Chapter I11
Hierarchies and Definability

In the preceding chapter we saw that the semi-recursive relations are exactly
those which arise from the recursive relations by existential number quantifica-
tion (II.4.12). In this chapter we study the relations which arise from the
recursive relations by all kinds of quantification: existential, universal, number,
and function. After classifying these relations according to the number and type
of quantifiers used and establishing the simplest combinatorial properties of this
classification in §§ 1 and 2, we relate it to other notions of definability. In § 3 we
compare the complexity of definition of an inductive operator I" with that of the
set I". In § 4, we investigate the relationship between the complexity of a subset A
of “w and that of its elements. In §5 we show that the relations we are
considering are exactly those definable in certain natural first- and second-order
formal languages. Finally in § 6 we introduce the method of forcing to extend
and complete some earlier results.

1. The Arithmetical Hierarchy

1.1 Definition. The class of arithmetical relations is the smallest class of relations
containing the recursive relations and closed under number quantification (3°
and V°).

We next define a classification of the arithmetical relations based on the
number of quantifiers needed to define a relation.

1.2 Definition (The Arithmetical Hierarchy). For all r,
(i) 26 =1II{ = the class of recursive relations;
(ii) 27 ={3°P: PEIT}
(iii) 1%, = {V°P: P€ 3%,
(iv) AY=32N117;
W) AL, = U{SUI: r € w).
It is immediate by induction on r that all of the classes X and I17, and hence
Al.), are included in the class of arithmetical relations. The converse inclusion is
immediate from Theorem 1.5 below.
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1.3 Examples. Note first that by Theorem 11.4.12, X is exactly the class of
semi-recursive relations and I1{ is the class of co-semi-recursive relations. Hence
by Corollary 11.4.10, Ag = A} = the class of recursive relations.

Consider the set A={a: a is recursive}. We have

a€Ao3aVm [{a}(m)=a(m)]
o3aVm Au [T(a,(m), u,{ NA(u)=a(m))]

and thus A € 3§. The set B of primitive recursive functions is 22:
a €EB<3aVm[a €PrinEv'a m)=a(m)].

Let C be the set of y such that the relation <, = {(p, q): y((p, q)) = 0} is a linear
ordering. Then an easy computation shows C € II{ (try this now without using
Theorem 1.5).

Let £ be a first-order formal language with (for simplicity) only one binary
relation symbol and no function symbols, and suppose Godel numbers have
been assigned to the symbols, formulas, and sequences of formulas in some
standard way (as in Shoenfield [1967], for example). We henceforth identify
these objects with their Godel numbers. An analysis of the notion of formal
proof shows that the relation

R(p,m, A)< p is a proof of m from A
is recursive. Hence, by the Completeness Theorem,

S(m,A)<> m is a logical consequence of A
is 27. The set {A: A is consistent} is I1{ and {A: A is complete} is I13. Every
denumerable structure for & is isomorphic to one of the form (w, R) with

R C*w. Analysis of any standard proof of the Completeness Theorem shows

that if A is recursive and has infinite models, then A has a model (o, R) with
R € A

We write F € 29 (I, A?) to mean Gre € 32 (112, A?). Note that R € 3¢ does not
in general imply Ka € 27. We often use the terms 3, etc. as adjectives and write,
for example, “for any 3] relation R” instead of ‘“for any RE .

1.4 Lemma. For all r and R,
ReEX o ~REeI? and Rell’e~Re3.

Proof. The case r =0 is immediate. Suppose the result holds for r and suppose
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Re 3’,. Then R= 3P for some PEII? and ~R=V’~P. Then ~P € 2! so
~R €11, by definition. The case for REII},, is similar. [J

1.5 Theorem. The classes of the arithmetical hierarchy have the following closure
properties for all r:

3 I A? ()
Composition and substitution vV vV vV vV
with recursive functions
Finite union and intersection vV vV vV vV
Expansion vV vV V4 VvV
Complementation vV vV
Bounded quantification vV vV vV 2V

(3% and V%)

Existential number V(r>0) vV
quantification (3°)
Universal number V(r>0) vV

quantification (V°)

Proof. In the proofs we use the following equivalences and their duals (obtained
by negating both sides):
3p P(p,m, @) v3q Q(q,m, @) «<>3p [P(p,m, a) v Q(p, m, a)];
ap P(pa m, a) A aq Q(q7 m, a)‘_’HP [P((P)m m, a) A Q((p)l’ m, a)]; :
(aq < S)gp P(pv q, s, m, a)""BP [(p)l <sA P((p)(,, (p)l’ s, m, a)];
(Vg <s)3p P(p,q, s,m, a)<>3p (Vq < 5)P((p)s g, s, m, a);
3p 39 P(p, g m, &)< 3p P((p)o, ()1, m, @).
For example, we prove by induction on r that 3} and I1¢ are closed under

bounded quantification. For r = 0, this is known (§ I1.2). Suppose it holds for r
and R is any 3., relation, say

R(q, S, m,a)(_)ap P(P, qa s, m, a)

with P E€II?. Using the third and fourth equivalences and the induction
hypothesis, it follows that the relations defined by

(3g <s)R(g,s,m,«) and (Vg <s)R(q,s m, a)
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are also 2!,,. The other proofs are similar. [
1.6 Corollary. For all r, 2°UTI? C A2, ,.

Proof. We observed in 1.3 that this holds for r = 0 and we proceed by induction.
Given the conclusion for r, suppose RE X7, and let S be defined by

S(p,m, a) & R(m, a).

Then R=3°S=V’S and SE€ 3., so immediately REII,,. But S=3°P for
some P € I1? CI17,, so also R € £7,; and thus R € A).,. The proof for RE II},, is
similar. [

These last two results are often used together to ‘‘compute’ where a given
arithmetical relation falls in the hierarchy. For example, if

R(m, «)«<>3p3qVr[3sViP(p,G(q,s,m),t, m, &) v Iu Q(p, u,r,m, a)],

with G, P, and Q recursive, then the relation described inside the brackets is the
union of a £ and a X relation, hence is 29. Then by applying successively V*, 3°,
and 3° we conclude R € . Of course, such a computation does not always yield
an optimal classification — in fact, in this example we have also

R(m,a)<>3p3q[As Vi P(p,G(q,s,m), t, m, &) vVr3u Q(p, u,r,m, a)]

from which we obtain R € X%. We consider later in the chapter methods for
showing that a relation does not belong to some class X, or II7.

1.7 Corollary. For any r >0, F: *'vo > w, F: *w > », and RC"'o,
(i) if FEZX! and F is total, then also F € A;
(i) if FEX) then DmF €37,
(iii) if FEX) then ImnF €3Y;
(iv) if REZIUILY, then Kr € AV, y;
(v) X7 and 117 are closed under composition with total A} functionals.

Proof. For (i), if F is total, then
Fim, a)=neoVn'[n'#n—-Fm,a)#n'].

Hence if Grr is 27, it is also I17. (ii) and (iii) are immediate from the closure of X}
under 3°. For (iv) we have

Ka(m, @) =n < [R(m,a@)rn=0]v[~R(m,a)Arn=1]
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so Grx, is the union of a %) and a I} relation, hence is AY,,. For (v) we have for
total G,

R(G(m, @),m, @) <> 3n [G(m, @) = n A R(n,m, a)]

< Vn[G(m, @)= n— R(n,m, a)].
The first equivalence serves if R € X and the second if REII). O

The following diagram exhibits the inclusions of Corollary 1.6:

0 0
IT; I3 IT;
H ! A
! H 1 m)
) A
r Y \
e A \
0 0
o= AY A: A3
\
Vv
[—
~
\ |
T Vv
0 0 0
2] 22 23

To show that each of these inclusions is proper — that each space in the
diagram represents a non-empty class of relations, we use a diagonal argument.
For r =1, let

Ui(a, (m),(a)) <> Ju T(a, (m), u,(a));
Ui (a,(m),{(a)) < 3p ~U!(a,(p,m),{(a));
U?(a,(m)) < U%(a, (m),( )).

Recall (11.4.20) that U is universal for a class X iff U€ X and for every RE X
there exists an a € w such that

R(m, @) <> U(a, (m),(a)).

1.8 Arithmetical Indexing Theorem. For all r >0,
(i) U? is universal for %7,
(i) ~U? is universal for 117;
(iii) U7 is universal for {R: R €3}};
(iv) ~U? is universal for {R: R € II}}.
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Proof. A straightforward induction on r shows that U} and U? are 3} and ~U?
and ~ U7 are IT7. For r = 1, (i)-(iv) are clear from the proof of Theorem 11.4.12.
Given (i)-(iv) for r, suppose R € 27, ,, say R = 3°P with P € I[1?. Then for some a,

P(p,m, &) & ~U’(a,{(p, m),(a)),
which implies
R(m, @) < 3p ~U’(a,{p,m),(a)) & U...(a,(m),{(a)).
(ii)-(iv) are proved similarly. [
1.9 Arithmetical Hierarchy Theorem. For all r >0
(i) 2'Z A and I Z A,
(i) AY 227 UITY.

Proof. Since U7 € 3., it will suffice for (i) to show U} & A?. Suppose the contrary
and let

A ={a: U(a,{(a))}.

Then also A € A} and in particular ~A € 7. Since U? is universal, there is some
b € w such that for all m,

m&A o Ul(b (m)).
In particular,
bZ A< U (b(b))bEA,

a contradiction.
For (ii), let

B=2m:meAlU{2m+1: m& A}.

Clearly B is a union of a X! set and a II} set, so B € Al.,. Suppose, however, that
B €3). Then

mEZA-2m+1€EB
and ~A €3 which was seen to be impossible. If B €117, then

meEAe2mERB
which implies A €11}, hence ~A € X}. Therefore B 2, UII?. [

One application of the Hierarchy Theorem is to obtain precise classifications
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in the arithmetical hierarchy. Recall that a relation R is (many-one) reducible to
a set A (in symbols, R< A) iff for some recursive functional F,

R(m, &) F(m, @) € A.

Clearly if A € 2} or I, so does R. Suppose that A is such that all 3° relations on
numbers are reducible to A (such an A is called 27-complete). In particular, if R
is a relation which is 27 but not II}, R is reducible to A. Hence A & I1°. For
example, let

Tot ={a: {a} is a total function of rank 1}.
Since for any a,
a €E ToteVm uT(a,{m),u,{ )),

Tot €I15. In fact, this is an optimal estimate of the complexity of Tot — i.e.,
Tot & 335. To establish this we show that Tot is I13-complete.

If R is any II? relation and P is a recursive relation such that
Vp 3qP(p,q,m)< R(m), let f be the partial recursive function defined by

f(m, p) = least q. P(p, q, m).

Clearly, R(m) < Vp. f(m,p) | . Let b be an index for f. Then by Lemma I1.2.5,
R (m) < Sb,_,(b,m) € Tot

and R <Tot. Some other results of this type are given in the exercises.

To this point it appears that the properties of the classes =7, 17, and A! and
the relationships among them strongly resemble the corresponding properties
and relationships for 29, I17, and A}. In the remainder of this section we shall
examine how well this analogy holds up.

First the reduction and separation properties hold for r > 1 just as they do for
r=1:

1.10 Theorem. For all r >0,
(i) 27 has the reduction property but not the separation property
(i) II} has the separation property but not the reduction property.

Proof. That %) has the reduction property is proved exactly as in Theorem
I1.4.17 using the closure properties of Theorem 1.5. The other results now follow
from Lemmas 11.4.19 and 11.4.21. [

One flaw in the analogy appears in connection with function quantification.

39 is closed under existential function quantification (I1.4.14), but X7, is not so
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closed for any r Indeed, if R is any relation in II7.,~ A7, say
R(m, @) < Vp 3q S(p, 9, m, @) with SEII], then
R(m, ) <>3B Vp S(p, B(p), m, a)

so that R=3'P for a relation P€II°C 3.

For relations on numbers, we shall see that the 37, relations are exactly
those which are semi-recursive in a certain 3, set. To investigate this situation
and for later use we prove first a general result on substitution of arithmetical
functionals in arithmetical relations.

1.11 Arithmetical Substitution Theorem. For any r and s, any S € 2, , (I, ),
and any total functionals Ho,...,H, € A}, if

R(m, @)« S(m, @, Ap. Ho(p, m, @), ..., Ap. H.(p, m, @)),
then ReE V., (I1%.).

Proof. We proceed by induction on r and take n = 0 for simplicity. Suppose first
S € 3. By Theorem I1.4.12 there exists a recursive relation P such that

S(m, @, B)<>3p P(B(p),m, ).
Then

R(m, @)« 3p Is[s = Hy(p,m, @) A P(s,m, a)].
Since
s = Ho(p,m, @) < Sq(s) Alg(s) = p A (Vi <p)((s): = H(i, m, @)),

the relation inside the brackets is A?, so R€ X2,
If S €I, then for some recursive Q,

S(m, a, 8) <> ¥p Q(B(p), m, @)

and we use the equivalence

R(m, @) <> Vp Vs [s = Hy(p, m, @)— Q(s, m, a)].

The induction step is straightforward and is left to the reader. [
The next two results are known jointly as Post’s Theorem.

1.12 Theorem. For all r and all R C o,
(i) R €3}, < R is semi-recursive in some set A € 2 (I1%);
(il) R € A),, <> R is recursive in some set A € 3¢ (I1Y).

Proof. The implications (<) are immediate from the preceding theorem
together with Corollary 1.7(iv). Suppose now that R = 3°P with P €II;. Let
A ={(p,m): ~P(p,m)}. Then A €3 and R(m)<3p[(p,m)& A], so R is
semi-recursive in A.
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For (ii) (—), if R € AY,, then both R, ~R € 3., so by (i) there are A, B € %}
such that R is semi-recursive in A and ~R is semi-recursive in B. Let

C=2m: me€A}U{2m +1: m € B}.

Then both R and ~ R are semi-recursive in C, hence R is recursive in C (by the
relativized version of Corollary 11.4.10) and C € 3. Because a set is recursive in
its complement, we may take as well A €II}. [J

Let D,={0} and D,., = (D,)*.

1.13 Theorem. For all r and all R C *w,
(i) R €3« R < D, (in particular, D, € 3));
(i) R € 3Y.,<> R is semi-recursive in D,

(iii) R € Al,, <> R is recursive in D.,.

Proof. We prove (i)-(iii) simultaneously by induction on r. For each r, (ii) and (iii)
follow from (i) by Theorem 1.12. For r =0, D, is recursive and hence so is any R
which is many-one reducible to it. If RE3 R is recursive and
R(m) < Kg(m)E D,, so R < D,.

Suppose (i)-(iii) hold for r. Then (i) for r + 1 is immediate from (ii) for r and
Theorem I1.5.7. O

There are two natural definitions for the relativized arithmetical hierarchy.
We may either set:

o[B) = TI{[B] = the class of relations recursive in B8;
3L [B]={3P: PEI}[B]};

etc, as in Definition 1.2,

or we may define, for r >0, R € 2![B] (I17[B]) iff R(m, @) <> S(m, &, B) for some
S €3} (II7). Fortunately, these two definitions are equivalent (Exercise 1.24).
Note that REAY[B] is not in general equivalent to the condition that
R(m, @) <> S(m, a, B) for some S € A} (cf. remarks following I1.5.1). It is easy to
check that R is (semi-) recursive in 8 just in case R€ AY[B] (ZI[B]). O

With appropriate changes, the results of this section all hold for the
relativized arithmetical hierarchy with essentially the same proofs. In particular,
there exists for each r >0 a relation U;[B] universal for 7[B] and thus not in
AY[B]. (Relativized Arithmetical Hierarchy Theorem)

Since « is recursive in 3 just in case a € AY[B], it is natural to enquire the
properties of the relations ‘a € A7[B]’. Surprisingly they are not transitive for
r>1 (Exercise 1.23). The best one can say in general is

1.14 Theorem. Foranyrands, ifa € A}.\[B) and B € Al[y], thena € A}, [y].
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Proof. Immediate from the relativized version of Theorem 1.11. [
Finally, motivated by Theorem II.5.5, we define

1.15 Definition. For all r >0,
@) 3= U {32[B): B € “w};
(i) M= U {I1°[B]: B € “o};
(ili) A?=37NTI.
Thus X9 is the class of open relations, IT{ is the class of closed relations, and
A? is the class of closed-open relations.

1.16 Theorem. For allr and R, R € )., <R is the union of countably many II7
relations of the same rank.

Proof. Suppose first that R € 27,,, so for some B and some P € II?[B], R = 3°P.
If for each p € o,

P,(m, &)< P(p,m, a),

then P, e I°[B]CI? and R= U {P,: p € w}.
For the converse, let R= U {P,: p € w} with each P, €II?. For each p
choose B, such that P, €II{[B,]. Then for each p there exists a, such that

P, (m, &) < ~UX((y({p, 0)))o, (m), (e, (¥)D))

Let y be a function such that for all p and ¢, y({p, q)) = {a,, B,(q))- Then for all
Ds

P, (m, @) & ~U(y ({p, 0))o, (m), (e, (v)7))
and thus for some relation Q € II?[y],
P,(m, @) < Q(p, m, a).

Then R = HOQEE?H['Y]QE?H. O ‘

Thus, for example, 33 is the class of countable unions of closed relations,
commonly called F, in analysis, I is the class G;, 23 = G, etc. These comprise
the finite levels of the Borel Hierarchy which will be studied further in the next
section and in § IV.3. (See also Exercises 1.25-30.)

1.17-1.30 Exercises

1.17. Show that the following relations are arithmetical and estimate the level at
which they occur in the arithmetical hierarchy:
Pi(p, y)<><, is a linear ordering and p is the

<,-least element of Fld(y);
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P.(y) e =, is a discrete linear ordering (every element of
Fld(y) has an immediate <, -successor);

Pi(y) < =, is a well-ordering of type w;

Pi(n, y) e =<, is a well-ordering of type <w - n.

1.18. Show that for all r, {a: a € A} is arithmetical and estimate its level in the
arithmetical hierarchy.

1.19. Write out the proofs for two of the other parts of Theorem 1.5.

1.20. Let a be a function such that {a} is a I1{ set (a is implicitly I1}). Show that
if Im & is bounded, then « is recursive, but otherwise @« may be non-recursive.

1.21. Let X, =39 X,=1II9, and for all r,

X,.={RUS: RE X,, SE X,, Rand S of the same rank}

and

X..={RNS:RE X, SEX, R and S of the same rank}.

Show that for all r,
(i) REX, o~REX,;
(ll) X U X, cCX.aNn qu;
(ili) X,Z X, and X.Z X, ;
(iv) U{X,: r € w} is a proper subclass of AS.
1.22. From Theorem 1.11 we see that if 8 € A?, then £%,,[8] C 2... Is this ever
an equality?

1.23. Let a<! B < a € AY[B]. Show that for r >1, <} is not transitive.
1.24. Show that the two characterizations of 37.,[B] are equivalent.

1.25. Verify that
(i) R is semi-recursive in B < R € X}[B];
(i) 3%, = {3°P: PEI;
(iii) A7= U {A?[B]: B € “w}.

1.26. Show that for all r = 1, 27 and II{ are parametrizable (cf. Exercise I1.5.11).

1.27. Show that for all r >0 and all relations R,
(i) REXYo~REID;
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(i) YUl CAL,;
(iii) ZVZ A? and IIYZ AY;
(iv) AV €32 UTE.

1.28. Show that the Arithmetical Hierarchy Theorem may be improved to: for
all r>0,3Z A% and IV Z AY.

1.29. Show that for all r,
(i) 39 has the reduction property but not the separation property;
(ii) ITIY has the separation property but not the reduction property.

1.30. Let V{= U9, and for r >0,

V2.i(a, (m), (@) < 3p ~Vi({a}(p), (m), (a)).
Set

Pi(m, @) < Vi(a, (m),(a)).
Show that for all r >0,

3?={P.: a € w}.
(Note: P, is the recursive union of the relations ~P{,,, so that 37,, consists
exactly of recursive unions of II relations. The arithmetical hierarchy is thus
sometimes called the (finite) effective Borel hierarchy. Cf. §1V .4.)

2. The Analytical Hierarchy

We take up next the relations which are obtained from the recursive relations by
application of both number and function quantifiers. The basic structure we
develop in this section is parallel in most points to that of § 1, but we shall see in
Part B that these are indeed much more complex relations. Proofs will be
omitted when they are very similar to corresponding proofs in § 1.

2.1 Definition. The class of analytical relations is the smallest class of relations

containing the arithmetical relations and closed under function quantification
(3" and V).

2.2 Definition (The Analytical Hierarchy). For all r,
(i) 2o =1TI5= the class of arithmetical relations;
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(i) 2., ={3'P: PEIL};
@iii) II;., ={V'P: PE3Z};
(iv) Ar=32,N1};
V) Al,,= U{SIUIl!: r € w).
Clearly every relation in A, is analytical; the converse inclusion follows from

Theorem 2.6 below. As before, we write F € 3!, etc., to mean Grr € 3!, etc., and
use the terms X/, IT}, and A} as adjectives.

2.3 Examples. Recall that
W = {y: <, is a well-ordering}.
Then using (4') of 1.1.6,

vy EWe =<, is a linear ordering A
Va(Vm[a(m+1)<,a(m)]—=3Im.a(m)<,a(m +1))
o Va (<, is a linear ordering A (Vm.y({a(m +1),a(m)))=0

—3m.y(a(m), a(m + 1)) =0)].

The part inside the brackets is easily seen to be arithmetical so that W € IT;.
Let

v <8 e =, and <; are linear orderings and

<, is isomorphic to a subordering of <,.

Then the second conjunct is equivalent to

JaVpVgla is 1-1 on Fld(y)A(p <,q—=a(p)<sa(q))]
so that the relation < is X|. Note that if y,6 €W,

y<éolyl=<lsl.
A similar argument shows that

{(R, S): the relational structures (w, R) and (w, S) are isomorphic}
is 2.

Suppose A is an arithmetical set of functions with just one element, . Then «
is A since for any m and n
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a(m)=no3B[BEAAB(m)=n]
<VB[BEA—B(m)=n].

Let I' be a monotone operator over o such that the relation ‘m €
I'{{n: a(n)=0}) is arithmetical. By Theorem 1.3.3,

m el <VB[['(B)C B— m € Bj
<Va[Vp(peT(n: a(n)=0)—a(p)=0)—a(m)=0].

Hence I €11}.
Two other examples which will be treated in § V.2 but may serve to orient the
reader familiar with other parts of logic are:

{(m, R): m is the Gédel number of a formula valid in (w, R)} is A{;

{a: a is constructible (in the sense of Godel)} is 3.
2.4 Lemma. For all r and R,
Re3leo ~REI and REeIllle~Rel. O

2.5 Theorem. The classes of the analytical hierarchy have the following closure
properties for all r:

3) I} A; At
Composition and substitution \V4 vV vV \Y4
with recursive functionals
Finite union and intersection V4 VvV V4 vV
Expansion \ \V4 vV vV
Complementation Vv 4
Bounded quantification \V4 AV4 vV vV

(3% and V)

Existential number iV \V \Y4 vV
quantification (3°)
Universal number A4 \ VvV vV
quantification (V°)
Existential function V(r>0) vV
quantification (3')
Universal function V(r>0) vV

quantification (V')
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Proof. In the proofs we use the following equivalences and their duals (obtained
by negating both sides):

3B P(m, a, B) vy Q(m, @, y) < 3B [P(m, @, B) v Q(m, &, B)];

3B P(m, @, B) A3y Q(m, @, y) < 3B [P(m, &, (B)o) » Q(m, e, (B)1)];
(g <r)3aBP(g,rm a B)<>3B (39 <r)P(qr,m, e B);

(Vg <r)3BP(g,rm,a, B)<>3B (Vg <r)P(qr,m, a (B),);

3p 3B P(p,m, @, B) =3B P(B(0), m, &, Aq. B(q + 1));
Vp3BP(pm,a,B)<>3BVYp P(p,m, a, (B));

3B 3y P(m, &, B, y) =3B P(m, &, (B)o, (B)1)-

For example, we prove by induction on r that 3! and I, are closed under 3° and
V°. For r = 0 this is contained in Theorem 1.5. Suppose it holds for r and R is any
31,1 relation, say

R(p,m, a) 3B P(p,m, a, B)

with B € I1;. Using the fifth and sixth equivalences and the induction hypothesis,
it follows that the relations 3°R and V°R are also 3.;. The result for II; follows by
dualization. [

2.6 Corollary. For all r, S!UII'CA}.,. O

2.7 Corollary. For any r >0, F: *'vo > 0, F: *0 = 0, @ € “0w, and RC"“'w

(i) if FEZ]UII} and F is total, then also F € A}

(ii) if FE 3} (I1}), then DmF € 3} (I1});

(iii) if FE3) (I1}), then Im F € 3} (I1));

(iv) if FEZ], then InFEZX);

(v) if REZIUIL, then Ka €EALLy;

(vi) 2} (I1}) is closed under composition with 3. (I1}) functionals

(vi)) a €A] iff {a}€A! iff {a}EZ).

Proof. The proofs are in general like those for Corollary 1.8 and we leave them
to Exercise 2.21. [J

We may picture the arithmetical and analytical hierarchies together as
follows:
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We want next to show that the indicated inclusions are proper. We postpone
to the next section (3.8) the proof that A,, # A}. For the others we proceed as for
the arithmetical hierarchy to define relations universal for 3 and II;. However,
we shall need one preliminary result.

2.8 Lemma. 3 ={3'P: P€IIj}.

Proof. The inclusion (D) is immediate from the definitions. On the other hand,
it follows from the last three equivalences used in the proof of Theorem 2.5 that
{3'P: P€I}} is closed under 3° V° and 3'. Hence this set includes all
arithmetical relations and thus also 3. O

We now set, for r =1,

Ui(a, (m),(a)) <> 3B ~Ui(a,(m),{a, B));
Uri(a,(m),(@)) <> 3B ~U;(a,(m),{a, B));
Ui (a,(m)) < U} (a,(m),{ )).

2.9 Analytical Indexing Theorem. For all r >0,
(1) U} is universal for 2;;
(i) ~U; is universal for I1};
(i) U; is universal for {R: R €3}
(iv) ~ U, is universal for {R: R €1I}}.

Proof. We first prove by induction that for all r >0, U; € 3} and ~U; €1I}. By

the convention discussed following Theorem I1.1.8, the definition of U} given
above is an abbreviation for:

U:(a’ s,y)<3B ~U(l)(a’ s, Am (y(m)* (B(m ))))
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The part following the quantifier is II{ by the Arithmetical Substitution Theorem
(1.11) and thus U; € 3|. Similarly,

Uri(a, s, y) <> 3B ~Ui(a, s, Am (y(m)* (B(m)))).
Thus under the induction hypothesis that ~U} € [1} we have, using Lemma 2.5,
that U:+| (S 2:+1.

If R is any 3 relation, then by Lemma 2.8, R = 3'P for some P € II{. Since
~U¢ is universal for II9, there is a number a such that

P(m’ «, B) (_)NU(I)(a, <m>7 (aa B))
Then
R(m, @) < U} (a, (m),(a)).

The remainder of the proof is by induction on r just as in the arithmetical
case. [J

2.10 Analytical Hierarchy Theorem. For all r >0

() 2'Z A and I} Z A}

(i) Ar €3 UILL.

Proof. Just as for the arithmetical hierarchy. [J]

From this point on the theory of the analytical hierarchy begins to diverge
from that of the arithmetical hierarchy. The question of which of the classes 3.}
and IT; have the reduction and separation properties is much more complicated.
Results for r = 1 and r = 2 will be obtained in §§IV.1 and V.1, respectively, but

for r =3 these questions cannot be decided on the basis of the usual axioms for
set theory (cf. end of § V.3).

2.11 Analytical Substitution Theorem. For any r, any SE 3. (Il}), and any
partial functional H€ 3} (I1), if

R(m, @) < S(m, @, A\p. H(p, m, @)),
then also RES, (I1}).

Proof. For r =0, suppose S and H are both arithmetical. H may be extended to a
total arithmetical functional I:

I(pm,a)=n<Hpma)=nv(—3q.H(p,m a)=qg A n=0).
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Then
R(m, @) Vp3In.H(p,m,a)=n A S(m, a, Ap.|(p,m, ar)),

and R is arithmetical by the Arithmetical Substitution Theorem 1.11.
Suppose r >0 andH,S € 3!. Then the result follows from the equivalence:

R(m, @) <38 (Vp [H(p,m, a) = B(p)] A S(m, a, B)).
If H,S€e H: we have

R(m,a)<Vp3In[H(p,m a)=n]a
VB (Vpn[H(p,m, a)=n—B(p)=n]—>S(m,a,B)). O

The relativized analytical hierarchy may be defined in two equivalent ways:

30[B]=T,[B] = the class of relations arithmetical in B;
3,.[B)=1{3'P: PEIL[B]};

etc. as in Definition 2.2;

or, for r >0, RE 3! [B] (I1}[B)) iff R(m, &) <> S(m, a, B) for some S € 3! (I1}).
The proof that these are equivalent is the same as in the arithmetical case
(Exercise 1.24).

Again there is no problem in extending all the results of this section to the
relativized hierarchy.

2.12 Corollary. For all r and B, if By,-.., B, € Al, then
% [B1=%, IL[B]=11, and A/[B]=A4,.

Proof. Immediate from Theorem 2.11. O

2.13 Corollary. For all r, a, B, and v, if aEA:[B] and B € Al[y], then
a€A[y]. O

Thus the relation “A, in” is transitive and one may consider Al degrees
analogous to the (ordinary) degrees of §I1.5:

Ar-dg(a)={B: @ €A,[B] and B € A;[al}.

The A; degrees are called hyperdegrees and are considered further in §IV.2.
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There are several ways one might hope to extend Post’s Theorem to the
analytical hierarchy. The most direct generalization is

(1) R €EA!,, < R recursive in some set A €3

It could be argued that a relationship stronger than ‘“‘recursive in” is needed
. . . . .. . 0. . I c ey
here. Since ‘“‘recursive in” coincides with ““A} in”’, a natural choice is A: in” or
1. 5,
even “A, in”:

) REA:+,<1>REA}[A] for some A E€3);
3) ReA!,,SReA![A] for some AET..

The implication (<) of (3), and hence of (1) and (2) is immediate from
Corollary 2.12: if A €3}, K, €Al,, and REA![A]CAL,,[A], so REAL,,.
However the implication (— ) of (3), and hence of (1) and (2), is false for all r >0
(also for r =0 but for a different reason — see Corollary 3.8 below). By the
relativized analytical hierarchy theorem there exists a relation R € 3[U}] ~
Al[U!}]. Since every A €3, is recursive in U}, REA![A] for any A €3],
However, 3.[U!JCAL,[U!] and U!€3!CA!,,, so by Corollary 2.12,
R €A!,,. Thus there is no analogue of Post’s Theorem for the analytical
hierarchy.

2.14 Definition. For all r >0,
() 2, = U{E[B]: BE vk
(i) M, = U{I[B]: B € “w};
(iii) A} =3/ N1

The classes E! and IT} comprise what is known as the projective hierarchy, and
were known and studied long before the invention of recursion theory. It follows
easily from Lemma 2.8 that 3, = {3'P: P is closed}. That is, the X | relations are
exactly the projections (with respect to a function coordinate) of closed relations.
Similarly the Z:H relations are exactly the projections of 1! relations. The class
of projective relations (= A('w)) is the smallest class containing the closed relations
and closed under projection (3') and complementation.

Contrasting with Theorem 1.16 we have

2.15 Theorem. For all r >0, 2: and H: are closed under countable unions and
intersections of relations of the same rank.

Proof. Suppose P, € 3! for all p €  and let
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Q(p,m,a) =P, (m, a).

Then as in the proof of Theorem 1.16, Q € X,. Since
U{P,:pEw}= 3°Q and N {P,:p € w}=V‘Q,

these are both in 3! by the relativized version of Theorem 2.6. O
The class Bo of Borel relations is the smallest class containing the open

relations and closed under countable unions and intersections of relations of the
same rank.

2.16 Corollary. BoC A;. O

We will prove in § IV.3 that in fact Bo = A}. This classical result of descriptive
set theory is paradigmatic for many of the other results of later chapters.

2.17-2.23 Exercises
2.17. Show that{a: a € A7, } € A (cf. Exercise 1.18 and Corollary 4.21 below).

2.18. We might have defined the analytical hierarchy by quantifying sets rather
than functions. Let 3'P be the relation 3B P(m, a, B) and define analogously v,
2:, etc. Show that

31 =731 but that corresponding to Lemma 2.8 we have

(A'P:Peng{a'P:PENy=3].

2.19. For any countable indexed family of relations (P;: s € w), let H(P;:s €
w)=U{N {P3,): P € w}: B € “w}. Show that for any R, the following are
equivalent:
() REZ;
(i) R=o(P,: s € ) for some P, € AJ;
(iii) R=3'P for some PEA].

2.20. The operation & of the preceding exercise may also be regarded as a
quantifier:

(4P)(m, @) <>3B Vp P(B(p), m, @).

Show that for all r and P
(i) if r=1and PE3} (2}), then 4PES! (B));
(i) if r=2 and P €11, (I1}), then &P €11} (II}).
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2.21. Prove Corollary 2.7.
2.22. Prove that the class of Borel relations is closed under complementation.
2.23. Prove the following Strong Hierarchy Theorem: for all r >0, ! Z A}.

2.24 Notes. The arithmetical hierarchy was developed independently by Kleene
[1943] and Mostowski [1946] (because of the Second World War Mostowski in
Warsaw did not see Kleene’s paper until his manuscript was finished). The
analytical hierarchy was first studied in Kleene [1955b]. Kleene’s approach was
motivated by Godel’s results on incompleteness, whereas Mostowski saw the
arithmetical hierarchy as analogous to the projective hierarchy, with “recursive”
corresponding to “Borel” and existential number quantification (3°) corres-
ponding to projection (3'). When Kleene [1950] showed that 3 does not have
the separation property, Mostowski pointed out that this is a flaw in the analogy,
since 3| does have the separation property. Addison, in his thesis (announced in
Addison [1955]) proposed that a better correspondence is that between “‘recur-
sive’” and “‘closed-open” with 3° corresponding to countable union. The unified
approach to these hierarchies grew out of this analogy and is also largely due to
Addison.
The technique of proof of Theorem 2.11 is due to Shoenfield [1962].

3. Inductive Definability

To this point we have used inductive definitions mainly as a tool. We begin now
to consider their use as a measure of complexity. We shall be interested here in
the relationship between the complexity of I' and that of I" as measured by their
classifications in the arithmetical and analytical hierarchies.

For each a € “w we put Z, = {p: a(p) = 0}. Then for any inductive operator
TI'over w we define a relation P, by

Pr(ma)yemel(Z).

We write I' € 3!, etc. to mean P € 5! etc. We showed in Example 2.3 that for
monotone I € A,,, I' € ;. The same proof establishes

3.1 Theorem. For any r >0 and any monotone operator I" over w,
ren—»rerm..

Proof. 1f " is monotone, we have
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m€Tl oVB[[(B)C B—m € B]
oVa[Vp (P (p,a)— a(p)=0)—a(m)=0].

An easy calculation based on the techniques of the preceding section shows that
if P.€M, sois . O

Much of the rest of this section concerns the question of when a strengthen-
ing of the hypothesis of Theorem 3.1 allows a strengthening of the conclusion.

We begin with the case r =1 and find that limiting I" to lie in II? permits no
stronger conclusion, whereas if I' €2 (and I' is monotone), then I' € 3.

3.2 Theorem. Forevery set A € I1}, there exists a monotone operator I’ € I1° such
that A is many-one reducible to I

Proof. Let A be an arbitrary II; set. By Lemma 2.9, A = v'P for some P € 3.
Thus by Theorem I1.4.12 there exists a recursive relation R such that

m € A <VB3pR(m,B(p)).
Let I' be the operator defined by
(m,s)EI(B)< R(m,s)vV¥n((m,s*(n))E B).
Clearly I' is monotone and I" € II]. We claim that
(m,s)E T <>VYBIpR(m,s*B(p)).
Once this is established we have
meAo(im( WET

so that A is many-one reducible to I'.
To establish the claim, let

C={(m,s):YBIApR(m,s*B(p))}

We must show C =TI As usual, to show I C C it suffices to show re)cc
Suppose (m, s) € I'(C). Then either

(1) R(m,s) or 2) VYn.(m,s*(n))€C.

In case (1), any B satiiﬁes R(m, s = B(0)) so that (m, s) € C. In case (2), for all n,
VB 3pR(m,s *(n)* B(p)), so also (m,s)eE C.



3. Inductive Definability 91

For the converse inclusion we assume (m, s)& I and construct a function B
such that Vp ~ R(m,s*B(p)). Let D ={t:(m,s*t)Z '}. By assumption,
( YED. Since I'(I")=T" we have

teED—>{m,s*t)Z()—3n (t*(n)€ D).
Hence there is a unique function 8 such that for all p,
B(p) = least n[B(p)*(n) € D].

For this B, Vp ((m,s * B(p)) € ') so in particular, Vp ~ R(m, s * B(p)). Hence
(m,s)C. O

Combining 3.1 and 3.2, a set A is II, iff A is many-one reducible to I for
some monotone operator I" € I1}. The same proof works also for relations R on
numbers.

Since by the Analytical Hierarchy Theorem there exist sets A wich are IT,
but not Aj, there exist 110 monotone operators such that I” is I1; but not A:. A
natural question to ask in conjunction with this theorem is whether or not every
I, set is equal to I for some I'" € I1]. We shall show in § 6 that this is false if I" is
required to be monotone. The answer is unknown if non-monotone I" are
admitted.

We turn now to 3 operators, which turn out to be much weaker.

3.3 Lemma. For any inductive operator ' €3, |I'| < w.

Proof. Suppose I' €3) and let R be a recursive relation such that
P, (m,a)<>3InR(m,a(n)). |I'| is the least ordinal & such that I'(I"”)c ',
so to show | I'| < w it suffices to show I'(I'“’) C I'“’. Suppose m € I'(I'*’), so
for some n, R(m, K, ) (n)). For each i <n let

i

{leasts.ier‘, if ier®;
0, otherwise;

and
t = max{s;: i <n}.

Then K (n) =Ky« (n)so R(m,Kp«(n))andthusm € I(I')y=T"cr*. O
As a special notation for the following lemma and theorem only, we write

s<AoeMWi<lg(s)(s),<1ar[(s);=0—i€A).

Thus if s =Kgz(n), then s<A<BNnCANA
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The import of the following lemma is that for monotone 39 operators I, the
relation m € I'(A) depends only on positive information about A — that is,

information concerning membership in A but not concerning non-membership
in A.

3.4 Lemma. For any monotone operator I’ € 59, there exists a recursive relation R
such that for all m and A,

merlr(A)<3s[s<A aR(m,s)].
Proof. It I' € 3 there exists by definition a recursive R such that

m T (A)<3InR(m,K, (n))
©3s3An[s=K,(n) A R(m,s)].

Thus for this R,
meTl'(A)—3s[s <A arR(m,s)].

The converse implication holds also. Suppose s <A and R(m,s). Let
B={i:[i<lg(s)a(s);=0]v[i=lg(s)rniE€ A}

Then B C A and s = K (Ig(s)). Hence m € I'(B) and by the monotonicity of I,
I'(B)CI'(A)soalso mel'(A). O

3.5 Theorem. For any monotone operator I,
res?-res).
Proof. Let I' be a 3| monotone operator. We shall define a primitive recursive
function f such that for all r, f(r + 1) is a semi-index for the semi-recursive set I"".
Once this is done, we have by Lemma 3.3
melroarmel o3r3uT(f(r+1),(m),u )
and thus I" € 3°.
We let f(0)=0 and f(r + 1) = Sby(c, f(r)), where ¢ is an index chosen as

follows. Let R be as in Lemma 3.4, so that

merl <3s[s<I'”rR(m,s)].
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Under the induction hypothesis that I'”> = Dm{f(r)} (which is valid for r = 0) we
have

merl o3s(Vi<Ig(s)[(s)i 1A ((s); =0=>3uT(f(r),{i),u,{ ))]ArR(m,s))
<3pS(p,f(r),m)

for an appropriate recursive relation S. Choose ¢ such that
(n,m)EDm{c}<3IApS(p,n, m).

Then

m €T & (f(r),m)€Dm{c}< m € Dm{Sby(c, f(r))} = Dm{f(r + 1)}. O
If I' is not monotone, then I" need not even be arithmetical. Let

Utwy = {(r,a,m): U7 (a, (m))}.

It is clear that for any arithmetical relation R, there exist r and a such that
R(m)<o(r,a,m)E U?w).

Hence U?a,) is not itself arithmetical as if it were, say, 2?, then so would be every

arithmetical relation contrary to the Arithmetical Hierarchy Theorem. On the
other hand,

3.6 Theorem. There exists a 3 inductive operator I' such that I = U?w).
Proof. Let

s€El'(A)e3adm([s =(1,a,m) A U?(a, (m))]
v3rda3Im[IbIAn(r,bn)EA As=(r+1,a,m)A
Ip (ra,pm) € A)v(sEA).

Clearly I' € Z? and it is easy to show by induction on r that
I'={{ttam): 0<t=<r+1aU’(a, (m)}
Hence ['= Uy, O

Note that I' is non-monotone because of the condition in its definition that
something not belong to A. On the positive side,
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3.7 Theorem. For any inductive operator I,
res)-rea,.

Proof. Let I be a 3| inductive operator and let B* be the function such that for
all r and m,

B*(r+1,m)=0eomelrl’,
and B*(t) =1, otherwise. Consider the following arithmetical relation S:

S(B)=>Vi[B(t)<1]A
AVE[~Sq(t) vig(t) #2v (1)y=0—B(1)=1]
AVIrYm [B{r+1,m))=0<Pr(m,An. B(r, n)))].
Note first that S(B*). Furthermore, for any B such that S(B), B(t)=1= B*(t)

for all ¢ not of the form (r + 1, m) and it is easy to show by induction on r that for
all m

Blr+1,m)=0omeTr".
Thus B* is the unique member of S and we have

meElr«3Irmerl «3AB[S(B)rIr.B{r+1,m))=0]
oVB[S(B)—3Ar.B(r+1,m))=0].
Thus T €A}, O

3.8 Corollary. U?w) € A: ~ A?w,.
Proof. By 3.6 and 3.7. [

The proof of 3.7 actually establishes a stronger result:
FeAn|lN<w—>TeEA].

Since by Theorem 3.2 there exist monotone I" € 1] such that ' A}, it follows

that for some such {,|I"| > w. It will soon be clear that II operators may have

quite large closure ordinal; an upperbound for these is obtained in §IV.2.
For the remainder of this section we exploit the fact (Corollary 1.3.2) that all

inductive operators over w have countable closure ordinal. Thus for any such I
we have
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melre(3o<N)mer’
oMo<R)I"Ccr'-mere).

Recall from the end of § 1.1 that W denotes the set of functions y such that
<, is well-ordering of order type ||y || < N,. Since every countable ordinal is || y ||
for some y €W, we have

melo@yeWmer™
PN (Vy e W) [I-'”Y" C F("Y")_) mE r"‘Y"]‘

Thus we can classify I in the analytical hierarchy if we can classify the relations
meE F("‘Y") and m € 1-'"‘7"‘

3.9 Theorem. For any r >0 and any inductive operator I EA!, there exist
relations VY and Vs €3, and V{) and Vy €11 such that for any y EW and
any m,

(@) m € r'"Y o VP(m, y) < Vi)(m, ),

(i) m € "o Vy(m, y) o Vi (m,v).

Proof. The technique is an elaboration of that used for Theorem 3.7 in which we
index the stages of I' by p € Fld(y) rather than by r € w. Suppose I'" € A, with
r>0. For each y € W we define a, and B, by:
a,((p,m))=0<p EFld(y) Am € "7,
B,(p,m))=0<p€EFld(y)am€E rrh,

and a, (t)= B, (t) =1, otherwise. Let S be the relation defined as follows:

S(a, B, y)eVi[a(t)<1aB(1)<1]
AVE[~Sq(t) vig(t) #2 v (1), € Fid(y)— a(t) = B(1) =1]
AVpVm (p € Fld(y)—[a((p,m)) =0 (39<,p)B(g, m))=0]
A B(p,m)) =0 P (m, An.a((p,n))))).
AsP, € A: and everything else is arithmetical, S € A:. It is routine to check

that for any y €W, S(a,, B,, v). We claim that for any y €W and any « and B
such that S(a,B8,v), @ =, and 8 = 8,. For any such «, 3, and v, let

Z,,={m: a((p,m))=0}

and similarly Z, ,. It will suffice to show that for all p € Fld(y),
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— pr(ply _ rlpl
Zop=T"" and Z;,=T"".

We proceed by induction on |p |, and assume as induction hypothesis that for all
e

Zyo=T"" and Z,,=r""
Then by the definition of S and formulas (8)-(10) of §1.1,

meZzZ,,(3q<,p)meZ; , <> (Iq<,p)ym € rlaly
<@o<|pl,)mer’omer®,

and

meZ,,<Pr(min.a(pn)omerl(Z,,)
ome F(r(lply)) — I'*lP'y_

We now set

V¥(m,v) < 3aB[S(a, B, ¥) A 3p (B((p, m)) = 0));
VE(m, y) >V aB[S(e, B, v)—3p (B((p, m)) = 0));
Vs(m,y)<>3aB8 [S(a, B,y) A¥n (8(n) =0<3p [B(p,m)) =0]) A Pr-(m, 8)];
Vi(m, y) > Vaps [S(a, B, ) AVn (8(n)=0<3p [B(p,m)) =0]))— P (m, 5)].

We leave to the reader the straightforward verification that these relations
satisfy the conditions of the theorem. [J

3.10 Theorem. For any r =2 and any inductive operator T,
real-real.

Proof. With the notation of the preceding theorem and the remarks before it we
have

meETl <Ay [y EWaVs(m,y)]
<Vy [y EWAYp (Vu(p, v)— VE (P, v)) = Vu(m, v)).

Since r =2, W EII; C A! and an easy computation shows that the first formula
gives a 3., definition for I, the second a II, definition. O

By Theorem 3.2, the result fails for r = 1, but we can get some information
about A} operators.
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3.11 Definition. An ordinal o is recursive iff o = | y|| for some recursive y EW.
The least non-recursive ordinal is denoted by w;.

As there are only countably many recursive functions, w, is a countable
ordinal. Furthermore it is easy to see that any ordinal less than a recursive
ordinal is also recursive so that o is recursive iff o < w,. Other properties of w,
are indicated in Exercise 3.27.

3.12 Corollary. For any inductive operator I,
FTEAANT|<w,—TEA,.

Proof. If |I'| < w;, then there exists a recursive function y €W such that
|vll=|T]|. Then by Theorem 3.9,

melFomer ovs(m, y)oVym,y).

The conclusion follows from Theorem 2.5. [

The proof of Corollary 3.12 establishes an apparently stronger result. We say
an ordinal o is Al iff ¢ = ||y || for some y € A} N W; 5! denotes the least non-A!
ordinal. Then using the Analytical Substitution Theorem (2.11) instead of
Theorem 2.5 we have by the same argument,

FEAANT|<8)>T€EA].

However, we shall see in § IV.2 that 8: = w, so that this is no improvement. We
can also now extend the reasoning following Corollary 3.8 to conclude that for
some I1{ monotone operators I' we have |I'| = w,. In §IV.2 we shall also prove
that for any I1{ operator I',|I'| < w, and I" €II; ~ A} just in case |I'| = w,.

For arbitrary inductive operators I" € 3, the best possible classification of I
in the analytical hierarchy is that given by Theorem 3.10: '€ A:H. For
monotone I', however, a refinement of the proof of Theorem 3.10 yields a result
parallel to Theorem 3.1.

3.13 Theorem. For any r >0 and any monotone operator I' € 3! (H:), there exist
relations V© and V € 2: (H:) such that for any y €W and any m,

(1) meE I-v(”“/”)(_)v( )(m’ ,y),

i) m € Mo vim, y).

Proof. We follow closely the proof of Theorem 3.9 and only indicate the
necessary modifications. Suppose first that I' € 3! and is monotone. Define a,
and B, for y €W as before and let S’ be the relation defined as S except that the
clause
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[B«pv m » = OH PF (m’ An . O‘«Pa n)))]

is replaced by

[B(p,m))=0—P;(m,An.a((p,n)))].

Clearly S' € 3} and for any y €W, S'(a,, B,, 7), but a, and B, are no longer the
only functions for which this is true. Rather we prove by induction on |p |, that
for all p € Fld(y), if S'(«, B, v), then

Zavp g r(lply) and ZBYP g I"'P,y.
Assuming as induction hypothesis that this holds for all ¢<<,p, we have

meZzZ,,(3q<,pm€Z, ,—~(Iq<,p)m € r'
3o <|pl,)mET" om er®,
and
meZ,,—>Pr(mAn.a(p,n)eomel(Z,,)
—-me F(F(’P'y)) — I‘Ip"y'
The last implication is the only place where the monotonicity of I' is used.
Finally, define v and V from 8’ just as VY and V; are defined from S.
Clearly VO and V are S IfyEWand m € I"(M), then for some p € Fld(y),
m € I'’""* and thus B, ({p, m)) = 0. Since S'(a,, B,, V), also vVO(m, v). Conversely,
suppose V(m, y) holds, say S'(a, B, v) and B({p, m)) = 0. Then p € Fld(y) and

meZg,C Ir'**so m e r'"" we leave the similar verification of (ii) to the
reader.

In case I is a monotone I1, operator, we define S” by replacing the last clause
in the definition of S by

[Pr(m, An. a((p, n)))— B(p, m))=0].

Then S"E€3) (1), S"(e,, B,, v) holds for any y EW, and for all y EW, a and B
such that S"(a, B, v) and p € Fld(y):

r(lply) C Za,p and I"Iply C ZB, .

Then if V'’ and V are defined from S” as V() and V,; are defined from S in 3.9, we
have V© and V in I1! and an easy computation verifies (i) and (ii). [

3.14 Theorem. For any r=2 and any monotone operator I,
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res'-res'.

Proof. With the notation of the preceding theorem, we have
merlr-3Iy[yEWAm erMloay[yewavimy). O

At this point the strongest result we have for I' € 3| is that I" € A,. Although
this is clearly the best estimate possible in terms of the analytical hierarchy, we
shall return to this question in § V1.6 and find better bounds in terms of other
measures of complexity.

So far in this section we have treated only inductive operators over w. There
is little difficulty in extending our analysis to operators over *w. For any « let

Zo=1{p: pE€ w ra((p) =0},
and for any operator I" over “o set
Py (m,a)ome I'(Z}).

Then we classify I" as 3., etc. (i =0,1), according as P, € S! etc. and all the
results of this section hold with only minor changes in the proofs.

If we attempt to do the same for operators over “!w or even over “w,
however, we encounter an immediate difficulty. In place of Z¥ we should have to
use

Ze'={(p.B): (0. B)E"'w AF(p, B) = 0}
and attempt to classify I' by means of the relation
Pr(m, o, F) < (m, a) € I'Z¢Y).

Relations with functionals as arguments are not included in our present system
so we have no way to assess the complexity of such a P.. We shall develop such
means in Chapter VI and return to this question in § VL.7.

We can, however, with our current machinery, treat inductive operators over
*!w which are decomposable in the sense of Definition 1.3.6. Recall that such an
operator I' is defined by a family (I',: @ € '(“0)) of operators over “w by

(m,a)el'R)>meT,(R,)
where R, (m) e R(m, @). For such an operator we define

P-(m,a, 8)m€e I, (ZY
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and say that I is 3! etc. according as P,.€3! etc. Note that with these
conventions,

(m, @) EI'(R) < Pr(m, @, Ap. K ((P)os - - - (P)i—1, @))-

The crucial restriction is that the arguments e enter only as parameters:
whether or not (m,a)€ I'(R) depends only on the membership or non-
membership of other sequences (p, @) in R not on that of sequences (p, 8) for
any B # a. One sometimes says that the operators I, are 3!, etc. uniformly in a.

At first glance, the class of decomposable operators over “ly may appear
very limited. It turns out, however, that not only can all of the results of this
section be extended to this class, but also that these extensions are just what is
needed for many applications in later chapters. We shall state some of these but
relegate most of the details of the proofs to the exercises.

In what follows we always assume that the decomposable operator I' is
defined by the family (I',: @ € '(“w)). Note that I is monotone just in case each
I', is monotone.

3.15 Theorem. For any r >0 and any decomposable monotone operator I" over
k, !
w,

remn,-rei..
Proof. As in the proof of Theorem 3.1, by Lemma [.3.7,
(ma)ElrfomeTl, «Vs[Vp((Pr(p, a,8)— 6((p) =0)— 8(m)) = 0. O

3.16 Theorem. For every R EI1,, there exists a decomposable monotone operator
I' €11} and a recursive function f such that

R(m, a)< (f(m), @) ET.

Proof. For any R€E IT; there exists a recursive relation S such that
R(m, @) > VB 3p S(B(p), m, ).

Let
(m,s)ET,(B)<>S(s,;m,a)vVn ({m,s *(n)) € B).

Then I’ € l'[?, I' is monotone, and as in the proof of Theorem 3.2,

R(m, @)« (m,{ NE T, < (m,( Wa)el O
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3.17 Theorem. For any decomposable operator I' over “ly,
(i) I €39 AT monotone — I €35,
(i) Fres)—>T €A,

Proof. We leave the proof of (i) to Exercise 3.31. Suppose I" € 3. For each a, let
Bo((r+1,m)=0emer,,
and B,(t) =1, otherwise. Set

S(a, B) =Vt [B(1)<1]
AVE[~Sq(t)vigt)Zk +1v () =0— B(t)=1]
AVrYm[B(r+1,m))=0<P,(m, a An. B({r, n))).

As in the proof of Theorem 3.7, for each a, B, is the unique 8 such that S(a, B)
and we have

(m,a)ET <3AB[S(a, B) A 3r.B(r+1,m))=0]
o VB[S(a,B)—3Ar.B¢r+1,m))=0]. O

3.18 Theorem. For any r =2 and any decomposable inductive operator I" over
k, !
w,

(i) reAl-Teal;
(ii) I monotone A\’ €3, —>T €3,

Proof. By modifications of the proof of Theorem 3.9 similar to those in the
preceding proof we obtain for I’ € A! relations V(z > and Vs€3! and V§ > and
V;; € 11! such that for all y EW,

me '™ v (m, a, y) o VS X(m, a, v)
and

meE I"I‘!;Y“evz(m, «, ’Y)"*Vn(m, a, Y)

Then the proof may be completed as above. The construction for (ii) is
similar. [

As usual the results of this section may be relativized to any B € “w. In
particular we shall later have occasion to use the ‘‘boldface” versions of
Theorems 3.15 and 3.18: for any r >0 and any decomposable operator I" over

k.1
w,
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Fmonotone/\FEl'l:—»I:EH:;

and for r =2,

and

For reference, we summarize in a table the
complexity of I' and I':

reAl—-rea)

I monotone A’ €3} >T €3},

results concerning the relative

Arithmet- 11} )
Operator I’ b px Y ical monotone | monotone | A!
monotone monotone | monotone | (r=1) (r=2) (r=2)
Closure I' | 3¢ A} I} I} 1! p Al

3.19-3.34 Exercises

3.19. Let D be the smallest subset of w such that 0 € D and for all a, if
Vp.{a}(p)E D, then a € D. Show that D €II, and every II, relation on

numbers is reducible to D (D is H}-complete).

3.20. Let ¥ be a countable first-order language and J a theory of £ which
under some standard Godel numbering is recursively axiomatizable. Sketch a
proof that both Fm = {n: n is the Godel number of some formula of £} and
Th ={n: n is the Gédel number of a theorem of J} are both of the form I” for
monotone 3] operators I. What difference in these inductive definitions
accounts for the fact that Fm is recursive, whereas in general Th is only 599

3.21. Show that for any monotone 39 operator I, there exists a partial recursive

function f such that

(i) for all e and m,

flem) = |

0,

it mel{p:{e}(p)=0});
undefined, otherwise;

(i1) there exists an index € such that for all m,

f(e,m)={é}(m) and {e}(m)=0omeTl.

3.22 (Moschovakis [1972]). The I1; relations are exactly those expressible in the
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form VB 3n P(B(n), m, @) with P recursive. The function quantifier may be
thought of as an infinite string of number quantifiers thus:

VpoVp,Vp,...3nP(po,...,Pu-1), M, ).

The purpose of this exercise is to establish that the class of relations expressible
in the form

*) Vpo3p,Vp,ApsVp,...3nP{py, ..., Pu_y), M, )

is also exactly IT}. The expression (*) may be interpreted in several equivalent
ways. We shall take it here to mean

3y Vpo¥p,Vp,...3n P(po, y(Po)), P2, Y (Po, P2)), - - - ), m, @)

where the second . .. terminates with p, _, if n is odd and with y({py, . .., p._>)) if
n is even. (The function y may be thought of either as a Skolem Function or as a
strategy for a certain infinite game — cf. V.3 and the discussion preceding
Definition V.4.7.)

It is easy to see that every II, relation is expressible in the form (*) with P
recursive. For the converse, show first that the same class of relations is
expressible in the form

3ApoVp,3p,Vp;3p,...InP(py, ..., pa-1), M, @),
that is,
36Vp,Vp;Vps...q3n P8 ), p1, 8¢p))s P3s--- ), M, ).

Then imitate the proof of Theorem 3.2 to show that every relation (*) is
reducible to the closure of a A3 monotone operator.

3.23. Extend the reasoning of the preceding exercise to show that every relation
definable in the form

VBo3po VB 3p,...3An P«B—O(PO)’ ceey En—l(pn—l)): m, )
with P recursive is IT;.
3.24. Show that every 59 set is reducible to I" for some I" € A?.

3.25 (Richter). Show that for each n = 1, there exists a H? inductive operator I’
such that |I'| = ". (For any two operators I'y and I', let
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_[Ty(A), if T,ZA;
[Fo, I'}(A) = {,I‘I(A ), otherwise.

Choose appropriate I'y and I'; such that I' = [[y, '] is 11 and has closure
ordinal »?)

3.26. Show that there exist (non-monotone) inductive operators I €113 such
that I'& IT}. (Choose I’y such that I’y € I} ~ A}, set

I(A)={0,m): m € [({p: (0, p)E A})}
and

IF'(A)=T(A)U{(1,m): T,(A)C A Amg& A}.)

3.27. Show that the recursive ordinals are closed under ordinal addition and
multiplication.

3.28. Show that for X any of 3! or II! (i =0,1; r >0), there exists an “X-
universal” operator I', — that is, I', € X and for any I € X there exists an a
such that

merlo(am)erl,.

3.29. Find a monotone operator I' € 3 such that ' 3 UTI].

3.30. Show that not every A} subset of w is reducible to I" for some monotone 3
operator I

3.31. Complete the proofs of Theorems 3.17 and 3.18.

3.32. Let X be any of the classes 3. or Il (i =0 or 1, r =0) and X the class of
relations reducible to some I” with I' € X. Show that

(i) X is closed under 3%

(i) if X is not 39, ITy, or 39, then X is closed under V¥’ and indeed under the

Suslin quantifier &/, where

(4R)(m)<>VBInR(B(n),m).

3.33 (Aczel). For any monotone operator I" over w, let
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™ ={leasta.m€F", if mer;
r |IT|, otherwise;

m<rnom€lrm|-<|n|;;
m<rpnom€erlrm|-<|n|r;
I'°(A)y=~T(~A).
(i) Show that for any 7 <|I'| and any m € I'”
Im|r<|nlronel*(q: |m|-<|q|r})
and
Im|-<|qlromel{p:peT”alp|-<lqlr}.
(ii) Let A be the operator defined by
A(A)={(m,n): nel({q: meI'({p:{p,q)E€ ADHhH}.
Show that for all m and n and all 7 <|I'|,
mel aAlm|r<|n|pe{mn)EA
and
m<,n<{(m n)EA.
(iii) Similarly, show
n<pme{(mn)€A°.
3.34. Use the results of the preceding exercise together with Theorem 3.2 to
show that:
(i) the class of I1, relations on numbers has the reduction property;
(ii) for any monotone arithmetical operator I',| | < 8}, the least ordinal not
the order-type of a A, well-ordering of w; I' €A iff || < 8};
(iii) (Cenzer [1974a]) for any r =2 and any monotone operator I' € A,,
|r|<s,.
3.35 Notes. Theorem 3.2 is essentially due to Kleene [1955a], but the simple
direct proof given here seems to appear first in Lorenzen-Myhill [1959].

Theorem 3.10 is from Putnam [1964], although it is stated there in very different
terms.
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4. Implicit Definability and Bases

If AC “w is a set of given complexity, what can one say about the complexity of
the elements of A? Since “w is recursive and has elements of all complexities, we
shall at best be able to prove that a simple set has some simple elements. This
leads to the notion of basis:

4.1 Definition. For any class X of relations and any B C “o, B is a basis for X iff
for all A€ X,

Ja.a EA->Ba€B).a €EA.

We shall present in this section a number of positive results concerning bases
along with counterexamples to indicate that these are optimal in the sense that
they fail if B is reduced or X enlarged. Among the classes X to be considered
are classes of singletons. If {8} € Al (etc.) we say that B is implicitly A!. Note that
B is a basis for the class of A, singletons iff every implicitly A} function belongs
to B.

4.2 Theorem. A! is a basis for 3.

Proof. The set of recursive (A?) functions is dense and hence intersects every
open (29 set. O

4.3 Theorem. A?w) is not a basis for the class of I3 singletons.

Proof. Let I be the inductive operator of Theorem 3.6 and 8* and S be as in the
proof of Theorem 3.7 for this I'. Since

B*(r+1,{t,am))=0(t,am)eT"

o0<t<r+1aUYa (m)

B* is non-arithmetical. On the other hand, 8* is the unique member of S and it
is routine to check that SEIS. O

4.4 Lemma. For any B, if B is implicitly arithmetical, then B is recursive in some
function y which is implicitly TI°.

Proof. We shall prove the conclusion for {8} € II; by induction on r. If r =1,
there is nothing to prove. Suppose {B}EH?H with r >0 and let R be a A‘,)

relation such that

Vala =B eVm3InR(m,n, a).
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In particular, Vm 3n R(m, n, B) so define

8(m)=(B(m), least n. R(m, n, B)).
Since for all m, B(m)=(8(m)),, B is recursive in 8. We claim that

Va (a =8 ©Sq (a)rlg(a)=2AVm R(m, (a(m)),, (a))
AYmYp [p <(a(m)),— ~R(m,p,(a)))]),

)

and thus that {8} € IT". Then by the induction hypothesis, & is recursive in some
implicitly I} function y and thus so is B.

The implication (— ) of (*) is obvious from the definition of 8. Conversely, if
a satisfies the right-hand side, then from the third clause follows that
Vm 3n R(m, n,(a),) and thus that (a),= B. Then from the fourth clause it is
immediate that (a(m)), = least n.R(m, n, 8) and thus that « = 8. [

4.5 Corollary. A?w) is not a basis for the class of TI} singletons.

Proof. Immediate from 4.3 and 4.4. [J
In the positive direction, we have from the examples of 2.3:

4.6 Lemma. For all r >0, A is a basis for the class of 3! singletons. O

Hence in particular, A} is a basis for the class of IT} singletons. To settle the
question for arbitrary II{ sets we shall need a result from the next chapter:

(IV2.6) {a:a€A}E;
together with the following Lemma.

4.7 Lemma. For any r >0 and any set B which is closed under “‘recursive in”’, if
B is a basis for 11 (I1}), then B is also a basis for 3} (3}.)).

Proof. Suppose a € A<>3B R(a, B), REII, and B is a basis for I1]. Let
C={y: R((v)e (¥))}- If A#, also C# T so there exists y ECNB. Then
(7)o € A and as (y), is recursive in ¥, also (y), € B, so AN B # . The proof for
RE ! is identical. [J

4.8 Corollary. A} is not a basis for .

Proof. Let A={a: a& A}}. By IV.2.6, AE 31, but clearly A has no A; element.
Hence Ai is not a basis for Zi, so by Lemma 4.7 also not for H(l’. Od
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. . . 1 1. . o, 1 . 1 1
Note that since a function a is X, or I1; just in case it is A;, neither %, nor II;
. . 4]
is a basis for I1;. However,

o . . . 1y . . 0

4.9 Kleene Basis Theorem. {a: «a is recursive in some B € 2} is a basis for II,
1
hence also for 2.;.

Proof. Let A be a non-empty IIS set. Then for some recursive set A C o,
a€EAoVma(m)e Al.

Let
B={s:3aVm[s*a(m)E Al}.

Then B € Ei and from the assumption A # & it follows that ( ) € B. Further-
more, (Vs € B)3n.s *(n) € B. Thus there is a unique function B such that for
all m,

B(m)=least n[B(m)*(n)E€ B].

Clearly B is recursive in B. Since BC A and for all m, B(m)€E B, also
BEA. O

In the remainder of this section we investigate the basis properties of various
special arithmetical classes. We have not yet developed techniques to deal
successfully with most basis questions in the analytical hierarchy, but for
comparison we mention some results from later chapters:

(vV.6.1) {a: a is recursive in some B € 31} is not a basis for
the class of II; singletons;

1v.7.9) A} is a basis for I, hence for 3.
(IV.2.20) every R € A} is recursive in some implicitly I function vy;
but
(IIL.6.11)  there exist @ € A; such that {a} & AY,,.

The existence of bases for I, and higher classes in the analytical hierarchy is
independent of the axioms of set theory. We shall show in § V.2 that it is

consistent that for all r =2, A, be a basis for 3.. However it is also known to be
consistent that A, not be a basis for I} (Lévy [1965a]).

4.10 Kreisel Basis Theorem. AJ is a basis for {A: AE 33 AAN“2# D},
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Proof. Suppose that A={a:3p VYmR(p,a(m))} with R recursive and AN
“2#@. Then for some p, there exists a function a*€ “2 such that
Vm R (py, @*(m)). Let

B ={s: (3a*€“2)VmR(py, s * a*(m))}.

As in the proof of Theorem 4.9 there exists a function 8 € A which is recursive in
B. In this case, however, we shall show B € II] which by Post’s Theorem (1.12)
implies 8 € A,

By Exercise 1.2.6,

sEBoVn(a*€ “2)(Vm <n)R(py, s *a*(m)).

Let 8 be the primitive recursive function defined by: 6(0)=1 and §(n+1)=
8(n)*(1). Any code for a sequence of 0’s and 1’s of length at most n is less than
é(n). Hence

sEBoVn(Ir<8(n))Vm <n)[(t)m <1AR(po, s *{(os-- - ()m-1))]

which implies B €11}. O
The following shows that this is the best possible result.

4.11 Theorem. (i) There exists a non-empty 11, set A C“2 which contains no
characteristic function of a 39 or H? set;
(ii) there exists a non-empty I3 set B C “2 which contains no A} function.

Proof. Corollary 11.4.22 asserts that the class of semi-recursive relations does not
have the separation property. The proof actually shows that there exist
semi-recursive sets A, B C w such that no recursive set C separates A and B.
For any set D and all i <2, let D, ={m: (i,m) € D}. Set

A={Kp: A CD,C~B arDy=~D,}.

Since A, B €39, it follows directly that A€ 9. Suppose that there isa D € 59
such that K, € A. Then D,, D, € 2? so D, is a recursive set which separates A
and B, contrary to assumption.

We established in Corollary 4.8 that there exists a non-empty IT} set with no
A} elements. If C is such a set, it suffices for (ii) to take B = {KGra): @ € C}
(Exercise 4.26). [

Note that without using 4.8 (which depends on IV.2.6) we have already in the
proof of Theorem 4.3 a n‘; subset of “2 with no A?w) element.

The theme of the remainder of this section is that a set of a given complexity
which is in some sense “‘large’” is more likely to contain some simple elements
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than a “small” set of the same complexity. In particular, this is true when we
interpret “large’ by ‘“non-meager’’ or ‘‘of positive measure’.

4.12 Lemma. A is a basis for the class of I19 sets which are dense in some
interval.

Proof. Suppose A ={a:¥m InR(m,a(n))} with R recursive, and A is dense in
[s]- Then for any s which extends s, and any m, there is a sequence t compatible
with s such that R(m,t) holds (cf. proof of 11.5.3). Hence if we set

Sm+1 = least t[Sq(t) A s, &t A(Ju Ct)R(m,u)l,

then s, is defined forall m and s, C s, C---Cs,, C---. Hence there is a unique
function @ which is the “limit” of the s,,, given by a(m)= (s,,).. Clearly « is
recursive and belongs to A.

4.13 Corollary. A} is a basis for the class of non-meager 39 sets.

Proof. A 22 set is a-countable union of II; sets. If it is non-meager, one of these
must be dense in some interval and hence contain a recursive function. [J

An interesting by-product is the classification of the class of recursive
functions:

4.14 Corollary. {a: a €AY} E 35~ A).

Proof. 1t was shown as one of the Examples 1.3 that the set A of recursive
functions is 35. Suppose also A € 1 so that ~A € 22. As A is denumerable it is
meager, so by the Baire Category Theorem (I1.2.2), ~A is non-meager. But then
by Corollary 4.13, ~A contains a recursive element, a contradiction. []

Note that it also follows from this argument that AY is not a basis for the class
of non-meager or even co-meager I1j sets. Also, since the class of primitive
recursive functions is 39, this class does not form a basis for the class of
non-meager I; sets.

We shall extend these results to all levels of the arithmetical hierarchy in § 6.
If we replace ‘‘non-meager” by “‘of positive measure’ the results have a similar

flavor but are weaker in the sense that the bases are larger. First, in contrast
with 4.13,

4.15 Theorem. A! is not a basis for either of
(i) the class of 11 sets of positive measure, or

(ii) the class of 35 sets of measure 1.

Proof. For each n and a let
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A .={a:(Ym<n+a+1){a}(m)=a(m)}.

Each A, , is either empty or is an interval of length n + a + 1. In either case,

since the measure of an interval of length k is at most 27k mes(A, )<

27".27“"D Hence for each n,A, = U{A, ,: a € w} has measure at most

Sh_ 2 "-27@*"P=27" Furthermore all recursive functions belong to every A,,

so that each ~A,, is a I1] set of positive measure with no recursive elements, and

~MN{A,: n € w}is a3 set of measure 1 with no recursive elements. [J
On the other hand, we have

4.16 Theorem. A! is a basis for the class of 115 sets of measure 1.

Proof. A I19 set A of measure 1 is a countable intersection of 39sets A, each also
of measure 1. Clearly each A,, is open and dense so that ~A,, is nowhere dense.
Thus ~A= U {~A,: n € w} is meager and by the Baire Category Theorem, A
is non-meager so has a recursive element by Corollary 4.13. [J

In the remainder of this section we compute for all r bases for the class of 3.
sets of positive measure. For the next lemma only, if F is any total functional we
set for any R,

F . 1

s (m, @) <> mes(B: R(m, a B)) < ..

4.17 Lemma. For all r >0, all ¢, any recursive functional F and any R, if
Re 3’[e], then RL..€1[¢].

Proof. We proceed by induction on r and omit reference to e. Suppose first that
Re E?, say

R(m, @, B) <> 3In S(B(n),m, a)

+1,1

for a recursive S. Let 0 be the following function from “*"'w into the rational

interval [0, 1]:

8(s,m, ) = {mes[s], if s€SqAS(sm a)r(VtZs)~S(t,m, a);
T 0, otherwise.

Since {B8: R(m, @, B)} is the disjoint union of the intervals [s] for which

0(s,m, a)>0, we have

oo

Rme(m, @) > 6(s,m, a) <
s=0

1
F(m, @)

? 1
<Vq (Z 6(sm, a) < F(m,a)> '
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Since if s €Sq and lg(s) = k, mes[s]=2"@0* 1" (cf end of §1.2), a
simple calculation shows that there exist recursive H and | such that

S (s, m, a) = HG.m @)

(g m, &) °
Thus
Rines (m, @) © Vg [F(m, @) -H(g, m, @) <I(g, m, @)).
Assume now as induction hypothesis that the result holds for 1,...,r. We

consider first RE I, say R(m, @, B) > Vp S(p,m, @, B), with SE 3% ,. Then

RFmes(m’ a)eVnigq [mes{B: Vp<q)S(p,m, e, B)} < F(n:, ) + %]

so by the induction hypothesis Rﬁme mne,,.

Now if RE3)_,, say R(m, @, B)<>3p P(p,m, @, B) with P € 1% we have

Rf(m, @) <> Vg | mes(B: (3p < )P(p.m. & B)) < oo |

and again R, €11°,,. O

mes

4.18 Lemma. For all r and ¢, and any RE I, [¢), if mes{a :Vp 3qR(p, q, a)} >

0, then there exists a B € A),.[e] such that mes{a:V¥p(3q < B(p)R(p,q, a)}
>0.

Proof. Let A={a:Vr lqR(p,q,a)}, A,={a:3qR(p,q,a)} and A, =
{a: (g = n)R(p, q, @)}. suppose mes A>1/2" and define B by

) = teast n [ mes(h, ~ A, ) = g

AsA,~A, . E 37..[¢], it follows from Lemma 4.15 that B € A%, [e).
Let B={a:Vp (39 <B(p))R(p, q, «)}. Then since

A= N{A,:pew}CBU U{A,~A, s, P E o},

we have

oo

:,_—lnr<mesASmesB+ > —m‘xl—p—-rz=mesB+—ml-n
2 2
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which implies mes B>1/2""'>0. O

4.19 Lemma. For all r, B, & and all REN[e], if Sm, a)o
Vp (39 < B(p))R(p.g,m, @), then SET,, ..\ ,[B. €].

Proof. We leave this straightforward calculation to the reader. [
Now let f(r) denote the greatest integer not exceeding r’/4 + 1.

4.20 Lemma. For any r and ¢, and any AETI}[e] such that mes A >0, there
exists y EA(;(,)[E] and C€T1}[y] such that CCA and also mes C > 0.

Proof. We proceed by induction on r. For r =0 or 1 the result is obvious.
Suppose A€EII,,[¢]. By the two preceding lemmas there exist BC A and
BEA?+2[5] such that BEH?MX(L,)[B,E] and mes B>0. By the induction
hypothesis there exist 7€A})(,)[B,e] and CEI[y] such that CCB and
mes C >0. Then by the Arithmetical Substitution Theorem, y € A},.,.\[e] =
Af..2[€] as required. O

4.21 Theorem. For all r, A?m” is a basis for the class of I sets of positive
measure.

Proof. Let A be a I1¢ set of positive measure and let y and C be as in Lemma
4.20. Then there exists a unique function & such that for all m,

8(m)=least n.mes(C N[§(m)*(n)])>0.

Since C € H?(,), by Lemma 4.17 8 € Ay,),,. That 8 € C is immediate from the
fact that C is closed. [J

4.22 Corollary. For all r, A?(,)+2 is a basis for the class of 30, sets of positive
measure. [

4.23 Corollary. {a: @ € A, )} & A,

Proof. Since {a: a& A?w)} is the complement of a denumerable set it has
measure 1. Hence if it were arithmetical it would have an arithmetical element,
which is absurd. [J

4.24-4.27 Exercises

4.24. Show that for r =2, if B is implicitly I1? and B and v are each recursive in
the other, then also y is implicitly I1°. (Exercise 6.17 shows that this is false for
r=1)
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4.25. Show that if B is implicitly I3, then so is B>. (Let F be a recursive
functional such that for all B, B=Am.F(m,B%). Then y= B <
Am.F(m,y)=8 and y = (Am.F(m, y))°J.)

4.26. Show that the set B in the proof of Theorem 4.11 (ii) is in fact n‘;.
4.27. Is{a: a is primitive recursive} a basis for the class of non-meager 35 sets?

4.28 Notes. Corollary 4.14 is from Shoenfield [1958] and Theorem 4.15 is from
Tanaka [1970a]. 4.17-4.22 are due to Sacks [1969] and independently to Tanaka
[1967], although neither formulated the sharp versions given here. Corollary 4.23
was originally proved by Addison using forcing methods (cf. Corollary 6.10 and
Notes to § 6). Extensions of many of the results of this section and § 6 may be
found in Kechris [1973].

5. Definability in Formal Languages for Arithmetic

The reader familiar with formal languages will certainly have noticed a similarity
between the arithmetical and analytical hierarchies and classifications of the
formulas of a formal language by the complexity of their structure. In this section
we show that the classes 3. and I} (i =0,1) consist exactly of the relations
formally definable over the standard model of arithmetic by certain classes 3,
and V; (i = 0,1) of formulas. At the end we sketch briefly how these results may
be applied to derive the undecidability and incompleteness theorems for
axiomatic theories of arithmetic and discuss how much of the theory of this book
could be developed in such systems.

We shall assume in this section some familiarity with formal languages and
their interpretations and we shall omit many standard details, all of which may
be found in Shoenfield [1967] or Enderton [1972]. Some of our notational
conventions are suspended for this section as indicated below.

By the standard model for arithmetic we mean the structure

sJ?=(('0aw('01 <’ +a’s”0)
where ' denotes the successor function and <, +, and - have their usual
arithmetical meanings. With : we associate the second-order language £
described as follows. The symbols of £ are:

=1,v,3,6,0,®,0,%,0,x0, X1, .., o, by, - - . .

The set of terms is defined inductively as the smallest class such that
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(i) 0, xg, x,,... are terms;
(ii) if o and 7 are terms, then so are o® o®r1, cOr, and (o) for
j=0,1,....

The atomic formulas of £ are the expressions o © 7 and o @ 7 for any terms o
and 7. The set of formulas is the smallest class such that

(i) atomic formulas are formulas;

(i) if & and B are formulas, then so are U, A v B, Ix; A, and 3¢; A for
Lj=0,1,....
We denote by (o/x;) the result of substituting the term o for all free
occurrences of the variable x; in the formula U and assume that before the
substitution all bound variables of % which occur in o are changed to the first
unused variables of the proper type. U(oy,...,0,_;) is an abbreviation for
A(oo/xp) - . . (O —1/xy—y)- Similarly, A(¢p,;/¢;) denotes the result of substituting ¢;
for all free occurrences of ¢; in Y. We denote by 7 the term 0®°® with n
successor symbols. The symbols A,—, <>, and V are used as abbreviations in the
usual way. We write (Ix; <o)¥ for Ix;(x; <o AU) and (Vx; <o)A for
Vx (x; <o—N).

5.1 Definition. For any k and /, all (m, a)€E “!w, and any term o whose
variables are included among x,, ..., Xx_;, ¢q,-- ., d,_;, we define o[m, @], the
value of o at (m, &), recursively by: ‘

(i) O[m, «] =0;

(i) x[m, a]=m;;

(iii) o®[m, a]=o[m, a]+1;

@iv) (c®7)[m, @] = o[m, @] + 7[m, a];

V) (cO7)[m, a]=0o[m, a]-7[m, a];

vi) ¢,(o)[m, @] = a;(c[m, ).

Note that this definition and the next one rely on Theorem 1.3.5 for their
justification.

5.2 Definition. For any k and /, all (m, @) € k lw, and any formula ¥ whose free
variables are included among x,, ..., X1, ¢o,.--,d_;, Wwe define = U[m, a],
A is true at (m, @), recursively by:

() E(c©1)[m, a] iff o[m, a] = 7[m, a];

(i) F(c®7)[m, a] iff o[m, @] < 7[m, a];

(iii) E(—U)[m, «] iff not FA[m, a];

(iv) E v B)[m, a] iff EA[m, @] or = B[m, a];

v) E3x;A[m, ] iff In (FA'(x,/x;)[m, n, a]);

(vi) 3¢, U[m, a] iff 3B (- A (41/6,)[m. e B));
where U’ is a variant of ¥ in which the variables x, and ¢, do not occur.

Note that for any %,

FUAm,n, a] iff EAF/ ) (Aei/ X pio—1) [, @]



116 III. Hierarchies and Definability

5.3 Definition. For all r,

(i) 33 = Vg = the smallest class of formulas such that
(a)all atomic formulas belong to 3;
(b)if 2 and B belong to 37, then so do A, A v B, and (Ix; < o)V for

i=0,1,... and o any term in which x; does not occur;

(i) 2, ={Fx A AEVri € w};

(iii) V(r’+l ={A:AE 3(r’+1};

(iv) y=Vo= U{(3hrew}u UV re o)

V) 3., ={3¢; A AEV, 7 j E w};

Vi) Vo ={0A: A€, }.

5.4 Definition. For any k and [, any RC“'w, any r, and any i <'2, Ris 3!
(V})-definable (in the standard model) iff for some formula % € 3, (V,) with free
variables included among x,,..., X1, bo-.., P1_1,

R(m, a) < F UAlm, a].

A functional is 3. (Vi)-deﬁnable just in case its graph is. We also use 3l and Vito
denote the corresponding classes of relations.

5.5 Lemma. For all r and all i <2, 3.C 3! and V.CII.

Proof. Relations defined by atomic formulas are recursive. Since the class of
recursive relations is closed under complementation, union, and bounded
quantification, all relations in 33 are recursive. The remainder of the proof is a
straightforward induction based on the fact that 3!, ={3'R: REV}. O

The main result of this section is that for i and r not both 0, the converse
inclusions hold also. To this end we first establish some closure properties of EN
and 3], First it is clear from the definitions that the class of 33 relations is a
Boolean algebra and is closed under bounded quantification.

5.6 Lemma. The class of 3 relations is closed under binary union and intersec-
tion, bounded quantification (30< and Vi) and existential number quantification

3.

Proof. For any 3] relations R and S, there exist 3 relations P and Q such that
R=3°P and S =3°Q. Then (cf. the proof of Theorem 1.6) the lemma follows
from the following equivalences:
dp P(p,m,a)v 3q Q(¢g,m, @)« 3p [P(p,m, @) v Q(p,m, a)];
dp P(p,m, &) A3q Q(¢g,m, @)« 3r[(Ip <r)P(p,m, @)
A(3q <r)Q(g,m, @)];
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(3p<r)3qP(p,q,rrm a)<>3q (Ip <r)P(p,q,r,m, @);
(Vp<r)3aqP(p,q,r,m,a)<>3s(Vp <r)(3q <s)P(p,q,r,m, @);
3p3AqP(p,gm,a)<3r(Ip<r)(3g<r)P(p,qm,a). [

The key to the fact that all primitive recursive relations are 3%-definable is
that there is an 3g-definable function which codes finite sequences.

5.7 Lemma. There exists an 3j-definable function h such that for any
P qos - - -»qp—1, there exist s and t such that for all i <p, h(s, t,i) = q;and q; <.

Proof. Let h(s, t,i)be the remainder when s is divided by 1 + ¢(i + 1) — that is,
h(s,t,i)=non<l+t(i+DA(Au<s).s=u(l+t(i+1)+n

It is obvious that h is Jo-definable. Given p and qo,...,q,—y, let t=
(max{p, qo, ..., q,-1} + 1)!. It is easy to check that the numbers 1+ ¢(i + 1) for
i < p are pairwise relatively prime and greater than q;. The Chinese Remainder
Theorem of number theory asserts that in this situation there exists a number s
such that for all i <p, s =q;(mod 1+ ¢(i + 1)) as required. [

5.8 Theorem. All primitive recursive functionals are 3%-definable.

Proof. We show that the class of 3?-deﬁnable functions contains the initial
functionals and is closed under composition and primitive recursion. First, we
have for the initial functionals:

Cs;'(m, @) = n ok (5 ©p)[m, n,al;

Prefm, @) = n ok (x, ©x,)[m, n, a);

Schlm, @) =n ok (x, @x?)[m, n, al;

Ap;i(m, @) = n k(1 © ¢;(x;))[m, n, ).

It G,H,...,H,—, are all 3]-definable and F =FCmpy(G,H,,...,H,_,),

then

Fim,a)=n<3q,...3q_[Hom, a)=qgoA...

A Hk'—l(mv a) = Q- A G(qO’ < qGk—15 a) = n]’

so F is 3%-definable by Lemma 5.6.
If G and H are El‘l)-deﬁnable and F = Reck“"(G,H), then
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F(p,m,a)=n<3s 3t (h(s,1,0)=G(m, a) A h(s, t,p)=n A
ANVi<p)(3q<s)[h(s,t,i)=q Ah(s t,i+1)=H(g im, a)]),

where h is the function of Lemma 5.7. Again by Lemma 5.6, F is E
definable. O

5.9 Theorem. Forallr >0,3°=3%and V' =110; forallr,3)=3!and ¥, = 1.

Proof. Let R be any 39 relation. By Theorem I1.4.12, R = 3°S for some primitive

recursive S. By the preceding Theorem, Kg is definable by some 3! formula .
Then

S(p,m, @) <k AO0/x, )[p, m, @],

soS€E 3?, and thus also R € 3} by Lemma 5.6. The remainder of the proof is a
straightforward induction. [

In the rest of this section we shall give a brief survey of some facts concerning
axiomatic theories of arithmetic. We do not intend to give a complete treatment
of these topics but only to point out some of the ways they are related to the
main themes of this book.

A formal theory J in the language £ consists of a set of sentences (formulas
without free variables) called the axioms of J and some rules of inference for
deducing theorems from the axioms. We shall always assume that among the
axioms and rules of J are a complete set of logical rules and axioms (for
example, as in Shoenfield [1967, §2.6]). We write I U to mean that U is a
theorem of J.

We first consider first-order theories, that is, theories in which the variables
¢, do not occur and the rules of inference are only the usual ones. Let 7, be the
theory with the following nine non-logical axioms. To make the formulas more
readable we shall write x, y, z, ... instead of x,, x;, x5,... .

(1) Vx = (x®©0);

Q) VxVy (x®ey®—>xoy);

) Vx (x®@0©x);

@) VxVy x@y®o(x +y)*);

(5) Vx (x ©0©0);

6) VxVy (x Oy®e(xOy)®x);

(7) Vx 1(x @0);

B) VxVy(x®y°—>xQyvxoy);

O VxVy(x®@yvx©yvyQx).

9, is a very weak theory. For example, it is easy to see that the commutativ-
ity of addition is not a theorem of 7, (Exercise 5.18). However it is just strong
enough to carry through the undecidability and incompleteness results of Godel
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and we sketch these next. Of course, the axioms of 7, are true and the rules of
inference preserve truth, so whenever J,+9, also = U. The converse is false
(Corollary 5.15) but at least we have:

5.10 Lemma. For all 33-sentences U, if =, then To+ 9.

Proof. Consider the set X of all formulas 2 such that for any k such that the free
variables of 9 are included among X, . .., X,_, and any m € “w, if = A (), then
TokU(m). It is straightforward to show that X is closed under the clauses of the
inductive definition 5.3(i) of 3] and hence contains all 3] formulas. [J

5.11 Lemma. For any two disjoint semi-recursive relations R and S C kw, there
exists an 3% formula © such that for all m€ “w,

(i) R(m)— J,+E(m);

(ii) S(m)— JT,+—1E(m).

Proof. By Theorem 5.9 there exist 3§ formulas ¥ and 8 such that for allm € “w,
R(m)eokE3Ix A@) and S(m)<kE Iy B(m).

Let € be the formula
Jx (A A (Vy ©x)B).

Then (i) and (ii) follow easily by use of Lemma 5.10 and axioms (8) and (9). O
For any theory J, a formula U with free variables among x,,..., X._;
T -represents a relation R iff for all me o,

Rm)—> J +AMm) and ~R(m)— T FA(m).

R is J -representable iff R is J -represented by some formula. It follows
immdiately from Lemma 5.11 that all recursive relations are J,-representable
(take S = ~R).

5.12 Lemma. For any J which extends 7, if I is consistent, then there exists a
formula € with only x, free such that {m: I +Q(m)} is not recursive.

Proof. By Theorem 1.10(i), there exist disjoint semi-recursive sets A and B such
that there is no recursive set C such that A C C C ~B. Take A and B for R and
S in Lemma 5.11 and let C ={m: 3 +C(m)}. By (i) of 5.11, A C C, and by (ii)
together with the consistency of 7, C C ~B. Hence C is not recursive. [J
Informally, we say that J is decidable iff there is an algorithm for deciding
among the sentences of £ which are theorems of J and which are not. Thus on
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the intuitive level, Lemma 5.12 implies that any consistent J which extends I is
undecidable, as otherwise we could effectively decide for each m whether or not
J +E(m). These intuitions are made precise through the technique of Godel
numbering. To each expression (symbol, term, or formula) z of £ we assign a
natural number 'z! much as we did to each description of a primitive recursive
functional in § I1.1. The square quotes are to suggest that the assigned number be
thought of as a name for z.

We begin by assigning successive odd numbers 1, 3,... to the symbols of Z.
The terms are (recursively) assigned numbers by: 'e® =(@", "o, lo@r' =
(@ "o, 7Y, etc. Similarly for formulas, vor'=(ela" 7)), vy =
("v1, 791" '81). and so on. It is an elementary exercise to show that the sets of
Godel numbers corresponding to various syntactic classes of expressions are
recursive — for example, {[0']: o is a term}, {r%I]: 9 is a formula} and {'U': U is
an ng-formula with at most x,, and ¢,, free}. Similarly, there is a recursive
function f such that for all ¥ and all m € “w, f('¥', m) = "A(M)'. Now we call 7
decidable iff {'%': T +U} is recursive.

5.13 Corollary. Any consistent theory I which extends 7 is undecidable.

Proof. Immediate from Lemma 5.12 and the above discussion. [J

A theory T is called (first-order) complete iff for every (first-order) sentence
A, either A or — U is a theorem of J. T is recursively axiomatizable iff there
exists a theory I’ such that {'A: A is an axiom of T} is recursive and for all A,
THUAff T'FA. T is semi-decidable iff {'A': T +A} is semi-recursive.

5.14 Lemma. For any J,
(i) if T is recursively axiomatizable, then J is semi-decidable;
(ii) if I is recursively axiomatizable and complete, then J is decidable.

Proof. Let I'; be the monotone operator defined by:

I'y (A)={m: m € A or m is the Gédel number of an axiom of
J or m is the Godel number of a formula which
follows from formulas with Gédel numbers in A
by a single rule of inference}.

It is easy to see that Iy is S and that I’y = {'%': 7  ¥}. Hence (i) follows from
Theorem 3.5. Suppose now J is recursively axiomatizable and complete. If 7 is
inconsistent all formulas are provable so J is decidable. Otherwise the sets
{"%': A is a sentence and T +A} and {m: m is not the Gédel number of a
sentence or m is the GoOdel number of a sentence U such that 7 +— U} are

complementary. By (i), both are semi-recursive, hence both are recursive and I
is decidable. [
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5.15 Corollary. Any consistent recursively axiomatizable theory which extends
T, is incomplete.

Proof. Immediate from 5.13 and 5.14. (O

As a consequence, the complete theory Iy whose axioms are all first-order
formulas valid in the standard model is not recursively axiomatizable. It also
follows from 5.14(i) that for any consistent recursively axiomatizable theory I
which extends 7, a relation R is J -representable iff R is recursive.

That Jy is not recursively axiomatizable can also be seen by a slightly
different argument. From Theorem 5.9 and the Arithmetical Hierarchy Theorem
it follows that {"': = A} is not arithmetical, in particular not semi-recursive, and
thus is not the set of theorems of any recursively axiomatizable theory by 5.14(i).

Ty can, however, be recursively axiomatized if the system is expanded by
adding a rule of inference to which the proof of 5.14(i) does not apply — that is,
one such that the operator I'y defined there is not 39, For any theory 7, we write
J +° A to mean that U is derivable from the rules and axioms of J together with
the w-rule: from the (infinitely many) premises A(0), A(1),..., infer Vx,A.

5.16 Theorem. (i) For all first-order formulas U, T,+“ A iff =¥,
(i) {"A: T A} is 10;.

Proof. (i) follows from Lemma 5.10 by an easy induction. (ii) follows from
Theorem 3.1 and the observation that the operator I'y, ,, associated with J and
the w-rule is arithmetical and monotone. [

We turn now to the full (second-order) language #Z. In the first part of this
section we considered only the standard interpretation for £, but now we shall
need a more general notion. A (general) structure for &£ is sequence I =
(U, @, <y, +u, *u, 'u, Oy) such that U is a set, @ is a set of unary total functions
U — U, <y is a binary relation on U, +,; and -; are binary total functions on
U, ', is a unary total function on U and 0, € U. Foru € ‘U, ¢ E ', and o a
term of ¥ with free variables among xg,...,Xc_y, ¢g,-..,d_;, We define
oyfu, ¢], the value of o in U at (u, ¢) just as in Definition 5.1 except that 0 is
replaced by Oy, + by +y, etc. Similarly, the relation 1l= U[u, ¢] is defined as in
Definition 5.2 with < replaced by <y, 3n replaced by (3v € U), and 3B
replaced by (3¢ € ®). Ul is a model of a theory 7 iff U= U for all axioms U of 7.
1 is called an w-structure iff the values in 11 of all the terms 71 (n € w) exhaust U.
In this case U is isomorphic to a structure & = (w,A, <4 + o' ,0), where '’
and 0 have their usual meanings. If in addition 11 (and hence &) is a model of 7,
then <, +, and +, must also coincide with the usual <, +, and -. Hence such
a structure is determined by the set A C “w and we write simply A= %U[m, «]. In
particular, = U[m, a] iff “oFA[m, a].

Let 7, denote the theory obtained from 7, by extending the logical axioms
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and rules of 7, to all formulas of £ and adjoining the following (infinitely many)
axioms: the universal closures of

(10) (Induction) A0) A Vx,[A— A(xT)]— Vx, A for all formulas A;

(11) (Extensionality) ¥ oV ¢, [Vx (dg(x) = b1(x)) = o = 1];

(12) (Ag-Comprehension) ¥x 3!y A— A, Vx A(do(x)/y) for all
3)-formulas U.

The completeness theorem of first-order logic has the following natural
extension to &:

5.17 Theorem. For any theory I which extends J, and any sentence U of £
() T+UA iff UENA for all models N of T
(i) T+ U iff AEU for all w-models A of g

Proof. See Shoenfield [1967, §8.5]. O

From this and 5.16(i) it is immediate that for all ¥} sentences A, 7,+* U 1ﬁ
= 9. From 5.16(ii) it follows that any relation which is Jj-w- representable isAl.
The same proof applies to 9, and from the precedmg it can be derived that the
J -w-representable relatlons are exactly the A,-relatlons.

The Ay-Comprehension axioms guarantee that the range of the variable ¢, is
not too small. In particular, if A is an w-model of A(l,-Comprehension, then not
only does A contain all arithmetical functions, but because the formula % in the
A(',-Comprehension schema may have free variables, A is also closed under the
relation ‘‘arithmetical in”’.

As is sketched in Shoenfield [1967, § 8.5], the notion of truth for first-order
formulas in N may be formalized in the theory I (although the system S there
includes the comprehension axioms for all formulas, only Ay -Comprehension is
needed here; indeed, for a fixed n, the truth of 3(,’, sentences may be defined
without use of the comprehension axioms). By virtue of Theorem 5.9, much of
the theory of the arithmetical hierarchy may thus be developed in 7. Relations
are denoted in I, by the Godel numbers of their deﬁning formulas and the
results of §1 become first-order arithmetical theorems in J,. Alternatively, the
arithmetical hierarchy of relations on numbers may be developed in terms of
characteristic functions.

For each r, the truth of 3} and V| sentences in N and the classes of formulas
which define S| and I1! relations can similarly be defined in 7,. However, some
of the basic closure properties of 3. and I1} cannot be proved without additional
axioms. Furthermore, without additional comprehension axioms the class of
functions defined by second-order formulas is not provably larger than the class
of first-order definable functions. To guarantee the existence of all characteristic
functions of 3! relations we need
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(13) (3!-Comprehension) 3¢, Vx [¢o(x)=0<>A] for all A€ 3,

Note that in J, this is equivalent to the corresponding V:-Comprehension
schema.

Following the development in § 2, we encounter the first difficulty with the
next-to-last formula in the proof of Theorem 2.5. The translation of the
implication (— ) into &£ need not hold in every model of 7, (see Exercise 5.20).
Hence to prove the closure of 3! under number quantification we need to add
the axioms

(14) (3-Choice) Vx 3¢, A — ¢, Vx A(P/p,) for all A€ 3,

Here A(¢;/P,) denotes the formula obtained from U by replacing all occur-
rences of terms ¢y(o) by ¢,({x, o)), where (-, -) is a symbol for a pairing function
introduced by definition into 7.

Then 2.6-2.10 follow easily. It is worth noting that there is a different proof of
Lemma 2.8 which does not require the 3}-Choice axioms. This is based on the
equivalence

Jpy...Vx3Ay.. AoTd,...36, Vx... A(P,(x)/y)

which is provable in I, (by use of the Induction and A;—Comprehension axioms).

The Analytical Substitution Theorem (2.11) for r follows from the 3
Comprehension axioms, but here a smaller collection of comprehension axioms
will suffice. The second equivalence in the proof of that theorem depends on the
fact that if Vp H(p,m, @) |, then 38 Vp [H(p,m, @)= B(p)]. This is provable
from the schema:

(15)  (Al-Comprehension) ¥x 2!y A— I, Vx A(Po(x)/y) for all A3

Note that A:-Comprehension is derivable from 3}-Choice (Kreisel [1962]). If
Vx 3!y A, then Vx ¢, A(do(x)/y) so by 2}-Choice, ¢, Vx A(p3(x)/y). Then
if ¢a(x)= & ,((x, x)), Vx A(P,(x)/y). The existence of ¢, follows from that of ¢,
by Ay-Comprehension (cf. Exercise 5.21).

In the counterexample following Corollary 2.13 an 3}-Comprehension axiom
is essential to guarantee the existence of (the characteristic function of) U,.
Some results concerning monotone inductive definitions can be established in 7,
together with some of (13)-(15), but those which involve ordinals are in general
beyond the scope of these theories. The closure I' must be defined as the
intersection of sets closed under I' and for I' €I} the Eli‘Comprehension
schema is needed to prove the existence of I'. We leave it to the interested reader
to determine which axioms are needed to prove the remaining results of §§3
and 4.
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5.18-5.21 Exercises

5.18. Show that the commutativity of @ is not provable in .

5.19. Let V be the set of all ([A],m) such that for some k, ¥ is a first-order
%-formula with free variables among x,,..., X,_;, mE ‘o, and = U[m]. Show

that V is reducible to I' for some 3 inductive operator I'. (Use the result of
Exercise 3.32(i)).

5.20. Show that {a: a € A?w)} is not a model of 3)-Choice. In fact, it is not a
model of A:-Comprehension.

5.21. Show that 3}-Comprehension implies El}-Choice.

5.22 Notes. The main ideas through Corollary 5.15 are due to Gddel [1931], but
the presentation here benefits from many modifications and improvements due
to Rosser, Tarski, Kleene, and others.

The difference in the forms of Eli-Comprehension and A}-Comprehension is
due to the fact that we are working in a language with function variables rather
than set variables. A (total) function which is 3}-definable is is also V¥ -definable.
The import of 3,-Comprehension (for w-models) is that (the characteristic
functions of) sets which are 3!-definable belong to the model.

6. Arithmetical Forcing

The technique of forcing was first developed by Cohen [1963/64] in the context
of set theory. We shall develop here a simpler form of this technique due to
Feferman [1964/65] which leads to several interesting results in the arithmetical
hierarchy.

As motivation, consider an arbitrary open (2(1)) subset A of “w. There exists a
set A C w such that for all «,

(*) a€EA<3p.a(p)E A.

That a function « belong to A when it does is ‘“‘forced” by some initial segment
@(p) and every other function 8 such that B(p)= a(p) also belongs to A. Of
course for A which are not open the situation is different — no finite initial
segment s can “force” all B € [s] to belong to {a: Ym.a(m)= 0}, for example.

The key idea of forcing is that even for more complex A, there exists a set A
such that (*) holds for ““many” a. The success of the applications turns on the
interpretation of ‘“many”.

It is convenient to use here a formal language £’ slightly different from the
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language £ of §5. The symbols of £’ are —, v,3,®,(_), Xgs X15+ -+, b, ﬁa (a €
Pri).

Note that we have removed all the relation and function symbols except @
from & in favor of an infinite collection of relation symbols R, and left only one
function variable. The terms of ¥’ are the expressions obtained from 0, x, x, . ..
by application of ® and ¢. The atomic formulas of &' are all expressions of the
form R,(0y,...,0,_;) for a € Pri and k = rank[a]. The formulas of ¥’ are all
those expressions obtained from the atomic formulas by application of —, v, and
dx; (i=0,1,...) — the variable ¢ is not quantified.

A term o with free variables included among x,,...,x,_;, ¢, has value
o[m, a] defined recursively by clauses (i)-(iii) and (vi) (without the subscript) of
Definition 5.1. If U is a formula of &’ with free variables included among
Xos-.-sXk—1, &, then EU[m, a] (U is true at (m, a)) is defined recursively by
clauses (iii}-(v) of Definition 5.2 together with:

ER,(0p,...,00_)[m,a] iff [a](oo[m,a],...,o_[m, a])=0.

The 33 and VY formulas of %’ are simply the atomic formulas and the classes
3(,)” and ‘\‘)'(,)+1 are defined as in 5.3. Relations and functionals of rank (k, 1) are 3(,)
or V‘,) definable as before. Then for £’ as for £ we have:

6.1 Theorem. For all r >0 and all RC“'w, RES! iff Ris 3% definable and
RETI iff R is V'-definable.

Proof. 1t is immediate from the definition that every primitive recursive relation
on numbers is Hg-deﬁnable and that the class of Eg-deﬁnable relations is a
Boolean algebra closed under bounded quantification. Hence the proof of
Lemma 5.6 also establishes here that the class of 3}-definable relations is closed
under binary union and intersection, bounded quantification, and existential
number quantification. The function h of Lemma 5.7 is primitive recursive,
hence also 3)-definable here and the result follows as for £ O

For any term o of £’ the value o[m, «] clearly depends on only finitely many
values of a. Hence we may also define the value of a term relative to a finite
sequence s thought of as an initial segemnt of «; if s is too short, this will be
undefined.

6.2 Definition. For any k, any m€ “w, any s € Sq, and any term o of £’ whose
variables are included among x,, ..., X, _;, ¢, o[m, s] is defined recursively by:
(i) O{m, s]=0;
(i) x;[m, s]=m,;
(iii) ¢®[m, s]= o[m,s]+1;
(IV) if U[mv S] < lg(S), d’(U) [m’ S] = (S)a[m,s]-
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It is easy to check that for sufficiently large n, o[m, @(n)] = o{m, «]. Hence,
if o[m, s]=n, then o[m, a]=n for all « € [s].

6.3 Definition. For any k, any m€ “w, and s € Sq, and any formula ¥ of &’
whose free variables are included among x,, ..., x,_;, ¢, we define |- A[m, s], A
is forced at (m,s), recursively by:

(i) I+ R, (oy,...,0c_1)[m, s] iff [a](oy[m,s],..., o, _[m,s])=0;

i) F(m W) [m, s] iff ~Je (D s ATHAm, t]);

(iii) I+ (A v B)[m, s] iff IFA[m, s] or I+B[m, s];

(iv) IF3x; Alm, s] iff In (IFA'(x,/x;))[m, n, s];
where %' is a variant of ¥ in which the variable x, does not appear.

Note that except for the clause (ii), this definition is nearly identical with that
of F A[m, a]. In terms of the discussion at the beginning of the section, clause (ii)
says that a is “forced” to belong to ~A by its initial segment s just in case no
extension ¢t forces membership in A.

6.4 Lemma. For all m, s, and U as in Definition 6.3,
(i) not both I+ A[m, s] and |+ — A[m, s];

(ii) for any t D's, if I+ A[m, s], then also +A[m, t];

(iii) for some t D s, either |FA[m,t] or I+ — A m, ¢].

Proof. (i) and (iii) are immediate from clause (ii) of the definition. We prove (ii)
by induction on formulas. For A atomic, the statement follows from the fact that
if o[m, s]=n and s C ¢, then also o[m, ¢] = n. If I " A[m, s] and s C ¢, then for
any uDt also uDs so not I+ A[m,u]. Hence I+ —U[m, t]. The other two
clauses follow similarly. [

We call a formula of £’ closed iff none of the variables x; occur free in A — ¢
may occur.

6.5 Definition. For all r and «, « is r-generic iff for all closed formulas U
in U{3):i<r},

Ip (FA[a(p)] or IF—=Ala(p)).
a is generic iff a is r-generic for all r € .
We now obtain the promised generalization of (*). Note that all a are
0-generic.
6.6 Theorem. For all r, all closed ¥ in 3?°,,, and all r-generic functions a,

= Ala] iff for some p, I+ Ala(p)].

Proof. We proceed by induction on r. Suppose r =0 and E R, (0, ..., 0_;)[a].
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Then if p is chosen sufficiently large so that ay[a(p)],..., ow_[a(p)] are all
defined, then kR, (0y,...,0._)[@(p)], i.e. IFR,(0y,...,0_)[a(p)]. Con-
versely, if IF R, (0o, . .., or_;)[@(p)], then for all i <k, o;[a] = o;[@(p)] so also
ER, (g, ..., 0c_1)][]

Assume the result for r and suppose « is r + 1-generic and first that A € V2, ,.
Then A = B for some B € I7,, and we have

EAla] e notkE Bla] <> notIAp. I+ Bla(p)].

Because « is r + 1-generic, this is equivalent to 3p.IF 1 Bla(p)].
Now if A €3%,,, A =3x, € for some € € VY, and we have

EAla]eAn.EEC@(7/x;)|a]
o 3InIp.I-€(A/x;)[a(p)<Ip.+Ula(p)]. O

For Theorem 6.6 to be useful there must be sufficiently many r-generic
functions. First we have

6.7 Lemma. For any s there are 2™ generic functions in [s].

Proof. Let Uy, A4, ... be a list of the denumerably many closed formulas of £'.
For any s and any B we define recursively:

y©0)=s;  y@2n+1)=vy@2n)*(B(n));
y2n+2)=least t{t€SqAryR2n+1)Ct A (A, [t] or IF A, [t])]-

v is a well-defined function by Lemma 6.4(iii). As y(n)C y(n + 1)and y(2n + 1)
is a proper extension,of y(2n), there exists a unique limit function 8* such that
for all m, B*(m)=(y(n)),, for all sufficiently large n. Clearly B* € [s] and is
generic. Since if B# §, also B* # 6*, there are 2™ distinct such g*. O

Our next aim is to show that there are some relatively simple r-generic and
generic functions. For this we shall use a construction similar to that in the
preceding proof together with an assessment of the complexity of the relation
IFA[s]. Let A" and "' denote the Gédel numbers of ¥ and o in an assignment
of numbers to the formulas and terms of £’ similar to that described for £ in § 5.
By the discussion there it is clear that for each r, {“’21]: A is a closed Bg-formula}
is recursive. Similarly, there are partial recursive functions f, such that for all
terms o and all m and s, f,(‘o',m, s)= o[m, s]. Let

Fo; ("', s)«> % is a closed 3%-formula and I+ A[s];

Fo, ("A' s) U is a closed 3%-formula and I+ — A[s];
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Fo'= U{Fo,: r € w};
Fo = U {Fo,:r€ w}.
6.8 Lemma. For each r >0, Fo! €3? and Fo, €I1%; Fo" and Fo™ are A;.

Proof. If U is a closed Bf-formula, then for some a € Pri and some terms
Gor-r s Oy, A=3x,R, (00, ...,0_,). Then

IFA[s]«<>In. Ik R, (0, ...,0c)(A/x;)[s]
o 3n.[a](oy[n,s],...,0c_4[ns])=0

< an.[al(f,((oy ns),..., filloe_i' ns))=0.

Since the Godel numbers 'o; of the terms occuring in % can be recursively
calculated from ', this shows Fo; € 39. That Fo; € I is immediate from this
and the definition of IF.

Suppose now that Fo, € 2(,) and Fo, € 1'[‘,). Then for any closed 3?+,-formula
A =3x; B,

IFA[s]<>In. I+ B(7A/x,)[s] < In.Fo, (g('A', n), s),
where g is a recursive function such that
g(3x, B!, n)="B(Asx,).

Hence Fo,,, €37, ,. That Fo,,, € I1%,, follows immediately.
To evaluate Fo* and Fo~, recall the relation U?w):

Uq.,(r, a,(m)) < U’ (a, (m)).

By Theorems 3.6 and 3.7, U?,,,)E A}. The preceding part of the proof may be
interpreted as providing instructions for computing recursive functions h * and h~
such that for all r >0,

Fo, (m,s)< Uy, (r, h*(r),{m,s)), and
Fo, (m,s) <>~ U, (r,h (r),(m, s));

that is, h *(r) is an index of Fo, as a 3’ set and correspondingly for A ™. Then

F0+(m,s)<—>EIrU(()w)(r,h+(r),(m,s)), and
Fo (m,s)e3r~ U.,,(r, h (r),(m, s)),

so both are A]. O
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6.9 Theorem. For all r there exist r-generic functions in A, ,. There exist generic
functions in A,.

Proof. Let f be a recursive function which enumerates the Godel numbers of
closed 3’-formulas and let %, denote the formula with Gédel number n. Set

y(0)=( ) and

y(n+1)=least t[t €ESqay(n)St A (U, [t] or IF A, [¢])]
= least t[t ESq A y(n)F t A (Fo, (f(n),t) v Fo, (f(n), 1))].

As in the proof of 6.7, if B the limit of the sequences y(n), B is r-generic. Both y
and B are recursive in the relations Fo, and Fo,, hence are A(,),,, by Post’s
Theorem.

The second part is proved similarly using Fo™ and Fo~. O

6.10 Corollary. For all r, {a: a €AY, }€3%,,. {a:a € A?w)}E A‘()w) (second
proof — cf. Corollary 4.23).

Proof. Suppose, contrary to the first assertion, that there exists an 3%-formula &
of &' such that

a €AY, ok Ix, 1 UAa].

Then for some n and some r-generic B in A, ,, F = (7i/x,)[B]. It follows from
Theorem 6.6 that for some p, I —1A(7/x,)[B(p)]. By Lemma 6.7 there are 2™
r-generic functions vy such that #(p)=pB(p). For each of these
I+ A(A/x0)[¥(p)], hence E 1 A(n/x,)[y], hence FIx,—A[y], hence y €
A‘,’H. This contradicts the fact that there are only countably many AY,, functions.

For the second part, suppose that A={a: a EA?w)} were, say, 3v,,. The
foregoing proof shows that no denumerable 2‘,)” set includes {a: a € A(,)H}, and
A would be such a set, a contradiction. [J

A strengthening of the first part of 6.10 is proved in 6.15.

In the examples of 2.3 we saw that if {a} € A(,,,, then a € A and in 1V.2.22
we shall show that every a € A] is recursive in some B with {8} €II{. The
natural conjecture that every A function is implicitly A‘(’w, is, however, false:

0

6.11 Corollary. There exist a € A, such that {a} & A(w,.-

Proof. Let a be any A, generic function. Suppose that for some A € 3%,
defines {a} — that is, for all B,

B=aorFABI.
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Since F [a] and « is generic, I+ A[a(p)] for some p. But then for any generic
B € [@(p)] also I+ A[B(p)], hence = A[B]. By Lemma 6.7 there are 2" such B, a
contradiction. [J

Related to this question is the relationship between A; subsets of @ and sets
of the form I" for monotone arithmetical operators I". It follows from Theorem
3.2 that every A set is many-one reducible to such a I, but the following shows
that the reduction cannot in general be omitted.

6.12 Corollary. There exist A € A, such that A # I" for any monotone arithmeti-
cal operator I'.

Proof. Let a be a A, generic function and A ={m: a(m)=0}= Z,. Suppose

that A = I" for some monotone arithmetical I'. Since P is arithmetical, there
exists a formula % € 3(', such that for all B,

VYm [P (m, B)— B(m)= 0]k A[B].

Since I' is monotone, A is the smallest set whose characteristic function satisfies
the left-hand side of this equivalence. Hence = [«] and for any B, if = U[B],
then A C Z,. Since « is generic, I A[a(p)] for some p. Clearly A is not finite so
there exists a ¢q =p such that ¢ € A. Let B be any generic function in
[@(q)*(1)]. Then I A[B(p)] so = A[B], but g € A ~ Z,, acontradiction. O

To obtain the promised extensions of 4.12-4.14 we need to measure the size
of the set of r-generic functions in yet another way:
6.13 Lemma. For all r, the set of r-generic functions is comeager.
Proof. For each closed 3(,’—formula A, let

Ax ={a: Ap (IFA[a(p)] or 2 Ala(p)))}.

It is immediate from Lemma 6.4 that each Ay is open and dense, so that ~Ag is
nowhere dense. Since

{a: a is not r-generic}= U {~Ay: ¥ is a closed 3’-formula},
this set is meager. [
6.14 Theorem. For all r, A, is a basis for the class of non-meager 2(,)+3 sets.
Proof. Suppose A € 3., ; is non-meager and let B be an V'-formula such that

a €EAeFEIx,Vx, 3x,B[a].
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A is the countable union of sets A,,, where
a €A, ©oEVx 3x,B[m, a].

Let Ge, denote the set of r-generic functions. By the preceding Lemma, A ~ Ge,
is meager so A N Ge, is non-meager. Hence for some i and some §, A,; N Ge, is
dense in [5].

We shall contruct a A(,’+1 function in A; N Ge,. As in the proof of Theorem
6.9, let f be a recursive function which enumerates {'%': % is a closed 3¢
formula}, and let %, be the formula with Gédel number f(n). Set

v(0)=5;
y@2n+1)=least t{t €Sqay2n)Ct A(IF U, [t] or IF— A, [¢]D];
y(2n +2) = (least u[(u), €Sq A y2n + 1)G(u), A - B[, n, (u)o, (u);]D1-

To see that vy is well defined, suppose that y(2n + 1) is defined. Since
A; NGe, C{a: F3Ix,B[m, n, a]} N Ge,,

this latter set is also dense in [5] and thus has a non-empty intersection with
[y(@2n + 1)]. If § is a member of this intersection, then for some p, = B[, n, p, 8],
so since & is r-generic, I+ B[, n, p, 5(q)] for some q. We may choose q larger
than Ig(y(2n + 1)). Then u ={p, 8(q)) satisfies the condition and y(2n +2) is
defined.

Now let B8 be the limit of the sequences y(n). The odd stages of this
construction ensure that B is r-generic and the even stages ensure that

Vn3p 3q.1-B[m, n,p, B(q)]-
Hence

Vn3p EB[m, n,p, L],
and thus

EVx,3x,B[m, B].

Thus B € A,; N Ge,. That also 8 EA?J(l follows from Lemma 6.8 and Post’s
Theorem. B is the required element of ANAY, ;. [

0

6.15 Corollary. For all r >0, {a: « EA}E 3., ~ A},,.

Proof. The positive half follows from the equivalence
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a €A oTaVmVn[a(m)=n< Ul(a,(m,n))).

Suppose that also {a: a €A} €T17,,. Then {a: aZ A)} is a comeager, hence
non-meager, 2‘,’+3 set, so by the Theorem, it has a A(,) element, a
contradiction. [

6.16-6.17 Exercises

6.16. Show that for all r = 1 there exist functions 8 which are implicitly T}, , but
not implicitly IT; .

6.17. Use the result of the preceding Exercise to show that Exercise 4.24 is false
for r=1.

6.18 Notes. For readers familiar with forcing in the context of set theory as
described (say) in Shoenfield [1971], we note that the r-generic functions are

those which meet a certain collection of A(,)+1 dense sets, namely those of the
form

{s: - U[s] or I+ = A[s]}

for 3] formulas 2. Similarly, the generic functions are those which meet a certain
collection of arithmetical dense sets.

Corollary 6.10 is due to Addison [1965], the proof given here is from Hinman
[1969a]. 6.14 and 6.15 are also from Hinman [1969a]. The other results are due to
Feferman [1964/65].





