Δj, i.e., Borel. In particular, A= UjA^ :ρ<Hι} is a
representation of A as a union of Nx Borel sets.

For the intersection, let

Again Bp is clearly Borel for all countable p, and we claim that A = Π{Bp : p <
Nj. Suppose first that a E A, so that ^ 5 < > is a well-ordering, say of order-type σ.
For any p < σ there exists a ί such that =s3̂ ' has order-type p -I-1 so that
a GA p + 1 ~A ρ CB p . For p ^ σ, a EA^CBp. Hence α 6 B p for all ρ < N x .

For the converse, suppose α G B p for all p < H1. For each ί let

!

order-type of =^α'
r, if this is an ordinal;

0, otherwise;

and set p = sup+{σ, : t E ω}. Then p < 8j and for all ί, ^ α ' does not have
order-type p + 1 so a £ Ap+1 ~ Ap. Since a E B ,̂ it follows that α G A ^

5.2 Corollary. Every X\ set is the union of an Hx-sequence of Borel sets.

Proof Suppose A is X\ and a E A++3β S(α, β) for some SEllJ. By the
preceding theorem (extended to relations) there exist Borel relations S σ such
that S = U{Sσ : σ < Mj. Then

a E A ~ 3/3 (3σ < Ht)Sσ(a9 β)



182 IV. The First Level

By the theorem again there exist Borel sets A^ such that

{a:3βSσ(a,β)}=U{Aστ:τ<H1}

and thus A = UjA^ : σ, τ < Hλ). Since Hλ x Hx is of power Hu there is a pairing
function on H1 with (say) inverses ( )0 and ( )x. Then A = U {A(σ.)o(σ)i: σ < Nj
as required. D

The converse of this Corollary is not provable without some additional
set-theoretic assumption, since if 2N° = N1, then every set is the union of Hί

singletons (and singletons are Borel). (Cf. Exercise V.3.25).
We turn next to the measurability of X\ and ll\ relations. We have discussed

only Lebesgue measure on ωω, but the proof will depend only on the following
four properties of the measure:

(1) The class of measurable sets contains the open sets and is closed under
complementation and countable union and intersection;

(2) the union of countably many sets of measure 0 has measure 0;
(3) every subset of a set of measure 0 is measurable and has measure 0;
(4) in any family of Hι pairwise disjoint measurable sets, at most countably

many sets have positive measure.
Properties (1) and (2) are direct consequences of the countable additivity of a

measure and (3) is the completeness property. For (4), if (Aσ : σ < Nx) is a family
of pairwise disjoint measurable sets and xσ = mes(U{Aτ : τ < σ}), then JC 0 ^
xι ^ ^ χσ ^ χσ+ι... . The strict inequality, xσ<xσ+ί, holds just in case
mes(Aσ)>0 and in this case there is a rational number yσ such that xσ < yσ <
xσ+ί. Clearly this can happen for at most countably many σ.

5.3 Theorem. Every Xx or H1 set is measurable with respect to any measure
which satisfies (l)-(4)

Proof. As the complement of a measurable set is measurable, it suffices to
consider AGϋJ. Let A'p be as in the proof of Theorem 5.1 and for each t
consider the family (Ap+1 ~A'p: p < Hλ). This is a family of H1 pairwise disjoint
Borel sets (hence measurable sets by (1)) so all but countably many have
measure 0. Hence there is an ordinal σ, such that for all p ̂  σn mes(Ap+1 ~A )̂ =
0. Let p = sup+{σ, : t E ω}. Then p < Kj and for all ί, mes(A^+1 ~A^) = 0. In the
proof of Theorem 5.1 we showed A C B .̂ Hence

A = A< > U (A Π U { A i + 1 - A ; : t G ω}).

Thus A is the union of A^ \ which is Borel, hence measurable, and a subset of a
countable union of sets of measure 0, which is measurable by (2) and (3). D
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This result cannot be extended even to Δ2 relations; we shall indicate a proof
of this in §V.2. Of course, countable unions and intersections of X\ and Π}
relations are measurable. We shall discuss further extensions of this sort in § V.4.

We turn next to the topological analogue of measurability, the Baire
property.

5.4 Definition. A set A has the Baire property iff there exists an open set B such
that both A ~ B and B ~ A are meager.

We aim to show that all X] and Π| sets also have the Baire property. The
proof is nearly identical to that of Theorem 5.3 once we establish the following
analogues of (l)-(4):

(Γ) The class of sets which have the Baire property contains the open sets
and is closed under complementation and countable union and intersection;

(2') the union of countably many meager sets is meager;
(3') every subset of a meager set is meager and has the Baire property;
(4') in any family of pairwise disjoint sets which have the Baire property, at

most countably many sets are non-meager.
We denote the topological closure of a set A by A. Note that a E A iff, for all

n, [ά(n)]ΠA/0. A is dense in an interval [s] iff [s] C A. Hence A is nowhere
dense iff no interval is included in A iff ~A is dense iff ~A = ωω. Properties (2')
and (3') are immediate from the definitions.

5.5 Lemma. For any open set B, B ~ B is nowhere dense.

Proof. If B is open, then B ~ B is closed so by the preceding remarks, it suffices
to show that ~(B ~ B) is dense. This is clear from:

~(B ~ B) = ~B U B = ~B U B D ~B U B = ωω. D

5.6 Lemma. The class of sets which have the Baire property is closed under
complementation and countable union and intersection.

Proof. Suppose first that A has the Baire property and B is an open set such that
A— B and B~A are both meager. Then ~B is open,

(~A) ~ (~B) =• B ~ A C (B ~ A) U (B ~ B),

and

(_B) ~ (~A) = A ~ B C A ~ B .

By Lemma 5.5 both of these sets are meager and thus ~A also has the Baire
property.
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Now suppose that for all n, An has the Baire property and B n is an open set

such that both An ~ Bn and B n ~ An are meager. Then U { B n : n G ω} is open,

U{An : n G ω} ~ U{Bn :nEω}C U{An ~ B π : n G ω},

and

U { B n : n G ω} ~ U{An : n G ω} C U { B n ~ An : n G ω},

so it follows by (2') and (3') that U{An : n G ω} also has the Baire property. •

Since all open sets obviously have the Baire property, this establishes (Γ). It

follows immediately that all Borel sets have the Baire property.

5.7 Lemma. For any set A which has the Baire property and any s, there is some

t D s such that one of A Π [t] and (~A) Π [t] is meager.

Proof. Suppose that A has the Baire property and B is an open set such that

A ~ B and B ~ A are meager. For any set C let

C* = {a : for all n, C Π [α(n)] is not meager}.

Clearly C* C C. Since the meagerness of A Π [α(n)] will not be affected by the

addition or removal of a meager set, A* = B* and (~A)* = (~B)*. Hence

A* Π (~A)* = B* Π (~B)* C B Π ̂ B C B ~ B,

which is nowhere dense by Lemma 5.5. In particular, for every s there exists a

function a G [5] such that either a &- A* or a &. (~A)*. If a £ A*, then for some

n, AΠ[ά(n)] is meager, and clearly n may be chosen such that ά(n)Ds. If

a & (~A)*, then for some n, (~A) Π [ά(n)] is meager. •

5.8 Lemma. For any A, if A is non-meager and has the Baire property, then for

some s, (~A) Π [s] is meager.

Proof. Suppose that A has the Baire property but for all 5, (~A)Π[s] is

non-meager. Then by the preceding lemma, for every s there exists a t D s such

that AΠ[ί ] is meager. Let C = U { [ ί ] : A Π [ ί ] is meager}. Clearly A Π C is

meager. But ~ C is nowhere dense so A Π (~C) is also meager and thus A is

meager. D

5.9 Lemma. In any family ofpairwise disjoint sets which have the Baire property,

at most countably many sets are non-meager
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Proof. Let X be a family of pairwise disjoint sets which have the Baire property
and Y the subfamily of X consisting of all non-meager sets. By the preceding
lemma the function

φ(A) = least 5. (~A) Γ\[s] is meager

is defined for all A E Y. It will suffice to show that φ is one-one as Im φ C ω and
hence is countable. Suppose φ(A) = φ(B) = s. Then (~A) Π [5] and (~B) Π [5]
are both meager. Since A Π B = 0, the union of these sets is [s], which is thus
meager in contradiction with the Baire Category Theorem (1.2.2). D

5.10 Theorem. Every X\ or ϊl\ set has the Baire property.

Proof. Follow the proof of Theorem 5.3 substituting "has the Baire property"
for "is measurable" and "is meager" for "has measure 0". D

Finally, we consider the question of the cardinality of Σx and H1 sets. It is
well known that the usual axioms of set theory, even including the Axiom of
Choice, do not determine the power of the continuum. That is, it is consistent
with these axioms (assuming that they alone are consistent) either that 2H° = Ht

or that there are one or more distinct cardinals between No and 2M°. What we
shall show is that these intermediate cardinalities cannot be realized by X\ sets
nor, except for 8 l 5 by Xι

2 sets.

5.11 Lemma. For any uncountable set A C ωω, there exist s0 and sx such that
[s0] Π [sj = 0 and both A Π [s0] and A Π [sj are uncountable.

Proof. Let A be uncountable and set

B = {s : 5 E Sq Λ A Π [5] is uncountable}.

Clearly ( )EB. Since A Π [s] = U{A Π [5 * (n)]: n E ω}, if A Π [s] is uncounta-
ble, so is some A Π [s *(«>]. Hence there there exists a unique function β such
that for all fc,

β(k) = least n[β(k)*(n)E B].

Suppose that the conclusion of the lemma is false. Then for every 5, if β £ [s],
then A Π [5] is countable. But

AcU{An[s]:β£[s]}U{β}

and thus A is countable, contrary to assumption. D
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At this point the reader should attempt to show for himself that any
uncountable closed set has power 2H°. The proof of the following theorem is
merely a two-dimensional version of this construction.

5.12 Theorem. For all AGΣj, if A is uncountable, then A has power 2H°.

Proof. Let A be an uncountable 2^ set. Obviously the power of A is at most 2M° so
it suffices to find a subset of A of power 2M°. Let R be a relation such that

and

R(s, t)Λs'Cs A t'Qt-*R(s',t').

By Lemma 5.11 choose s0 and sλ such that AΠ[s0] and A Π [sx] are both
uncountable and [s0] Π [sx] = 0. For i = 0 and 1 we may represent A Π [sj in the
form

a G A Π [Si] +*a<Ξ [st] Λ 3t 3β [\g(t) = lg(5f) Λ

βG[t]A\/nR(ά(n)J(n))].

As there are only countably many t of length lg(Sj), there is at least one, say th

such that

Af = {a : a G [Si] Λ (3/3 G U])VnK(a(n), £("))}

is uncountable.
For the next stage, choose for / = 0 and 1, suo and s u such that A, Π [siw ] is

uncountable, and then tiQ and ί u extending ί, such that

A,,. = {α : a e [s,y] A (3β £ Ky])VιiΛ(α(n), β(n))}

is uncountable. Continuing in this way, we define for each (code for a) finite
sequence u of O's and Γs, sequences su and tu with the following properties:

(1) R(su,tu);
(2) uCv-*suCsυ and ίM C tυ

(3) S U CS^MCD;

(4) lg(O = lg(0^1g(").
For each γ G ω2, let α7 be the limit of the sequences s^(n) and βy the limit of

t h e hin) — t h a t iδ> « γ ( " ) = (*y(n + l))»ι a n d βy(") = (^(n + l))n ^ O m (3) it follOWS

that if γ ^ δ , then ay^ aδ, so the mapping y»aγ is 1-1. Hence B =
{ α γ : γ 6 ω 2 } has the same power as ω2, that is, 2M°.

We claim that B C A. Note first that for every γ and n, # ( s f ( n ) , ^ ( n ) ) so that
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also R(άγ(n), βΎ(n)). In particular, for every γ, 3β VnR(άγ(n), β(n)) and thus
αγ6A. D

5.13 Corollary. For all A E X\, if A is uncountable, then A has power either Hι or

Proof. By Corollary 5.2, every X\ set A is the union of Nj Borel sets Ap (p < Mj).
The sets Ap may clearly be chosen pairwise disjoint. By the preceding theorem,
each Ap is either countable or of power 2M°. There are three possible cases:

(1) for some p, Ap has power 2M°: then A has power 2H°;
(2) Ap is countable for all p and Ap is non-empty for uncountably many p:

then A has power H^
(3) Ap is countable for all p but Ap is non-empty for only countably many p:

then A is countable. •

By Theorem 3.13 all of the theorems of this section hold also for X\ and IlJ
and X\ subsets of the real interval (0,1).

5.14-5.16 Exercises

5.14. Is the following "lightface" version of Theorem 5.1 true: every Σ} or Πj set
is both the union of an α^-sequence of Δj sets and the intersection of an
ω,-sequence of Δj sets? Consider separately sets of functions and sets of
numbers.

5.15. Show that for any a, {β : a E. Δ\[β]} has measure either 0 or 1 (use
Exercise 1.2.10).

5.16 (Harrison). Show that for any Σj set A, if A j£ Δj, then A is of power 2M°.
(Apply a variant of the technique used for Theorem 5.12 to the ΣJ set A ~ Δ}.)
Conclude that there is no largest countable ΣJ subset of ωω. Note that the
relativized version of this result implies Theorem 5.12.

5.17 Notes. An excellent and thorough account of the analogies and similarities
between the theories of measure and category may be found in Oxtoby [1971].

As with many of the results of this chaptr, much effort went into attempts to
extend Theorems 5.3, 5.10, and 5.12 to higher levels of the analytical and
projective hierarchies. The attempts were futile because the extensions are
independent of ZFC. Indeed, this was forseen as early as Luzin [1930] where we
read as the final paragraph:

"Ou bien, les problemes indiques sur les ensembles projectifs (of measure,
category, and power) resterons a jamais sans solutions augmentes de quantite de
problemes nouveaux aussi naturels et aussi inabordables. Dans ce cas il est clair
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que le jour serait venu de reformer nos idees sur le continu arithmetique."
In §§V.2-3 we consider the situation under the additional hypotheses of

Constructibility or Projective Determinacy. The hypothesis that there exist a
measurable cardinal has the somewhat surprising effect of pushing the results of
this section exactly one level further: all X\ sets are measurable, have the Baire
property, and satisfy the Continuum Hypothesis (see Solovay [1969] and
Shoenfleld [1971b]).

6. Continuous Images

We have explored in §§1 and 2 the analogy between the classes Σ] and Πj. There
are, however, some ways in which Σ° resembles Σj. Consider the following two
facts: for any non-empty A Qω and A C ωω,

(1) Λ E Xj iff Λ is the image of a recursive set under a recursive function
from ω into ω,

(Γ) A E Σ! iff A is the image of a \ . , [ set under a continuous functionalv ' λ 6 [ closed J
from ωω into ωω.

(1) is just a slight variant of part of Theorem II.4.15 and (Γ) follows from
Lemma 6.1 below and the fact that projection is a continuous functional together
with the relativized version of Lemma III.2.8. We shall investigate here
corresponding analogues for the following related facts:

(2) A E Σ° and A^ 0«-> A is the image of a total recursive function;
(3) A e Σ j ^ Λ is the image of a recursive set under a one-one recursive

function;
(4) A E Σ° and A is infinite <-• A is the image of a total one-one recursive

function (Exercise II.4.30);
(5) Λ G j J ^ Λ is the domain of a partial function with recursive graph.
We shall use letters 0, φ, χ, and ψ to denote (partial) functional from ωω into

ωω. Such a functional is continuous iff θ *([s]) is an open set for every interval
[5]. Note that it is not true that the graph of a continuous functional 0 is a
closed-open subset of ωω x ωω as clearly no such functional has open graph.

6.1 Lemma. For any θ, if F(p, a) — θ(a)(p), then θ is partial continuous iff F is
partial continuous.

Proof Suppose first that F is partial continuous. Then

θ~\[s]) = {a : (Vp < lg(s))F(p, a) = (s)p},

and thus 0~!([s]) is a finite intersection of open sets and is open. On the other
hand, if θ is partial continuous,
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F-\{n}) = U{{p} x θ~\{a : a(p) =n}):pG ω},

so F" 1 ^}) is open and thus F is partial continuous. D

We first establish an analogue of (2). The following lemma is a refinement of
Lemma 5.11.

6.2 Lemma. For any uncountable set A C ωω, there exists an infinite set A C Sq
such that

(i) for all s G A, A Π [s] is uncountable
(ii) for all s, t G A, if s/ t, then [s] Π [t] = 0 ;

(iii) A ~ U{A Π [5]: 5 G Λ} is countable.

Proof. Let B and β be defined as in the proof of Lemma 5.11. For each fc set

Ak={s:sEBA lg(s) = fc + 1 Λ (Vi < fc)[(s), = 0(i)] Λ β(fc) < (5),},

and

A = |J{Λk :k Gω}.

By definition Λ C JB and thus satisfies (i). For (ii), suppose 5, t G A and s^ t.
If 5 and ί belong to the same Λk, then (s)k ^ (t)k so [5] Π [t] = 0 . Otherwise, for
some k < I (say), s G Ak and ί G Λ/? so (ί)k = β(k)< (s)k an<3 again [s] Π [ί] =
0. Hence (ii) is satisfied. For (iii), suppose a G A ~ U{A Π [5]: 5 G A}. Either
α = β or else for some fc, α(fc)=β(fc) but α(fc)^]S(fc). If α(fc)<β(fc), then
a (fc + 1) £ B by the definition of β. If β (fc) < a (fc), then again a (fc + 1) £ £, as
otherwise ά(fc 4-1) G A, contrary to the assumption that a belongs to no A Π [5]
with s E A. Hence

a G U{A Π [s]: A Π [5] is countable} U {β}.

This set is countable so (iii) is established.
Finally, suppose that A were finite so that for some fc, A, = 0 for all / > fc.

Then for all 5 such that lg(s) > fc, if A Π [s] is uncountable, then β E[s]. But

A Π [β(k)] C {/3} U U{A Π [5]: lg(5) > fc Λ β £ [s]}.

The right-hand side is countable, but β(k) G B s o A Π [/3(fc)] is uncountable, a
contradiction. D

6.3 Lemma. For any uncountable closed set A C ωω, tftere exisίs a one-one total
continuous functional θ such that Im0 C A and A ~ Im θ is countable.
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Proof. Let A be an uncountable closed set and set A< > = A. We shall define for
each wGSqa set Au such that for all u and v,

(i) AM is uncountable;
(ii) i ι £ ϋ Λ ϋ £ i * - > A u n A ϋ = 0 ;

(iii) AM ~ U{AU „,<„>: n E ω) is countable;
(iv) u C v -> Av C Au

(v) for any β, Π{Aβ ( k ): k E ω} contains a single element.
Suppose that AM is defined and let Au C Sq be as in the preceding lemma

applied to the uncountable set AM. If sn denotes the n-th element of Au

enumerated in numerical order, set

AM*<n> = AM Π [ s n ] .

Properties (i)-(iii) now follow immediately from (i)-(iii) of the lemma, respec-
tively, and (iv) is evident from the construction, (v) follows from the fact, easily
proved by induction on the length of w, that AM is closed and for all s E AM,

Now set θ(β) = the unique element of Π{Ap(k): k E ω}. For all β, 0(β)E
A = A< ). That 0 is one-one follows from (ii). If β E 0 r([s]), then A^ ( l g ( s ) )C [s]
so [β(lg(s))] C θ~\[s]) and thus θ is continuous. Finally, if a E A ~ Im 0, then
for some u, a E Au ~ U{AMltt<M>: n E ω}. Hence

A ~ Im θ C U{AU - U{AM φ<n>: n E ω): u E Sq}

which is countable by (iii). D

Note that the provision that Im θ may differ from A by a countable set is
essential as it is easy to see that Im θ cannot contain isolated points (a is isolated
in Im θ iff for some n, a is the only member of Im θ Π [α(n)]). Note that a set
can have at most countably many isolated points.

6.4 Corollary. Every non-empty closed set is the image of a total continuous
functional.

Proof If A is countable, say A = {βn : n E ω}, we simply set χ(a) = βα ( 0 ) and
A = Im^. If A is uncountable, let θ be as in the preceding lemma a one-one
continuous functional such that Im θ C A and A ~ Im θ is countable, say
A ~ Im θ = {βn : n E ω}. Then if

f 0(λm.α(m + l)), if α(0) = 0;

ft»(o)-i, if α(0)>0;

clearly χ is continuous and A = Im^. D
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6.5 Theorem. For any non-empty set A C ωω, A E ΣJ iff A is the image of a total
continuous functional.

Proof. First, if A = Im θ for some total continuous 0, then

aeA**3β\/p.θ(β)(p)=a(p)

so it follows from Lemma 6.1 that A E X\. The converse is immediate from (Γ)
and Corollary 6.4. D

Consider now the following possible analogues for (3)-(5):

(3') A E Σj <-> A is the image of a Borel set B under a continuous functional

which is one-one on B;

(4') A E Σ J and A is uncountable ++ A is the image of a total one-one
continuous functional;

(5') A E Σ ^ A is the domain of a partial functional with Borel graph.
The implications (<—) are trivially true in each case, but we shall show that all of
the implications (—>) are false. (This also follows from Exercise 2.27.) Of course,
as we pointed out following 6.3, (4)'(-») fails for any A which has isolated points,
but the following shows that it would be false even if we allowed for the
exclusion of such points.

6.6 Theorem. The image of any total one-one continuous functional is a Borel
set.

Proof Let 0 be a total one-one continuous functional. The graph of 0 is Borel
so there exists a Δj relation R and a function γ such that for all a and β,

Then because θ is one-one,

0Elm0<-»3α R(α, j3, γ)

o3!αR(α,β,γ)

«(3α6Aί[fty])R(α,ftγ).

The first equivalence shows that Im0 is Σj. The third shows that it is Π}
(Theorem 2.9). D

The result of Lemma 6.3 can be extended to all Borel sets. First we give a
new characterization of the class of Borel sets.



192 IV. The First Level

6.7 Lemma. The class of Borel sets is the smallest class containing all closed sets
and closed under countable intersection and countable disjoint union.

Proof. Let X be the class described. Clearly X C Bo so it suffices to prove by
induction that for all p, Σ° C X. For p = 0 this is true by hypothesis so we assume
p > 0 and Σ°p) C X. As X is closed under countable intersection we have
immediately that Π°£X. Let R = U{Pp :pEω} be any element of Σ p with alΓ
P p E Π°p). For each p, let

Qp = P p ~ U { P q :<?</>}.

By Lemmas 3.5 and 3.6, each Qp e i J c ϋ J c X . The Qp are pairwise disjoint
and R = U{Qp : p E ω} so R G X. D

6.8 Lemma. Every Borel set is the image of a closed set C under a continuous
functional which is one-one on C.

Proof. Let X be the class of sets which are images of closed sets as described.
Clearly all closed sets belong to X so it will suffice to show that X is closed under
countable intersection and countable disjoint union.

Suppose that for all p E ω, Ap E X, Cp is closed, 0p is a continuous functional
which is one-one on Cp, and 0p Cp = Ap. If the sets Ap are pairwise disjoint and
B = U { A p : p E ω } , let C = { α : λ m . α ( m + l)GCα ( 0 )} and 0(α) =
0α(O)(λm .a(m+ 1)). Then C is closed, 0 is continuous and one-one on C, and
0"C = B.

Now let B = Π {Ap : p E ω}. Then we set

C = {a: Vp Vq [(a)p E Cp Λ θp((a)p) = θq((a)q)]

and 0(α)= 0O((«)°) a n d claim that θ is continuous and one-one on C, C is
closed, and Θ"C = B. That C is closed follows easily from Lemma 6.1. θ is clearly
continuous. If β E Θ"C then for some aEC, β = θo((a)°) = θp((a)p) for all p.
Since θp((a)p) E 0pCp = Ap, β E B. On the other hand for any β E B there exists
for each p a function ap E Cp such that θp(ap) = j8. But then there is an a E C
such that (a)p = ap for all /? and thus β E 0"C. Finally suppose for some
α, jS EC that 0(α)= 0(0). Then for all p, 0p((α)p)= 0p((β)P) which implies
(a)p = (β)p since 0p is one-one on Cp. Thus for all p and m, α((p, m)) =
β((p, m)) and by the final condition on C, a = β. Hence 0 is one-one on C. D

We now have, in contrast with the proposed (3;) and (4'):

6.9 Theorem. The following are equivalent for all A C ωω,

(i) A is Borel;
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(ii) A is the image of a Borel set B under a continuous functional which is
one-one on B;

(iii) A is the image of a closed set C under a continuous functional which is
one-one on C;

(iv) A is countable or for some one-one total continuous functional 0, Im 0 C A
and A ~ Im 0 is countable.

Proof. If A is Borel then it is the image of itself under the identity function, so (i)
implies (ii). (iii) follows from (ii) by Lemma 6.8. Now suppose (iii) holds, say
A = χ"C, and by Lemma 6.3 let φ be a one-one total continuous functional such
that I m φ C C and C ~ Imφ is countable. Then 0 = χ °φ clearly has the
required properties. Finally, if A satisfies (iv), Im 0 is Borel by Theorem 6.6 and
any countable set is Borel, so A is Borel. D

Finally, in contrast with the proposed (5'), we have

6.10 Corollary. For any partial functional 0, if the graph of θ is a Borel relation,
then the domain of θ is a Borel set.

Proof Let 0 have Borel graph and set

B = {(a,β):θ(a)~β} and

Then φ is continuous and one-one on the Borel set B and φ"B is the domain of
0. By the preceding theorem this is a Borel set. D

6.11-6.14 Exercises

6.11. Show that AC ω ω is X\ iff it is the image of some partial continuous
functional with closed domain.

6.12. Prove that every Borel set is the domain of a functional with closed graph.

6.13. Show that if θ is continuous and 1-1 on A, then
(i) if A G X\, then also 0"A G X\

(ii) if A £ Δ l , then also 0"A £ Δ j .

6.14. Establish the following analogue of Lemma 6.1: for any 0, if F(p, a) —
0(α)(p), then the following are equivalent:

(i) Grβ is Borel;
(ii) GrF is Borel;

(iii) for all s, 0"1([s]) is Borel.
What happens if "Borel" is replaced by 'Σj'? by Ίl}'? (cf. Theorem 7.11 below).
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6.15 Notes. The results of this section are all "classical" — that is, they
appeared before the era of Recursion Theory. The proof of Theorem 6.6 is more
modern, depending as it does on §2. There is, of course, a classical proof which
goes in outline as follows: if θ is a total one-one continuous functional, use
Corollary 1.12 to find for each 5 G Sq a Borel set As such that

θ"([s])CA,C~θ"(~[s])

and if 5 C ί, then A, C A5. Then

a G Im θ +*\/n Vs [lg(s) = n Λ a G As Π θ"([s])].

For the flavor of this sort of Descriptive Set Theory as it was done in the good
old days, peruse Ljapunov-Stschegolkov-Arsenin [1955].

7. Uniformization

The notion of a selection functional SelR for a relation R played an important
role in § II.4 and § 2 of this chapter. SelR selects a number p such that R(p, m, α)
holds whenever there is such a p. We consider here the analogous problem of
selecting a β such that R(m, α, β). The letters θ,φ,χ, and ψ denote functions
from ' ω into ωω in this section.

7.1 Definition. For any two classes X and Y of relations, X is Y-uniformizable
(or Y uniformizes X) iff for every REX, R C M + 1 ω , there exists a partial
functional θ : kJω -> ωω with Grβ G Y and such that for all (m, a),

3/3 R(m, α, β)«-»R(m, α, 0(m, α))<H>0(m, α) j .

The functional 0 is said to uniformize R. X has the uniformization property iff X
is X-uniformizable.

The main result of this section is that Πj, Πj[0], and Πj all have the
uniformization property. As background we examine uniformization for simpler
classes.

7.2 Theorem. Σj is Δ^-uniformizable.

Proof. Suppose ReXj, say R(m, α, β)+*3p S(/3(p),m, a) with S recursive.
Then the functional θ defined by:
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0(m, a) - β <r* 3s S(s, m, a) A VS [S(S, m, a) A (Vt < s) ~ S(ί, m, or)

) = 0]

has Δ° graph and uniformizes R. D

Of course Σi cannot have the uniformization property since no non-empty

functional θ has open graph. The same argument shows that Σ?[j3] is Δ^fβ]-

uniformizable and hence Σ? is Δ^-uniformizable.

The following simple observation allows us to apply the results of § III.4.

7.3 Lemma. For any X and any r > 0, ifX is Σj-uniformizable, then Δj is a basis
forX.

Proof. Suppose X is Σj-uniformizable and A is a non-empty set in X. Let

)**β Ξ A and θ uniformize R with Grθ e Σ j . Then if γ is defined by

γ(m) = n <r»3β [(9(0) = β A β(m) = n]

γeΔjnA. D

7.4 Theorem. Π? is not X\-uniformizable.

Proof By Theorem III.4.8, Δj is not a basis for Π?. D

Again this lemma and theorem can be easily extended to show that Πj[β] is

not Σj [j3]-uniformizable. However Δj is trivially a basis for Π? (since ωω C Δ°),

so we use a different approach to prove

7.5 Theorem. 11? is noί Δ\-uniformizable.

Proof Let A be any set in Σj ~ Δj and R a 11? relation such that a G

A«->3βR(α, β). Suppose R were uniformizable by a Δj functional θ. Then

A = Dm θ is Borel by Corollary 6.10, a contradiction. D

7.6 Lemma. For any functional θ G Σj (Σj), ί/iere ejcisίs α functional ψ G Δj (Δ})

SMC/Z ί/iαί 0 C (/̂ .

Proo/. Let θ be any Σj functional and set

R*(m, α, β)*+ 3 γ 3p [(9(m, α) - γ Λ γ(p) = /3(p) Λ γ(p)
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S**(m, α, β ) ~ 3 γ 3p [0(m, a) - γ Λ f (p) = 0(p) A 0(p) < y (p)];

S* = S**UGr(0).

All of these relations are clearly Xj and they satisfy

R*ns* = 0=R**ns**.

By Theorem 1.5 there exist relations P* and P**EΔ| such that

R * C P * C ~ S * and R** C P** C ~S**.

Let P = P** ~ P*. Clearly Gr(0) C R** Π S* C P. P is not in general the graph of

a functional, so let

U(m, a, β) *+ P(m, α, β) A (3y/ j3)P(m, α, γ).

U E X J and Gr(0) Π U = 0, so we again apply Theorem 1.5 to obtain a relation

Q G Δj such that Gr(0)C Q~U. Then P Π Q is the graph of a functional ψ as

required. D

7.7 Corollary. Πj is noί X\-uniformizable.

Proof. By Theorem 7.5 choose R to be a Πj relation which is not Δj-

uniformizable and suppose θ G%\ uniformizes R. Then if φ is any A\ extension

of 0, R Π Gτ(φ) is a Δj function which uniformizes R, contrary to

assumption. D

Thus the following is the best possible result.

7.8 Uniformization Theorem. ΓlJ and Π} have the uniformization property.

Proof. To simplify notation suppose that RC°'2ω is a Πj relation, say

R(α, β)++Vγ3n P(γ(n), β(n), a). Let P' be as in the proof of Theorem 1.1,

and

I n, α, β I = order-type of =^" β .

We define recursively relations Rn as follows: R o = R;

ua,n = min{β(n):Rn(a,β)}',
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σ^n = min{| n, a, β | : Rn(α, β) Λ β(n) = wα>„};

Rn +i(α, β ) ~ Rn(α, 0 ) Λ j8(n) = wα,n Λ | n, α, β | = <7α,n.

Let Q(α, β)**\/n Rn(α, 0). We shall show that Q G Πj and Q is the graph of

a functional 0 which uniformizes R. First note that if ~ 3 0 R(α, 0), then also

~ 3 0 Q(α, 0). Suppose that R(α, 0). Then for all n, \n,a9β\ is an ordinal and

there is a unique function ya such that for all n, γ α ( w ) = w α n . Clearly

Q(α, β)-> jS = ya so it suffices to prove that if 3β R(α, β), then Q(α, γα).

To this end we first establish the following technical lemmas:

(1) for any a such that 3β R(α, β), any p such that ~P'(p, yβ0g(p))> α)>

any f̂,

IP, <*, ya I < I q, a, γa \ -> σap <σaq\

(2) there exists a relation S G Π | such that for all n, α, and 0,

Suppose the hypotheses of (1) are satisfied, let r = max{p, q) + 1, and let β be

any function such that RΓ(α, β). Then β(lg(p))= fα0g(p)) so also

~P'(Ai3(lg(/7)),α). Since p < q, \p,a, β \ < \q,a, β |. But since Rp+1(α,/3),

|p, α, jS I = σap and as also Rq + 1(α, β), |q, α, j8 | = σ-αq and (1) is proved.

For (2) we first observe that for any n, a, and β such that Rn(α, 0),

and

(n) Λ (β(n) = f ( n ) ^ | π, α, /8 | ^ | n, α,

Using the relations < Σ and < π of Theorem 1.4, we can define relations UΣ E

and Uπ E Πj such that if \p,a,β\ and | n, α, γ | are ordinals, then

\p,a,γ\^\p,a,β\*+ UΣ(p, α, j8, γ),

and
I n, α, β I ̂  I n, α, γ | <-> Uπ(n, α, β, γ).

Hence the requirements of (2) are met by

S(n, α, j 8 ) « Vγ [(Vp < n ) [ γ ( p ) ^ /8(p) Λ UΣ(p, α, jS, γ)]

^ β(n) ^ γ(π) Λ GB(ιt) = γ ( n ) - Uπ(n, α, 0, γ))].
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From (2) we have immediately that

and thus Q E Il\. Suppose now that 3/3 R(α, β)\ we shall show Q(α, γα) and for
this we first prove by induction on the ordinal σttj „ that | n, α, ya | ̂  σα n. Suppose
this holds for all p such that σap<σan. Then by (1) and the induction
hypothesis, if | p, α, γα | < | n, α, γα |, then σα p < σα n. Hence | n, α, γα | ̂  orα n.
Now R(α, γα) holds because |( ), α, γα | ̂  σa< > so |( >, α, γα | is an ordinal.
Similarly, from Rn(α, γα) we conclude immediately that Rn+i(«> y«) Thus

7.9 Basis Theorem. Δ2 is a basis for Σ2

Proof. Immediate from the preceding theorem, Lemma 7.3, and Lemma
IΠ.4.7. D

We have given this result the important title, the Basis Theorem, because it
will see extensive application in the latter four chapters of this book. Here we
give two applications to questions arising in earlier sections. The first concerns
closure ordinals for inductive operators and should be compared with Theorems
2.15 and 2.16. Here δ 2 is the least ordinal not the order-type of a Δ2 wellordering
of ω.

7.10 Theorem. For any inductive operator Γ,
(i) Γ G Δ 2 ^ | Γ | < δ 2 ;

(ii) Γ monotone Λ Γ G Σ 2 - ^ | Γ | ^ δ 2 .

Proof. For (i), suppose Γ E Δ2. Using the relations defined in Theorem IΠ.3.9
we have for all γ E W

Thus {y : γ E W Λ | Γ \ ^ || γ ||} is a non-empty Σ2 set and by the Basis Theorem
contains a Δ2 element γ0. Thus \Γ\ ^ | | γ o | | < δ 2 .

For (ii), suppose Γ is monotone Σ2 and m E Γ. Then using Theorem IΠ.3.13,

{γ : y E W Λ m E Γllτ"} = {γ : γ E W Λ V(m, γ)}

is a non-empty Σ2 set which therefore has a Δ2 element γo Thus m G Γ W C
Γ ( δ i ) , s o Γ C Γ ( δ ! ) . D

The second application is to continuous images. By the same resoning used to
derive (Γ) at the beginning of §6, we have for any ACωω,
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A E Σ2*-» A is the image of a IlJ set under a continuous functional from
ωω into ωω.

In contrast with Theorem 6.9 ((i) <-» (ii)), this equivalence holds also if the

functional is required to be one-one on the ϊlj set (cf. also Corollary 6.10).

7.11 Theorem. For all AC ω ω, A is Σ2 iff A is the domain of a functional

θ :ωω—»ωω which has Π| graph.

Proof The implication («-) is obvious. Conversely, if A is {a : 3β R(α, β)} with

R E Π j , let θ be a functional with IlJ graph which uniformizes R. Then

A = Dm θ. D

7.12 Corollary. For all A C ωω, A is Σ2 f/F A is ffce image of a Πj 5βί B Mnrfer α

continuous functional which is one-one on B.

Proof If A = Dm θ with 0 G Πj, it suffices to take B = {<α, β>: θ(a)^ β} and

0. D

The relativized version of the Basis Theorem also gives a trivial generaliza-

tion of the Spector-Gandy Theorem IV.2.9: a relation R is X2 iff f°Γ some

relation P E Π j ,

R(m, α ) « ( 3 / 3 E Δ2[α]) P(m, α, β).

Finally we have the following easy extension:

7.13 Theorem. Σ 2 and X\ have the uniformization property.

Proof Let R(m, α, β) ++ 3 γ P(m, α, ]3, γ) be a Σ 2 relation with P E Πj. Let

and by the Uniformization Theorem let φ be a functional with Π} graph which

uniformizes Q. Then if

0(m, α) - β ^ 3 γ [φ(m, α) - <j8, γ>],

0 has Σ 2 g r aph and uniformizes R. The proof for X2 is the same. D

7.14-7.20 Exercises

7.14. Give an alternative proof for Corollary 7.7 by showing
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(i) if Π? were ΣJ-uniformizable, then Xj would have the uniformization
property;

(ii) if X\ had the uniformization property, then X\ would have the reduction
property.

7.15. Give a simple proof that Π| uniformizes Π°.

7.16. Find a Σj subset of ωω which has no non-empty Γl} subsets.

7.17. Use the Basis Theorem to give a two-line proof of a weaker version of
Exercise 5.16: every countable Σj set of functions contains only Δ2 elements.

7.18. Show that for any A C ωα>, if A is a model of Δ^-Comprehension, then A is
also a model of Ξl̂ -Choice. (Show that the Uniformization Theorem holds in any
model of Δ^-Comprehension.)

7.19. Show that Δ2 is a model of the Δ^-Comprehension schema (hence also of
32-Choice by Exercise 7.18).

7.20. Show that Δ2 has the uniformization property.

7.21 Notes. The Uniformization Theorem for Πj is due to Kondό [1938]. The
lightface version was announced by Addison in 1959 but never published. It has
since appeared in (at least) Rogers [1967] and Shoenfield [1967].

Exercise III.3.34 suggests an alternate proof for Theorem 7.10(i).




