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“STRONG DENSITY OF FINITE RANK OPERATORS IN SUBALGEBRAS OF B(X).“

M.S. Lambrou

Abstract: An open problem in operator theory asks whether for a com-
plete atomic Boolean subspace lattice 4. the rank one subalgebra of
A]gl,is strong operator dense in Algl. A very special case of this prob-
Tem turns out to be equivalent to an open problem in the Theory of Ba-
ses. Here various related questions are surveyed and some positive re-

sults are given.

§0 Introduction The first part of this paper is to survey certain density

results and open problems in Operator Theory. It turns out that a special
case of the main open problem is equivalent to an old standing problem in the
Theory of Bases. This perhaps unexpected Tink between an Operator Theory ver-
sion and a Basis Theory version of the same open problem is explored in the
second part. The third part of the paper gives certain new results along
these Tines.

The Tink between Operator Theory and Basis Theory here is provided by a
result in [1] which is under preparation. To avoid the overlap however we
shall only report a brief (but sufficiently Tong) summary of the proof.

The author wishes to thank his co-authors of [1], S. Argyros ar”’
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W. E. Longstaff, as well as A. Katavolos for many discussions relating to the

present work.

§1. Subspace Lattices. In the following H will denote a Hilbert space over

the real or complex scalars. The cases when H is required to be restricted to
be a separable complex Hilbert space over €, will be specified whenever re-
quired. The letter X will denote a Banach space, again over [Ror @ , and X* is
its dual. The set of (bounded linear) operators on X is denoted by W®(X) and
the rank one operator x»—’e*(x)f for fixed f€X and e_*e X* is denoted by e*sf.
By &(X) we denote the Tattice of closed subspaces of X, and a collection

f.¢ €(X) is called a subspace lattice if it contains the two extremes, X and

the zero subspace (0), and is complete with respect to taking arbitrary closed
Tinear spans and intersections. That is, whenever Li”" (iQI)‘for some indexing
set I, then also VILi and ;L1 belong to L. 1f LX) then Algl, denotes the
set {Aé'&(x) | A(L)eL for all L€ 2,}. That is, Algl, is the set of all operators
leaving the elements of & invariant. It is easy to see that Algd, is an algebra
which is closed in the weak operator (and hence strong operator and norm) topo-
logy. Dually, if A<B(X) then Latft denotes the set {L eS(X) | A(L)eL all A in .A}.
For any §, .the set Lat# is a subspace Tattice. Following Halmos' by now stand-
ard terminology, a subspace lattice is called reflexive if LatAlgf,=f . Note
that the inclusion LatA]gLi‘&, is always true. It is easy to see that a nece-
ssary and sufficient condition for 4, to be reflexive is that §.= Lat# for
some A (necessa.rﬂy AsAlgl,). For further discussion on the topic of inva-
riant subspaces we refer to [22].

The question of characterizing reflexive (necessarily subspace) lattices
has the following partial answers. "Most" of the known examples of reflexive
lattices are distributive in the sense that if L,M,N, are elements of the
lattice then (LVM)NAN=(LAN)v(MNAN) and its dual hold {see [8] for standard
terminology on Lattice Theory.) Indeed,in finite dimensional Banach spaces we

have the following characterization of R. E. Johnson.
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Theorem 1 ( [12]) In a finite dimensional vector space a finite lattice is

reflexive if and only if it is distributive.

The first reflexivity result in infinite dimensional sbaces is due to
Ringrose who studied certain generalizations of subspace lattices considered
by Kadison and Singer in their seminal paper [13]. Ringroses' Theorem is sta-
ted and proved in [23].for Hilbert spaces but the proof can be adapted (we

shall omit this here) to Banach (in fact just normed) spaces.

Theorem 2 ([23]) Any totally ordered subspace lattice {, of subspaces of a
Banach space is reflexive.In fact .= Lat®R where ® is the set of rank one

operators of Algf,.

To fix one more notational symbol, for a given subspace Tattice %, , the set
of finite sums of rank one operators of Algl, will be denoted by ®R. This
may be empty, and will be called the rank one subalgebra of Algl . The R in
the Theorem 2 can be replaced by this, new, ®_.
The next infinite dimensional reflexivity result is due to Halmos : Again

this is proved for Hilbert spaces but is also valid for Banach spaces.

‘Theorem 3 ([9]) Any atomic Boolean subspace Tattice & of subspaces of a Ba-

nach space satisfies L= Lat® and hence is reflexive.

(The conclusion &L= Lat® is not stated in [9] but it is implicit in the
proof). Recall that Boolean Tlattices are distributive. Related to these is

the result of Harrison [10) who showed, again in the presence of a certain

{strong) distributivity condition,a reflexivity result.Specifically an infi-
nitely distributive subspace lattice L,in which each non-zero sub-space is
the join of completely-join-irreducible subspaces in f. is reflexive. A1l of
the Tast three results are a speciai case of the result of Longstaff (which

we state for Banach spaces instead of the original Hilbert space version).
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Theorem 4 ([18]). Every completely distributive subspace lattice L of sub-

spaces of a Banach space satisfies %= Lat® and hence is reflexive.

We shall not attempt to define complete distributivity here (see 18], [14)).
We only mention that it is equivalent to the identity
L =I’){M_ | Met., mgLl
holding for all Lin 4, where M_ is defined as
M. = Vikeg|mex}.

A most interesting family of reflexive lattices that has been the object
of very active research in the past few years are, in complex Hilbert spaces,
the commutative subspace lattices of Arveson [2]. A subspace lattice is called
commutative if the corresponding projections commute. For example totally or-
dered subspace: Tattices have this property. In the pioneering paper [2] we
have (for separable Hilbert spaces but extended to general ones by Davidson

in [6]):

Theorem 5 ([2], [6]). 1In a complex Hilbert space every commutative subspace

Tattice is reflexive.

It is easy to see that commutative subspace lattices are distributive, but
not conversely, (For example two non-orthogonal quasi-complemented subspaces).
An example of T. Trent in [11] (Example 4) shows that there exist commutative
subspace lattices which are not completely distributive. A necessary and su-
fficient condition for complete distributivity of a commutative subspace
lattice is given in [11], drawing upon deep results of Arveson in [2].

Not all examples of reflexive Tattices are distributive. For example T(X)
is such, but a non-trivial example (a pentagonal lattice) is given by Halmos
in [9]. This result is extended by Longstaff [18 to lattices satisfying

the condition

dim (N{M_| Mek,LgN}OLY¢1
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for all L‘in £. Notice that if this dimension is zero, we have complete
distributivity.

In infinite dimensional spaces the other direction of Johnsong finite
dimensional characterization, Theorem 1 above, also fails. Conway [4] gave
an example of a non-reflexive Boolean (and thus distributive) lattice. To
summarize,the above results-can be pictured in the following diagram, where

each dot signifies that the space

concerned is non-empty. Below we distributive

. 3 e
produce an example showing that reflexiv

the remaining space is also non-

L.
o COmimu-
tative

®

empty. That is,we produce a
reflexive distributive subspace

‘

lTattice which is neither completely

distributive nor commutative (In
order not to distract from the survey,we postpone the example till §3).
The Ringrose, Halmos and Longstaff reflexivity results above showed
the presence of sufficiently many rank one operators to describe the
lattice. A pertinent question is whether R is large enough to describe
the algebra : Is it true that the strong operator closure of P\ is the
whole of Algf..? For example the algebra W(X) falls into this category,
and note that % (X)= Alg{, for the trivial subspace Tattice {,={(O), X}.
It turns out that complete distributivity is the right context for strony
density of ® . Infact the following characterization, which for obvious
reasons we call the 1-density, is valid. The necessity is from [19] and

the sufficiency from [15].

Theorem 6 ([19], [5]) Let 4 be a subspace lattice on a Banach space X.

Then a necessary and sufficient condition for R to be completely distribu=
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tive is that for each x¢ X, £ >0 and AeAlgd, there exists an element R of R s

the set of finite sums of rank one operators of Algf,, such that ||Ax=Rx||<€.

Observe that the condition in this theorem need only be verified for
" A =1, the identity on X, since the set R is an ideal of AlgL.

Is strong density a conclusion in the above theorem? That is, if we can
approximate at any one given vector x within epsilon, can we do the éame

for any given finite set of vectors?This is an open problem and we state:

Question 1 Let & be a completely distributive subspace lattice. Is the set

of finite sums of rank one operators of Algk strong operator dense in A]gf,?

The question is equivalent to asking weak operator density of & in Algl,
since on convex sets the two closures coincide. For Hilbert spaces it is
also of interest to know (the harder) density in the ultraweak and ultra-
strong topology or to know whether density can be uniformly bounded or
sequential. Finally whether, at least, the various density properties hold
for sets between ® and Algf, , such as the trace class or Hilbert- Schmidt
or even the compact operators of Algl .

In several special cases the above question is known to have an
affirmative answer. Perhaps the best result in this context is the Erdos
density theorem which not only concludes strong density of ® 1in the case
of totally ordered % in separable Hilbert spaces, but the following

Kaplansky type unit ball density theorem holds.

Theorem 7 ([7]) Let & be a totally ordered subspace lattice on a complex
separable Hilbert space. Then for any given A in the unit ball of Algh,
and given X1s Xpseees Xo in X, € 0, there is an R in the unit ball of W

such that llei~ in [|<&(i=1, 2,..,n).

Totally ordered subspace Tattices are both commutative and completely
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distributive. In the presence of commutativity we have an affirmative
answer to Question 1. The following is putting together results from [11]

and [17] which used'[2] and [16].

Theorem 8 ([11], [17]). Let §, be a commutative subspace lattice. Then &
is completely distributive if and only if the Hilbert- Schmidt operators
of Algh are strong operator dense in Algl if and only if W is dense in
Algd, in any of the strong, weak,ultrastrong or ultraweak operator

topologies.

In their theorem [11] the authors give yet another characterization of
complete distributivity ( in the commutative case.) This is a measure
theoretic characterization which was used by T. Trent in his exanple
(see above) to show that a commutative subspace Tattice may have trivial &,
and hence may be non-completely distributive.

In the unpublished [1] the special case of a complete atomic Boolean
subspace Tattice with two atoms is settled affirmatively. Moreover a result
of Harrison to appear in [4] settles the unit ball question when the

underlying Hilbert space is separable and complex.

Theorem 9 ([1] and Harrison reported in [1]) (i). Let L and M be quasi-
complemented subspaces of a Banach space X. Then in Algk, where L=
{(O), L, M, X}, W is strongly dense in Algl,. Moreover

(ii) In the case of complex separable Hilbert spaces, the conclusion

of Theorem 7 holds.

Another special case of complete atomic Boolean subspace lattices on
a Banach space are the ones in the other extreme, namely those with one
dimensional atoms. Those proved [1] to be intimately related to a
generalization of a Schauder basis, and a special case of Question 1 turned

out to be an open problem in the Theory of Bases. We discuss this in the
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next section.

§ 2 Strong M-bases.One of the generalisations of a Schauder basis on a

Banach space studied in [26] are the strong M- bases. Recall, a strong
M- basis is an M- basis (complete and total biorthogonal family) (fn, fn*)
with the additional property that

f'\IKer:fn* = VI‘fn (for every Iem)

These bases were introduced previously by various authors under a
variety of names or equivalent (as it was Tater proved) definitions. For
example the strongly complete bases of Markus [20] and the 1- series
summable bases of Ruckle [25], are identical to the strong M- bases. The
following is more or less from [ 4] and connects the notion of strong

M- bases to completely distributive subspace Tattices.

Theorem 10 Let (fn, f *

0 ) be an M- basis. Then the following are equivalent

(i) The set L= {foi | Tem}is a complete atomic Boolean subspace
lattice (with one dimensional atoms the <f1.‘>).

(ii) For each I and J contained in ™ we have (Vlfi)n(Vij) = VIani_'

(i11) (fn,fn*) is a strong M- basis.

(iv) For any x in X and ¢ >0 there exists a finite rank operator of

the form R = Z A, fi*in such that || x=Rx || <€.

Briefly [1] : The hardest part of the proof is (ii)=» (i). Assuming
(i) clearly L is complemented and distributive. The difficulty is to prove
completeness. This requires us to prove that the condition in (ii) extends to

arbitrary intersections:

V. f. = f. (all I, ,3eA)
Q I,‘1 n1x1 2 A

The one inclusion being obvious let x be in the left hand side. We can

construct inductively using (ii) a sequence In of finite sets of indices
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such that x is within 1/n of the Tinear span of {fil ieln} and such that
IMn(gIm)sm,\. Then if T =YL, 1, 0 =VUI, , it is easy to see
that x belongs to both \/Ifi and \Gfi. Again by (ii) it follows that
Xe\/Ifhfisyghfi’ completing the summary of the proof. The other parts
are included in one way or another in the Titerature.

The crucial observation in the above theorem is that the operators
appearing in (iv) are in Algl for & the complete atomic Boolean subspace
lattice described.in (i). By Lemma 3.1 of [18] these operators exhaust R.
So (iv) is simply the conclusion of Theorem 6 which is valid for the more
general case of completely distributive subspace lattices. (Recall that
complete atomic Boolean lattices are completely distributive by a result
of Tarski [3]). On the other hand, strong density of ® is not known even
in the (very) special case of complete atomic Boolean subspace lattices
with one dimensional atoms considered here. This question was raised, in

a different Tanguage, by Ruckle in [25] and we state it in an equivalent

but Operator Theory context.

Question 2 If §, is a complete atomic Boolean subspace Tattice with one
dimensional atoms, s dense in Alg, in the strong operator topology?
Equivalently, if (fi’ fi*) is a strong M- basis, is it true that for
given Xpswees Xy in X and €>0, there exist scalars A],...,) such that

M
%= (glnfn*‘gfn) i ll<e?

The corresponding question for sequential density of ® was raised in
[25] and was proved false in [5], so unit ball density as in Erdos’
Theorem 7 above fails here. Also notice that for Schauder bases, the An's
above could be taken as 1's. In [21] Menshov gives an example where the
A's cannot always be replaced by 1's in the Fourier trigonometric
functions ( which by Fejers theorem and the equivalence of (iii) and (iv)

above , form a strong M- basis).
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If we call the approximation at any given vectors described in
Question 2 as the n- density property of R, the above question can also
be rephrased as : Does 1- density imply n- density for each n? By analogy
to the Jacobson n- fold transitivity theorem (see [J] or [22]Chapter 8 )

we feel that the following question is more proper.

Question 2' If Lisa complete atomic BooTlean subspace Tattice with the
2- density property (notice that the 1- density property is automatic),

does it follow that it will have the n- density property?

Partial answers to relevant questions postponed above are given in the

section following.

§3 Some new results

It was mentioned in §1 that there exists a reflexive and distributive
subspace lattice which is neither completely distributive nor commu-

tative. The example is as follows:

Example Let g €15 €9+ be an orthonormal basis of the Hilbert

space H = QZ‘ Consider the following subspaces of 92

Ln :«huoek (nh= 0, 1, 2...)

Mo = (00, My = Viegre ) (n=1,2, ..0)
so that LOCL1°L2“" ,MocM]cMzc...,MngLn(nao),
LnVMn $1° Ln+—1 (n%0), and, because of the Tinear independence of
€41 (n20) from the previous vectors, Lnf)Mn 1 Mn (n20). These re-
lations show that an Mn = Lmax(n,m) Lnn Mm = Mmin(n,m) and hence that

f - Htﬂ{Lnl ns O}U{Mn h1zc& is a (not necessarily complete) lattice.
We proceed to show that it is also complete and therefore a subspace
lattice. A moments reflection, because of the above properties, shows

that we only need to show
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Vit ==V,

for any infinite set I€mW of indexes. Because of the inclusions
L2boore MﬁaMn-] (n=1) we only need to show \4NLn = H =-\4NMn. Of these
the first is clear and the second sollows from the following: since
2 g lepte Il =il e lisg=—"0  —
we have that e, € VNMn‘ Thus e = (ek + eo)- ey are also in WNMn’ showing
the required property van = H. The
following Hasse diagram summerizes
the above.

Easy direct calculations show
that & is distributive (alter-
natively , since clearly £ con-

tains neither a pentagon nor a

doubTe triangle it is distributive).
On the other hand complete distributivity fails since

ACY M) =Ly vet n\,{q- (LghM ) = (0).
Fina11y commutativity fails since the orthogonal projections onto the one
dimensional subspaces L and M;, namely eq@e; and 3 (ey+eq) ® (epteq)s
do not conimute.

It remains to show that & is reflexive. ATthough it is possible to de-
scribe all of AlgL, we only describe sufficiently many operators to
guarantee reflexivity. We define Rmn = eﬁs(e0+en5 for msn=1, and show
that they leave invariant all of & . This is so because

(L) =40} (0€ksn-T), R (L )e<este>el, (kzn)

R (M) =£0} (0¢ken-1), R
Let then (0)¢ L & LatAlgd,, so that Rmn( )e L. We are to show that Lef..

(M e <epte > =M (k3n)

The first step is to show that if x = (xo, x],...) is a non- zero vector
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in L, and if for some n>»0 the entry X0 is non- zero, then L also contains
the vectors e0+e],...,e0 +en. Indeed, for lskg«n we have
=4
ep*ey = <. RoiX € Rnk(L)& L.

We now distinguish two cases, according as e0¢ L oor epel.

Case 1, ey€ L. Suppose that the vectors in L all have a zero entry from
N

some N onwards, and let N be the Teast such N. In this case we have LEVek.
®zo

By the first step each e = (e0+ek)~eO (14¢k &N) is also in L and thus

™ w

Ve &L, showing that L = e, =Ly ¢4.

ok g Voo T

If on the other hand the vectors in L do not have all zero entries

from any N onwards, the first step shows that L contains all e (k=20) so

that L = He .

Case 2, eO¢L. In this case we shall show L = Mn for some n. Clearly the
vectors of L must be zero from some co- ordinate onwards: otherwise, by
the first step, L would contain all ep e, and hence € by (*). So Tet N
be the Teast integer with the entries of each vector in L having zero co-
ordinate X, for n;NH.So each vector x of L is of the form

»
X = (xo,x],...,xN,O,O,...). We show that we must have x, = Z‘Xi' Indeed,
the vectors eg e (1¢keN) are all in L and hence so is the vector

W o
x-i‘xi(e0+e1.) = (XO‘ZXi) €

w
As we have assumed that e0¢ L we must have x0—§_x1. = 0, as required.
1

o
Hence the vector x of L can be written as x =ix.(eo+e

j .) showing that it
1

i
is in MN. As MNg L by the first step we have L = MN e{ concluding the proof

of the reflexivity of L . @
We remark that we could base the above reflexivity proof on Corollary3.2.1

of [18]. We have not done so because we can slightly modify the above
Lnal " "
example (replacing L_ b e, and M_ b V(e te, )V (e, e ))
ple (replacing L by \/ e, and M, by V (eg +ep vV (eg, g g

wey ey
to arrange that this L is not covered by the said corollary. In this case
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it can be shown that with the notation in 18 dim(Mn*erﬂn) = 2. On the
other hand the proof of reflexivity is a trivial modification of the one
given here. We now turn to density related results.

Before stating the next theorem, some remarks are in order. The
property ﬁi= Alggy for a subspace Tattice £_, where — denotes closure
. under some operator topology, (strong, weak etc.), is equivalent by the
Hahn- Banach theorem and the ideal property of @ in Algl, to the property
that for each Tinear functional y continuous in B(X) with respect to
this topology we have

(¢(R) =0 for all R in R)=> ¢(I) = 0.

In the case of the ultraweak operator topology on a Hilbert space, the
continuous Tinear functionals are given by \p (<) = tr (T-)Where T is a
trace class operator and tr denotes trace. So to show iﬂf; Algd, it is
equivalent to showing that if tr (TR) = 0 for all R in ® then tr(T) = 0.
Recall that the trace of T is given by 2<Ten,en> where {en} is any
orthonormal basis. In the following we show under certain assumptions
on a trace class operator T, there exists a closed Tinear transformation
and an orthonormal basis such that <:TAen,A*_] enj> = 0. Note that formally
(but not exactTy) this says that A_] TA has its diagonal consisting entirely
of zeros and a fortiori has zero trace. If for example we knew that A were

1

a bounded invertible operator it would follow that A~ TA and hence T itself

would have zero trace.

Theorem 11 Let (fi’fi*) be a strong M- basis (equivalently the <f17
generate as atoms a complete atomic Boolean subspace lattice) on a separable
Hilbert space and let tr(TR) = 0 for all R in R ,where T is a trace class
operator. Then there exists a densely defined injective Tinear transformation
A with dense range and an orthonormal basis (en)lN such that each e,

is in the domain of both A and A*"] and such that4<TAen,A*qenj>= 0(nelN). We
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“wmay = even take A to be positive.

Proof Let (en)[N be any orthonormal basis in H and Tet AO be defined on

the Tinear span of the (en) by AOen = fn. The completeness and totality

assumptions show that AO is well defined, is injective, its domain is dense

and so is its range. We show that this -AO is closable. Let then xneﬁ(A

n)

0l
(n) . {
x>0 and Ax—sy. If x, =2>.1. e; for some finite sum, we have )1-—>0
1Y

for each fixed i. But Ax = > '}\(?)Aei = Z?\(n.)fi so that taking inner

v i 1
product with f].* and using /\xn~»y we get 7\(?)_'__,<y,f1.*> , so that (y,f1*>= 0
By the totality of the fi* we conclude that y = 0, showing that AO is

closable.

Let A be the closed extension of A with G(A) = G(AO). We have fn = Ae
]) and A*—]en = fn*‘ Equivalently we are to show

that £ €D (") and A'f " = e . Indeed, for x €D(A,) (not B(A))we have,

n
and claim that en(-'b(A*_

for some finite sum, x =§.\~].e. so for any fixed n

i
* * *
|<fn s AOX>| = i<fn ,AOZ\*1-€{>| = i(fn ,Evifi\;I-
This last expression is either zero or Irnl according to whether n
exceeds or not the Tlargest index in the summation. In any case the last
1
expression is less that or equal to (El\aijz)z = |Ix]].
Hence the map xs—-,(fn*, A0x> is continous on ‘g;(AO) showing that
* * S raant * *
o eD(Ay ). But as B(A)) = Hwe have B(A") = BD(A,") (see [8] page54)
proving that fnem(A*). Now for fixed m,n we have
* % * *
LAF e D= LF s he > =LF fm>: Snm = <e, e > concluding that
* %

A fn = e, ., as required.

Let now T be a trace class operator such that tr (TR)=0 for all R in &
In particular for the elements f:@fi of 7 we have that
LTFLF o= tr(T(F] @) = 0
so that {The;, A*—1e1.> = 0, as claimed.
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Now, A is injective with dense range and hence so is the closed
linear transformation A*.

By the closed Tinear transformation version of the polar decompo-
sition theorem ( [24] page 297) applied to A" we have A" = U IAA*J% = UB
say, with B closed self- adjoint positive, j}(A*) = 1)(8), and U a partial

*
isometry. Because A is injective with dense range the partial isometry U
1 -1

. * * % *
is actually a unitary and so we have A =B U and A=B U =BU.
- - *
Hence 0=<The , A" le > = LTBU"e 87U >
and we may replace A by B and (en) by (U*en) which is also an orthonormal

basis. @
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