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MOST OF THE TWO-PERSON ZERO-SUM GAMES HAVE
UNIQUE SOLUTION

e
P.S.Kenderov *° N.K.Ribarska

Abstract : For a large class of compact topological
spaces it is proved that the majority (in the Baire category

sense) of the two-person zero—sum games have unique solution.
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1.Introduction.

Let. T be a continuous function defined on the
cartesian product XxY of the compact sets X and Y.

Consider the two—person zero-sum game Gf generated by f.

hed The first author was supported by the Centre for
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74

This means that the first player chooses a point x f'rom X
and the second player selects a point y from Y. They make
their choices simultaneously and independently of each other.
As a result of this game the second playep pays to the first
one the amount fd{x,y> dif £(x,y3<0, the first player pays
to the second ={(x,y> units of moneyd.

If X and Y are finite sets, games like this are
called matrix games (see [Kal) because, - in this case,

determines a matrix A = ( f(xi,yj) >, i°

If the game is to be repeated many times, it makes
sense for every one of the players to determine his “strategy”
showing the probability with which he chooses a given element
from his set. For example, in the case of matrix games, where
X is the set {1,2, ... ,n¥» and Y is egual to {1,2, ... ,m},

every strategy of the first player is a nonnegative vector
N
(pi,pz, ‘e ,ph) for which t§1Pt=1' Here P, is the

probability with which the first player chooses i. The
strategies of the second player look similar . In the case of
infinite compact spaces X and Y the strétegies are Radon
probability measures, i.e. nonnegative elements of C(X)*
(resp. cCcY>™ > with norm one.

Let 8 =4 pe C(X)"l : 420, ud> =1 » be the set of
strategies of the first player and % =4 v e C(Y)* v oz 0,
¥(1) = 1 » be the set of strategies of the second one.
Throughout. this paper we will consider F 4 and ] endowed
with the inherited weak-star topology from CCX>™ and cCY™
respectively. So & and % are Hausdorff compact spaces.

If in the two-person szero-sum game Gp the first
player chooses his strategy u € 8 and the second accepts v
e ¥, the expected gain of the first player is ®Cp,pd =
JIftCx, yodpdy. & @ & x %

> R is a bilinear function
defined on the cartesian product of & and %.
A couple <p°,v0) e @ x %W is said to be a solution to

the game Gr if it is a saddle point of the function &, i.e.
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(uo,vo) is a sclution to the game Gf if the two inequalities

SO0 dpdeg < S dpde < £&f dpgde

hold for every u e & and for every v = ¥.

It is known (see for instance [Al, p.223> that for each
Hausdorff compact spaces X and Y every continuous function
f e G x O generates a game which has at least one
solution. Of course, there are games with more than one
solution. It turns out, however, that the majority of the
games have unique solution. In 1950 Bohnenblust, Karlin and
Shapley [(BKS] observed that the set of all m X n matrix
games with unigue solution is open and dense in the d(finite
dimensional) space of all matrices of the same size. In 1969
Djubin ([DJjul considered the case when X and Y are
metrizable compacts and showed that the set of all continuous
functions £ which are defined on X x Y and generate
two—person zero-sum game with unique solution contains a dense
G6 subset. of C(X x Y). The main aim of this paper is to
extend the result of Djubin to a more general class of compact

spaces.

Z.Definitions and notations.

First we recall some Adefinitions.

2.1 .Definition. A multivalued mapping F : U

. > Uz from

the topological space U, into the topological space 02 is

sald to be upper semi-continucus at the point u, e U1 if for

every open sett V in U2 which contains F(uo) there exists

a neighbourhocod ¥ of u such that Fdu) <« V for every u

o
e ¥. F is said to be upper semicontinuous if it is wupper
semi-continuous at every point u U1. The correspondence F

iz called wusco, if it is upper memi-continuous and Fduw is
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non—empty and compact for every u & Ui.

2.2.Definition. A multivalued mapping F : U1 A U2 from a

topological space U1 into a topological space U2 is said to
have the property <#> at u e U, if there exists a point w
in FCud such that for each neighbourhood W of W there
exisﬁs a neighbourhocod V of u with F(vD) n ¥ = @ whenever
v e V.

In an implicit form this notion was wused in [DK].
Explicitly it was involved in [Ch] and [ChK].

Our method allows us to prove a “Djubin-like” result
for generic uniqueness of the solution of two—-person zero—sum
games whenever the topological space & x % is such that for
every complete metric space B and every usco correspondence
F: B

> & x ¥ the subset of B consisting of all points
at. which F doesn’t have the property (%) is of first Baire
category.

In [Ch] it is shown that if X and Y are Eberlein
compacts (i.e. each of these spaces is homeomorphic to a
weakly compact subset of some Banach space), & x 3 has the
desired property. Debs in [D] proved the same d{among other
thingsd for X, Y Talagrand compacta and Kenderov in [K3]
generalized his result for Gul’ko compact spaces. Combining
some results from [ChK] and [N] we can obtain the desired
conclusion for X, Y which are Radon-Nikodym compacts (see
[N], Theorem 5.6). The widest class <(to our knowlege) of
compact. spaces such that for every X, Y in it 2 x 9 has
the former property, is the c¢lass of the so called
fragmentable compacta :

2.3.Definition. (see [JRID> Let X be a topological space and

p be a metric defined on X x ¥X. X is said to be fragmented
by the metric p if, for every &£ > 0 and each nonempty
subset 2 of X there is a nonempty relatively open subset
U of 2 such that p-diam(U> < £. The space X is said to
fragmentable, if there exits a metric fe) on it which

fragments X.
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The class of fragmentable spaces contains the
Radon—Nikodym compacts and <d{in increasing generality> all
Eberlein compacta, all Talagrand compacta and all Gul’ke
compact spaces (see ([R1>. It is stable under various
topological operations, for instance under countable
products, countable unions <(of closed subsets), continuous
images <(see ([R1, Proposition 2.8>. MNoreover, if X is
fragmentable, then C(X)* with the weak star topology is
fragmentable as well (see [R], Theorem 3.13. ¥We will prove our

“Djubin-like"” result for X, ¥ fragmentable compacts.

3.Maln result.

3.1.Theorem. Let X and Y be fragmentable Hausdorff compact
spaces. Then the set of all continuous functions f € GX x ¥,
for which the corresponding game Gf has unique solution,
contains a dense Gé subset of the space G{X x ¥) equipped with
the usual uniform convergence norm.

Proof®.

Let us consider the multivalued mapping
g : G x > & x %

assigning to each continuous function £ the set of
solutions to the two—person zZero—sum game Gf‘ Here the domain
space is endowed the uniform convergence topology and the
range space is endowed the product topology inherited from
CO™, w™ x cccnd™, w™.

¥We need the following

3.2.Lemma. The above defined mapping S is usco.

Pfoof of the lemma.

Because of the compactness of & x ¥, it suffices to

show that the graph of S is closed. Let < fa Y e and
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< (“a’va> Ypes be two convergent nets with limits [ and
(po,vo) respectively and such that <“a’va) & S(fa) for
every « € A. Since

| 571 fad“adva - 55 fodpodvo | =

e, -, 00+ | 45 £ dudv, - £8 £ dp de |

tends to zero, we get

£ £ dpdy, ——> S T dudv .
Similarly

£5 faduadv —> §§ £ du dv  and
£ fdudy, ———> JS £ dpdy

for every fixed p e & v e % Now from the
inequalities
S ¢ dudv, < S £ dpde, < £S5 F dp dv

which are fulfilled for every o and for every fixed
me?, vel we conclude that

iy fodpdvo G ¥ fodpodvo S fodyodv

for every e &, ved i..e. (uo,vo) is a solution
to the game generated by fo. This means that the graph of s
is a closed subset of C CX x Y), LI D> x C 2 x %, w d.m

Since X is a fragmentable compact space, Theorem 3.1
of [R] vields that C(X)*endnwed with the weak star topology, is
a fragmentable space as well. This means that 2 is also
fragmentable. Similar arguments show that % is fragmentable.
Using the stability properties of the class of fragmentable
spaces (see Proposition 2.8, (4> from [R1D>, we conclude that
the product & x 9 is fragmentable. Now the uUSCOo
correspondence § is defined on the complete metric space
CCLX =« Y2, 1. 1D and its range space is the fragmentable
compact & x ¥. Therefore there exists a dense and Gy subset
A of C(CX x ¥D,0.1> such that & has the property % at
every point of A4 (see [R], Proposition. 2.5>. The following
lemma completes the proof of the theorem :

3.3.Lemma. Let S have the property (&) at fo and (yo,vo)
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be the point, mentioned in (¥, i.e. for every neighbourhood
U of Cpg, w2 there exists g > 0 such that the
intersection S(f> n U is nonempty whenever f « CX x Y
and Il £ - fo I < &, Then S is single-valusd at f
S(f0)={(uo,vo)}.

o’ i.e.

Proof of the lemma.

To prove this we recall an elementary fact from the
game theory, namely that for every f « GX x ¥Y> S{£> is the
cartesian product of the set

< My = £ min € S5 dyodv v e rs=

max { min { SF C dpde @ v e P ¥ pe & ¥ ¥
Cwhich is called the set of optimal strategies of the
first player) and the set
< vy € B o max € JSS O dudvo P ue 23y =

min { max € JS £ dpdy : pe & ¥ : vep ¥
Let us suppose that S(fo) containg more than one
element.. Since (”1’v1) = S(fo) "and (uz,vz) & S(fo) imply
(pi,v2> = S(fo), we can assume without loss of generality that
there exists a point (“1’vo) = S(fo) such that g = g

Hence there exists a continuous function a e QX with

I a "ccx:- i, ui(a) =0 and pCad > 0.
For every positive real & we consider the function
fsz X=xY > R, defined by

fE(x,y) = £{x,y2 - £.a(x.

It is clear that fs is continuous and |l fs— fon < g£.
Let us denote by Yo and Vg the guantities

max { min € fffodudv ctve®WPr: ped ¥y and

max € min <€ fffsdudv rveW Iy pe @ 3

respectively. Then for every u e & with mad > 0 we
have

min < fffedudv ctvel¥rs=

min < fffodpdv tve® - euad g

Vg < e.ulad < Ve
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On the other hand, since ay is optimal for the first
player in the game generated by fo and ”1(3) % 0, we get
Vg = min € fffodpldv ctvel r<

min € fffadpidv : ve ¥ ¥ = Vg

Therefore

min € Jffsdpdv tve® ¥ <L Vg S Vg

whenever p e &, utad > 0. This means that 1] isn’t
opt.imal for the first player in the game generated by fs‘

Let us denote by V the open subset { pue 2@ : pad >
0rx% of 2% x%. ¥We proved that for every positive € a
function f_ e GX x ¥> can be found for which Il £ - f Il <&
and S(fs) NV =0 As (uo,vo) e V, this contradicts the fact
that & has the property (%> at the point -8

Let us consider the particular case when the space Y
is a singleton, i.e. Y={y0}.Then GL{Y> and C(Y)* coincide
with the real line R and % is a single point set {1>. Each
continuous function f e CGX 2 ¥ = CX = {y,¥2 is identified
with the function glxd> = f(x,yo) e GX>. Moreover, for u s
C(X)* the pair Cu, 1> provides a solution of the game
generated by f(x,yo) if and only if

supp # < { x5, & X @ max € gl @ X X3 >

Therefore, such a game will have unique soclution just
in the case when the set <{ X e A g(xo) = max € glxd: xeX 2> >
is a singleton. In this way we get +the following corollary
(see [K11, [K2] and [KR2] for more general resultsd.
3.4.Corollary. If X is a fragmentable compact, then the set

of all functions g e CCX> which attain their maximum at just
one point of X contains dense and Gé subset of C(CLXD,H. 10>,

3.5.Remarks. Let us note that if X is an uncountable praoduct
;;_;;E;;;Z;_ [0,1] or X = fAN N~ N, where N is the set of
all integers and AN is the Stone-Cech compactification of
N, then no function g e C(X)> attains its maximum at just one
point. For these spaces theorem 3.1 is not valid and therefore

they are not fragmentable.
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In [KR1] we announced theorem 3.1 for the particular

case when X and Y are Eberlein compacts.
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