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1.9. Perturbation Theory 

The next aspect of stability that we describe is 

stability of a semigroup under perturbations of its generator. 

Let H be the generator of a Co-semigroup of contractions on 

the Banach space Band P a linear operator on B. Our aim 

is tu deccribe conditions on P which ensure that H + P also 

generates a Co-semigroup of contractions. In applications the 

perturbation P is often an unbounded operator and the notion 

of relatively bounded operator is useful. 

Let Hand P be linear operators on a Banach 

space. Then P is defined to be reZativeZy bounded with respect 

to H , or H-reZativeZy bounded~ if the following two conditions 

are satisfied: 

1. D(P)::l D(H) 

2. IIPall::: aHal! + I3I!Hal1 

for all a E D(H) and some a, 13 > 0 • 

The greatest lower bound of the 13 for which this last relation 

is valid is called the reZative bound of P with respect to H, 

or the H-bound. 

The key result concerning relative bounded perturbations 

of generators of contraction semigroups i~ the following: 

THEOREM 1.9.1. Let 

on the Banach space 

St = exp{-tH} 

B and assume 

be a co-semigroup of contractions 

P is H-reZativeZy bounded with 



H-bound 130 < 1 

If P, or H + P , is norm-dissipative then H + P 

generates a co-semigroup of aontraations. 

Proof. First note that it follows from Theorems 1.3.1 and 1.4.1 

that D(H) is norm dense and Re(f, Ha) ~ 0 for all tangent 
a 

functionals f at a E D(H) 
a 

Second since D(H) C D(P) the 

latter set is norm dense. Hence if P is norm-dissipative 

Re(f , Pa) ~ 0 for all tangent functionals at a E D(H) by 
a 

Theorem 1.4.1. Therefore Re(fa' (H+AP)a) ~ 0 for all A ~ 0 and 

H + AP is norm-dissipative. Alternatively if H + P is norm-

dissipative then Re(f (H+P)a) ~ 0 and 
a 

Re(fa' (H+AP)a) = (l-A)Re(fa , Ha) + ARe (fa' (H+P)a) 

~ 0 

for 0::: A ::: 1 Thus in both cases H + AP is norm-dissipative 

for 0::: A ::: 1 

Next we exploit the relative bound. 

Let us assume that 

IIPall ::: allall + 13 II Hall 

for all a E D(H) where a > 0 and 13 < 1. Therefore 

::: (aA+213)llali 

113. 



114. 

where we have used II (I+AH)-lll ::: 1 Thus if o ::: A < (2(3)-1 
1 -

one may choose AO > 0 such that Al (aA+2(3) < 1 for 0 < A < AO 

and then the operator PA = AlAP(I+AH)-l is bounded with 

Hence I + PA has a bounded inverse. But 

and since R(I+AH) = B one has 

Therefore H + AlP is the generator of a Co-semigroup of contractions 

by Theorem 1.3.5. 

To continue the proof we.remark that 

and since AI::: (2(3)-1 one has 

We may now choose o ::: A2 ::: (4(3)-1 and repeat the above argument 

to deduce that H + (AI +A 2) P is the generator of a Co-semigroup 

of contractions. Iteration of this argument n times proves that 

H + AP is a generator for all 0::: A < (1-2-n)/(3. Choosing n 

sufficiently large, but finite, one obtains the desired result. 0 



Next we examine a more restricted class of perturbations. 

If St = exp{-tH} is a Co-semigroup and P is a linear operator, 

on the Banach space B, then P is called a phiZ Zips perturbation 

of S if the following three conditions are satisfied: 

1. P is closed. 

2. For each t > 0 one has StB ~ n(p) and PSt has 

bounded closure. 

Note that if S is a group then each Phillips 

perturbation P of S is automatically bounded because 

More generally, for semigroups, 

P is relatively bounded. To see this consider the case that S 

is a contraction semigroup. Consequently 

-1 roo -At 
(AI+H) a = JO dt e Sta 

for each a E B and A > O. But one also has 

for any 0 < 0 < 1. Since P is closed a simple Riemann 

approximation argument establishes that -1 (AI+H) a E n(p) , 

i.e., n(H) c n(p) , and 

1 Joo -At P(AI+H)- a = 0 dt e PSta 
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Therefore setting b = (AI+H)-la and using the foregoing estimate 

one finds 

::: I! (AI+H)bll [J~ dt IIPSt ll+ll pS811/ A) 

::: (Allbl!+I!Hbll) [ J~ dt IIPSt ll+llps8 11/ A J 

Thus P is H-relatively bounded. Moreover choosing 0 to be small 

and A to be large one sees that P has H-bound zero. The same 

conclusion is indeed valid for a general Co-semigroup but one must 

use the bound liSt II::: M exp{wt} and take A > w . 

Theorem 1.9.1 can now be strengthened for the class 

of Phillips perturbations. 

THEOREM 1.9.2. Let St = exp{-tH} be a co-semigroup of 

contractions on the Banach space Band P a Phillips perturbation 

of S. 

If P 3 or H + P , is norm-dissipative then H -I- P 

generates a co-semigroup of contractions sp. Moreover 

for all a E B , where the integrals exist in the norm topology and 

define a series of bounded operators which converges in norm 
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unifoY'fl'lZy for t in any finite interoaZ of the foY'fl'l (E:, liE: > 

where 0 < E: < 1 

Proof. The first statement of the theorem follows from Theorem 

1.8.1 and the foregoing observation that a Phillips perturbation 

P of H is H-relatively bounded with H-bound zero. 

Now consider the perturbation series for Sp. It 

follows from the definition of a Phillips perturbation that each 

term is well defined as a bounded operator and is strongly 

continuous for t > 0 . But if denotes the n-th term then 

= (-1) ft ds S PS(n-l). 
o t-s s 

Hence, by iteration, 

where 

the * denotes the convolution product, and 
n'~ f denotes the 

n-fold convolution of f with itself. 

Now let us examine bounds on f 

Since S is contractive f is non-increasing and 

the integral 
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is finite for each A > O. Moreover IA ~ 0 as A ~ 00 

But for 0 < s < t one has f(t) S f(t-s) and hence 

Therefore 

Consequently for A sufficiently large 

and 

Moreover since S is contractive there is an M > 0 such that 

JOO -At 
o dt e get) < M , get) 

for this same range of large A. 

Next we examine the propagation of these bounds. 

Suppose two positive integrable functions f l , f 2 , 

on [0, (0) satisfy 
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Then 

fOO
, eAt(f *f Jet) o at 1 2 fOO e-AtflCt) JOO -AS ( ) o dt 0 ds e f 2 s 

Moreover 

At J~OL/2 ds Ml -AS At ft -A(t-s)f C' ) M2 
~ e 2 e f (s) + e t/2 ds e 1 T-S 8 2 

(t-s) 

Thus the bounds propagate. 

Combining the foregoing estimates one concludes that 

foo -At o dt e g 1, 

and 

Consequently the perturbation series for sP is majorized in norm 

by the series 

L MeAt /2n t 2 
n:::O 

and this immediately implies the convergence statements for the 

perturbation series. 
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It remains to prove that sP is a co-semigroup 

with generator H + P . 

First strong continuity at the origin follows from 

the integrability of t 1-+ IlpStn at the origin and the 

straightforward estimate 

s I 
n~l 

Second note that sP satisfies the integral equation 

and hence 

Thus the family of operator-valued functions 



is entire analytic, in the norm topology, and satisfies the 

homogeneous integral equations 

It then follows from Taylor's series that Ft(A) = 0 , i.e., the 

semigroup property 

is valid. 

Finally let K denote the generator of Sp. For A 

sufficiently large one has 

1 r» -At P 
(AI+K)- = JO dt e St 

But using the integral equation for sP one finds 

(AHK) -1 10 dt 
-At f~ dt f~ ds e -AtS PSP = e St t-s s 

(AI+H)-l - f~ dt -At P 10 ds 
-AS P 

= e St e S s 

= (AI+H)-l _ (AI+H)-lp(AI+K)-l . 

This establishes that 

But 

-1 (AI+H+P)(AI+K) = I . 
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and 

for A sufficiently large. Therefore (AI+H+P) is invertible 

with bounded inverse. Consequently 

and 

K = H + P . o 

Rema r k 1. 9 • 3 • One can obtain an analogue of Theorem 1.9.2 without 

assuming that S is contractive or P norm-dissipative. If 

St = exp{-tH} is a co-semigroup and P a Phillips perturbation 

of S then H + P generates a Co-semigroup sP which can be 

defined by the perturbation series of Theorem 1.9.2. The proof of 

this generalization is very similar to the above proof but the 

estimates necessary for the convergence of the series are slightly 

more onerous because of the growth of /I St II . 

Examp 1 e L 9 • 4 • Let B -- LP FJRV) d 1 t S b th . ~ an e e e semlgroup 

generated by the Laplacian, i.e., 

where 



Next let V be a multiplication operator 

(Vf)(x) V(x)f(x) 

where V E Lq(~V) and q > V/2, q ~ p. Then by successively 

applying Holder's and Young's inequalities 

where 
-1 

P 
-1 -1 

q + r 

1 S p, q, r, s S 00 But 

-1 -1 
s + p - , and 

-V/2q 
ct . 

Thus Ilvstll p is integrable at the origin and V is a Phillips 

perturbation of S . 

Exercises. 

1.9.1. Let P be relatively bounded with respect to H 

with H-bound less than one. Prove that H + P is closable if, 

and only if, H is closable and in this case the closures have 

the same domain. 

If P is relatively bounded with respect to H with 

H-bound 8 < 1 prove that P is relatively bounded with respect 

H + P with H+P-bound 8(1-8)-1 . 
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1.9.3. Let H be the generator of a co-contraction 

semigroup on a Banach space B and suppose P is relatively 

bounded with respect to H. Prove that if A > 0 then 

-1 aA + 2S . 

Moreover if B is a Hilbert space 

Hint: In the Hilbert space case use norm-dissipativity to prove 

that 

1.9.4. If a E L 2 (IR3) has partial derivatives in L 2 (IR3) 

prove that 

Hint: Calculate Vlxl~a(x) . 

1.9.5. Lp I'mV) Let H denote the Laplacian on t~ 

the operator of multiplication by the characteristic function of 

the open bounded set A C RV • Define s(n) to be the Co-

semigroup generated by the perturbed Laplacian Hn = H + n(I~XA) 

Prove that s(n) converges strongly on LP(A) to the semigroup 

generated by the Laplacian with Dirichlet boundary conditions, as 


