CHAPTER 3
COUNTABLY n-RECTIFIABLE SETS

The countably n-rectifiable sets, the theory of which we develop in
this chapter, provide the appropriate notion of "generalized surface”; they

are the sets on which rectifiable currents and varifolds live (see later).

In the first section of this chapter we give some basic definitions,
and prove the important result that countably n-rectifiable sets are
essentially characterized by the property of having a suitable "approximate

tangent space" almost everywhere.

In later sections we show that the area and co-area formula (see §8§8,10
of Chapter 2) extend naturally to the case when M is merely countably
n-rectifiable rather than a Cl submanifold, we make a brief discussion
of Federer's structure theorem (for the proof we refer to [FH1] or [RM]), and
finally we discuss sets of finite perimeter, which play an important role in

later developments.

§11. BASIC NOTIONS, TANGENT PROPERTIES

. 1+ . . ses .
Firstly, a set M C r" k is said to be countably n-rectifiable if

oo

M oC M, ucu Fj(Rn)), where Hn(MO) = 0 and Fj .’ rRVK are Lipschitz
=1

. . * . . :
functions for j = 1,2,... . Notice that by the extension theorem 5.1 this
is equivalent to saying

M=M U ( U F.(&.)
Y =1 3

* Notice that this differs slightly from the terminology of [FH1] in that

we allow the set M0 of HP-measure zero.
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where Hn(MO) =0 , Fj : Aj - IRm.k Lipschitz, Aj c R". More importantly,
we have the following lemma.

©
11.1 LEMMA M <s countably n-rectifiable +if and only if M C 'B Nj B
where Hn(No) = 0 and where each Nj , =21, s an n—dimensig;gl embedded

ct submanifold of Rp+k.

Proof The "if" part is essentially trivial and is left to the reader. The
Yonly if" part is an easy consequence of Theorem 5.3 as follows. By Theorem 5.3
(3) g éj),

we can choose Cl functions 9,7 ... such that, if Fj are Lipschitz

functions as in the above definition of countably n-rectifiable, then

PR B U (U g ®mYyy, §=1,2...

i=1 t
where Hn(Ej) = 0 . Then we let
” )
J
N =( U E)HDUC U 9g.77(Cc,)) .
° = T

(

i

(3)

where Cij = {x¢€ ®: g g 3 (x) = 0} and J gi denotes the Jacobian of

. © .

gij) as in §8. By the area formula (see §8) we have Hn( V] gij) (Cij))= 0
i, =1

and hence Hn(NO) =0 .

Now for each x € R Ncij we let Uij(x) be an open subset of R~ Cij
containing x and such that gSlJ)IUij (x) is 1:1 . such Uij (x) exists

by the inverse function theorem (since J gij) (x) >0=4d gj(.J)

(3) -
5 (Uij(X)) = Nij(x) '

(x) has rank n) ,

and the inverse function theorem also guarantees that g

+
say, is an n-dimensional Cl submanifold of Rn k in the sense of §7. We

can evidently choose a countable collection Xq0% of points of R~ cij
n o (3) ,_n
such that U U,.(x,.) =R ~C.., hence U N,.(x) Dg.J (R~C..) , so
k=1 I k ij k=1 13 k i ij

[oe]

PYERE

(oo}

we have F,(Rn) ~N_. C U N. .(xk) for each j . The required result now
3 O k=1 P
k=

evidently follows.
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We now want to give an important characterization of countably
n-rectifiable sets in terms of approximate tangent spaces, which we first

define.

+
11.2 DEFINITION 1f M is an H"-measurable subset of R K with
H*MNK) < ® VY compact K , then we say that an n-dimensional subspace P
of Rn+k is the approximate tangent space for M at x (x a given point

in ®®) if

Lim f £a H'(y) = f fwa iy ¥ feco @™
A0 nx,X(M) P
(Recall n_ . : B E o R i¢ defined by N ) = A lyx), xye RT%, A5 0.)

11.3 REMARK  Of course P is unique if it exists; we shall denote it by TxM .

It is often convenient to be able to relax the condition Hn(M(1K) <
Y compact K in 11.2; we can in fact define TXM in case we merely assume
the existence of a positive locally Hn-integrable function 6 on M (the
existence of such a 6 is evidently equivalent to the requirement that M
can be expressed as the countable union of Hn—measurable sets with locally

. n
finite H -measure).

k

11.4 DEFINITION 1If M is an H"-measurable subset of R " and 6 is a

positive locally Hn—integrable function on M , then we say that a given

n-~dimensional subspace P of Rn+k is the approximate tangent space for M
at x with respect to 6 if
i H? = V n 0, _nt+k
lim E(y) 8(x+Ay)dff (y) = 0(x) f(y)aH ' (y) VY fec (R ) .
A0 M P ¢

M, A

(By change of variable =z = )y+x , this is equivalent to
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nmxﬂlj ﬂxﬂxpxnemnmnu)=<ﬂx)J £(y)aH™ (y) VfEC&RMk).
M

AY0 P

11.5 REMARK  Notice that if p = HPL 6 and if Moo= {xe€M : 6(x)>n} , then
Hn(MnﬂK) < o for each compact K and @*n(u,M~Mn,x) = 0 for ’Hn—a.e.

x € Mn (by 3.5). Hence for H-a.e. x ¢ Mﬂ the approximate tangent space
for M with respect to 0 coincideé with Tan (as defined in 11.2) if

the latter exists. It follows that the approximate tangent spaces of M with
respect to two different positive Hn—integra.ble functions 6, 8 coincide
H®-a.e. in M . For this reason we often still denote the approximate

tangent space defined in 11.4 by ’I‘XM (without indicating the dependence on 0 ).

The following theorem gives the important characterization of countably

n-rectifiable sets in terms of existence of approximate tangent spaces.

11.6 THEOREM  Suppose M is H'-measurable. Then M is countably
n-rectifiable if and only if there is a positive locally H'-integrable
function 6 on M with respect to which the approximate tangent space

T_M exists for H'-a.e. x € M .

11.7 REMARK 1f M is H"-measurable, countable n-rectifiable, then we can

[oe)
write M as the disjoint union U M. , where Hn(MO) =0, M. is
j=0 ’
H"-measurable, and Mj c Nj , J =1, with Nj an embedded n-dimensional
1 . n+k . . . . . .
C submanifold of R . (To achieve this, just define the Mj inductively
-1
by M. = M0 Nj ~ U Mi r J =21, where Nj are Cl submanifolds with
3 i=0 .
(o]
Mo =M~ U N.  having H?-measure zero; such Nj exist by 11.1.) We shall
=1

show below (in the proof of the "only if" part of Theorem 11.6) that then

n
% = -
(*) . T, M TxNj , H -—a.e. x ¢ Mj .

This is a very useful fact.
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Proof of "only if" part of Theorem 11.6 As described in 11.7 above, we may
y

0
write M as the disjoint union .U M. , where Hn(MO) =0, Mj<:Nj, iz i,
Nj embedded C! submanifolds ofjggmension n , and Mj Hn—measurable.
Let u = H"L 6, where 6 is any positive locally Hn-integrable function on M
(e.g. put 6= 1/2j on Mj , assuming, without loss of generality, that

H“(Nj) <o ¥ 3.

Now, by 3.5,

(1) @*“(u,m~mj,x) =0, H'-a.e. x¢ M
Also, since N. is C1 , we have (by the differentiation theorem 4.7)
U(Bp(X)ﬂMj) n
(2) On(u,M.,x) = lim — = b(x) , H -a.e. x € Mj
e 24 H (BpﬂNj)

From (1), (2) and the fact that Nj is C1 ;, it now easily follows that
the approximate tangent space for M with respect to 0 exists for

H-a.e. x € Mj , and agrees with TxNj .

Rather than just proving the "if" part of Theorem 11.6, we prove the
following slightly more general result. (The "if" part of Theorem 11.6

corresponds to the case U = H*L 6 in this more general result - see Remark

11.9 below.)
11.8 THEOREM  Suppose u <Zs a Radon measure on Rn+k, and for x € Rp+k,
A >0 let LY be the measure given by Hey 2= APU(x+AA) . Suppose

that for yu-a.e. x there is 6(x) € (0,=) and an n-dimensional subspace

P c Rn+k with

(*) nmj £(y)du, 5 (¥) = 6(x) j £(y)aH (y) .
AY0 ' P
(P is called the approximate tangent space for U at x , and 0(x) is

called the multiplicity.) Let M= {x : (*) holds for some P and some
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6(x) € (0,0)} , and set 6(x) =0, x¢ R o .

Then M is countably n-rectifiable, 6 is H -measurable on ®, and
u=H'1l9 .
11.9 REMARK Notice that in case U = H?L® , where 6 is a non-negative

. . +k
locally Hn—Lntegrable function on Rn , then

J £au = f £(2) 8 (x+Ay) & (v)
X, A
n, (M)

where M = {x : 0(x) >0} , so the approximate tangent space for U at x
is just the approximate tangent space TXM with respect to 6 (in the sense

of 11.4). Thus we get the "if" part of Theorem 11.6 in this special case.

Proof of Theorem 11.8 Replacing U by ul;BR(O) (R chosen so that

u(BBR(O)) = 0) , we may assume that u(Rn+k)< ®© _  First note that (by (*))
we have
H(B_(x))
(1) 0(x) = lin —2—— (= 0%(,x)) p-a.e. x € BTF,
pYo wnp

and hence, by Remark 3.1,
(2) 8 is H"-measurable.

+
Given any k-dimensional subspace T C Rn K and any O € (0,1) let
. . +
pTT denote the orthogonal projection of ZRn k onto T and Xa(ﬂ,x) denote

the cone

k

Xu(ﬂ'x) = {yGIRn+ : lpﬂ(y—x)l fd aly—xl} .

For k-dimensional subspaces T , T' we define the distance between T , T' ,

denoted dist(mw,T') , by

aist(mm') = sup |p 0-p )] .
|=|=1
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+
Choose 60 > 0 and a Borel-measurable subset ¥ C Fp k such that

(3) pE"n = 2 u@E™

and such that for each x € F , |y has an approximate tangent space Px at
®x  with multiplicity ©6(x) = 60 . Thus in particular for x € F (by (1) and
(*))

H(B_ (x))

(4) lim £ - o
p¥0 wnp

v
D

and

(X, (m_,x)NB_(x))
(5) lim i x £ = 0,

n
o0 wnp

where 7m_ = (P.) .
X X

For k=1,2,... and x ¢ F , define

U(Bp(x))
£ {x) = inf e
k 1 n
0<p<§ WP
and
WX, (m_,x)NB_(x))
qk(x) = sup 1 iox P .
0<p<= w "
k n
Then
(6) lim fk(x) > 90 land 1lim qk(x) =0 VxerF,

and hence by Egoroff's Theorem we can choose a l-measurable E C F with

(7 U(F~E) < -‘1; w(RE)

and with (6) holding wuniformly for x € E . Thus for each € > 0 there

isa 6 > 0 such that
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H(B (x)) WX, (m_,x)NB (x))
(8) —L -5 -¢, pxT o < ¢
n 0 ® n
w.e P
Xx€E, 0<p<§.
Now choose k-dimensional subspaces ﬂl,...,ﬂN of Rn+k (N=N(n,k)) such

+
that for each k-dimensional subspace T of R k , there is a je€ {1,...,N}

such that d(ﬁ,ﬂj) < %Z , and let El,...,EN be the subsets of E defined

by
E.= {x€E:a(m,m)<—=1} .
3 3%’ T 16

N
Then E= U
j=1
such that (8) holds, then

Ej and we claim that if we take ¢ = 60/16n and let § > 0 be

= {x} , VxGEj ;3 =1,...,N .

(9) X (Wj,X)flEj n BG/Z(X)

3
4

Indeed otherwise we could find a point x € Ej and a y € X3

4

(nj,x)rlEjrlaBp(X)

for some O < p = &/2 . But since x € E and 20 =§ , we have (by (8))

(10) M0y (m ) By () < € w_(20)"

2

and (since B (y) c X§(nj,x) nBs p(x)) we have also {(again by (8))

p/8 2

u(X%(ﬂx,x)r1sz(x)) > U(B (y))

p/8
n
z 9, wn(p/8) '
which contradicts (8), since € = 60/16n . We have therefore proved (9).

Now for any fixed Xg € Ej it is easy to check that (9), taken together

with the extension theorem 2.1, implies

Ej n 55/2(X0) c g(graph f)
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. -+ R
where g 1is an orthogonal transformation of ZRn k with q(ﬂj) = Igﬂ, and

where £ = (fl,...,fk) is Lipschitz.

Since 3 € {1,...,N} and xo € Ej are arbitrary, we can then evidently

select Lipschitz functions £_,...,f_ rY > EF and orthogonal transformations

1 Q
(= P | of 2Rn+k such that
1 Q
Q
Ec U g.{graph £.) .
=1 3 3
Thus by (3}, (7) we have
n+k Q 1 n+k
W(R ~ U q.(graph £,)) = F w(®R ) .
=1 7 3

Since we can now repeat the same argument, starting with
n+k 9 R
pL (R ~ U qj(graph fj)) in place of | , we thus deduce that there are
=1
countably many Lipschitz graphs Fj = graph fj B fj H Rp-+ Ek , and that

(o]

. fee]
U(Rn+k~/ U rFr.) =0. By (1) and 3.2(1) we then deduce Hn(M ~ U Fj)= 0,

3=1 ] =1

so that (by definition) M is countably n-rectifiable. Thus by 11.1 (see in

0

particular Remark 11.7) we can write M as the disjoint union U M.,

j=0
where Hn(MO) =0 , Mj C Nj B Nj being n-dimensional C1 submanifolds
n+k u(By(x))
of R . Then (1) evidently implies that lim — = 0(x) ,
Y0 H (B (x)MN.
p ( o ) 3)
H® a.e. x € Mj ; then by the differentiation theorem 4.7 we have u = H' Lo

as required.

§12. GRADIENTS, JACOBIANS, AREA, CO-AREA

Throughout this section M 1is supposed to be Hn-measurable and countably

n-rectifiable, so that we can express M as the disjoint union

I 8

M. (as in
J

=0
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11.7), where Hn(Mo) =0, Mj is Hn-measurable, Mj C Nj , 3 =1, where

k

1 submanifolds of Rn+ .

Nj are embedded n-dimensional C

Let f be a locally Lipschitz function on U , where U 1is an open set
. nt+k P . . M
in IR containing M . Then we can define the gradient of £ , V f ,

n .
H -a.e. on M according to :

12.1 DEFINITION
N.
Me(x) = v I£(x)

whenever x € Mj and f[Nj is differentiable (which is true H' -a.e. x¢€ My

by virtue of Rademacher's Theorem 5.2 together with the fact that Nj is C7 ).

12.2 REMARK  Note that (by 11.7) Vig(x) € T M for H'-a.e. x €M, and
is, up to a set of H'-measure zero in M ; independent of the particular

fee]

decomposition U M. used in the definition. (i.e. VMf is well-defined
as an L funcizgn on subsets of M with finite Hn—measure). Indeed we can
easily check that, at all points x where f[Nj is differentiable, we have
fIL is differentiable o; the affine space L = x + TxNj at the point x ,
and gradient f|L (x) = V jf(x) . Since TxNj =T,M for HP-a.e. x ¢ My

(see 11.7), and since TXM is independent of the particular decomposition
[ee]

U M. , we thus deduce that VMf is also independent of the decomposition
j=0
up to a set of measure zero, as required.
. . VM . . M
Having defined £ , we can now define the linear map d fx : TxM + R

induced by f Dby setting

M —
d'f (1) =< T, VEE >, Te M

at all points where TXM and VMf(x) exist., If f = (fl,...,fN) takes
values in FN (fJ still locally Lipschitz on U, j=1,...,N) , we define

N
dex:TxM—)-R by
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N .
12.3 & (= § <, >e, .

With such an £ , in case N =2 n , we define the Jacobian

Jyf (x)  for H'-a.e. x € M by

= Me
3,f(x) = /aerd'e ) . (g,

(CE. the smooth case 8.3), where (dex)* : B - T M denotes the adjoint
of dex . Then we have the general area formula
12.4 f 3,f ai” = J #Homane iy a iy
A ]RN
for any H'-measurable set A ¢ M . The proof of this is as follows: We may

suppose (decomposing H®-almost all Mj as a countable union if necessary and

using the C1 approximation theorem 5.3) that fle = gj Mj ;, where gj is

¢t oon B, 5321

By virtue of the definition 12.1, 12.3, we then have

— n_
JMf(x) =J gj(x) , H -a.e. x € M. .

N,
J

Thus JMf is Hn-measurable, and by the smooth case 8.4 of the area formula

(with Nj in place of M, AN Mj in place of A and gj in place of f£f ),

we have

j 3, f aH' = j HO(AnMjnf'l(yH aH' .

AﬂMj PF
We now conclude 12.4 by summing over 'j > 1 and using the (easily checked)
fact that if Y : U ~» }9‘ is locally Lipschitz and B has H-measure zero,

then HM(Y(B)) = 0 .
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We note also that if g 1is any non-negative Hn-measurable function on
M , then, by approximation of g by simple functions, 12.4 implies the more

general formula

j g 3, & = J {j g dHO} N (y) .

M N -1

R £ {y)
In case f is 1:1 on M , this becomes
12.5 J g a,f a" = j got L @ |
M N
R

There is also a version of the co-area formula in case M is merely
Hn—measurable, countably n-rectifiable and f : U =+ Iy is locally Lipschitz

with N <n . (U open, M C U as before) .

In fact we can define (Cf. the smooth case described in §10)

g% £(x) = V det(d"E) o (dE ) ¥

with deX as in 12.3 and (dex)* = adjoint of deX . Then, for any

H™-measurable set A C M ,

12.6 J g% £ a® = J N ans vy atMy) .
A RN

This follows from the Cl case (see 810) by using the decomposition
<o

M= U M. and the approximation theorem 5.3 in a similar manner to the
=0 - ,

procedure used for the discussion of the area formula above.

As for the smooth case, approximating a given non-negative H™-measurable

function g by simple functions, we deduce from 12.6 the more general formula
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n-N

12.7 j g I aH" = J J g &N aNy .
A

B ey

12.8 REMARKS

(1) Note that the remarks 10.7 carry over without change to this setting.

(2) The "slices" M N f_l(y) are countably {n-N)-rectifiable subsets

of .‘Rn+k for LN- a.e. y € RN . This follows directly from the decomposition
o)
M= U Mj ; ‘together with the C1 Sard-type theorem 10.4 and the approxima~.
=0
tion theorem 5.3.
§13 THE STRUCTURE THEOREM
. . n+k . .
Notice that an arbitrary subset A of R which can be written as
oo
the countable union U Aj of sets of finite measure, is always decomposible
=1
into a disjoint union
13.1 A=RUP,

where R is countably n-rectifiable and P is purely n-unrectifiable;

. . e - n
that is P contains no countably n-rectifiable subsets of positive H -measure.

To prove 13.1, we simply let R be a maximal element of the collection
of all countably n-rectifiable subsets of A (ordered by inclusion); such R

exists by the Hausdorff maximal principal.

A very non-trivial theorem (the Structure Theorem) due to Besicovitch [B]

in case n =k =1 and Federer [FH2] in general, says that the purely

unrectifiable sets Q of Rp+k which (like the subset P in 13.1) can be

written as the countable union of sets of finite Hn-measure, are characterized
by the fact that they have H -nu11 projection via almost all orthogonal

. . . , +k .
projections onto n-dimensional subspaces of Rn . More precisely:
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13.2 THEOREM  Suppose ¢Q 1is a purely n-unrzctifiable subset of rK

with = U Q. ,
=1
p € O(n+k,n) . Here o is Haar measure for O(n+k,n) , the orthogonal

, , +
K onto n-dimensional subspaces of S

Hn(Qj) < Vi ., Then Hn(p(Q)) =0 for og-almost all

. . +
projections of R
For the proof of this theorem see [FH1] or [RM]..

13.3 REMARK  0of course only the purely n-unrectifiable subsets could possibly
have the null projection property described in 13.2. Indeed (by 11.1) if Q
were not purely n-unrectifiable then there would be an n-dimensional Cl
submanifold M of Rn+k such that Hn(M(1Q) > 0 . It is then an easy matter
to check that if we select any x € M with O*n(Hn,MF1Q,x) > 0 , then

n . . n+k
H (pMNQ)) > 0 for all orthogonal projections p of R onto an

n-dimensional subspace S which is not orthogonal to TXM .

Notice that, by combining 13.1 and 13.2, we get the following useful

rectifiability theorem:

13.4 THEOREM If A <s an arbitrary subset of P?+k which can be written
as a countable union 'Ul Aj with Hn(Aj) <o Y5, and if every subset
J=

B ¢ A with positive HP-measure has the property that H"(p(B)) > 0 for a

set of p € O(ntk,n) with O-measure > 0, then A <1s countably n-rectifiable.

§14 SETS OF LOCALLY FINITE PERIMETER

An important class of countably n-rectifiable sets in Rp+1 comes from
the sets of locally finite perimeter. (Or Caccipoli sets - see De Giorgi [DGI,

Giusti [G].) First we need some definitions.

n+l | , . +
If UCR is open and if E is an L" 1—measurable subset of Rn+1,

we say that E has locally finite perimeter in U if the characteristic
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function Xg of E is in Bvloc(U) . (See §6.)

Thus E has locally finite perimeter in U if there is a Radon measure

Ye (= IDXE] in the notation of §6) on U and a uE—measurable function
v o= (Vl,,,.,vn+1) with Iv[ = 1 uE-a.e. in U , such that
14.1 J div g aL™*t - - j g°v dug

ENU 3}

1

for each g = (gl,...,gn+ )  with gJ € Ci(U) ;, 3=1,...,n+l . Notice that

if E is open and OE N U is an n-dimensional embedded Cl submanifold of
Rn+1 , then the divergence theorem tells us that 14.1 holds with

UE = HPL(3ENU) and with V = the inward pointing unit normal to OE . Thus
in general we interpret uE as a "generalized boundary measure" and VvV as a
"generalized inward unit noxmal”. It turns out (see Theorem 14.3 below)

that in fact this interpretation is quite generally correct in a rather precise

(and concrete) sense.

We now want to define the reduced boundary Jd*E of a set E of finite

perimeter by

fB (x)vduE
14.2 9*E = 4x€ U : lim —————— exists and has length 1} .
Mo (B (X))
p¥0 E " p
Since [vl =1 uE-a.e. in U , by virtue of the differentiation theorem

4.7 we have pE(U~«3*E) =0, sothat u,= M L 3*E . We in fact claim

much more :

14.3 THEOREM (De Giorgi) Suppose .E has locally finite perimeter in U .
Then J*E 18 countably n-rectifiable and Mg = H'Lo*E . In fact at each

point x € J*E the approximate tangent space T, of . exists, has

E
multiplicity 1, and is given by
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1

n+ _
(1) T, = {yvemr : y'\)E(x)—O} .

f B {x) \)duE
where V_ (x)=lim —H———
E Q‘l’O UE (BD {x))

(so that [\)E (x)|=1 by 14.2). Furthermore at

any such point x € J*E we have that Vj(x) is the “imward pointing unit

normal for E " in the sense that

(2) E = D\_l(y—x) : y€E} + {ye¢ L, yevg (x) > o}

1
in the L. (R )}  sense.
loc

Proof By 11.6 and 3.5, the first part of the theorem follows from (1),

which we now establish. (2) will also appear as a "by product" of the proof

of (1). Assume without loss of generality \)E\)E on OJ*E .

Take any y € 0*E . For convenience of notation we suppose that y = 0

and V({0) = (0,...,0,1) . Then we have

pr (0) Yn+1Mg
(1) lim —————————— = 1
040 UE(Bp(O))
and hence (since [\)[ =1 UE—a.e.)
Vi |d
pr(o)l ilaug
(2) lim —m———— =0, 1i=1,...,n .
ot0 Mg (B OD)

Further if [ € Cé(U) has support in Bp-(O) C U, then by 14.1

- _ n+l
(3) JU Vo1 & Wy = JU Xg Ppe1 © al

IA

j Iog| a™?
E

Now (taking Bp(O) to be the closed ball) replace [ by a decreasing
sequence {§k} converging pointwise to the characteristic function of

and satisfying

Bp(O)



74

. =_£1_ n+l
(4) lim JE |ng| TS L (ENB(0)) .

ko0

(Notice that this can be done whenever the right side exists, which is

Ll—a.e. p .) Then (3) gives

au E_@_Lrﬁl

(5) Vot1 e =3 (EﬂBp(O))

J’B (0)
P
for Ll-a.e. o€ (O,QO) ¢ Py = dist(0,9U) . Then by (1) we have, for

suitable oy € (0,04)
d _

n+1 - n
(6) uE(Bp(O)) s 2 a0 L (EﬂBp(O)) =2 H (EﬂBBp(O))

n

=2 (n+l)(.un+ P

1

for L'-a.e. p € (O,Dl) .

Then by the compactness theorem 6.3, it follows that we can select a

sequence pk ¥ 0 so that ¥ -1 > XF in Lioc(]Rm'l) , where F is a set

pk E
of locally finite perimeter in :Rn+1 . Hence in particular for any non-negative
e Cl(:Rn+l)

0
+

7 limj p, ¢ al™t = J b, ¢ a™?t .

i i

ko -1E F
Px

Now write C.k(x) = C(p)-;lx) and change variable x - pkx ; then

n+l -  =-n

ntl _  -n = _
= e JE Dy g dbT E oy ju o Vi g

j_l DigdL
P E

+1
(by 14.1), so that J Di z at™ s o by (2) for i=1,...,n. Thus (7) gives

-1

P E
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n+1

J b, cal™ =0 Vcecg(mnﬂ), i=1,...,n,
F

and it follows that F = R X H for some Ll—measurable subset H of R.

On the other hand by 14.1 with g = Ck en+1 and by (1) we have, for

k sufficiently large and [ = 0 ,

-T1 . _
0 =0 [U %k Vnr1 ¥ T J 1 D1 ©

P E

= ag ] 1
M J Phrr & 7 j (I 9x N T
F n*’H

as k +® , so that Xy is non-decreasing on R, hence

n+1l
= : . <
(8) F={x ¢R X 1 Y
for some A . We have next to show that A = 0 . To check this we use
the Sobolev inequality (see e.g. [GT]) +to deduce that, if =20 , spt § € U
and O < dist(spt [,dU) , then

n
n+l —
e 1 1 1
[ JU (€ g *xg) P al™ ] Mlse jU (2 g =) |aL™

n+l

=c [j ¢ [D(o*xg) [al™ T + J ¢0*xEch[dLn+1} .
U U

Then by 6.2 it follows that

n
n+l —

n+l \
{ j g " dLml} < cU - T f ]Dz;ldLMlJ ,
E u E

and replacing ¢ by a sequence Ck as in (4) , we get for a.e. 0 € (O,pl)
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n
n+l nHl _ 4 ,n+l
[L (EﬂBp(O))] =< C[UE(BD(O)) + a5 L (EﬂBp(O))} ’
which by (6) gives
o ‘
n+l n+l d ,n+l
[L (EﬂBp(O))] < c Er L (EﬂBp(O)) a.e. p € (0,p)) .

Ln+1

Integration (using the fact that (EﬂBp(O)) is non-decreasing) then

implies

Ln+l n+1l

(9) (EﬂBp(O)) Zcp

for all sufficiently small p . Repeating the same argument with U ~ E in
place of E , we also deduce

Ln+1 n+l

(10) (Bp(O)“'E) zZcp

for all sufficiently small p . (9) and (10) evidently tell us that A =0

in (8).

Now given any sequence pk ¥+ 0 , the argument above guarantees we can

select a subseguence pk, such that ¥ 1 > X ntl in
: <
0 E {x¢Rr X1 o}
1 n+1 .
(R ) . Hence X > X and (2) of the theorem is
toc g {xer™ ! x <0}
e T Tn+l
established. Then by 14.1, (1) and (2) we have U > U = HL
-1 n+1
0 E {x€R" “:x_ <0}
n+1l
{xe Rn+1: X =0} as p ¥+ 0 and the proof is complete.

n+1l



