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A non-commutative joint spectral theory
A.J. Pryde

ABSTRACT

For certain m—tuples a = (al,...,am) of elements a, in a unital
Banach algebra, we construct a joint spectrum +y{a) ‘and a functional
calculus with a spectral mapping theorem. It is not assumed that the aj
commute but rather that they commute modulo the Jacobson radical of the
algebra they generate. For matrices, this last condition is equivalent to

their being simultaneocusly triangularizable. This work extends that of M.E.

Taylor, R.F.V. Anderson, and A. McIntosh and A. Pryde.

1980 Mathematics subject classification (1985 revision) : 47TA10, 47A60.

1. INTRODUCTION

Classical spectral theory relates to the spectrum of a single operator
on a Banach space or, more generally, of a svingle element in a Banach
algebra. There have been a number of successful attempts to extend this
theory to a joint spectral theory for m—tuples (al,...,am) of commuting

operators or elements in a Banach algebra.

For example, the joint spectrum and analytic functional calculus of
J.L. Taylor [8]. [9] have become an essential part of spectral theory. For
a description of the analytic functional calculus for m-tuples in a

commutative Banach algebra, see Bonsall and Duncan [2] or Vasilescu [11].
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By limiting the class of commuting m—tuples to those of type s (for
the definition, see section 3 below), McIntosh and Pryde [4] developed a
much richer functional calculus. Their results were stated for bounded
linear operators on a Banach space but the proofs are equally valid for

commuting m—tuples in a Banach algebra.

M.E. Taylor [10] and Anderson [1] constructed a functional calculus for
(non-commuting) bounded self-adjoint operators on a Hilbert space or, more
generally, on a Banach space. In contrast to the functional calculi
mentioned previously, this one is not multiplicative and does not have a
spectral mapping theorem (unless the aj commute). This last fact will be

demonstrated in example 4.3 below.

In this paper we describe a joint spectrum +vy(a) and a functional

calculus with a spectral mapping theorem for certain m—-tuples
a= (al, N .am) in a Banach algebra. Complete details will appear
elsewhere.

Throughout, 3 is a Banach algebra with wunit e and
a=(a.....a)e 8". Also d = alg(e.a,...,a) is the closed unital
subalgebra of 3 generated by a,....2.

Let © ©be any closed unital subalgebra of 3. The spectrum of an
element x in € 1is denoted ag(x) or sometimes o(x). The group of
invertible elements in € is denoted G(¥). An element q of € is
called quasinilpotent if ag(q) = {0}. The Jacobson radical of € is

rad € = {q € ® : gx is quasinilpotent for all x e €}.

For a discussion of the Jacobson radical and other concepts, see
Bonsall and Duncan [2]; In particular rad © is a closed two-sided ideal

of ® and ag(x) =a£(x) if aﬂ(x) c R.
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2. THE JOINT SPECTRUM

Following McIntosh and Pryde [4] we define a spectral set «vy(a) as
follows. For any closed wunital subalgebra [ of B let

753(3) ={A eR”: ;I(aj—kje)z ¢ G(¥)}. Then set ~(a) = 734(3).
1

Previously, this set <vy{a) was only defined for commuting m—tuples
a= (al,...,am) with a € B(X) the space of bounded 1ipear operators on
the Bamach space X. In that case, if also ag(aj) c R for each j, where
B = B(X), then 754(3) = 73(3) = Sp(a). The second equality was proved in
McIntosh, Pryde and Ricker [5], along with equality with various other joint
spectra. The first equality follows from Taylor’s spectral mapping theorem
[9]. Ricker and Schep [7] have proved that for commuting operators with

arbitrary spectrum, 7.‘B(X) (a) is non-empty whenever m > 2.

We will see that for certain m-tuples a = (al, ...,a) €3 with
m
aﬂ(aj) Cc R, the set +(a) gives an adequate notion of joint spectrum. In

that case r(a) = sup{|r| : » € y(a)} will be called the joint spectral

radius of a.

3. THE FUNCTIONAL CALCULUS

Following McIntosh and Pryde [4], we say  the m—tuple
a= (al,...,am) € 8" is of type s, where s = O, if there is a constant M
such that
(3.1) €54 < M(1+]¢|)° for all ¢ eR™

m
Of course <a.,¢> =3 a¢ €4 and ei<a’€> e 4. It follows that
3%3
1

(3.2) 74(<a.8>) = 05(<a.£>) c R for all ¢ e R™.
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Further, we shall say that a = (al,...,am) is of type (s,r). where

s>0 and r > 0, if there is a constant M such that

(3.3) [et<@- | < M(l+|§|)ser|"l for all £, € R™.

The space ¥ = lY.i(IRm) is discussed in [4]. It consists of the set of
inverse Fourier transforms f =g of the functions g : R" - C for which
(1+]¢])°g e Ll([Rm). We shall write f for g. The Fourier inversion

formula we are using is

£F()) = (2n)™" ei<)"$>g(§)d§, A eR".

It follows that ¥ 1is a Banach algebra with respect to pointwise addition

and multiplication and with norm
Il = @)™+, -
1

Moreover, the space C°°(!Rm) of infinitely differentiable functions on R"
c

with compact support is dense in &.

For m—tuples a = (al,...,a) of type s we define a linear map
m

8, % >d by

2,(f) = (2ﬂ)“Jei‘a’5>f(g)dg.
This integral exists as a Bochner integral because the integrand is a

strongly measurable «-valued function of ¢ and the integral is absolutely

convergent by (3.1). Moreover, ||<I>a(f)|| < M||£|.

We define the support supp <I>::l of @a to be the smallest closed set
K in R™ such that &I>a(f) =0 for all f e€¥ with compact support
disjoint from K. Using a partition of unity argument, it is easy to see
that the intersection of all closed sets K with the given property also

has that property. Hence there is a smallest K.
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The argument in [4, lemma 8.4] based on the Paley-Wiener theorem can be

repeated to prove

THEOREM 34.1f a = (al,...,am) is an m-tuple in B of type (s,r)

then &, has compact support. In fact supp @, C (X € R™ : || = z).

As mentioned above, Taylor [10] and Anderson [1] considered the case of
m-tuples a = (al,...,a) of bounded self-adjoint operators. That is to
m .

say. oi<d: &>

is an isometry for each ¢ e€R". So a 1is of type O. In
fact, using the Trotter product formula, Taylor proved that such an m-tuple

m
is of type (0.|a]]) where |a| = (2‘.]|ad|[2)1/2. The arguments used in [10]
1

and [1] may be used to prove

THEOREM 3.5. Let a = (a,...,a) be an m-tuple in B of type s such
m

that <I>a has compact support. Let 9GC°:(|RN) be identically 1 on a

neighbourhood of supp <I>a.

(a) If p()‘j) is a polynomial in Aj, then tI>a(€p) = p(aj).
k k k... k!
1 m

1 m

(b) If p(X) = ,\1 ...)\m , then <I>a(0p) =% f a'r(l) a”k),
where k = k1 T km and the sum is over every  map
T {1,...,k} » {1,...,m} which assumes the value j exactly k. times

3

for 1< j <m.
4. THE SPECTRAL MAPPING THEOREM

As before, let a = (a.....a) € 8" and set d = alg(e.a ,....a).

m m

Let & = span{xy-yx : x,y € 4} be the commutator subspace of 4 and
rad 4 its Jacobson radical. So «/rad 4 is a commutative Banach algebra
and we let =« : 4 > 4/rad 4 be the canonical homomorphism. It follows that

o(n(x)) = o(x) for all x e 4.
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We will impose the condition that & ¢ rad £, which is equivalent to
the a. commuting modulo rad 4. Under this condition,
J

x(a) = (w(al),...,vr(am)) is a commuting m-tuple in  4/rad «. If in

addition ag(aj) CR for each j then +(a) = v(x(a)).

If a= (al,...,am) is an m-tuple of type s then x(a) 1is a
commuting m-tuple of type s. So w(a) has a functional ‘calculus
¢1r(a) : ¥ 5> d/rad £ and the results of McIntosh and Pryde [4] may be
applied. Moreover, éma) =7 o <I>a and we have the following theorem

THEOREM4.1. I1f a = (a,...,a) is an m-tuple in B of type s and

& C rad 4 then

(a) = o <I>a : ¥ » d/rad 4 is a homomorphism,
(b) supp(m o <I>a) is compact,
(c¢) supp(m o &) = vy(a),

(d) a(@a(f)) = f(y(a)) for all f e¥.

Part (d) of Theorem 4.1 is the spectral mapping theorem. Applying it
to the functions op_. where pj(A) =, for A eR"™ and 4 e C(R") is
c

identically 1 on a neighbourhood of +v(a), and to 6(pj+pk) we obtain

COROLLARY 4.2. I1f a = (a,...,a) is an m-tuple in B of type s
and 4 C rad 4 then
() v@) Co(a)x ... xoa(a),
(b) U(ad+ak) c a(aj) +o(a).
EXAMPLE 43. Let a = (a.,a) where a = [1 0] and a = [o 1] Then
1’72 1 0 -1 2 |1 0|

a .a  are non-commuting self-adjoint matrices with a(al) = a(az) = {1,-1}.

Also a(a1+a2) = {¥2,-/2} so there is no spectral mapping theorem for <I>a.
Here (al,az) is of type (0./2) but of course « ¢ rad «.



159

5. ALGEBRAS OF MATRICES

In this section we provide examples of wm—tuples of matrices satisfying

the conditions of Theorem 4.1.

It is well known that if a.....a are commuting matrices then they
m
are simultaneously triangularizable. That is, there is an invertible matrix

b such that b_la.b is (upper) triangular for 1 < j <m. Then, b'xb is
3

triangular for all xedl:alg(e,al,...,a) and we say that £ @ is
m
triangularizable.
It is clear that condition 4.2(b) is satisfied if o is
triangularizable. Moreover, if in addition o(a) CR for each
3

j=1,....,m then ~(a) = {) € R" : there exists k, 1 <k <m, such that

Aj = (b_lajb)kk for each j, 1 = j <n}. So 4.2(a) is then also satisfied.

Now let a,....,a be N by N matrices. Set
49— u (n) . (n-1)
=d = alg(e,al, e ,am) and 47 = span{xy-yx @ x,y € « } for

n > 1. Recall that £ is called solvable if 4™ = {0} for some n € N.

It is clear that if « is triangularizable then # is solvable. The

converse is known as Lie’s theorem. A proof may be found in Jacobson [3].

If 4 1is triangularizable then rad £ = {q € £ : q is nilpotent} and
& = 4P ¢ rad 4. Conversely, if 4 c rad 4 then (xy-yx)z is
nilpotent, and hence has zero trace, for all x,y.,z € 4. By a recent result
of Radjavi [6] this trace condition is equivalent to Fd being

triangularizable. So we have the following

THEOREM 5.1. For an algebra 4 of (complex) matrices the following are

equivalent

(a) 4 is triangularizable,

(b) 4 is solvable,
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(c) & C rad 4,

(d) trace(xyz-yxz) = 0 for all x,y,z € 4.

Finally we have the following

THEOREM 5.2. I1f a,...,a  are simultaneously triangularizable 2 by 2
matrices with real eigenvalues then a = (al,...,am) is of type (l1,r) for

any r > r(a) the joint spectral radius of a.

PROOF. It suffices to suppose that the a, are triangular matrices. Let

a™ = (ath, ...,a") where aI;h is the kh  component of a. for
m J

1<k,h<2. For ¢ =¢+ip vwhere ¢,peR” let z = e 3:€>  Then

1<a2? en sealloes
2 =& K7 o L0, oz =8 4 e S ettt o
11 21 22 12 @?,c>—<at o>
o
if @0 % <@gy, and oz = 17,0 2 ir @20 = <&t o
1 1 22 22
So |z | =" .17>5e|a ||’7|,|Z | =™ "PseIa n] and
1 22
22 11 x |n]
|z, = 4|a'?| |g’|(eIB Hal 4 ole Il"l), giving [e%%7| < c (1+[¢])e ¢
where ¢ > O is arbitrary and r o=+ max|akk| = e + r(a);

k
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