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A nonrucmnmutative joint spectral theo:ry 

A.J. Pryde 

ABSTRACT 

For certain m-tuples a {a , ... ,a ) of elements a in a unital 
1 m j 

Ba.11ach algebra, we construct a joint spectrum 1(a) and a functional 

calculus with a spectral l!'.apping: theorem. It is not assumed that the a 
j 

commute but rather that they colllllrute modulo the Jacobson :radical of the 

algebra they generate. For matrices, this last condition is equivalent to 

their being simultaneously triang:ularizable. This work extends that of M.E. 

Taylor, R.F.V. Anderson, and A. Mcintosh and A. Pryde. 

1980 Mathematics subject classification (1985 revision) 47Al0, 47A60. 

1. INTRODUCTION 

Classical spectral theory relates to the spectrum of a single operator 

on a Banach space or, more generally, of a single element in a Banach 

algebra. There have been a number of successful attempts to extend this 

theory to a joint spectral theory for m-tuples (a , ... ,a) 
1 m 

of commuting 

operators or elements in a Banach algebra. 

For exa.mple, the joint spectrum and analytic functional calculus of 

J.L. Taylor [8], [9] have become an essential part of spectral theory. For 

a description of the analytic functional calculus for m-tuples in a 

commutative Banach algebra, see Bonsall and Duncan [2] or Vasilescu [11]. 
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By limiting the class of commuting m-tuples to those of type s (for 

the definition, see section 3 below), Mcintosh and Pryde [ 4] developed a 

much richer functional calculus. Their results were stated :for bounded 

linear operators on a Banach space but the proofs are equally valid for 

commuting m-tuples in a Banach algebra. 

M.E. Taylor [10] and Anderson [1] constructed a functional calculus for 

(non-commuting} bounded self-adjoint operators on a Hilbert space or, more 

generally, on a Banach space. In contrast to the functional calculi 

mentioned previously, this one is not lliUl tiplicative and does not have a 

spectral mapping theorem (unless the a 
j 

commute). This last fact will be 

demonstrated .in example 4.3 below. 

In this paper we describe a joint spectrum 1'(a) and a functional 

calculus with a spectral mapping theorem for certain m-tuples 

a = (a , ... ,a ) 
1 m 

in a Banach algebra. Complete details will appear 

elsewhere. 

Throughout, :B is a Banach algebra with unit e and 

a = (a , ... ,a ) E 'Bm. Also ~ = alg(e,a ..... ,a} is the closed unital 
1 iD. L m 

subalgeb:ra of 'B generated by a, ... ,a. 
1 m 

Let 'g be any closed unital subalgebra of :B. The spectrum of an 

element x in 'g is denoted a'G'(x) or sometimes a(x). The group of 

invertible elements in '6' is denoted G('g). An element q of '6' is 

called quasinilpotent if The Jacobson radical of is 

rad 'g = {q E '6' : qx is quasinilpotent for all x E 'g}. 

For a discussion of the Jacobson radical and other concepts, see 

Bonsall and Duncan [2]. In particular rad 'g is a closed two-sided ideal 
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2. TilE JOINT SPECTRUM 

Following Mcintosh and Pryde [4] we define a spectral set -y(a) as 

follows. For any closed unital subalgebra of 
n 

-y~(a) = {A E ~m : ~(a.-A e) 2 ~ G(~)}. Then set -y(a) = -yA(a). 
1 J j 

let 

Previously. this set -y(a) was only defined for commuting m-tuples 

a = (a , ... ,a) with a. E :'B(X) the space of bounded linear operators on 
1 m J 

the Banach space X. In that case, if also a 21(a) !";;; ~ for each j, where 

:'8 = :'B(X). then -yA(a) = -y21 (a) = Sp(a). The second equality was proved in 

Mcintosh, Pryde and Ricker [5], along with equality with various other joint 

spectra. The first equality follows from Taylor's spectral mapping theorem 

[9]. Ricker and Schep [7] have proved that for commuting operators with 

arbitrary spectrum, -y:'B(X)(a) is non-empty whenever m ~ 2. 

We will see that for certain m-tuples a = (a , ... ,a) E :'Bm with 
1 m 

a 21 (aj) !";;; ~. the set -y(a) gives an adequate notion of joint spectrum. In 

that case r(a) = sup{ I A I : A E -y(a)} will be called the joint spectral 

radius of a. 

3. TilE FUNCTIONAL CALCULUS 

Following Mcintosh and Pryde [4]. we say the m-tuple 

a= (a , ...• a) E ~ is of type s, where s ~ 0, if there is a constant M 
1 m 

such that 

(3.1) 

Of course 
m i<a ~> 

<a.~>=~a.~.EA and e ' eA. It follows that 
J J 

(3.2) 
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Further, we shall say that a = (a , ... ,a ) 
1 m 

is of type ( s, r) , where 

s ~ 0 and r > 0, if there is a consta_~t M such that 

(3.3) 

The space is discussed in [4]. It consists of the set of 

inverse Fourier transforms f = g of the functions g : IRm -7 IC for which 

We shall write for g. The Fourier inversion 

formula we are using is 

It follows that ~ is a Banach algebra with respect to pointwise addition 

and multiplication and with norm 

Moreover, the space C00 (1Rm) of infinitely differentiable functions on IRm 
c 

with compact support is dense in ~. 

For m-tuples a = (a1 , ••. ,a,) of type s we define a linear map 

<l?a 'ff -7 ,a by 

This integral exists as a Bochner integral because the integrand is a 

strongly measurable A-valued function of E and the integral is absolutely 

convergent by (3.1). Moreover, II<Pa(f)jl :S Mll£11. 

We define the support supp ~a of ~a to be the smallest closed set 

K in IRm such that <l:>a(f) = 0 for aU f E '!f with compact support 

disjoint from K. Using a partition of unity argument, it is easy to see 

that the intersection of all closed sets K with the given property also 

has that property. Hence there is a smallest K. 
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The ar~~ment in [4, lerr~~ 8.4] based on the Paley-Wiener theorem cru~ be 

repeated to prove 

TIIEOREM 3.4.If a = (a , ... ,a) 
1 m 

is an m- tuple in :B of type (s ,r) 

then ~a has compact support. In fact supp ~a~ {A E ~m: 1\1 s r}. 

As mentioned above, Taylor a_nd ru~derson [1] considered the case of 

m-tuples a = (a1 , •••• a,) of bounded self-adjoint operators. That is to 

say, is an isometry for each :S:o is of type 0. In 

fact, using the Trotter product formula, Taylor proved that such an m-tuple 

is of type ) where II all == (;lla.ll 2 ) 112 • The arg;uments used in [10] 
1 J 

ruxd [ 1] rrfiy be used to prove 

THEOREM 3.5. Let a = (a 1 , ••• ,am) be an m-tuple in 1l of type s such 

that <Pa has compact support. Let 8 E d'" (IR 00
) be identically 1 on a 

0 

neighbourhood of supp ~a· 

(a) If p(A) is a polynomial in \ ·' then ~a(Bp) = p(a). 
J J J 

k k k f .•. k I 
(b) If p(>.) .\1 ... .Xm, then .Pa(ep) 

1 m 
:E = 

k! 
a a 

'l"(k)' 1 m T(l) 
T 

where k=k+ ... -1-k and the 
1 m 

sum is over every map 

T : {1, ... ,k} -> {1, ... ,m} which assumes the value j exactly k times 

for 1 s j sm. 

4. 11-IE SPECfRAL MAPPING TIIEOREM 

As before, let a = (a , ... ,a ) E :Sm and set 
1 m 

.4 = alg(e,a , ... ,a). 
1 m 

Let .4' = span{xy-yx : x,y E .4} be the commutator subspace of and 

rad .4 its jacobson radical. So .4/rad .4 is a commutative Banach algebra 

and we let ~ : .4 ~ .4/rad A be the canonical homomorphism. It follows that 

u(~(x)) = a(x) for all x EA. 
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We will impose the condition that A' ~ rad ~. which is equivalent to 

the a 
j 

commuting modulo rad A. Under this condition, 

is a commuting m-tuple in A/rad A. If in 

is an m-tuple of type s then 1r(a) is a 

commuting m-tuple of type s. So 11"(3) has a functional calculus 

and the results of Mcintosh and Pryde [ 4] may be 

applied. Moreover, ~ = 1r o w and we have the following theorem 
1r<al a 

THEOREM 4.1. If a = (a , ... ,a ) is an m- tuple in ~ of type s and 
1 m 

~· ~ rad ~ then 

(a) w o ~ ~ Ajrad ~ is a homomorphism, 

(b) supp(1r o ~a) is compact, 

(c) supp(1r o ~a)= ~(a), 

(d) a(~a(f)) = f(~(a)) for all f E ~. 

Part (d) of Theorem 4.1 is the spectral mapping theorem. Applying it 

to the functions Op , \'!There PJ. 
j 

for l E IRm and 8 E C00 (1Rm) 
c 

identically 1 on a neighbourhood of ~(a), and to e we obtain 

is 

COROLLARY 4.2. If a (a 1 , ••. ,am) is an m-tuple in 'J3 of type s 

and A' ~ rad d then 

(a) 

(b) 

~(a) ~ a(a1) x ... x a(a), 

a(aJ.+ak) ~ a(a) + a(a). 
j k 

~ [1 0, 
EXAMPLE4.3. Let a=(a1 ,a) where a 1 = o-d Then 

a 1 ,a2 are non-commuting self-adjoint matrices with a(a) = a(a) = {1,-1}. 
1 2 

Also a(a +a ) = {/2,-/2} so there is no spectral mapping theorem for \!?a. 
1 2 

Here (a ,a. ) is of type (0,/2) but of course A' '$ rad A. 
1 2 



159 

5" Al.HEBRJ\:S OF J'.liATRICES 

In this section we provide exar!iples of lllll-tuples of Jratr:ices satisfying 

the comli tions of Theorem 4. 1. 

It :is well knmom tl:>.at H a 1 , ... ,am are cOITJiruting matrices then they 

are simultaneously triang;ular:izable. That is, there is an invertible matrix 

b such that b-1a b is 
j 

triangular for 1 < j 5 m. Then, b-1xb is 

trian.,oular for all rued we sa:y fha t is 

tria.YJgulariz.able. 

It is clear tlnat condition 4.2(b) is satisfied if is 

triangularizable. Moreover, if in addition o(a) ~ IR 
J 

for each 

j = l, ... ,m then ~(a)= E IRm : there exists k, 1 5 k 5 m, such tlcat 

). (b-1ajb)kk for each j, 1 5 j 5 n}. So 4.2(a) is then also satisfied. 

Now let , ... ,a be N by N matrices. Set 
m 

alg(e,a , ... ,a) 
1 m 

and for 

n ~ 1. Recall that A is called solvable if .a<nl = for some n E fi~. 

It is dear that if sd is triangularizable then Ill is soivable. The 

converse is known as Lie's theorem. A proof nny be found in Jacobson [3]. 

If A is triangularizable then rad ~ = {q E A : q is nilpotent} and 

Conversely, if .4' ~ rad A then (xy-yx)z ls 

nilpotent, and hence leas zero trace, for all x,y,z E .4. By a recent result 

of Radjavi [6] this trace condition is equivalent to being 

triangularizable. So we have the following 

TH:EOREM 5.1. For an algebra dl of (complex) matrices the follow·ing are 

equivalent 

(a) dl is triangularizable, 

(b) A is solvable, 
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(c) A' C rad .4, 

(d) trace(xyz-yxz) 0 for all x,y,z E A. 

Finally we have the following 

THEOREl\1:5.2. If a 1 , .•• ,a.m are simultaneously tria.ngularizable 2 by 2 

matrices with real eigenvalues then a = (a , ... ,a ) 
1 m 

.Ls of type (1 ,r) 

any r > r(a) the jo.Lnt spectral radius of a. 

PROOF. It suffices to suppose tt~t the a 
j 

are triangular rratrices. 

kh (akh, ... ,akh) where kh is the kh component of a = a a 
1 m j 

1 ~ k,h ~ 2. For I = t; + i!7 where f;.!'j E IRm let z = ei<(L €> 

for 

Let 

for 

Then 
22 

, I;> -ei<a 
11 

,I;> 
i<a11 ,i> i<a22,1> 

i<a 

= 0, (a 12 
.r> 

e z e z z e ' z 
11 21 22 12 <a 22 

.r>-<a 
11 .r> 

if .e;> <a 11 , r>. ru"d :i<a 12 11,1> •J: <a22 .r;> .r> . .., z "" 1" 
12 

11 

el•11 1hl,lz 1 
22 

• rt> :5: e I a 
22 1 I 11 I , So I z 1 1 

-<a ,rp ~ -<a 
and = e e 

22 

giving 

where € > 0 is arbitrary and r 
€ 

< + r(a). 
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