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Lagrangian conditions for a minimax
B. D. Craven

Abstract

A general approach is given to Lagrangian necessary conditions for a
minimax problem. The necessary conditions become sufficient for a
minimax under extra hypotheses, with either concave/convex or invex
functions, and restrictions on the constraints. A minimax is shown to
relate to a weak minimum of a vector function. The sensitivity of a
minimax value to a perturbation is related to the gradient of a Lagrangian
function with respect to the parameter.
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1. Introduction

Minimax problems are often associated with constrained
minimization problems. Examples of functions F(x,y) which are to be
maximized with respect to y, then minimized with respect to x, include:

(1) F(x,Y) = 1(y) - xTg(y), (1
a Lagrangian function from the problem
Maximize f(y) subject to g(y)=<0 (2)

[or to -g(y)=S, where S is a closed convex conel;
(i) F(x,Y) = £(y) - (u/2)[|lglu)+u~ 11, )2,

an augmented Lagrangian for (2); p is a positive parameter, and
[t]ly = tif £20, [t],=0 if t<0, for each component of g(y)+u~!x.

[For a constraint -g(x)=$S, the expression [g(y)+u~ 141, is replaced by

(I-P)lg(y)+u~'x], where Pv=v for veSs, and, for v&S, Pv is the
orthogonal projection of v onto SI.
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For (i) and (ii), the minimax problem is:
[MINg {MA><g F(x,u): g(y)s 0} : %201,

with x>0 replaced by x=3%, the dual cone of S, in case of a constraint
-g(y)=S. Another example of minimax occurs when an objective function
is the pointwise maximum of several functions, namely

[MINg {MAX; fj(x) }:g(x) = 0],
where i=1,2,...r.

A (global)minimax (x*,y*) for the problem:

MINge A MAXyez(x) F(%,4), (3)
where A and Z(x) are given sets, means that there exists a function y*(x)
such that y*=y”~(x*) and
(VxeA, Vyez=(x)) F(x,y™(x))=F(x*,y*) and F(x,y"(x)=F(x,y). (4)
In contrast, (x*,y*) is a saddlepoint for (3) if, instead,
(VxeA, Yye=(r)) F(x,y*)zF(x*,y*)=F(x*,u). (5)

It is well known - see, for example, Tanimoto [11], Craven and Mond
[?], Bector and Chandra [1] - that a minimax problem is often associated
with necessary conditions of Kuhn-Tucker type. It will now be shown
that this holds under fairly general conditions, and also that such
necessary conditions become also sufficient for a minimax, under
suitable convexity hypotheses.

2. Necessary conditions for a minimax
Consider the problem:
[MIN (MAXQ F(x,4) : -h(x,y)=8} : -g(x)=T], (6)

in which X,¥Y,Z,U are normed spaces, F:XxY=R, h:XxY->U, g:X~Z are
continuously (Fréchet) differentiable functions, SCU and TCZ are closed
convex cones, MIN denotes local minimum, and MAX denotes local
maximum . (The spaces may, but need not, be finite-dimensional.) Assume
that the inner (maximization) problem reaches a (local) maximum when
y=y~(x), with maximum value denoted by m(x), and that a constraint
qualification holds at this maximum. Then m(x) = F(x,y"(x)); and
Kuhn-Tucker necessary conditions hold:

(AN(x)eS*) Fg(x,g"(x))-x(x)Thg(x,g"(x))=0, A Th(x,y"(x)=0.  (7)
(Here Fg means partial Fréchet derivative with respect to y, and

superscript T denotes transpose in finite dimensions; in infinite
dimensions, A is a continuous linear functional, and kThg means the

composition )\ohg.)
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Since ¥ is a parameter in the inner problem, it follows, under some
regularity conditions, that the gradient my of m(x) equals the Fréchet

derivative, with respect to x, of the Lagrangian F(x,g)—ng(x,g), thus
My(%) = Fy(x,4"(x)) = A=) Thy(x,y™(x)) . (8)

Appropriate regularity conditions are [4] that y~(.) is a Lipschitz
function, A(.) is continuous, and a constraint qualification holds for the
inner problem for each X, so that Kuhn-Tucker necessary conditions hold.
Hypotheses sufficient for the first two requirements are discussed in [5].

Consider now the outer (minimization) problem. Assuming a
constraint qualification (now relating to the constraint -g{x)=T),
necessary Kuhn-Tucker conditions for a minimum at x=x* are :

@EApET*)  my(x*) + pTgy(x*) = 0, uTg(x*) =0. - (9)
Substituting from (8) for my gives
Fyu(x%,4"(x*)) = A(x*) Thy(x*,y"(x*)) = 0. (10)
Define therefore a Lagrangian function for the minimax problem (6) as
L{%,452, 1) = F(x,9)-ATh(x,y)+uTg(x). (11)

Denote VL:=[LX,Lg]. The following theorem has now been proved.

Theorem 1 In the minimax problem (6), assume that

(i) F,g and h are continuously Fréchet differentiable; the minimax is
reached at (x,y)=(x*,y*), with a constraint qualification holding there for
the outer problem;

(i1) for -g(x)=T and |x-x*| sufficiently small, the inner problem
reaches a local maximum at a point y=y~(x), Kuhn-Tucker conditions hold
there with Lagrange multiplier A7(x), A"(.) is continuous at x*, and y~(.)
is a Lipschitz function, with y~(x*)=y*,

Then :

(IN*eS5*, p*eT*) VL(x*,y*;A*,u*)=0, u*Tg(x*)=0; A*Th(x*,y*)=0, (12)

where A" (x*)=A*. Moreover, for -g(x)eT and ||x-x*| sufficiently small,
Ly(%y" (0507 (0),1%)=0; A~ () Th(x,y"(x))=0 . (13)
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3. Sufficient conditions for a minimax
A converse result to Theorem 1 holds, under the serious restriction
that h(x,y) does not depend on X. In this case, problem (6) takes the form:
MINgye A MAXgeg F(%,4) ' (14)
in which A:={xeX:-g(x)=T}, and E:={y=Y:-h(x,y)S is independent of x.
In order to apply an implicit function theorem, consider the system:
Ly(x,4s%,1%)=0; ATh(x,u)=0, -h(x,y) =S, A=5%, (15)
written in the form -K(y,A;x)eV, where p* is fixed, % is a parameter, V is
the convex cone {0}x{0}x3x35%, and solutions (y,A)=¥(x) are sought, when
|x-%*| is small. For this system, consider the Robinson condition
0 = int[K(y*,A%;x*) + ran Py 5 )K(U*,A*x¥) + V], (16)
where int denotes interior, ran denotes range, and P(g,x) denotes partial
Fréchet derivative with respect to (y,A). From (15) and (16), the
condition requires that

OSintlLy+Lyy(Xx¥); (17)
osintiAThaThy(xxy)+hT(U*)]; (18)
OEint[h+hg(Xxv)+S]; (19)
osint[-A-U*+5*]; (20)

where all functions are evaluated at (x,y,A)=(x*,y*,0%). Note that (17) is
equivalent to the surjectivity of Lyy 5 and(20) holds trivially.

Theorem 2 For problem (6), assume that
(i) F,g and h are continuously Fréchet differentiable, and h(x,y) does
not depend on ¥,

(i1) the Kuhn-Tucker necessary conditions (12) hold, with -h(x*,y*)e§,
-g(x*)=T;

(iii) F(x,.) is concave for each x€A, F(.,y) is convex for each ysv, and
that g(.) is T-convex;

(iv) Lg is continuously Fréchet differentiable with respect to y,
ng(x*,g*) is surjective, the other Robinson conditions (18), (19) hold at
(x*,y*,A\*%), and Lg is continuously differentiable with respect to x.

Then (x*,y*) is a local minimax point for (6).

Proof Robinson’s theorem [9, Theorem 1] shows from (iv) that (13) has
a continuous solution (y,A)=(y"(x),A"(x)), with (" (x*),A"(x*))=(y*,A%),
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valid when ||x-x*| is sufficiently small. Impiicit differentiation of (15}
shows that y™(.) is differentiable at x*, hence Lipschitz. Hence there hold
(15), the necessary Kuhn-Tucker conditions for a maximum of the inner
problem in (14). Since F(,.) is concave, these necessary conditions are
also sufficient for a maximum at y=y~(x); thus

m(x) = F(x,y"(x))=MAXye= Fx,Y). (21)
Since m(.) is a maximum of a set of convex functions, m(.) is convex.
Since A"(.) is continuous and y~(.) is Lipschitz, the gradient my(x) is given

by (8). If -g(x)=T, then convexity of F(,,y*) and T-convexity of g(.) show
that, if x=A, then

F(%,4" (x)-F(x*,u*) =m(x)-m(x*) since y*=y~(x*)
=My (x*)(x-%x%) since m(.) is convex
=F o (X%,4*))(x-%*) by (8), since hy=0

=-p*T gy (x*,y*)(x-x*) by (12)
= -pxTg(x) + u*Tg(x*) since p*Tg(.) is convex
=20 + 0. ‘
Remark The proof does not need MAX,, F(.,y) differentiable; it may not be.

Remark If the hypothesis (iv) is omitted, then (21) only holds for x=x*,
and only a saddlepoint can be deduced, by
F(%,4*)=F(x%,y*)2F o (x*,y*)(x-x*)
:-u*TgX(X*)(X_X*)
2-p*Tg(x)+u*T g(x)
=0+0,

Remark If h(x,y) depends on x, ®:AxY->R7:=RU{+e} may be defined (in
the manner of Rockafellar [10]) as &(x,y)=F(x,y) when -h(x,y)=3,
otherwise ®(x,y)=+co. Then (6) is equivalent to the problem

MINgep (MAXyey (x4} . (22)

Then Theorem 2 may be applied with & replacing F and VY replacing =. But
the necessary conditions so obtained are not useful, because the
concave/convex properties assumed for & only hold when & takes only
finite values for x=A, thus when h does not depend on X.

A less restrictive sufficiency theorem can be given, when the
dependence of h(x,y) on x takes a certain form. Consider the form:

h(x,y)=q(r(x)+y) , (23)

where q and r are differentiable functions.
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Theorem 3 For the minimax problem (6), assume that F,g,h are
continuously Fréchet differentiable, and satisfy hypotheses (ii) and (iv)
of Theorem 2, where h(x,y) has the special form (23) with qand r
differentiable. Define W(x,w):=F(x,w-r(x)) and Q2:={w:-g(w)e5}. Assume
also that ¥(x,.) is concave on  for each x€A, ¥(.,w) is convex for each
weQ, and that g(.) is T-convex. Then (x*,y*) is a local minimax point for
(6).
Proof From (ii) and (iv) there follow, as in the proof of Theorem 2, the
necessary Kuhn-Tucker conditions for a maximum of the inner problem of
(6) at (x,y~(x). The (invertible) change of variable from (x,y) to (x,w),
where w:=r(x)+y converts the problem (6) to:

MINye A MAXy e Y(X,W). (24)

If z=(%,Y), p=(A"(x),u*), and k(z):=[-h(x,y),g(x)], then the Lagrangian L in
(11) becomes F(z)+ka(z), and the Lagrangian conditions (12) and (13)
become V,L(z;p)=0 , pTk(z)=0, where z=(x,y"(x)). The invertible

transformation given by w:=r(x)+y may be expressed as z=9(¢), where
g=(x,w). It follows that VeL(P(X);p)=0 and pTk(P(X))=0, where 2=9(Z).

Thus the Lagrangian necessary conditions hold also for problem (24).
Since ¥(x,.) is concave on § for each x€A, and ¥(.,w) is convex on A for
each we$, the 1ast part of the proof of Theorem 2 shows that {* is a
minimax point for (24), and hence (x*,y*) is a minimax point for (6).

A notable special case is that of a linear constraint -h(x,y)=S.
Consider a constraint AX + By < ¢, where x=R", yeRP, ceR™, A is an mxn
matrix, B is an mxp matrix, and psm<n. The matrix B has full rank if it
has rank MIN{m,p}. Assume that B has full rank. If p<m, additional
columns may then be adjoined to B, to make an invertible mxm matrix B™;
let the additional components of y form a vector y¢,); let g"'T:=[uT,g(a)T].

Define the mxn matrix K~=K~(A,B):=B~~1A. Then Ax+By=B(K~x+y). Denote
by K=K(A,B) the matrix obtained from K™ by deleting rows corresponding
to elements of Y(ap).

Theorem 4 In the minimax problem (6), let the inner constraint
-h(x,y) =S take the linear form Ax+Bysc, where the matrix B has full rank,
and psm<n. Let ¥(x,w):=F(x,w-K(A,B)x), and M:={w:Bw=c}. Assume thatF
and g are continuously differentiable, g is T-convey, ¥(x,.) is concave on
T for each x=A:={x:-g(r) =T}, ¥(.,w) is convex on A for each weTl,
hypothesis (iv) of Theorem 2 holds, and the necessary conditions (12)
hold at a point (x*,y*) satisfying the constraints of (6). Then (x*,y*) is a
minimax point for (6).
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Proof Construct the matrices K~=K~(A,B) and K=K(A,B) as above. Let e
be a vector of ones, and let M be a sufficiently large positive number. The
modified inner problem,

MAX (F(x,y)-MeTy(a) 1 BK™x+y™)sc), (25)
reaches the same maximum as the given inner problem in (6), since
maximization eliminates the artificial variables y¢a). Let wi=K™7x+y™,

-Since the transformation (x,y~)=(x,w) is invertible, the minimax problem
is equivalent to the problem ’
MINgep MAXyeqr ¥(x,W)-MeTy(a) . (26)
The concave/convex hypotheses on ¥ imply similar properties for the
objective function of (26), since linear terms are concave and convex, and
¥ does not involve Ycp). As in the proof of Theorem 3, the necessary

Lagrangian conditions for (6) imply necessary Lagrangian conditions for
(26). Hence, by Theorem 2, these conditions are also sufficient for a
minimax of (26), and so of (6) in this case.
Corollary For a linear minimax problem, thus when F(x,y) is bilinear in x
and y, and g and h are affine functions, with h satisfying the rank
requirement of Theorem 4 and (iv) holding, the necessary Lagrangian
conditions at a feasible point are also sufficient for a minimax.

Some relaxation of the concave/convex hypothesis of Theorem 2 is
discussed below, in Section 5.

4. The relation of a minimax to a weak vector minimization
Consider the minimax problem (6) when Y={1,2,...,r'}, and write

f3(x):=F(x,i) (i=1,2,...,r). This may be related to the weak vector
minimization problem:

WEAKMINy f(x):={fy(x),f2(X),...,f(X)} subject t0 -g(x)eT. (27)
The weak minimization [2] is with respect to a convex cone Q; thus x* is
a weak minimum of (27) if f(x)-f(x*)s-int Q for all feasible points ¥,
sufficiently close to x*. Assume initially that Q=R.". Let eT’=(1,l,...,1);
and note that e=int Q. Let m(x):=MAX{f(x),f(X),...,f-(X)}; then

m(x*)e-f(x*) has all components =0, and at least one zero component.
This may be expressed by m(x*)e-f(x*)€9Q, where 3 denotes boundary.
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Thus, for the minimax problem considered, there hold:

(i) m(x*)e-f(x*)=3Q; (ii) m(x)e-f(x)€3Q; (iii) m(x)e-m(x*)e=Q;
where (ii) holds for all x satisfying -g(x) €T, and expresses the inner
maximization, and (iii) holds for all % satisfying -g(x) =T, sufficiently
close to x*, and expresses the outer minimization. Suppose, if possible,
that x* is not a weak minimum of (15). Then, for some such X,
f(x)-f(x*)e=~int Q. From (i) and (iii), m(x)e-f(x*)=Q+3QCQ. From the
supposition, f(x*)-f(x)=int Q. Adding these inclusions,

m(x)e-f(x)=Q+int Q € int Q,
contradicting (ii). Hence x* is a weak minimum of (27).
This relation generalizes to weak minimization with respect to
some other cones Q than R,', provided that minimization is suitably

defined. Let QCRI be a convex cone with interior; and fix e = int Q. Now
define, for a vector f(x), the maximum of f(x) with respect to Q
(denoted by MAXq f(x)) as m(x), satisfying

m(x)e - f(x) =9Q. (28)
Then the proof of the previous paragraph shows that an optimum of
MINy {(MAXq (%)} subject to -g(x)eT (29)

must be a weak minimum of f(x) subject to -g(x)=T.

It follows that Kuhn-Tucker necessary conditions hold for a
considerable class of optimization problems, that imply weak vector
minimization. Some other examples arise in generalized fractional
programming (see [6, Chapter 6]).

5. Using invex hypotheses }
In problem (14), the hypothesis that F(x,.) is concave on = may be
weakened as follows. Assume that -F(x,.) is invex on Z, defined [8,3] by

(VxreA, Vy,y’'sE) -F(x,y") + F(x,u) = Fg(x,g)e(x,g,g'), . (30)
and that h(y)=h(x,y) is also invex, thus
(Vy,y’s2) h(y’)-h(y)zgh’(y)e(x,y,y’), (31)

with thesame function 6, with azgb ¢ a-beS. It is known then [8] that

the Kuhn-Tucker necessary conditions (12),(13) for the inner problem in
(14) are also sufficient; thus when [|x-x*| is sufficiently small,

q(®):= F(x,g"(x)):MAXgEE F(%,Y). (32)
Assume also that each function F(.,u) , y==, is invex, thus
(Vx,x'€A, Yye= F(x%,4)=-F(%,)zF ¢ (x,4) o (%,%"), (33)

thus with the function ¢ independent of y=Z; and assume that g is invex,
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thus
g(x")-g(x)=T gg(x)o(x,x’), (34)
with the same function &.
From (31) and (32), if y*=y~(x*) and -g(x)eT,
Q(x) = Q(x*) = F(x,y™(x))-F(x*,y”~(x*)
Fu(x*,y*)o(x*,x) from (33) and y~(x*)=y*
- UGy (x*,y*)o(x*,x) from (12)
-pg(x) + pg(x®)
0+0,

i w

v v

This has proved
Theorem S For the minimax problem (6), assume that F, g,h satisfy
hypotheses (i), (ii) and (iv) of Theorem 2, and also the invex hypotheses
(30), (31), (33),(34). Then (x*,y*) is a minimum point for (6).

6. Sensitivity of minimax value to perturbations
Consider now problem (6), with a perturbation parameter p=RS
included in each function, thus:

J(P):= [MINy (MAX yF (x,y;p)i-h(x,y;p) =S}:-g(x;p) =T1 . (35)
The Lagrangian for (35) is
L(%,4: N, 13):=F (%,4;P)-A T h(x,y;p)+ u T g(x;p). (36)

Let Vp denote gradient with respect to p. Assume the hypotheses of
Theorem 1, for each fixed p in a neighbourhood N of 0. Then
m(x;p):={MAX F(x,4;p):-n(X,y;p) €8)=F (x,y" (x;p);p), (37)

for a suitable function y~(x;p); and, having assumed suitable regularity
conditions for the inner problem, mp(x;p) =V plF(x,y;p) -ATg(x,y;p)] at
Y=y~ (x:p),A=A"(x;p), from [4,Theorem 1]. For the outer problem,

J(p)i= MINy {m(x;p) : ~g(x;p)eT); (38)

the Lagrangian is F(x,g"(x);p)+uTg(x;p); the optimal point X and multiplier
u are functions x~ (p),u” (p). Assuming suitable regularity, ®’(p) equals
the gradient, with respect to p, of the Lagrangian m(x;p) +uTg(x;D). Hence,

substituting for mp(x;p),
J'(0)= mp(x*;0) + uTgp(x*;0)
= Fp(x*,y*;0) - x*Tgp(x*,g*;O) + u*Tgp(x*;O), (39)
where (x*,y*)=(x™(0),y"(x*;0) is the optimum at p=0, with Lagrange

multipliers A*=1"(x*;0), u*=p"~ (0). Hence, citing appropriate regularity
conditions from [4], the following Theorem is proved.
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Theorem 6 For the parametrized minimax problem (35), assume the
hypotheses of Theorem 1, for each p in a neighbourhood N of 0; also that
y~(x;.) is Lipschitz , and A" (x;.) and u#(.) are continuous at 0. Then the
optimum value function J(p) of (35) is Fréchet differentiable at 0, with
J(0) = LD(X*,Q*:X*,u*;O). (40)
Remark For conditions sufficient for such Lipschitz conditions, with
continuity of Lagrange multipliers as functions of p, see [S]. Conditions
for the multipliers relate to a dual problem. In particular, if problem
(35) is linear in all variables, then A~(x;.) and u™(.) are locally constant
functions, with jumps when a basis changes in a dual linear program.
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