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1.9. Perturbation Theory

The next aspect of stability that we describe is
stability of a semigroup under perturbations of its generator.
Let H be the generator of a Co—semigroup of contractions on
the Banach space B and P a linear operator on B . Our aim
is to describe conditions on P which ensure that H + P also
generates a Co—semigroup of contractions. In applications the
perturbation P is often an unbounded operator and fhe notion

of relatively bounded operator is useful.

Let H and P be linear operators on a Banach
space. Then P is defined to be relatively bounded with respect
to H , or H-relatively bounded, if the following two conditions

are satisfied:

1. D(P)

v

D(H)

2. lrall

IA

allall + BliHall
for all a € D(H) and some o, B >0 .

The greatest lower bound of the B for which this last relation
is valid is called the relative bound of P with respect to H ,

or the H-bound.
The key result concerning relative bounded perturbations

of generators of contraction semigroups is the following:

THEOREM 1.9.1. Let s _ = exp{-tH} be a C -semigroup of contractions

on the Banach space B and assume P 1is H-relatively bounded with



H-bound BO < 1.

If P, or H+ P, is norm-dissipative then H + P

generates a Co—semigroup of contractions.

Proof.  First note that it follows from Theorems 1.3.1 and 1.4.1
that D(H) 1is norm dense and Re(fa, Ha) =2 0 for all tangent
functionals fa at a € D(H) . Second since D(H) € D(P) the
latter set is norm dense. Hence if P is norm-dissipative

Re(fa, Pa) =z 0 for all tangent functionals at a € D(H) by
Theorem 1l.4.1. Therefore Re(fa, (H+AP)a) 20 for all XA =0 and
H + AP is norm-dissipative. Alternatively if H + P is norm-

dissipative then Re[fa(H+P)a) =2 0 and

Re(f,, (H¥AP)a) = (1-MRe(f_, Ha) + ARe (£, (HtP)a)

v
o

for 0= A =1. Thus in both cases H + AP is norm-dissipative

for O

I\
>
IA
I—l

Next we exploit the relative bound.

Let us assume that
IPall < aflall + BlHal|

for all a € D(H) where 0 >0 and B < 1 . Therefore

[xpCz+am) ~tal

IA

alxczeam tall + gll (1-(zerm) ) all

IN

(a+2B8)|lall
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where we have used ”(I+XH)_1“ <1 . Thus if 0= Al < (23)_l

one may choose XO > 0 such that Al(dk+28) <1 for 0< A< AO

and then the operator PA = )\J_>\P(I+>\H)—l is bounded with

HPA“ < 1. Hence I+ P, hasa bounded inverse. But

(zr (B P)) = (1+Py) (T+AHD

and since R(I+AH) = B one has

R(1+A(#2, P)) = R(1+Py)

'D((1+PX)'1]-= B .

Therefore H + AlP is the generator of a Co—semigroup of contractions

by Theorem 1.3.5.

To continue the proof we remark that

Ipall = llall + 8] (H+>\1P)a” + B, lIpall

and since Al = (26)—l one has

Ipall < 2allall + 28] (41, P)al]

We may now choose 0 = AQ = (4(3)“l and repeat the above argument
to deduce that H + (A1+X2)P is the generator of a Co—semigroup
of contractions. Iteration of this argument n times proves that
H + AP is a generator for all 0 = A< (1—2_n)/8 . Choosing n

sufficiently large, but finite, one obtains the desired result. []



Next we examine a more restricted class of perturbations.

If St = exp{-tH} is a Co—semigroup and P is a linear operator,
on the Banach space B , then P is called a Phillips perturbation

of § if the following three conditions are satisfied:
1. P is closed.

2. For each t > 0 one has StBED(P) and PSt has

bounded closure.
3. 5t s, < 4.

Note that if S is a group then each Phillips
perturbation P of S is automatically bounded because
P = [PSt)S_t for each t > 0 . More generally, for semigroups,
P is relatively bounded. To see this consider the case that §

is a contraction semigroup. Consequently

Or+) e = f: at e_AtSta

for each a € B and X > 0 . But one also has
I/7 at e *ps a| = ”a“[ 1% at ||ps || + ||ps “/xJ
0 o | 0 t Sl

for any 0< 8 <1 . Since P is closed a simple Riemann
approximation argument establishes that (AI+H)‘la € D(p) ,

i.e., D(H) ¢ D(P) , and

P(AT+H) 14 = f‘g dt e"hpsta .
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Therefore setting b = (AI+H)-la and using the foregoing estimate

one finds

A

lebll = ||f at e tPSta“

= N0l [ e esqfrsgl

< (/\I!b!]+IIHb|I)[ 13 at ||Pst||+nps(s”[>\J

Thus P is H-relatively bounded. Moreover choosing § +to be small
and )\ to be large one sees that P has H-bound zero. The same
conclusion is indeed valid for a general Co—semigroup but one must

use the bound ||S.| =M exp{wt} and take A >w .

el
Theorem 1.9.1 can now be strengthened for the class

of Phillips perturbations.

THEOREM 1.9.2. Let S _ = exp{-tH} be a C -semigroup of
contractions on the Banach space B and P a Phillips perturbation
of S .

If P, or H+P, is norm-dissipative then H + P

generates a Co-semigroup of contractions s¥ . Moreover
fa=sa+ (-1 § dt, ... at
t t 1

n>1 0=t =t <...5t.=t
n~ n-1

for all a € B, where the integrals exist in the norm topology and

define a series of bounded operators which converges in norm



uniformly for t in any finite interval of the form (e, 1/¢)

where 0 <e< 1.

Proof. The first statement of the theorem follows from Theorem
1.8.1 and the foregoing observation that a Phillips perturbation
P of H is H-relatively bounded with H-bound zero.

Now consider the perturbation series for SP . It

follows from the definition of a Phillips perturbation that each

term is well defined as a bounded operator and is strongly

continuous for t > 0 . But if Sin) denotes the n-th term then
s - S, sin) = (-1) [f as st_spsén'l)
Hence, by iteration,
s < 5+ o
where
g(t) = || £6) = [es || ,
the % denotes the convolution product, and fn* denotes the

n-fold convolution of f with itself.
Now let us examine bounds on f .

Since § is contractive f is non-increasing and

the integral

w At
I, = [, at e"TE(D)
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is finite for each A > 0 . Moreover IA >0 as A >,

But for 0 < s < t one has £(t) = £(t-s) and hence
2[eMe(e)] = (e E(r-s)re™)?
Therefore

t[e- tf(t)]% < fz/Q ds [e_X(t_s)f(t—s)+e-AS]

<

= IA + 1/X .

Consequently for A sufficiently large
[7 at e Mr(r) = 172

and
At /L2
£(t) = & /247 .

Moreover since S is contractive there is an M > 0 such that
o -\t
fo at e A g(t) =M, g(t) = r/1e>‘t/t2

for this same range of large A .
Next we examine the propagation of these bounds.

Suppose two positive integrable functions fl R f2 s

on [0, ®) satisfy

o -t At [2
[oat e E(E) =M, £.(t) = Me A2



119.

Then

ol At o 0 -\t il -A
IO dt e (fl"fQ)(t) fo dt e "°f, () fo ds e Sf2(s)

IA

M1M2 = 8MlM2 .

Moreover

[fl:':fQ)(t) < eAt fg ds (ex(t_s)fl(t—s)) (e_)\sfz(s))

M M
= e>\t IE/Q ds ——~£—§ e_ASf (s) + eAt E/? ds e_k(t_s)fl(t—s) —%—
(t-s) S
At /2
= 8MlM2e /é .

Thus the bounds propagate.

Combining the foregoing estimates one concludes that

A

f: at e Mg # 27(r) < w2t

and

% /
g # £ (1) = uert 2

Consequently the perturbation series for SP is majorized in norm

by the series

§ouertone? < ouelt /2
n=0

and this immediately implies the convergence statements for the

perturbation series.
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It remains to prove that SP is a Co-semigroup

with generator H + P .
First strong continuity at the origin follows from
the integrability of t +— ”PSt” at the origin and the

straightforward estimate

A

|(sE-s)al = T J at, ... At |‘Pstl—t2|l

n=1 0=t _=...=t_=t
n 1

P e - ol

IA

3 15 es s )"tat -

n=1

Second note that SP satisfies the integral equation

P _ t P
s, =8, - [y ds S _PS_
and hence
P P P ftl P
st s- =58 s - ds S, PSS
7ty o, 0 ty-s st
t t
2 P 1 P
=S - [ “ass ps. - [ T ds s, _PS.S
t e, 0 t +tyms s 0 t)-s st

t
P 1 P PP
Stl+t2 +Jo as Stl-SP{Ss+t - S$5¢ } :

Thus the family of operator-valued functions

A ETE, () = sﬁpsip - ipﬂ
1 15 175
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is entire analytic, in the norm topology, and satisfies the

homogeneous integral equations
_ t
Fo) = A [ ds s, _PF (V) .

It then follows from Taylor's series that Ft(k) =0, i.e., the

semigroup property

is valid.

Finally let K denote the generator of SP . For A

sufficiently large one has

A ™ = 7 at e_AtSE )

But using the integral equation for SP one finds

At o t . At P
S, = [, dt [y ds e™s PS_

-1
(AI+K) s

f: dt e

A As_P

t o0 -
S, P Jydse S

O+ - [y at e

(AI+H) T - OI+) TP+ 7T .

This establishes that

(ANI+H+P)(AT+K) L = T .

But
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(AL+H+P) = (T+P(AT+H) ) (AT+H)

and
leazsm) ™t < f: at e—kt”PSt“ <1

for )\ sufficiently large. Therefore (AI+H+P) is invertible

with bounded inverse. Consequently

(AI+H+P) T = 1+t
and
K=H+P. []

Remark 1.9.3. One can obtain an analogue of Theorem 1.9.2 without
assuming that S is contractive or P norm-dissipative. If

S = exp{-tH} Zs a C

. -semigroup and P a Phillips perturbation

0
of S then H + P generates a Co—semigroup s¥ which can be
defined by the perturbation series of Theorem 1.9.2. The proof of
this generalization is very similar to the above proof but the

estimates necessary for the convergence of the series are slightly

more onerous because of the growth of ”Stu .

Example 1.9.4. Let B = LP@RV) and let S be the semigroup

generated by the Laplacian, i.e.,
(5.8) (x) = (ny*£) ()

where



2
ut(x) = (uﬂt)_v/Qexp{%Er

Next let V be a multiplication operator

(VE) (%) = V(x)f(x)

where V € Lq@RV) and q@ >V/2 , q=p . Then by successively

applying HGlder's and Young's inequalities

IA

Vs Fll, = MVl gl * ],

IA

(R

where p_l = q t + r s T +1=s3s + p— , and

l=p,q, r, s <o, But

-1
o, = ex/DE) | ovrza
Thus ”Vst"p is integrable at the origin and V is a Phillips

perturbation of S .

Exercises.

1.9.1. Let P Dbe relatively bounded with respect to H
with H-bound less than one. Prove that H + P is closable if,
and only if, H is closable and in this case the closures have

the same domain.

1.9.2. If P 1is relatively bounded with respect to H with
H-bound B < 1 prove that P is relatively bounded with respect

H+ P with HtP-bound B(1-8)" T .
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1.9.3. Let H be the generator of a Co—contraction
semigroup on a Banach space B and suppose P is relatively

bounded with respect to H . Prove that if A > 0 then

-1

”P(XI+H)-1” <o)+ 2B .

Moreover if B is a Hilbert space

HP(XI+H)—1H <t

Hint: In the Hilbert space case use norm-dissipativity to prove

that

lozsmal? = A2all? + [Hal? .

1.9.4. If a € LQ@RSJ has partial derivatives in LQﬁRs)

prove that

fdsx |a(x)‘2/ o S fdsx lVa(x)I2 .
|%|
. %
Hint: Calculate V|x|%a(x)

1.9.5. Let H denote the Laplacian on LP@Rv) and X,

the operator of multiplication by the characteristic function of

S(n)

the open bounded set A c R’ . Define to be the CO—

semigroup generated by the perturbed Laplacian Hn = H + n(I—XA)

Prove that S(n)

converges strongly on LP(A) to the semigroup
generated by the Laplacian with Dirichlet boundary conditions, as

n >,



