
CHAPTER 2 

SOME FURTHER PRELIMINARIES FR01~ A!~AL YS IS 

Here we develop ·the necessar~;{ further analytical background rna·terial 

needed for la-ter developmen-ts. In particular we prove some basic results 

abou·t Lipschi·tz and BV func·tionsv and v.ve also p:resen·t the basic facts 

concerning submanifolds of Euclidean space. There is also a brief 

treatment of the area and co-area formula and a. discussion of first and 

second variation form.ulc:e for 
2 c submanifolds of Euclidean space. These 

la-tter topics will be discussed in a much more general con-tex-t la'cer. 

§5. LIPSCHITZ FUNCTIONS 

Recall that a function f : X + lR is said to be Lipschi-tz if there is 

L < oo such that (if d is the metric on X) 

I f(x) - f(y) I ::: L d(x,y) 'r! x,y E X . 

Lip f denotes -the least such constant L . 

First we have the following trivial extension theorem. 

5 • 1 THEOREM If A c x and f A +lR is Lipschitz, then 3 f 

Lip f 

Proof 

Lip f, and f = fiA 

Simply define 

f(x) = inf E (f(y)+L d(x,y)), L 
y A 

Lip f . 

x +:m with 

Since f(y) + L d(x,y) ::: f(z) - L d(x,z) \f xE X , y,zE A , we see t.'lat f 
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is real-valued and f(x) f(x) for x E A . Furthermore 

Next we need the theorem of Rademacher concerning differentiability of 

Lipschit:.?: functions on lRn (The proof given here is due to C.B·. Morrey.) 

5.2 THEOREM If f is Lipschitz on lRn , then f is differentiable 

Ln-almost everywhere; that is, grad f(x) (D1 f (x) , •.. , Dnf (x)) exists and 

lim f(y)-f(x)-grad f(x)•(y-x) 0 
y+x 1y-x1 

for L n - a. e. x E lRn 

Proof Let n-1 
v E S , and whenever it exists let denote the 

directional derivative d 
dt f (x+tv) I . 

t=O 
Since exists precisely 

when the Borel-measurable functions .=f_,_(x:.:.+.:..t;:;.v'-')'---"f'-'('-='x"-) lim sup -
t+O 

t 
and 

lim inf f(x+tv)-f(x) coincide, the set A on which D f fails to exist 
t+O t v v 

is Ln-measurable. However ~(t) = f(x+tv) is an absolutely continuous 

function of t ElR for any fixed x and v, and hence is differentiable 

for almost all t . Thus Av intersects every line L which is parallel 

to v in a set of measure zero. Thus for each 

(1) Dvf (x) exists L n- a. e. x E JRn . 

Now take any C~(l~n) function l; and note that for any h > 0 



f(x+hv)-f(x) 
h 
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l;(x)-l;(x-hv) 
h 

(by ·the change of variable z = x+hv in the first part of the integral on 

the left) • Using the dominated convergence theorem and (1) we then get 

f Dv f I; = J f D I; J f v•grad I; 
v 

n 
vj J f 

n 
vj J I; I D. 4 + I D. f 

j=l J j=l J 

= J 4 v•grad f ' 

where all integrals are with respect to Lebesgue measure on lRn , and where 

we have used Fubini's theorem and the absolute continuity of f on lines 

to justify the integration by parts. Since I; is arbitrary we thus have 

(2) v•grad f(x) , Ln- a.e. x E lRn . 

Now let be a countable dense subset of n-1 
s ' and let 

~ = {x grad f (x) , D f (x) 
vk 

exist and D f(x) = vk•grad f(x)} . Then 
vk 

with A n A. we have by (2) that 
k=l k 

0 , D f(x) 
vk 

vk •grad f (x) \t x E A , k 1' 2' .•. 

Using this, we are now going to prove that f is differentiable at 

each point x of A • 'I'o see this, for any x E A , v E Sn-l and h > 0 

define 

Q(x,v,h) 

Evidently for any 

f(x+hv)-f(x) 
h 

n-1 
E S , 

- v•grad f (x) • 

(4) IQ(x,v,h)- Q(x,v' ,h) j ::; (n+l)L !v-v' I L Lip f . 

Nmv let t: > 0 be given and select P large enough so that 



32 

(5) v E I < some k E {1, o •• , 

Since lim Q(x, h) = 0 , v !/, 1,2, ... ,xEA ' (by ( 2)) ' tAl€ see that 
h+O 

for a given xo E A >.ve can choose 0 > 0 so that 

(6) \Q I < E/2 whenever O<h< 5 and k E {l, ... ,P} 

Since jQ v.,h) I < jQ 'v. ,h) I + jQ ,v,h) - Q ,h) I for each 
I K I 

k E { 1, " .. ,P} we then have (by (4). t (5) 
' 

( 6) ) th·2~··t 

whenever v E Sn-1 and 0 < h < 5 o Thus the theorem is proved. 

Finally we shall need the following consequence of the Whitney Extension 

Theorem. 

5.3 THEOREM Suppose f : IRn + IR is Lipschitz. Then for each s > 0 

function g with 

Ln({x: f(x) 'I g(x)} U {x: grad f(x) f. grad g(x)}) <E. 

Proof First recall Whitney's extension theorem for c1 functions: 

If P.. c Rn is closed and if h A +JR and \! A + JRn are continuous, 

and if 

{*) 

where 

( **) 

lim 
x+x0 ,y+x0 

x,yEA,xf.y 

R(x,y) 

R(x,y) 0 

h(y}-h(x)-v(x)•(y-x) 

jx-yj 

then there is a c1 function g : Rn + R such that g = h and grad g = \! 

on A . {For the proof see for example [SE] or [FHl]; for the case n = 1, 

see Remark 5.4(3) below.) 
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Now by Rademacher's Theorem f is differentiable on a set B CIRn with 

0 . By Lusin's theorem (which applies to sets of infinite measure 

for Ln) there is a closed set C c B such that grad fjc is continuous 

and L n (:R11~ C) < E/2 On C we define h(x) = f(x) , V(x)=grad f(x) and 

R(x,y) for x,y E C is as defined in (**). Evidently (since C c B) we have 

lim R(x,y) = 0 \! X E c r but not- necessarily (*). We therefore proceed 
y+x 
yEC 

as follows. For each k 1, 2, ... let 

sup{jR(x,y)j:yEcn (B 1 (x)~{x})} 
k 

Then T)k + 0 -pointwise in C , and hence by Egm'off 's Theorem there is 

a closed set A c C such that and converges uniformly 

to zero on A One now readily checks that (*) holds. Hence we can apply 

the Whitney Theorem. 

5.4 REMARKS 

(1) The reader will see that without any significant change the above 

proof establishes the following: If U c IRn is open and if f : u + IR is 

differentiable Ln- a.e. in u , then for each E > 0 there is a closed 

set A c u and a c1 func-tion g : IRn + IR 

f(x) g(x) grad f(x) = grad g(x) for each x E A . 

(2) The hypothesis (*) above cannot be weakened to the requirement 

that lim R(x,y) = 0 
y+x 
yEA 

\! x E A . For instance we have the example (for 

n= 1) when and h(O)=O, h(~)= (-lt!k312 ,v :=o. 

Evidently in this case we have lim H(x,y) = 0 v X E A , but there is no 
y+x 
yEA 

ih<l>- h<-1-' I 
cl extension bec'ause 

k k+l' k + 00 + 00 as 
(1- 1 
k- k+l) 



34 

{3) In the case n = 1 , the Whitney Extension Theorem used above has 

a simple proof. Namely in this case define 

R(x,y) 
h(y)- h(x) 

y-x 
- \!(X) 

and note that the hypothesis (*) guarantees that for each compact subse·t C 

of A we have a function with as t -1- 0 ' and 

( i) V x,y E C • 

Notice in particular this implies 

(ii) Jv(x)- V(y) I s 2 Ec( lx- Yi) \I x,y E C • 

Also 1R ~ A is a countable disjoint union of open intervals r 1 ,r2 , •••• 

If Ij = (a,b), 

(iii) g. (a) 
J 

and 

we then select 

h (a) , g . (b) 
J 

h(b) , g~(a) 
J 

as follows: 

\!(a) , g'. (b) 
J 

\)(b) 

(iv) supxEI. I gj (x) - \!(a) I :::: 3 EC (b-a) , C 

J 

[a-l,b+l] n A • 

This is possible by (i) 1 (ii)' with (x,y) = (a,b) One 

now defines g (x) = g. (x) l;f X E I. j 1' 2' ... and g(x) 
J J 

1 

= h(x) 'if xE A. 

It is then easy to check g E c- (JRJ and g' = \) on A by virtue of (i)- (iv). 

§6. BV FUNCTIONS 

In this section we gather together the basic facts about locally BV 

functions which will be needed later. 

First recall that if U is open in :Rn and if u E L 1
1 (U) 

oc 
then u 
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is said to be in BV10c(U) if for each W cc U there is a constant c(W) <oo 

such that 

r 
) u divg dln :::= c(W)supjgJ 
w 

for all vector functions g = (g1 , •.• ,gn) , gj E C00 (W) Notice that 
c 

this means that the functional JU u divg extends uniquely to give a (real-

valued) linear functional on K(U,:Rn) :=:{continuous g = (g1 , ... ,gn): U+:Rn, 

support JgJ compact} which is bounded on KW(U,:Rn):=: {gE K(U,:Rn): sptjgJ c W} 

for every W cc U . Then, by the Riesz representation theorem 4.1, there is 

a Radon measure ~ on U and a ~-measurable function v = (v1 , .• ,vn) , 

Jvl = 1 a.e. , such that 

6.1 

Thus, in the language of distribution theory, the generalized derivatives 

of u are represented by the signed measures v. d~ , 
J 

For this reason we often denote the total variation measure ~ (see 4.2) by 

!nul (In fact if uEW~' 1 (U) oc 
we evidently do have d~ = lnuj d ln and 

"j ·l n.u 
J if I nul t- 0 

jDuj 

0 if jnul 0 

Thus for u E BV10c(U) , lnuj will denote the Radon measure on U which 

is uniquely characterized by 

I nu J (W) supJgl::::;l,sptjgjcw J u div g dLn , W open c u . 
g smooth 

The left side here is more usually denoted J lnuj 
w 

Indeed if 

non-negative Borel measurable function function on U , then 

f is any 

J f djDuj is 

more usually denoted simply by J f j Du J ( = I f J Du I dl n in case u E W~~~ (U)) 
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We shall henceforth adopt this notation. 

There are a number of important results about BV functions which can 

be obtained by mollification. We let where is a 

symmetric mollifier (so that <P E Coo (:Rn) , 
c <P :::. 0 , spt ¢ c B 1 (0) , 

f <P = 1 and ¢(x) = <P ( -x)) and for u E L~ (U) let u (0) 
<Pa * u be 

Rn oc 

the mollified functions, where we set u= u on u0 , u= o outside uo , 

u0 ':' {x E u: dist(x, <lu) >o}. A key result concerning. mollification is then as follows: 

6.2 LEMMA then (0) 
u -+ u in Ll1 (U) 

oc 
and 

lnu(o) I-+ lnuj in the sense of Radon measures in u {see 4.4) as a~ 0 • 

Proof The convergence of u(O) to u in L 1
1 (U) 
oc 

remains to prove 

(1) lim J flnu(o) I 
a~o 

J flnul 

is standard. Thus it 

for each f E c0 (u) 
c f > 0 • In fact by definition of lnul it is rather 

easy to prove that 

I flnul ~lim inf I flnu(o) I , 
a~o 

so w~ only have to check 

(2) 

for each f E c0 (u) 
c 

lim sup I flnu(o) I ~I flnul 
a~o 

f ::: 0 . 

This is achieved as follows: First note that 

(3) 

On the other hand for fixed g with g smooth and lgl ~ f , and for 
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o < dist(spt f,3U) , we have 

I g • grad u (O) dL n = - I u (O) div g dL n 

J ¢0 * u div g dL n 

J u(¢0 *div g)dLn 

J u div(¢0 *g)dln . 

On the other hand by definition of loul , the right side here is 

:::Jw (f+s(oJJioul 

0 

where E:(O) + 0 , where W = spt f dist(x,W) < o} , because 

and because 

l¢0 *gl- l<¢0 *gl, ... ,¢0 *gnJI 

::: ¢o* lgl ::: ¢o* f 

¢0 * f -+ f uniformly in as 0 + 0 ' 

Thus (2) follows from (3). 

6.3 THEOREM (Compactness Theorem for BV function) 

where 

If {uk} is a sequence of BV10c(U) functions satisfying 

supk>l[ll~ll 1 + J 1°~1) < 00 

- L (W) W 

o 0 <dist(W,3U) . 

for each w cc u then there is a subsequence {uk,} c {~} and a 

BVloc(U) 

Proof 

function u such that 

f loul < lim inf 
Jw 

in Lll (U) 
oc 

and 

l;f w cc u . 

By virtue of the previous lemma, in order to prove ~· -+ u in 
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L~0c(U) for some subsequence {~,} , it is enough to prove that the sets 

(for given constants C (W) < 00 ) are precompact in Lll (U) 
oc 

For the simple 

proof of this (involving mollification and Arzela's theorem) see for example 

[GT, Theorem 7.22L 

Finally the fact that t J Du I :0 lim inf f W j Duk, I is a direct consequence 

of the definition of Jouj , Jo~,j . 

Next we have the Poincare inequality for BV functions. 

6.4 LEMMA 

spt u c u 

we have 

Suppose u is bounded, open and convex, 

Then for any e E (0, 1) and any 6 E R with 

J ju-61 
u 

dLn ~ c J joul , 
u 

where c = c(8,U) . 

with 

Proof Let 6, 8 be as in(*) and choose convex W c U such that 

(1) Joul (ClW) 

and such that (*) holds with W in place of U and 8/2 in place of 

8 . (For example we may take W = {x E U: dist(x, ClUJ > n} with n small.) 

Letting 
(0) 

u denote the mollified functions corresponding to u , 

note that for sufficiently small a we must then have with 
(0) 

u in place 

of u , 8/4 in place of e ' 6 (O) + 6 in place of 6 I and w in place of u . Hence by 
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the usual Poincare inequality for smooth functions (see e.g. [GT]) we have 

c = c(n,8,W) , for all sufficiently small a • The required inequality now 

follows by letting a + 0 and using (1) above together with 6.2. 

6.5 LEMMA Suppose u is bounded, open and convex, with 

spt u c u . Then 

J nlnul (=J_Inul] ~ 
lR u 

where c = c(U) . 

6.6 REMARK Note ~~at by combining this with the Poincare inequality 6.4, 

v?e conclude 

c = c(8,U) , whenever S is as in (*) of 6.4. 

Proof of 6.5 Let U0 = {x E U : dist(x, ()U) > o} and (for o small) let 

be a function satisfying 

(1) 

(2) 0 ~ cp 0 ~ 1 in :Rn , 

and (for a given point a E U) 

(3) lo¢0 (x) l ~- c(x-a) • DC/> 0 (x) , x E u , 

where c = c(U,a) is independent of o . (One easily checks that such ¢ 0 
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exist, for sufficiently small 6 , because of the convexity of U .) 

Now by definition of for BV1 (:Rn) functions w , we have 
oc 

(4) 

and by (3) 

5) 
-1 

c 

(by definition of I DIu II) 

S - J (x-a) • 

= J <lui div((x-a)¢6) + njuj¢6) dLn 

~ c( t 

(because ln!ul I S joul by virtue of 6,2 and the fact that 

lo!ull ~lim inf jnju(o) ill 
a+o 

Finally, to complete the proof of 6.5, we note that (using the definition 

of I nwJ for the BV loc (:Rn) functions w = u, <P 6u , together with the fact 

that ¢6u-+ u in L1 (:Rn)) 

Then 6.5 follows from (4), (5). 

7. SUBMANIFOLDS OF n+k 
R 

Let M denote an n-dimensional Cr submanifold of :Rn+k O~k, r:::l. 

By this we mean that for each y E M there are open sets U, V c :Rn+k with 
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y E U 0 E V and a cr diffeomorphism ¢ U + V such that ¢ (y) 0 

and 

w 

(Here and subsequently we identify Fn with the subspace of n+k . , 
R cons1stLng 

of all points x = (x1 , ... ,xn+k) such that xj = 0, j n+l, ... ,n+k .) 

In particular we have local representations 

1j!(W) M n V , 1j!(O) y 

such that 1!!!_ (0) ... 1!!!_ (0) are linearly independent vectors in 
1 I , 

dX dX n 

(For example we can take 1jJ = ¢-11w .) The tangent space T M of 
y 

is the subspace of Rn+k consisting of those T E Rn+k such that 

1 
y(O) for some C curve y 

n+k 
(-1,1) + R , y(-1,1) c M, y(O) 

One readily checks that T M 
y 

has a basis 1!!!_ (0) 1 • • • f ~ (0) 
dXl dXn 

local representation 1jJ as above. 

M at 

y . 

for a 

A function f : M + JRN (N:::l) is said ·to be C.Q. (.Q.:<::r) on M if f 

Rn+k 

y 

is the restriction to M of a C.Q. function f : U + RN where U is an 

open set in Rn+k such that M c U . 

Given T E T M the direc·tional derivative D f E JRN is defined by 
y T 

d 
f(y(t)) 't=O for cl ( -1, 1} with y(O) .y ( 0) 

dt 
any curve y : + M = y , T. 

Of course it is easy to see that this definition is independent of the 

particular curve y we use to represent T The induced linear map 

df 
y 

T M + JRN is defined by df (T) = D f 
y y T 

T E T M • . (Evidently df 
y y 

is exactly characterized by being the "best linear approximation" to f at 

y in the obvious sense.) 



42 

In case f is real-valued (Le. N= l) then we define the gradient 

n 
V'lt(y) I (D,,f)Tj' y E TYM 

j=l J 

any orthonormal basis for TM 
y 

(e. = j-th standard basis vector in :Rn+k 
J 

If we let 

j = 1, ... ,n+k) then 

If f is the restriction to M of a c 1 (u) function f where U is 

an open subset of 
n+k .. 

:R conta1n1ng M , then 

- T 
(grad n+k f (y)) 

:R 
y E M , 

where grad k f is the usual Rn+k gradient 
Rn+ 

and where )T means orthogonal projection of Rn+k onto T M 
y 

Now given a vector function ("vector field") X 

with Xj E c1 (M) , j = l, •.• ,n+k , we define 

on M (Notice that we do not 

have 

n+k. 
divM X I 

j=l 

n+k 

I 
j=l 

so that (since X 

n 

divM X = I 
i=l 

e. • 
J 

e. • 
J 

n+k 

I 
j=l 

require 

(~Xj) 

X E T M .) 
y y 

[ I (D Xj)T.) 
i=l T j l 

I 

Then, at 

u ' 

y E M , we 
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where is any orthonormal basis for T M 
y 

The divergence theorem states that if the closure M of M is a 

smooth compact manifold with boundary 3M M ~ M and if X E T M 'r/ y E M , 
y y 

then 

7.1 I div x dHn = ~ J x·n dHn-l 
M M 3M 

where n is the inward pointing unit co-normal of 3M ; that is, lnl = 1 , 

n is normal to 3M , tangent to M , and points into M at each point of 

3M 

7.2 REMARKS 

(1) M need not be orientable here. 

(2) In general the closure M of M will not be a nice manifold with 

boundary; indeed it can certainly happen that Hn(M~M) > 0 (For example 

consider the case when M u 2 2 
{(x,y) E R : y = x jk}~ {O} 

k=l 
1-dimensional submanifold of R 2 'r/ r in the sense of the above definitions, 

but M M is the whole x-coordinate axis.) Nevertheless in the general case 

we still have (in place of 7.1) 

provided support X n M is a compact subset of M and XY E TYM 1/yEM. 

In case M is at least c2 we define the second fundamental form of 

M at y to be the bilinear form 

such that 

7.3 B (T, nl 
y 

B 
y 

k 

I 
a=l 

.L 
+ (T M) 

y 
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where are (locally defined, near y) vector fields with 

z in some neighbourhood 

of y The geometric significance of B is as follows: If T E T M with 
y 

IT i 1 and y : (-1,1) -+ Fn+k is a c2 curve wi·th y (0) = y y(-1,1) CH 

and y(O) = T ' then 

B (T ,T) 
y 

o• J. 
(y(O)) 

which is just the normal component (relative to M) of the curvature of 

y at 0 , y being considered as an ordinary space-curve in JRn+k (Thus 

B (T, T) measures the "normal curvature" of M in the direction T • ) To 
y 

check this, simply no·te that va (y ( ·t) ) • y ( t) = 0 , It I < 1 , because 

Differentiating this relation 

with respect to t , we get 

(after setting t= 0) 

• T 

and hence (multiplying by va(y) and surmning over a ) we have 

k 

I 
a=l 

B (T,T) 
y 

as required. (Note that the parameter t here need not be arc-length 

for y ; it suffices that y(O) = T, 1-rl= 1.) More generally, by a similar 

argument, if and if mapping of a 

neighbourhood u of 0 in R2 such that <jl(U) c M <jl(O) = y ' 

j_p_ (0,0) T ' 
j_p_ (0,0) n , then 

(lxl (lx2 

B (-r,n> ( a2¢ r --1--2 (0,0) . y 
Clx Clx 
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In particular B (c,n) = B <n,cl y y 
that is B is a symmetric bilinear 

y 
j_ 

form with values in (T M) y 

We define the mean curvature vector H of M at y to be trace 

thus 

7.4 ,!J(Y) 
n 

I 
i=l 

j_ 
B ( T . , T . ) E (T M) 

y l l y 

B 
y 

where Tl, ••• ,Tn is any orthonormal basis for T M 
y 

Notice that then 

(if 

so that 

7.5 

near y . 

are as above) 

,!1 (y) 

H 

k n 

I I 
a=l i=l 

k 

I (divM,Plva 
a=l 

Returning for a moment to 7.1 (in case M is a compact c2 manifold 

with smooth (n-1)-dimensional boundary ()M M~M) it is interesting 

compute L divM X in case the condition X E T M is dropped. To 
y y 

this, we decompose X into its tangent and normal parts: 

T 1 
X X + X 

where (at least locally, in the notation introduced above) 

Then we have (near y) 

so that by 7. 5 

1 
X 

k 

I 
a=l 

k 

a a 
(\! •X) \! • 

L (Va•X)div va , 
a=l 

to 

compute 
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7.5' 

J T 
at each point of M . On the ot~er hand divM x· 

M 
r x • ll by 7 .1 • 

J <3M 

Hence, since divM X we obtain 

7.6 dHn - J X • 11 dHn-l 
CJM 

§8. THE AREA FORMULA 

Recall that if A is a linear map JRn + lRn and A c JRn , then 

Ln(A(A)) = jdet Aj Ln(A) . More generally if A : En+ JRN, N > n , then 

A (JRn) c F where F is a n-dimensional subspace of JRN , and hence choosing 

an orthogonal transformation q of :JRN such that q (F) = JRn , we see that 

q o A : JRn + JRn and hence L n (qA (A)) = I det (qA) J L n (A) for A c JRn . One 

readily checks, since q is orthogonal, that jdet(qA)j = /detX*oA, where 

A* : :RN + l<n is the adjoint of A . Since Hn(q(B)) = Hn(B) (by definition 

hence we obtain the area formula 

8.1 

whenever A is a linear map JRn + :RN , n s N . 

More generally given a map (M an n-dimensional 

c 1 submanifold of JRn+k) we have, by an approximation argument based on 

the linear case 8.1 (see [HR] or [FHl] for details) that 

8,2 V Hn-measurable set A c M , 
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where Jf is the Jacobian of f (or area magnification factor of f ) 

defined by 

8.3 Jf{y) /det { df ) * o ( df ) 
y y 

Here df : T M + RN is the induced lL>ear map described in §7, and 
y y 

(df ) * : RN + T M denotes the adjoint ·transformation. 
y y 

If f is not 1:1 we have the general area formula (which actually 

follows quite easily from 8.2) 

8.4 J H0 (f-l (y) n A) dHn (y) 

RN 

where H0 is a-dimensional Hausdorff measure i.e. "counting measure". 

(Thus H0 (B) = 0 if B = ~ , H0 (B) =the number of elements of the 

set B if B is a finite non-empty set, and H0 (B) = oo if B is not 

finite). More generally still, if g is a non-negative Hn-measurable 

function on M , then 

8.5 J f g dH0 dHn (y) 

N -1 
L (Jf) g dHn . 

JR f (y) 

This follows directly from 8.4 if we approximate g by simple functions. 

8.6 EXAMPLES 

(1) Space curves. Using the above area formula we first check that 

H1-measure agrees with the usual arc-length measure for c1 curves in JRn 

In fact if y: [a,b] + JRn is a 1:1 

IYI , so that 8.2 gives 

H1 (y(A)) 

as required. 

1 
C map then the Jacobian is just 
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(2) Submanifolds of ~n+k . If M is any n-dimensional c1 manifold 

of 
n+k 

~ we vvant to check that l-In agrees with the usual n-dimensional 

volume measure on M . It is enough ·to check this in a region v1here a local 

coo dina te represen·ta tion as in § 7 applies. If 

~J(W) 

is a local representation for M as in §7 then ·the usual definition of the 

n-dimensional volume of a Borel set A c ~·l n U is 

where A and i,j=~l,." .... fn 

However one easily checks that then ,/g is precisely J1P , the ,Jacobian of 

n+k 
I'!_,. ~ ' defined as above. Hence we have by the area formula 8.2 

that 

(3) n-d1:mensional graphs in ~n+l If It is a domain in JRn and if 

M = graph u ' where u E c1 {rt) t.'Jen M is globally represented by the 

ljJ }+ (x,u(x)) in this Jl/J(x) lctet(l1,. 'dlj! map ' X case - -.) 

dX 
~ dXJ 

- /det(oij +Di unju) = h+ 1 nu 1 2 

so Hn(M) f~h+ lnul 2 dx (by (2) above). 

§9. FIRST AND SECOND VARIATION FORMULAE 

Suppose that M is an n-dimensional c1 submanifold of JRn+k and let 

U be an open subset of JRn+k such that U n M ¥ Ill and Hn(KnM) < 00 for each 

compact Kc U Also, let {~t} be a 1-parameter family of diffeo-
o=:t:Sl 

morphisms U + U such that 
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( 1) tjl(t,x) (::: ¢t (x)) is a c2 map: (-1,1) XU+ U 

9.1 (2) ¢o(x) - X X E u { 
(3) ¢t(x) - X 'rj t E (-1, 1) 

' X E u~ K , where K c U 

is a compact subset of u . 

Also, let X , Z denote the initial velocity and acceleration vectors 

Then 

9.2 

thus X 
X 

3¢ (t,x) I' 

3t t=O ' 
z = 32cj?(t,x) I' 

X 3t2 t=O 

and X , z have supports which are compact subsets of U . Let 

Mt = ¢ t (M n K) (K as in 9 .1 ( 3) ) ; thus Mt is a 1-pararneter family of 

manifolds such that: Mo = M n K and Mt agrees with M outside some compact 
2 

d n 
1 ~Hn<M ll subset of u We want to compute dt H (Mt) and 
t=O dt2 t t=O 

(i.e. the "first and second variation" of M ) • The area formula is 

particularly useful here because it gives (with K as in 9.1 (3)) 

and hence to compute the first and second variation we can differentiate 

under the integral. Thus the computation reduces to calculation of 

and 

To calculate we first want to get a manageable expression for J~~ 
'-

First note that (for fixed t) 

(by 9 .2) . 
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Hence, relative to the bases Tl, .. .,Tn for T M and e 1 , o o,, en+k for 
X 

n+k 
the map dlj! . T M + :Rn+k has matrix :R tl X 

X 

£ ~ t2 £ 
a - T. + t D X' +-- D Z + 0 
ii - l T. 2 T. 

l l 

for i = 1, 0 •• , n , (d1j!ti ) * 0 (dlj!tl ) has matrix 
X X 

where 

b.. 0 .. + t(T. •D X+T.•D X) 
1] 1] 1 T j J T i 

+ t 2 (!(T.•D Z+T.•D Z) + (D X) 
l T. ] T. T. 

(D X)) 
l. 

J l l J 

+ O(t3) , 

so that (by the general formula det(I+tA+t2B) = l + t trace A + 

where 

we have 

l1 

(Jij!t) 2 = l + 2t divM x + t 2 (divMZ + L in xl 2 
i=l ' l i 

n 

I 
i=l 

n 
+ 2(divMX) 2 - . L 

i, j=l 

(DT X) 1 <=normal part of 
oi 

D X) 
T. 

l 

D X 
l, 

l 

l 2 
I (D X) I 

l, 
l 

n 

I (T.•D X)T. 
j=l J T i J 

Using 11+ x 
1 1 2 3 

1 + 2 X g X + O(X ) we thus get 

t2 2 n 
Jlj!t = 1 + t divM X + 2 (divMZ + (divMX) + l 

i=l 

n 

l 2 
I (Dl X) I 

i 

I (T.•D X)(T.·D X)) +O(t3). 
'i,j=l l 'j J 'i 
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Thus the area formula immediately yields ·the first and second variation 

formulae: 

9.3 

and 

I divM X dHn 
M 

9.4 d
2
2 Hn(Mt)l =J (divMZ+(divMX) 2 + .I \(DT_xJ 1 \

2
- I (T.•D X)(T.•D X)) 

dt t=O M. l=l l i,j=l l Tj J Ti 

We shall use the terminology ·t..hat M is stationary in U if Hn (M n K) < 00 

for each compact K c U and if _9_ Hn (M ) 1 = 0 
dt t t=O 

whenever 

as in 9.1. Thus in view of 9.3 we see that M is stationary in u if and 

only if t divM X dHn = 0 whenever X is cl on u with support X a 

compact subset of u 

In view of 7.6 we also have the following 

9.5 LEMMA 

(1) If M is a c2 submanifold of Rn+k and M is a c 2 submanifold 

with smooth (n-1)-dimensional boundary 3M M ~ M , then M is stationary 

in U if and only if ~ = 0 on M n U and 3M n U = 0 . 

(2) Generally, if M is an arbitrary c2 submanifold of JRn+k and 

-u n M 1:s a compact subset of M then M is stationary in u if and 

only if ~ = 0 on M n U • 

(In both parts (1), (2) above ~ denotes the mean curvature vector of M .) 

For later reference we also want to mention an important modification 

of the idea that M be stationary in u ' u open in 
n+k 

JR . 

N is a c2 (n+k1 )-dimensional submanifold of JRn+k 0 s kl 

suppose u is an open subset of N and M c N Then we say 

stationary in u if 9.3 holds whenever X E T N 
y y 

'r/ y E M . 

Namely, suppose 

s k ' and 

that M is 

This is 
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evidently equivalent to the requirement that ! Hn (¢> t (M n K)) I = 0 whenever 
t=O 

¢>t satisfies the conditions 9.1 (bearing in mind that U is required now 

to be an open subset of N rather than an open subset of 
n+k 

R as before) • 

If we let 1 k 
\) I • • • I\) be an orthonormal family (defined locally near a point 

y E M) of vector fields normal to M I such that 
1 kl 

\) , ... , \) are tangent 

to N and 
kl+l k normal to N then for any \) , ..• , v are , 

on M we can write X= x<ll + x<2J , where x<ll E TN z z 

x(2) 
n 

(vj •x) vj = I (= part of X normal to N) • Then 
j=kl+l 

any orthonormal basis for TYM , we have 

x(l) 
n 

(vj •X) div vj divM X divM + I 
j=kl+l 

M 

x<ll 
n 

- divM + I X·B (T.,T.) 
i=l y ~ ~ 

where B is the second fundamental form of N at y , 
y 

Thus we conclude 

vector field X 

and 

if Tl, ... ,Tn 

9.6 LEMMA If N is an (n+k1 J -dimensional submanifold of :rn.n+k if 

is 

M c N and if u is an open subset of N suah that Hn (M n K) < oo whenever 

K is a aompact subset of u , then M is stationary in u if and only if 

I divM X 
M 

I ~ • X 
M 

for each c1 veator field x with aompaat support contained in u ; here 

~I y 

n 

I 
i=l 

B (T .,T .) 
y ~ ~ 

form of N at 

yE .M where denotes the seaond fundamental 

is any orthonormal basis of T M 
y 

Finally, we shall need later the following important fact about second 

variation formula 9.4. 
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9.7 LEMMA If M is c2 stationary in u ' u open 7--n R 
n+k with 

(M~M) n u 0 and if X as in 9.4 ·has compact support in u with 

X E (T M)l 
y y 

l;j y E M , then 9.4 says 

ct2 n 
-2 H 01tl I 
dt 't=O 

n 

l 
i=l 

n 

I 
i, j=l 

2) n (X•B(T.,T.)) dH. 
l J 

9.8 REMARK In case k = 1 and M is orientable, with continuous unit 

normal \! , then X = i';;V for some scalar function I;; with compact support 

on M , and the above identity has the simple form 

n 

J clvMsl 2 - s 2 IBI 2 ldHn, 
M 

n 
IB 1 2 IB(T.,T.)I2::: lv•B(T. ,T .) 1 2 where l I This is clear, because !... 

i, j=l l J i, j=l l J 

(D (Vi;;)) 1 \) D_ s by virtue of the fact that D \)I E T M I;J y E M 
T. L. T. y 

l l l y 

Proof of Lemma 9.7 · First we note that J divM z dHn = 0 by virtue of the 
M 

fact that M is stationary in u and second we note that div X =-X • H M = 

by virtue of 7.5' and 9.5 (2) and the fact that X is normal to M The 

proof is complet.ed by noting that T. • D X - X • B (T., T.) by virtue of 7.3 
l T. l J 

J 
and the fact that X is normal to M 

§10. CO-AREA FORMULA 

As in our discussion of the area formula, we begin by looking at linear 

maps but here we assume N < n Let us first look at the 

special case when A is the orthogonal projection p of Rn onto JRN . 

0 

(As before, we identify JRN with the subspace of Rn consisting of all points 
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(x1 , .•• ,xn) with xj = 0, j = n-N+l, ••• ,n .) The orthogonal projection 

p has the property that, for each y E E.N , 
-1 

p (y) is an (N-n)-dimensional 

affine space; each of these spaces is a translate of the (N-n)-dimensional 

subspace 
-1 p {0) • Thus the inverse images 

-1 
p (y) decompose all of 

into parallel ~(n-N)-dimensional slices" and by Fubini's Theorem 

10.1 J Hn-N (p -l (y) n A) dy 

:RN 

whenever A is an Ln-measurable subset of E.n. 

This formula (which, we emphasize again, is just Fubini's Theorem) is 

a special case of a more general formula known as the co-area formula. We 

first derive this in case of an arbitrary linear map A : E.n + E.N with 

rank A = N • 

(Then for each N -1 
y E E. , A (y) is an (n-N)-dimensional 

affine space which is a translate of F ; the sets A-l(y) thus decompose all 

of E.n into parallel (n-N) -dimensional slices.) 

Take an orthogonal transformation q = :Rn + E.n such that q F1 = JRN , 

n-N 
q F = E. . Then A can be represented in the form A = o o p o q , where p 

is the orthogonal projection 0 is a non-singular trans-

formation of E.N . (This is easily checked by considering the action of A 

on suitable basis vectors.) By 10.1 above, for any ~-measurable A c JRn, 

Ln(A) J n-N -·1 N H (q (A) n p (y)) dL (y) 

BN 

making the change of variable z = O(y) (dy idetol-1dz) , we thus get 



I de to I Ln (A) 

Also, since q*q = 1 and pp* 
Rn 

so that ldetol ldet AoA* . 

Thus finally 

10.2 
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1 N , we have A o A* 
R 

0 o O* 

~his is the co-area formula for linear maps. (Note that it is trivially valid, 

with both sides zero, in case rank A < N .) 

Generally, given a map where M is an n-dimensional 

c1 submanifold of Rn+k we can define 

J*f{x) ldet(df ) o (df ) * , 
X X 

where, as usual, df 
X 

TxM + RN denotes 'the induced linear map. Then for 

any Borel set A c M 

10.3 J Hn-N (An f-1 (y)) dL N (y) . 

RN 

This is the general co-area formula. Its proof uses an approximation argument 

based on the linear case 10.2. (See [HRl] or [FHl] for the details.) 

An important consequence of 10.3 is that if C {xE M : J*f(x) = 0} 

then (by using 10.3 with A = C) Hn-N (C n f-l (y)) 0 for L N - a. e. y E RN 

Since J*f(x) ~ 0 precisely when dfx has rank N , it is clear from the 

implicit function theorem that 
-1 

X E f (y) ~ c ~ 3 a neighbourhood V of X 



56 

such that V n f- 1 (y) is an (n-N)-dimensional c 1 submanifold. In summary 

we thus have the following important result. 

10.4 THEOREM (C 1 Sard-type theorem.) 

Suppose f : M -+ JRN N < n , Then for N L - a.e. y E f (M) , 

-1 l 
f (y) decomposes into an (n-N) -d~:mensional c submanifold and a closed 

set of Hn-N_measure zero. Specifically, 

-1 -1 
(f CyJ~cJ u (f CylncJ, 

C = {x EM J*f (x) = 0} (:= {x EM : rank (df) < N}) , Hn-N (f-l (y) n C)= 0 , 

y ' and f- 1 (y) ~ c is an (n-N) -dimensional .c1 submanifold. 

10.5 REMARK If f and M are of class 
n-N+l 

c ' then Sard's Theorem 

asserts the stronger result that in fact f- 1 (y) n C = 0 for 
,N 
L - a.e. y E JRN ' 

so that f-l (y) is an (n-N) -dimensional Cn-N+l submanifold for LN- a.e. 

A useful generalization of 10.3 is as follows: If g is a non-negative 

Hn-measurable function on M , then 

10.6 f n-N N 
g dH dL (y) . 

f-l(y) 

10.7 REMARKS 

(l) Notice that the above formulae enable us to bound the Hn-N measure 

of the 11 slices 11 f-l(y) for a good set of y Specifically if I fl ::: R and 

g is as in 10.6 (g = l is an important case), then there must be a set 

s c BR(O) ( c :RN) 
' s = S(g,f,M) with LN(S) ::: ]:LN(B (0)) 

2 R 
and with 

J -1 
f (y) 
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for each y E S . For otherwise there would be a set T c BR(O) with 

LN(T) >I LN(BR(O)) and 

y E T , 

so that, integrating over T we obtain a contradiction to 10.6 if 

JM g J*f dHn > 0 On the other hand, if J g J*f dJin= 0 then the required 
M 

result is a trivial consequence of 10.6. 

(2) The above has an i..mportant extension to the case when we have 
n+k n 

f:JR +JR 

and sequences {Mj}, {g·j} satisfying the conditions of M, g above. In this 

case there is a set S c BR(O) with such that for each 

y E S there is a subsequence {j•} (depending on y) with 

J -1 

Hn-N 
g, I d S 

M. ,nf <Yl 
J 

J 

Indeed otherwise there is a se'c T with LN(T) > ~ LN(BR(O)) so that for 

each y E T there is £(y) such that 

(*) 

for each j > £(y) . But T 

there must exist j so that 

g. J*f dHn 
J 

U T T. = {y E T j I J 
£(y) ::: j} , and hence 

j=1 

LN (T .) > .! LN (BR(O)) . 
J 2 

Then, integrating (*) 

over y E T j , we obtain a contradiction to 10.6 as before. 


