CHAPTER 2
SOME FURTHER PRELIMINARIES FROM ANALYSIS

Here we develop the necessary further analytical background material
needed for later developments. In particular we prove some basic results
about Lipschitz and BV functions, and we also present the basic facts
concerning Ck submanifolds of Euclidean space. There is also a brief
treatment of the area and co-area formula and a discussion of first and
second variation formulae for C2 submanifolds of Euclidean space. These

latter topics will be discussed in a much more general context later.

§5. LIPSCHITZ FUNCTIONS

Recall that a function £ : X + IR is said to be Lipschitz if there is

I, < ® such that (if d is the metric on X)
[£(x) - £(y)] =L dx,y) YV x,v€X.
Lip f denotes the least such constant L .
First we have the following trivial extension theorem.

5.1 THEOREM If A c X and £ : A >R 1is Lipschitz, then 3 f : X R with

Lip £ = Lip £ , and f = E|a .
Proof simply define
Fx) = inf ) (£(v) +1 d(x,y)) , L =TLip £ .

Since f(y) + L d(x,y) = f(z) - L d(x,z) Y x€X , y,z€ A , we see that F
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is real-valued and f(x) = f(x) for x € A . Furthermore

Bxp) - E(xp) supy a ianfA (f(y) +Ld(x ,y)) - £(y) - Ld(x,,y,))

A

suPy2€A (L d(Xlryz) - L d(leyz))

=L d(xl,xz) Y X 0%, € X .

Next we need the theorem of Rademacher concerning differentiability of

Lipschitz functions on an . (The proof given here is due to C.B. Morrey.)

5.2 THEOREM If £ <s Lipschitz on R, then £ is differentiable

L"-qlmost everywhere; that is, grad f(x) = (le(x) P oeees an(x)) exists and
1im f(y) ~f (x)~grad f(x)-°(y-x) o
o |y-x|
for "-~a.e. x €er"
Proof Let v € Sn”1 , and whenever it exists let va(x) denote the
directional derivative % f(x+tv) . Since va (x) exists precisely
t=0
when the Borel-measurable functions 1lim sup Llxttv) -£(x) and

>0 €

f(x+tv)-f (%)
t

lim inf
t—>0n
is L -measurable. However ¢(t) = f£(x+tv) is an absolutely continuous

coincide, the set Av on which va fails to exist

function of t € IR for any fixed 'x and v , and hence is differentiable

for almost all +t . Thus AV intersects every line L which is parallel

to v in a set of Hl measure zero. Thus for each v € Sn_1

(1) D f(x) exists Lf‘-a.e. x € R" .

(o)
Now take any CO(Rn) function ¢ and note that for any h > 0
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£(x) dL™(x)

j f(x+hzz—f(x) ;(x)dLn(x) - J ;(x)—ﬁ(x-hv)
n

R ="

(by the change of variable 2z = x+hv in the first part of the integral on

the left). Using the dominated convergence theorem and (1) we then get

J va T - J £ Dv T = - J f vegrad ¢

n . n .
—ZVJJfD.C=+ZVJJCD.f
j:l J j=l J

J T vegrad £ ,

where all integrals are with respect to Lebesgue measure on B{I, and where
we have used Fubini's theorem and the absolute continuity of £ on lines

to justify the integration by parts. Since ¢ is arbitrary we thus have

(2) va(x) = vegrad £(x) , [P-a.e. x €R" .

Now let vl, v2, ... be a countable dense subset of Sn—l , and let

A = {x : grad f(x), D, £(x) exist and D £(x) = v -grad £(x)} . Then

w x k
with a = N A we have by (2) that
k=1
(3) L"(®"a)=o0, D, £(x) = v, *grad £(x) Vx€n,k=1,2,c0. .
x

Using this, we are now going to prove that £ is differentiable at
each point x of A . To see this, for any x € A , v € Sn_1 and h >0

define

£ (x+hv) -f (x)

Q(lelh) = h

- vegrad f(x) .

Evidently for any x € A , vv,v' ¢ sn—l r h >0,

(4) |@(x,v,h) = Q(x,v',h)| = (n+1)L |v-v'| , L = Lip £ .

Now let ¢ > O be given and select P large enough so that
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n-1 €
(5) v Es = |v-v | < ST [or some k€ {1,....2} .
Since lim Q(x,vl,h) =0, V2=1,2,...,x€A , (by (2)), we see that
h{0 :
for a given g € A we can choose 6 > 0 so that
(6) |Q(xo,vk,h)l < €/2 whenever 0<h<d§ and k € {1,...,P} .

Since ]Q(xo,v,h)I = ]Q(xo,vk,h)l + |Q(x0,v,h) - Q(xo,vk,h)] for each

k € {1,...,P} , we then have (by (4), (5), (6)) that

}Q(xo,v,h)] < % + % =g

1

whenever v € S° © and 0 < h < § . Thus the theorem is proved.

Finally we shall need the following consequence of the Whitney Extension

Theorem.

5.3 THEOREM Suppose f : R" +1R is Lipschitz. Then for each € > 0

there is a Cl(JR) function g with
Ln({x: f(x) # g(x)} U {x:grad £(x) # grad g(x)}) < € .
Proof First recall whitney's extension theorem for ¢! functions:

If A c R" is closed and if h : A >TR and V : A »RR" are continuous,

and if
(*) lim R(x,y) = 0 v X, €A,
x»xo,y+x0
X, V€A, XFy
where -
h -h(x)-v(x) - (y-x
(%) R(’_‘,'Y) _ h(y)-h(x)-V(x) * (y-X) ,

|x-v|
then there is a Cl function g : R"+ R such that g=h and grad g =V
on A . (For the proof see for example I[SE] or [FH1]; for the case n=1,

see Remark 5.4 (3) below.)
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Now by Rademacher's Theorem £ is differentiable on a set B c®rR" with
Ln(I{L~B) = 0 . By Lusin's theorem (which apélies to sets of infinite measure
for L™) there is a closed set C C B such that grad f|C is continuous
and Ln(IJ&vC) < 6/2 . On C we define h(x) = £(x) , V(x)=grad £(x) and

R(x,y) for x,y € C is as defined in (**). Evidently (since C C B) we have

lim R(x,y) = O Y x € C, but not necessarily (¥). We therefore proceed
yrx

yeC

as follows. For each k = 1,2,... let

n, (x) = sup{|R(x,y) |:y€cC N (Bl(X)~{x})} .
k

Then N ¥ 0 pointwise in C , and hence by Egoroff's Theorem there is
a closed set A C C such that Ln(C~A) < g/2 and nk converges uniformly
to zero on A . One now reaaily checks that (*) holds. Hence we can apply

the Whitney Theorem.

5.4 REMARKS

(1) The reader will see that without any significant change the above
proof establishes the following: If U CIR® 48 open and i1f £ : U~>IR <8
differentiable L"-a.e. in U, then for each € > 0 there is a closed
set AcU and g ct function g : RN+~ such that L["(u~a) < e and

f(x) = g(x) , grad £(x) = grad g(x) for each x € A .

(2) The hypothesis (*) above cannot be weakened to the requirement

that 1lim R(x,y) = 0 YV ¥ € A . For instance we have the example (for
yrx
yE€A

/2

n=1) when A = {O}U{%:k=l,2,...} and h(0) =0, h(%)=(41)k/k3 ,V=0.

Evidently in this case we have lim R(x,y) = 0 V x-€ A, but there is no

yrx
yEA
1 1
. o Ing -neg
C extension because —-—E———E———*——--+w as k »® |

(

=5

X k+1
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{3) In the case n =1, the Whitney Extension Theorem used above has

a simple proof. Namely in this case define

RGxy) = BZREL v

and note that the hypothesis (*) guaraﬁtees that for each compact subset C

of A we have a function SC with €C(t) v+ 0 as t 4+ 0, and
(i) IR,y | s e (lx-y]) Vxyec.
Notice in particular this implies

(ii) Ve -vin | s 2etlx-y)) Yxyec. :

Also IR ~ A 1is a countable disjoint union of open intervals 11,12,... R

1f Ij = (@a,b) , we then select gj € Cl([a,b]) as follows:
(iii) gj(a) = h(a) , gj(b) = h(b) , gé(a) = v(a) , gé(b) = V(b)
and

(iv) sup . |g;](x) -vi(a)| s3e,-a) , C= [a-1,b+l] N A .
3

This is possible by (i), (ii), with (x,y) = (a,h) . One
now defines g¢g(x) = gj(x) Y x € Ij , 3 =1,2,... , and g(x) = h(x) VY x€n,.

It is then easy to check g € Cl(nu and g' =V on A by virtue of (i) - (iv).

§6. BV FUNCTIONS

In this section we gather together the basic facts about locally BV

functions which will be needed later.

First recall that if U is open in Rp and if u € LiOC(U) , then u
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is said to be in Bvloc(U) if for each W cC U there is a constant c(W)<®

such that

J u divg dL” < c(w)sup|g]|
W

for all vector functions g = (gl,...,gn) , g€ CZ(W) . Notice that

this means that the functional j u divg extends uniquely to give a (real-
v n 1

valued) linear functional on K(U,R ) = {continuous g = (g ,...,gn): U%ﬁRn,

support |g| compact} which is bounded on KW(U,IfﬁE {ge K, rY: spt|g| c w}

for every W cC U . Then, by the Riesz representation theorem 4.1, there is

a Radon measure Y on U and a J-measurable function v = (vl,..,vn) ’

|vl = 1 a.e. , such that

6.1 J u div g daL® = J gev au .
U U

Thus, in the language of distribution theory, the generalized derivatives
Dju of u are represented by the signed measures vj du , j=1l,...,n .

For this reason we often denote the total variation measure U (see 4.2) by

IDu! . (In fact if u¢€ Wiéi(U) we evidently do have du = IDu| al™ and
2 ol
—— if Du| # O

v, = IDuI

) )
0o if |pul =0 .

Thus for u € BV, (U) , |Du| will denote the Radon measure on U which

loc

is uniquely characterized by

lDuI(W) = sup|g! J u div g ar® , Wopen C U .

fl,spt[g|cw
g smooth

The left side here is more usually denoted j lDu[ . Indeed if f is any
w
non-negative Borel measurable function function on U , then J £ dIDu[ is

more usually denoted simply by j f|Dul (= J leuI al™ in case u¢ Wiéé(U)) .
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We shall henceforth adopt this notation.

There are a number of important results about BV functions which can
be obtained by mollification. We let ¢G(x) = O_n¢(%) , where ¢ 1is a

symmetric mollifier (so that ¢ € d:(Rn), ¢ =0, sptodc Bl(O) ’
(o)

¢_ %= u be

j r1¢ =1, and ¢(x) = ¢(-x)) , and for u € L1 (U) let u 5
R

loc

the mollified functions, where we set uU=u on Uy u=0 outside Uy

qg= {x€u: dist(x,BU)>0}. A key result concerningmollification isthen.asfollowé:

6.2 LEWMA If ue€ BV, (), then WO sy i Ll () and

]Du(o)[ + |pu| in the sense of Radon measures in U (see 4.4) as O ¥ O .

Proof The convergence of u(O) to u in Lioc(u) is standard. Thus it
remains to prove
(1) limJ £lou'??| = J £|Dul
o¥0
for each £ ¢ CS(U) , £ 20 . In fact by definition of |pu| it is rather

easy to prove that

J £|pu| < lim inf J leu(G)l ’
o¥y0
so we only have to check
(2) ’ lim sup J f]Du(G)| = J leu|
o+0

for each £ € CS(U) , £ =0 .

This is achieved as follows: First note that

() j leu(O)! B suplglff,gsnmoth.j grgrad u(O) a® .

On the other hand for fixed g with g smooth and lgl < f , and for
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0 < dist(spt £,0U) , we have

J g ° grad wl@ - J uDaiv g aL®
= Jd)c*udlvgdL
= J u(¢ *div g)dL
= J u dlv(¢ *g)dL .
On the other hand by definition of ]Dgl , the right side here is

5J (£+£(0)) |Du|
\J
(o

where €(0) ¥+ 0, where W = spt f , W, = {x€ U : dist(x,W) <0} , Dbecause

Iq)c* gl I (¢O*gll~-"¢c*gn)|

¢G* Igl = d)c*f

IA

and because ¢0 « £ > f uniformly in W0 as 0 ¥ 0, where 00 <dist(W,3U) .
[¢]
Thus (2) follows from (3).

6.3 THEOREM  (Compactness Theorem for BV function)

If {uk} is a sequence of BV, (U) functions satisfying

loc

Supkzl[”‘ﬁ"lLl(W) * Jw'Dukl] <

for each W cc U, then there is a subsequence {uk,} c {uk} and a
. . 1
BV, (@ function u  such that w, >u in Ly (V) and
j [pu| = lim inf J lDuk,I Y Wccu.
W \

Proof By virtue of the previous lemma, in order to prove W, Tu in
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Lioc(U) for some subsequence {uk,} , it is enough to prove that the sets

{uE G)) :J (|ul+[Dul)dLn§c(W)}, Wccu ,
w

. 1
(for given constants c(W) <®) are precompact in L

loc(U) . For the simple

proof of this (involving mollification and Arzela's theorem) see for example

[GT, Theorem 7.22].

Finally the fact that j' [Du‘ < lim inf J ‘Duk,l is a direct consequence
W

W
of the definition of |[Du| , [Du,]| .

Next we have the Poincaré inequality for BV functions.

6.4 LEMMA  Suppose U <s bounded, open and convex, u € Bvloc(:Rn) with

spt u c U . Then for any 6 € (0,1) and any B € R with
(%) mj_n{Ln{XE U:u(x)= B},Ln{x€ U:u(x) <B}} =0 Ln(U) .

we have

J u-g| dLnScJ Ibu| .
U U

where c = c(9,U) .

Proof Let B, 0 be as in (*) and choose convex W € U such that
(1) |pul (3w) = 0, j lu-g| aL™ = %J lu-gaL®
W U

and such that (%) holds with W in place of U and 6/2 in place of

6 . (For example we may take W = {x€ U: dist(x,0U) >n} with 71 small.)

(o)

Letting u denote the mollified functions corresponding to u ,

(0)

note that for sufficiently small O we must then have (*) with u in place

3(0)

of u, 6/4 in place of 6, + B in place of B, and W in place of U . Hence by
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the usual Poincaré inequality for smooth functions (see e.g. [GT]) we have

J [0(@_g (@ a® < CJ Ioa @ | a®,
1 w

¢ =c(n,0,W) , for all sufficiently small 0O . The required inequality now

follows by letting 0 ¥ O and using (1) above together with 6.2.

6.5 LEMMA  Suppose U <s bounded, open and convex, u € Bvloc(]Rn) with

spt u c U . Then

where c = c(U) .

6.6 REMARK Note that by combining this with the Poincaré inequality 6.4,

we conclude
[D(u-Bx.)| = ¢ J |pu]| ,
J:Rn v U
c =c(B,U) , whenever B is as in (x) of 6.4.

Proof of 6.5 Let Us = {x€ U : dist(x,0U) >8} and (for § small) let

¢6 be a C:(]Rn) function satisfying

1 in UG
(1 ¢6 = n
0 in R ~ 06/2
(2) 0s¢ss1 in r",
and (for a given point a € U)
(3) |Dgg () | = - c(x-a) *Dos(x) , x €U,

where ¢ = c(U,a) is independent of § . (One easily checks that such ¢6
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exist, for sufficiently small J , because of the convexity of U .)

Now by definition of |Dw| for BVloc(Rn) functions w , we have

(4) fRn{D(¢§nl < jRn‘D¢6i‘ul aL® + jRn¢6|mﬂ

and by (3)

A

-1
(5) ¢ jRn Ipgsl lul al™ _J (x-a) * Dig || aL®

n

i

-J (lu] aiv((x-a)¢g) + nlu|gs) dL

c[ LJ Io]al] + }Rnlu! dﬁﬂ

IA

(by definition of |D|u|])

IA

C[L 1mi+JﬁJu]&ﬂ

(because IDIuH = IDul by virtue of 6.2 and the fact that

Iplul| = Lim inf |p]u(®|])

ov0

Finally, to complete the proof of 6.5, we note that (using the definition
of lDwi for the BVloc(Rn) functions w = u, ¢6u ;, together with the fact

that ¢6u—>u in Ll(Rn))

|pu| = lim inf f Do) | .
JRn st0 ‘®m" s

Then 6.5 follows from (4), (5).

7. SUBMANIFOLDS OF =™
: . x . n+k
Let M denote an n-dimensional C  submanifold of R , 0=k , rz1l.

By this we mean that for each y € M there are open sets U, V C ]Rn+k with
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y €U, 0€V anda c* diffeomorphism ¢ : U >~V such that ¢(y) =0

and
éMNU) =w=vnrwr".

(Here and subsequently we identify R” with the subspace of Rn+k consisting

+k
of all points x = (xl,...,xn ) such that x:J =0, j=ntl,...,n+tk .)

In particular we have local representations

n+k
Y : W~ R ;, YW) =MNV, Y(O) =y
such that —a—% (0) , .. —a% (0) are linearly independent vectors in Rn+k .
9x ox

(For example we can take y = ¢_1|W .) The tangent space TyM of M at vy

. + s
is the subspace of r" k consisting of those T € Rn+k such that

T = Y.(O) for some Cl curve Yy : (-1,1) =+ :Rn+k, Y(-1,1)cM, Y(0) =y .

One readily checks that T M has a basis —zﬁ% (0) , «oo ﬂ); (0) for a
Y ox 9x
local representation P as above.

A function f : M+ R (N21) is said to be CY (f<r) on M if f

is the restriction to M of a C'Q function f : U + RN , where U 1is an

. +
open set in r" k such that M C U .

Given T € TyM the directional derivative D’Ef € ]RN is defined by

—c%; £(y (1)) for any C' curve y : (-1,1) + M with y(0) =y , y(0) = T.
=0

Of course it is easy to see that this definition is independent of the
particular curve Yy we use to represent T . The induced linear map
df  : T .M - ]RN is defined by df (1) =D f , T € T M . (Evidently af
Y Y Y T Y y
is exactly characterized by being the "best linear approximation" to £ at

y in the obvious sense.)
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In case f is real-valued (i.e. N=1) then we define the gradient

e of £ by

n
Ve = ] @ BT, yenM,
=1 J
Tl,...,Tn any orthonormal basis for TyM . If we let V?f = ej= VMf
(ej = j-th standard basis vector in Rn+k s 3=1,...,n+k) then
n+k
M
ey = § Vieme, .

1f f is the restriction to M of a Cl(U) function f , where U is

+ L.
an open subset of Rn k containing M , then

Wey) = (graa _ FonT, yem,
R

k — -

= . n+ .
where gradnp+k.f is the usual R gradient (le,---,Dn+kf) on U,
T . . n+k
and ‘where ( ) means orthogonal projection of R onto TyM .
+ +
Now given a vector function ("vector field") X = (Xl,...,xn k) H M*‘Rn k

with x3 € ctM) , j=1,...,n+k , we define

on M . (Notice that we do not require Xy € TyM ) Then, at y € M, we

have
n+k .
dgiv, X = J e (V9

M . ]
=1
n+k n 5

- Lo (e

j=1 i=1 3j

‘n+k

so that (since X = ) xle. )
1

n
divy X = ] (D X) T, ,
=1 i
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where Tl""’Tn is any orthonormal basis for TyM .

The divergence theorem states that if the closure M of M is a

smooth compact manifold with boundary oM = M ~ M , and if Xy € TyM VyeMm,

then
7.1 j aiv, x af” = - J xen aH™t

M oM
where 1 is the inward pointing unit co-normal of oM ; that is, |n| =1,
N is normal to oM , tangent to M ,  and points into M at each point of
oM .
7.2 REMARKS

(1) M need not be orientable here.

(2) 1In general the closure M of M will not be a nice manifold with

boundary; indeed it can certainly happen that Hn(ﬁ~'M) > 0 . (For example
©o

consider the case when M = U {(x,y)E.R2 Yy = xz/k}N'{O} . M is a C
k=1

l1-dimensional submanifold of R2 YV r in the sense of the above definitions,

r

but M ~ M is the whole =x-coordinate axis.) Nevertheless in the general case

we still have (in place of 7.1)

provided support X N M <8 a compact subset of M and xy € TyM VyewM.

In case M is at least C° we define the second fundamental form of

M at y to be the bilinear form
1
B :TMXTM-~> (T M)
y y y y

such that

k
7.3 B (T,M) = - )

a, o
(mep VOV, TmETH,
o=1 Y ¥
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where vl,...,vk are (locally defined, near y) vector fields with

; 4L
V&(z). VB(z) = daB and va(z) € (TZM) for every =z in some neighbourhood
of y . The geometric significance of B is as follows: If T € TyM with
ntk | 2 ,
[t] =1 and vy : (-1,1) > R is a C° curve with v(O)=y , v(-1,1)cM ,

and y(0) = T , then
o 1
’ = 0 7
By(T T) (y (0))

which is just the normal component (relative to M) of the curvature of
. . . R nt+k
Y at 0, vy being considered as an ordinary space-curve in R . (Thus

By(T,T) measures the "normal curvature" of M in the direction T .) To

check this, simply note that va(y(t)) . ?(t) =0, ]t[ < 1, because

&(t) € TY(t)M and va(y(t)) € (TY(t)M) . Differentiating this rela;ion
with respect to t , we get
(after setting t=0)

Vi) - ¥ = - v -1

and hence (multiplying by va(y) and summing over o ) we have

- L k o, O
(Y(0) T == J (1-D_v)IVv (y)
T
=1
= By(T,T)
as required. (Note that the parameter t here need not be arc-length
for vy ; it suffices that &(0) =T, ]T|= 1.) More generally, by a similar
. . ntk 2 .

argument, if T , n € TyM and if ¢ : U > R isa C mapping of a

neighbourhood U of 0 in R2 such that ¢(U) <M, ¢(0) =y,

2 0,0 =1, 24 (0,00 =, then
2 L
BY(TIT\) = [—a—i— (010)} -

Bxlax2
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In particular By(r,n) = By(n,T) ; that is BY is a symmetric bilinear

1
form with values in (TyM) .

We define the mean curvature vector H of M at y to be trace By ;

thus
a 1
7.4 H(y) = '21 B, (TyiTy) € (T M),
where Tl’ ey Tn is any orthonormal basis for TyM . Notice that then
(if vl,....,vk are as above)
k n o o
Hy) = - ) ] (13D vIHv (y)
o=1 i=1 i
so that
k
7.5 H= - Z (div. vH)v*
= M
o=1
near y .

. . = . 2 .
Returning for a moment to 7.1 (in case M is a compact C manifold
with smooth (n-1)-dimensional boundary /M = M~M) it is interesting to
compute j divM X in case the condition Xy € TyM is dropped. To compute
M

this, we decompose X into its tangent and normal parts:
L
X=X +X ,

where (at least locally, in the notation introduced above)

1

X = z (va-X)va .
=1
Then we have (near vy)
1 k o o
divy X = Zl (vrex)div v* ,

so that by 7.5
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7.5 div, X = - X*H

at each point of M . On the other hand J divM XT = - J Xen by 7.1.
M oM

. . . T . L .
Hence, since dJ.vM X = cil:.vM X + leM X" , we obtain

7.6 J divMXdHn=-J X-HdHn—J xeon @™t .
M M oM

§8. THE AREA FORMULA

Recall that if A is a linear map R+ ®" and A ¢ ®®, then
Ln n R n N
(A(a)) = |d@et A| L"(A) . More generally if A : R + R, N = n , then

)\(:Rn) C F where F is a n-dimensional subspace of RN , and hence choosing

an orthcgonal transformation g of IRN such that gq(F) = r" , we see that
go X : R'+ R" and hence ["(qA(a)) = |det(q)|L"(a) for a c R®. one
readily checks, since g is orthogonal, that [det(q)\)i = YdetA*oA , where

A* : BV > RD is the adjoint of A . Since H™(q(B)) = H™(B) (by definition
of H™) we have by Theorem 2.8 that L"(gA(a)) = H(qr(a)) = H™(A(a)) , and

hence we obtain the area formula

8.1 HR(A(A)) = Vdetr*er H"(a) , a c R",

whenever A 1is a linear map R - RN , n =N .

More generally given a 1:1 Cl map £ : M > JRN (M an n-dimensional
1 . nt+k . . .
C submanifold of R ) we have, by an approximation argument based on

the linear case 8.1 (see [HR] or [FH1l] for details) that

8.2 HY (£(n)) = J Jf at™ ¥ H" -measurable set A C M R
A
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where Jf is the Jacobian of f (or area magnification factor of £ )

defined by

8.3 £{y) = Jdet(df )* o (df
Jf{y) et y) ( y)

Here dfy : TyM - FN is the induced linear map described in §7, and

(dfy)* : BN > TyM denotes the adjoint transformation.

If £ is not 1:1 we have the general area formula (which actually

follows quite easily from 8.2)

8.4 J Ho(f_l(y) na)yaH (y) = I Jf aH™ , ¥ H'-measurable A C M ,
N

R A

o . . . . .
where H is O-dimensional Hausdorff measure i.e. "counting measure".

(Thus HO(B) = 0 if B=g¢, HO(B) = the number of elements of the
set B if B is a finite non-empty set, and HO(B) = oo if B is not
finite). More generally still, if g 1is a non-negative H"-measurable

function on M , then

8.5 f f g aH® aH(y) = J (3F) g aH" .
RN f_l(y) M

This follows directly from 8.4 if we approximate g by simple functions.

8.6 EXAMPLES

(1) Space curves. Using the above area formula we first check that

1 . 1 . n
H -measure agrees with the usual arc-length measure for C~ curves in R .

In fact if vy : [a,b] - R” is a 1:1 Cl map then the Jacobian is just

/ % 2 ]Q] , so that 8.2 gives

HE (v (a)) =J Iy| at
A
as regquired.



48

. + . . . .
(2) Submanifolds of B 1 oM s any n-dimensional ¢! manifold
n+k n . . .
of R , we want to check that H agrees with the usual n-dimensional
volume measure on M . It is enough to check this in a region where a local

coodinate representation as in §7 applies. If

vew Y, ym) = unu

is a local representation for M as in §7 then the usual definition of the

n-dimensional volume of a Borel set A C MNU is
u(a) = L /g a®,
A

where A = w-l(A) and g = det(gi.) B g,. = —t= jﬂ@ , i,3=1,...,n .

] - ox* ax7
However one easily checks that then /5 is precisely Jy , the Jacobian of

+.
Yo W + R k ; defined as above. Hence we have by the area formula 8.2

that J,,/‘S aL™ = H*w(@)) = H%(a) , so that u(a) = H(a) .
A

, . , +
(3) n-dimensional graphs in R 1. 1f 0 is a domain in R® and if

M = graph u , where u € Cl(Q) , then M is globally represented by the

det(jm; '-gwﬂ
3%t 3x7

Hi

map P : x P (x,u(x)) ; in this case JY(x)

/<:1et(6,,+_D.uD,u)=‘/1+ |oul? ,
ij i3

so H') = j /i+ |pul? ax  (by (2) above).
9)

§9. FIRST AND SECOND VARIATION FORMULAE

Suppose that M 1is an n-dimensional Cl submanifold of .Rn+k and let
n+k n
U be an open subset of R such that UMM # @ and H (KM) <® for each
compact KCU . Also, let {¢t} be a l-parameter family of diffeo-

0=st=l
morphisms U -+ U such that
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(1) $(E,x) (2 ¢, (x) isa c? map:(-1,1) x U > U

9.1 (2) ¢O(x) =x, X €U

(3) ¢t(x) X Vte (-1,1) , x € U~K , where K CU

is a compact subset of U .

Also, let X , Z denote the initial velocity and acceleration vectors
2
for ¢t : thus X = 8 (;;x) Pz = 9 (;,x) .
t=0 ot t=0

Then

t2 3
9.2 cbt(x) = x + txx+72x+o(t )
and X , Z have supports which are compact subsets of U . Let

Mt = ¢t(MflK) (K as in 9.1 (3)); thus Mt is a l-parameter family of
manifolds such that My = MNK and Mt agrees with M outside some compact

2
d d
subset of U . We want to compute € Hn(Mt) and — Hn(Mt)
t=0 dt t=0
(i.e. the "first and second variation" of M ). The area formula is

particularly useful here because it gives (with K as in 9.1 (3))
(9, (K)) = J a, aH" Y = ¢ unu ,
MNK

and hence to compute the first and second variation we can differentiate
under the integral. Thus the computation reduces to calculation of

2
3 3
= 3y and 2= 3y .
ot t £=0 Btz t £=0

To calculate we first want to get a manageable expression for Jwt .

First note that (for fixed t)

Db, (T€T M)

dwt[X(T) T

t2 3
—_— . [e]
T+ t DT X + > DT Z + 0(t™) (by 2.2) .
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Hence, relative to the bases Tl,...,Tn for TxM and el""’en+k for
+ .
r" k , the map dwtl : T M > Rn+k , has matrix
X
2
a,, = T% + tD x‘Q + r D Zl + o(t3)
21 i T 2 T

for i=1,...,n, 2£=1,...,ntk . Then (dwti ) * o(dwtl ) has matrix
X X

n+k

{ akialj} = (bij) , where

=1 i,51,...,n

]

- R e Lo
i3 613 t(Tl Dzj+T:l DTiX)

2
+ t (&(Ti'DT.Z+Tj‘DT.Z) + (DT.X) . (DT.X))
J 1 1 J

+ 0(td) ,
so that (by the general formula det(I+tA+t2B) = 1+ t trace A +

t2(trace B + 3%(trace A)2 - 3 trace (A2)) + O(t3)) we have

2 2 & 2
(FY ) =1+ 2t div, X + t°(div.z + | |p_ x|
t M M . T.
=1 i
2 1 % 2 3
+2(divx)° - 5 Z (T;*Dy X+ T,°Dp X)°+ 0(t”)
i,j=1 Jj i
5 n 1 2
= 1+ 2t divy, X+ t7aivgz + ] o 07|
i=1 i
n
. 2 3
+ 2(div,X)° - ] (T.°D_ X)(T.°D_ X)) + 0(t>),
M LB iT, j T,
i, =1 J i
1 n
where (D_ X)~ (= normal part of D_X) = D_ X - Z (T.°D_ X)T. .
T. T. T. . 3 T, J
i i i j=1 i
. 1 1.2 3
Using V1+x = 1 + 3 X - 3 X7 + 0(x”) , we thus get
t2 5 n 1 2
JP = 1+t divy X + 5 (divyZ+ (@ivX)° + i—Zl l(DTiX) |

n

- Z (T.*D_ X) (T.*D 0 t3 .
3,5-1 & 15 3 TiX)) + 0(t7)
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Thus the area formula immediately yields the first and second variation

formulae:
9.3 T =J div. x aH™
’ dat t l M
t=0 M
and
= oy | 2, F o, ot - ]
9.4 —— H (M,) =J (div_2Z+(div %)+ (D_ X) - (T.°D_ X)(T.*D_ X)) .
at? Y0 /v M M =1 4 i3=1 Y Ty 1Yy

We shall use the terminology that M s stationary in U if H (MNK) <

for each compact K C U and if 4 Hn(M ) = 0 whenever M_= ¢_(MNK) , K, ¢
at 3 £ "t t
as in 9.1. Thus in view of 9.3 we see that M is stationary in U <if and
only if J divM X dH" = 0 whenever X is Cl on U with support X a
M .

compact subset of U .
In view of 7.6 we also have the following

9.5 LEMMA

k

(1) If M is a C% submanifold of B and B odsa c? submanifold

with smooth (n-1)-dimensional boundary M =M ~M , then M is stationary

in U if and only if H=0 om MNU and M NU=§ .

k

(2) Generally, if M <is an arbitrary c? submanifold of B and
Y

U NM is a compact subset of M , then M 1is stationary in U <if and

only if H=0 on MNU.

(In both parts (1), (2) above H denotes the mean curvature vector of M .)

For later reference we also want to mention an important modification

. ) . +
of the idea that M be stationary in U , U open in r" k. Namely, suppose

N is a 02 (n+k1)—dimensional submanifold of Rn+k, 0 = k1 <k , and

suppose U 1is an open subset of N and M € N . Then we say that M 1is

stationary itn U if 9.3 holds whenever Xy € T, N Yy €M. This is
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. . d .
evidently equivalent to the requirement that T H? ((pt(Mﬂ X)) =0 whenever
t=0

¢t satisfies the conditions 9.1 (bearing in mind that U is required now

+
to be an open subset of N rather than an open subset of Rﬁ k as before) .
If we let vl,...,vk be an orthonormal family (defined locally near a point
k
y € M) of vector fields normal to M , such that vl,...,v 1 are tangent
kl+1
to N and Vv P are noxrmal to N , then for any vector field X
on M we can write X = X(l) + X(2) , where X(l) € TzN and
n . .
(2) _ i 3 _ - . .
X = Z {(V7eX)V (= part of X normal to N). Then if Tl,...,Tn is
3=kl+l
any orthonormal basis for TyM ; we have
n . .
giv, x = aiv, xY + T (vlex)aiv vl
M M . M
J=kq+1

(1)

i

+ZXB(T,T),

div, X
M
i=1

where Ey is the second fundamental form of N at vy ,

Thus we conclude

9.6 LEMMA IFf N s an (n+kl)-dimensional submanifold of ®rE s, 1f

M cN and if U is an open subset of N such that H'MNK) < » whenever

K 18 a compact subset of U , then M is stationary in U if and only if

JMdiva=~JM£1M-x

1

for each c~ vector field x with compact support comtained in U ; here

HM! Z B (T, s ) , YE€EM , where éy denotes the second fundamental

form of N at y and 1t peeea Ty is any orthonormal basis of TyM .

1

Finally, we shall need later the following important fact about second

variation formula 9.4.
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K vith

9.7 LEMMA IFf M <is C2, stationary in U , U open in R
M~M)NU=90, and if X as in 9.4 has compact support in U with

X_Y € (TyM)l Yyé€eM, then 9.4 says

2 n n
d n 12 2 n
— # (Mt)] = J { ) ](DT |- ) (X*B(T.,T,)) aH .
dt +=0 M i=1 i i,3=1
9.8 REMARK 1n case k=1 and M is orientable, with continuous unit
normal VvV , then X = VvV for some scalar function { with compact support
on M , and the above identity has the simple form

&

2

| = j (7z]? - 22| e,
dt t=0 M

where [ B

Hi
=]

n ' 5
= Z ]B(Ti'Tj)[

I\)-B(Ti,T.) ]2 . This is clear, because
i,3=1 1,31 ’

1
(b, (vg))” = Vv D T by virtue of the fact that D_ v‘ € T M Yyeéem.
i i ily

Proof of Lemma 9.7 First we note that J divy, Z aH™ = 0 by virtue of the
M

fact that M is stationary in U , and second we note that divM X=-X*H=0
by virtue of 7.5' and 9.5(2) and the fact that X is normal to M . The
proof is completed by noting that Ti . DT X = X- B(Ti,Tj) by virtue of 7.3

b
and the fact that X is normal to M .

§10. CO-AREA FORMULA

As in our discussion of the area formula, we begin by loocking at linear
maps A : :Rn+ RN , but here we assume N < n . Let us first look at the

special case when A 1is the orthogonal projection p of R" onto ]RN .

N

(As before, we identify R~ with the subspace of r" consisting of all points
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(xl,...,xn) with xJ =0 , j = n-N+1,...,n .) The orthogonal projection
p has the property that, for each y € RN ' p-l(y) is an (N-n)-dimensional
affine space; each of these spaces is a translate of the (N-n)-dimensional

subspace p—l(O) . Thus the inverse images p—l(y) decompose all of r"

into parallel *(n-N)-dimensional slices" and by Fubini's Theorem
n=N,6 =1
10.1 [ H™ N 07 (y) Nayay = H (&)
]RN
whenever A is an Ln—measurable subset of R" .
This formula (which, we emphasize again, is just Fubini's Theorem) is

a special case of a more general formula known as the co-area formula. We

first derive this in case of an arbitrary linear map A : R > RN with

rank A = N .
-1 N -1 . . .
Let F= )X "(0) . (Then forreach y € R , A "(y) is an (n-N)-dimensional
affine space which is a translate of F ; the sets A_l(y) thus decompose all

of R" into parallel (n-N)-dimensional slices.)

Take an orthogonal transformation g = R" > R such that q Fl = ]RN ’
qF = Rn—N . Then ) can be represented in the form A = 0opPoq , where p

is the orthogonal projection R" onto ]RN and ¢ 1is a non-singular trans-
formation of RV . (This is easily checked by considering the action of A

on suitable basis vectors.) By 10.1 above, for any Hn—measura.ble Ac R v

1M@) = [Ma@) J H N qmnp tyna @
N

R

=j V¥ ang e tonay .
IRN

making the change of variable z = o(y) (dy = |det0|_1dz) , we thus get
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|geto|L" (a) = J M ana e o e at ez
N
R

Hi

J P Nanate@na e .
RN

Also, since g*g = 1 n and pp* = 1 N’ e have Ao A* = 0o 0% : RN-* RN,
R Rr

so that |det0| = ydet AoA¥* .

Thus finally

10.2 Jaet ror* L™(a) =J P Nana ez ae .
N
R

This is the co-area formula for linear maps. (Note that it is trivially valid,

with both sides zero, in case rank A < N .)

Generally, given a Cl map £ : M > FN , where M is an n-dimensional

+
C1 submanifold of Rn k , we can define

J*f(x) = /det(dfx) o (dfx)* ,

where, as usual, dfx : TXM - FN denotes the induced linear map. Then for

any Borel set A C M

N

10.3 J J*f aH” = j( H N an f‘l(y)) alNy) .
A
R

This is the general co-area formula. Its proof uses an approximation argument

based on the linear case 10.2. (See [HR1l] or [FH1l] for the details.)

An important consequence of 10.3 is that if C = {xeM : J*f(x) = 0} ,

HNene ) =0 for N-ae. ye B .

then (by using 10.3 with A = C)
Since J*f(x) # O precisely when dfX has rank N , it is clear from the

implicit function theorem that x € f_l(y) ~ C =3 a neighbourhood V of x
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such that V N f-l(y) is an (n-N)-dimensional C1 submanifold. In summary

we thus have the following important result.

1

10.4 THEOREM  (C™ Sard-type theorem.)

Suppose £ : M > B , N<n, s ct . Then for Noale. y € £(M) ,
f—l(y) decomposes into an (n-N)-dimensional ct submanifold and a closed

- o e
set of H N measure zero. Specifically,

Ty = Tt m~o U oo

-N

C={xeM : J*f(x)=0} (= {x€M : rank(dfx)<N}) , H' (f_l(y)ﬂc)=0 ,

-a.e. y , and f—l(y) ~C %8 an (n-N)-dimensional Acl submanifold.

10.5 REMARK If f and M are of class Cn_N+1 , then Sard's Theorem

asserts the stronger result that in fact fql(y)[1c =@ for LN-a.e. y € I@q,
so that f_l(y) is an (n-N)-dimensional Cn_N+l submanifold for LN-a.e.
y € BN .

A useful generalization of 10.3 is as follows: If g is a non-negative
H'-measurable function on M , then

n-N

10.6 j (3*f)g aH" = J j g at™™ oMy .
M N -1

(v)
10.7 REMARKS
(1) Notice that the above formulae enable us to bound the Hn-N measure
of the "slices" f—l(y) for a good set of y . Specifically if !fl < R and

g 1is as in 10.6 (g=1 1is an important case), then there must be a set

5 ¢ BL(0) (c®), s=s(M , with N = % LN(BR(O)) and with

f g af*™™ s 2 J g g% aH"
-1 L (BR(O)) M
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for each y € S . For otherwise there would be a set T C BR(O) with

N 1 ,N
L (T) > 5 L (BR(O)) and

J g a™ ™ = —ﬁ——g—-—— J g a*f g™, yerT,
-1 L (Bx (0)) M

so that, integrating over T we obtdin a contradiction to 10.6 if

J g J*€ @™ > 0 . on the other hand, if J g J*f dH™ = 0 then the reqﬁired
M M
result is a trivial consequence of 10.6.

. : . +
(2) The above has an important extension to the case whenwe have f: ZIRn k—> JRn

and sequences {Mj}, {gj} satisfying the conditions of M, g above. In this

1

case there is a set § C BR(O) with LN(S) z 3

LN(BR(O)) such that for each

y € S there is a subsequence {j'} (depending on y) with

J 9., aH" ™ < -Eg—-%~“—— f g., g+ aH"
-1 J L™ (B, (0)) Ju_,

S0
. . . N 1 ,N
Indeed otherwise there is a set T with L (T) > bl L (BR(O)) so that for

each y € T there is £&(y) such that

- 2
(*) J 9 g™ N > oo J g, 9% an®
- B_ (0
Mjﬂf l(y) ( R( )) M

for each j > &(y) . But T = U Tj , T.={y€T : 2(y) =3} , and hence
j=1

[t

there must exist j so that LN(Tj) > %-LN(BR(O)) . Then, integrating (*)

over y € Tj . we obtain a contradiction to 10.6 as before.



