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1.2. Semigroups and Generators. 

Let B be a complex Banach space and B* its dual. 

We denote elements of B by a, b. c, ... and elements of B>" 

by f, g, h, Moreover we use (f, a) to denote the value 

of f on a and II-II to denote the norm on B and also the 

dual norm on B* , Le. , 

IIfll = sup{\f(a)\ lIall <: l} . 

A semigroup S on B is defined to be a family 

S; t E lR+ f-+ St E t( B) of bounded linear operators on B which 

satisfy 

1. s, t > 0 , 

where I denotes the identity operator on B. 

This notion of semigroup is not of great interest unless 

one imposes some further hypothesis of continuity. There are a 

variety of possible forms of continuity. Let us first consider 

continuity at the origin. 

The strongest possible requirement would be uniform 

continuity, i.e., 

.Hm liSt - III = 0 , 
t-+O+ 

where the operator norm is defined in the usual manner 



Iiall <: I} . 

But this is a very restrictive assumption. It can be established 

that a semigroup is uniformly continuous at the origin if. and 

only if. there exists a bounded operator H such that 

I + exp{-tH} 

(see Exercise 1.2.1). This is of limited interest in applications. 

Nevertheless we occasionally use uniformly continuous matrix 

semigroups for illustrative purposes. 

A weaker continuity requirement is strong continuity 

at the origin. i.e .• 

£im II (St - I)all = 0 
t-+O+ 

for all a E B. Semigroups with this property are usually called 

co-semigroups and we adopt this notation throughout the sequel. 

The heat semigroup on CoOR) is a semigroup of this type. Note 

that if S is a Co-semigroup then it follows from the principle 

of uniform boundedness (see Exercise 1.2.2) that 

for some M::: 1 and some finite w::: inf (t-l R.ogllstll) In 
t>O 

particular this implies that strong continuity of S at the origin 

is equivalent to strong continuity at all t::: o. This follows 

9, 
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from -the easy estimate 

II (Ss+t-Ss) all < Ilssll II (st-I)all 

:s Mews II (st-I)all . 

Moreover it establishes that the analysis of a general Co-semigroup 

can be reduced to the analysis of an M-bounded Co-semigroup, i.e., 

a semigroup satisfying 

This reduction is effected by replacing The 

case M = 1 is of particular importance. 

A Co-semigroup S for which each St is contractive, 

i. e. , 

is called a co-semigroup of contractions. The foregoing discussion 

of boundedness properties indicates that the theory of contractive­

semigroups is very close to the general theory. Nevertheless there 

are some significant differences which lead to complications if 

M > 1 and there are a number of techniques which are only applicable 

to the contractive case M = 1, W = O. Consequently for 

simplicity of exposition and diversity of method we restrict the 

ensuing discu,ssion -to contraction semigroups. 

Before proceeding to the detailed discussion of CO-

semigroups we note that there are other weaker forms of continuity 



which are of interest. One continuity hypothesis, which is 

natural from the mathematical point of view, is weak continuity 

at the origin. By this we mean 

(,': ) (f, a) 

for all a E B and all f E B*. But here an unexpected 

simplification occurs; evepY weakly continuous semigPOup is 

automatically strongly continuous (see Exercise 1.2.3). 

Alternatively one could make the weaker hypothesis that (*) is 

valid for all a E B and all f in some 'large' subspace of 

B*. In particular if B has a predual, i.e., if B is the 

dual of a Banach space B*, then one could suppose that (*) holds 

for all a E B and all f E B*. This hypothesis is referred to 

as weak*-continuity and a semigroup that satisfies it is called 

a c~-semigroup. This notation is appropriate because it follows 

by duality that each c~-semigroup on B is the dual of a CO-

semigroup acting on the predual B*. Hence many facets of the 

theory of c~-semigroups can be deduced by duality from the CO-case. 

00 

The group of translations acting on L (R; dx) is an example of 

a c~-group which is not a Co-group; it is the dual of the Co-group 

of translations acting on 
1 L(R;dx). We consider the basic 

theory of C~-semigroups of contractions in Section 1.6. 

The most important concept in the theory of continuous 

semigroups is that of the (infinitesimal) generator. This generator 

is defined as the (right) derivative of the semigroup at the origin 

where the sense in which the derivative is taken is dictated by the 

11. 
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continuity hypothesis. In particular the generator of a CO-

semigroup is defined as the strong derivative. The detailed 

definition is as follows. 

If S is a Co-semigroup on the Banach space B the 

(infinitesimaZ) generator of S is defined as the linear operator 

H on B whose domain D(H) consists of those a E B for which 

there exists abE B with the property that 

,Urn 
t-+O+ o . 

If a E D{H) the action of H is defined by 

Ha ;:: b . 

Note that the semigroup property of S automatically 

implies StD(H) ~ D(H) and 

for all a E D(H) and t ~ O. Moreover one has the differential 

equation 

-HS a ;:: -S Ha 
t t 

for each a E D(H) • where the strong derivative dSt/dt is 

defined by 

(s -S) t+h t 
h 

a 



whenever the limit exists. It also follows that Sand Hare 

connected by the integral equation 

for each a E D(H). The integrals, both here and throughout the 

sequel, are understood as B-valued Riemann integrals. 

We now derive the basic properties of generators 

and their resolvents. 

Recall that the reso"lvent set r(H) of an operator 

H on B is the set A E !r for which AI - H has a bounded 

inverse, the spectrum a(H) of H is the complement of r(H) 

!r , and if A E r(H) then (AI_H)-l is called the reso"lvent of 

H 

in 

PROPOSITION 1.2.1. Let S be a Co-semigroup of contractions on 

the Banach space B with generator H. 

It fo"l"lows that 

1. H is no~ c"losed3 no~ dense"ly defined3 

2. If ReA < 0 the range R(AI-H) of AI - H satisfies 

R(AI-H) = B 

and for a E D(H) 

II (AI-H)al! ::: IReA I II All , 

3. If ReA < 0 the reso"lvent of H is given by the 

13. 
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Proof. 

on B by 

Laplace transform 

JOO d eASS a - s o s 

In particular a(H) C {A 

a E B . 

ReA:::: O} . 

Since ReA < 0 we may define a bounded operator RA(H) 

a E B . 

Explicitly one has 

IIRA(H)all ::: f~ ds e-SiReAllissall 

::: f~ ds e-slReAiliall = iReAi-lllall . 

But for each a E B one also has 

-1 foo AS( -At) -1 ft A(S-t)S = -t 0 ds e l-e Ssa - t 0 ds e sa 

where both integrals converge in norm. This last conclusion uses 

the strong continuity of S and the Lebesgue dominated theorem. 

It follows that RA(H)a E D(H) and 

In particular 
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R(AI-H) = B • 

But since 

and RA(H) is bounded one finds that 

(AI-H)RA(H)a 

for a E D(H). Hence A E r(H) and 

But boundedness of (AI-H)-l implies that AI - H , and hence' H , 

is norm closed. Moreover the explicit estimate for IIRA(H)all 

derived at the beginning of the proof immediately gives the desired 

lower bound on II (AI-H)a// . 

Finally a = -nR (H)a E D(H) 
n n 

a E Band for all 

n ::: 1. But 

f~ ds e-S(ss-r)a ~ 0 

n 

by another application of strong continuity and the Lebesgue 

dominated convergence theorem. Thus D(H) is norm dense. 0 

This result has two simple implications which we often 

use in the sequel without further comment. First the proposition 
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implies that for each a > 0 generators satisfy 

( ,',) \I (I+aH)all ::: Iiall , a E D(H) . 

But it immediately follows that the generator H of a co-semigroup 

s has no proper extension satisfying (*), i.e" generators are in 
A 

this sense maximal, To deduce this suppose H extends H and also 

satisfies (;,) then for a E DeB) set b = (I+aH)a. But there is 

an a' E D(H) such that b = (I+aH)a' , by Condition 2 of Proposition 

1.2.1, and hence O+aH)(a-a') := 0 , because 
A 

H extends H . Thus 

a :: a' by (,',) and H:: H, The second implication gives a 

characterization of a core of H Recall that a subset D of the 

domain D(X) of an operator X is called a core of X if for each 

a E D(X) there is a sequence a E D 
n 

such that lIa 
n 

all -)- 0 and 

IIXa - Xall + 0 as n -~ 00. In particular if X is closed then D 
n 

is a core if, and only if, -the norm closure X I D of X restricted 

to D. is equal to X It follows -that a subset D C D(H) is a aore 

for the generator H if. and only if~ (Al-H)D is norm dense in B 

for some A with ReA < 0 ~ or for all A with ReA < o. Clearly 

if D is a core R(AI-H)D 

denotes the closure of HID 

A:: H by use of C",). 

B by Proposition 1.2.1. Conversely if H 
"-

and R(Al-H):: B one again concludes that 

A slight variation of the argument used to prove 

Proposition 1.2.1 also provides the following slightly less evident 

criterion for a core of a generator. 

COROLLARY 1.2.2. Let S be a co-semigroup of aontraations on the 

Banaah spaae B with generator H and let D be a subset of the 

domain D(H) of H which is norm dense and invariant under S 3 

i.e., Sta E D for all a E D and t::: 0 

It follows that D is a core for H. 
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Proof. 
"-

Let H denote the closure of HID' By the above 

remarks it suffices to prove that R(AI-H) = B for some A with 

ReA < 0 But for a E D one can choose Riemann approximants 

N AS. 
IN(a) = I e lS a (s. 1-s.) 

i=l 
s. 1+ 1 

1 

N AS. 
IN«Ar-H)a) L e lS (Ar-H)a(s. I-s.) 

i=l 
s. 1+ 1 

1 

which converge simultaneously to a . Now 

IN(a) E D because of the invariance of D under Sand 

Thus I N(a) -+ -1 (Ar-H) a and (AI-H) IN(a) -+ a Therefore 

D C R(Ar-H) But (Ar_H)-l is bounded and hence R(Ar-H) is 

norm closed. Thus R(Ar-H) D by the norm density of D o 

Exercises. 

1.2.1. Prove that if a semigroup S is uniformly continuous 

then there exists a bounded operator H such that 

Hint: For small s > 0 the operator 
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is invertible, with bounded inverse, and 

1.2.2. Prove that a weakly continuous semigroup S must 

satisfy 

for some M > 1 and some finite w:::: inf (t -1 R,ogll St ll ) . 
eo 

Hint: Use the uniform boundedness principle for small t and 

the semigroup property for large t 

1.2.3. Verify that if Re z > 0 then 

-V/2 V _(x_y)2/ 
= (4~tz) J dye 1 4tzf (y) 

1.2.4. Prove that weak and strong continuity of a semi-

group S are equivalent. 

Hint: The weak generator 

S is defined by 

(f, H a) 
w 

H of a weakly continuous semigroup 
w 



with D(H) the set of a for which the limit exists for all 
w 

f E B*. Adapt the argument used in the proof of Proposition 1.2.1 

to deduce that D(H) is weakly dense and hence, by the Hahn­
w 

Banach -theorem, strongly dense. Finally use 

reo' ds ( f, S H a) s w 

to prove strong continuity for all a E D (H) . 
w 

1. 2. 5, Prove that the generator H and weak generator 

of a Co-semigroup S coincide, 

Hint: Adapt the proof of Proposition 1.2.1 to deduce that 

H 
w 

H :::> H 
- w 

1,2.6. If H is the generator of a Co-semigroup prove that 

is norm dense. 

Hint: For each a define a by 
n 

where f is a positive, infinitely often differentiable, function 

with compact support in (0, oo) and with total integral one. Then 

a E Doo(H) and Iia - all -+ 0 as n -+ 00 
n n 
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1.2.7. Let S denote the heat semigroup on LP(~V) , 

Prove that the generator of S is the closure of the restriction 

of the Laplacian 

_v2 = <;' a2 
-[. -2 
i=l ax. 

~ 

to the infinitely often differentiable functions in LPQRV) • 

Hint: Use Corollary 1.2.2. 


