93

PROBLEMS WITH DIFFERENT TIME SCALES

Heinz-0tto Kreiss

1. INTRODUCTION

Perhaps the simplest problem with different time scales is given

by the initial value problem for the ordinary differential equation

(1.1) edy/dt = ay + e-° , £20, y(0) = v,

Here ¢ , a are constants with 0 < g << 1 , ]a] = 0(1) and

Real a =0 . The solution of (1.1) is given by
(1.2) y(t) = yq(t) + yR(t) ,

where

it . -1 a/e)t
v, (t) = e (-atie) v ygplt) = e /€) (yo-yq(o)) .
Thus it consists of the slowly varying part ys(t) and the rapidly

changing part yR(t) . There are two fundamentally different situations

1) a=-1. In this case yR(t) decays rapidly and outside
a boundary layer the solution of (1.1) varies slowly. Many people have
developed numerical methods to solve problems of this kind (see for

example [15]) and we shall not consider this case.

2) a =i is purely imaginary. Now yR(t) does not decay and

v(t) is highly oscillatory everywhere. In many applications one is not

interested in the fast time scale. Therefore it is of interest to
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develop methods to prepare the initial data such that the fast time scale

is suppressed. We shall describe one such method.
Initialisation. It prepares the initial data in such a way that
the fast time scale is not activated. In the above example we need only

to choose
R -1 . 2
(1.3) Vg = ys(O) = (-a+ieg) = =a ~(l+ie/a-(e/a) +...) .

Then yR(t) = 0 and the solution of our problem consists only of the
slowly varying part ys(t) . For more complicated problems one can
determine yS(O) only approximately. The rapidly changing part will
always be present but we can reduce its amplitude to the size O(EP) B
P =1,2,.... An effective way to do this is to use the "bounded

derivative principle" which is based on the following observation:

If y(t) wvaries on the slow time scale then dvy/dtv'v 0(1) for
v=1,2,...,p where p > 1 is some suitable number. Therefore our

principle is
Choose the initial value y(0) = Y such that for t =0

Vv
(1.4) avy/at” ~0(1), v=1,2,...,p .

t=0

Using the differential equation we can express the derivatives at +t = 0 in terms
of y(0) . Therefore we can determine y(0) such that (1.4) is

satisfied without solving the differential equations.

Let us apply this principle to our example. dy/dt = 0(1) if

t=0
and only if

ay(0) = -1 + O(g)
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(1.5) y(0) = -1/a + €y, (0) , dy/dt =ay, , vy, =0()

t=0

If we choose v(0) according to (1.5) then

yR(O) = y(0) - ys(O) ==-1/a + ey, - 1/ (-a+ig) 0(e) ,

i.e. the amplitude of yR(t) is O0(e) for all times. We consider now

the second derivative. The differential equation gives us

ea’y/at’ = ady/dt + ie't

Thus d2y/dt2|t=o = 0(1) if and only if

2 .

ady/dt|t=0 =ay; =-i+0(@),

i.e.
.2 2 2 _ 2

y, = - i/a” +ey,, d y/atT| o =2y,

and by (1.5)
. 2

(1.6) v(0) = - 1/a(l+ie/a) + ¢ Y, -
In this case we obtain for the amplitude

y_(0) = y(0) - y.(0) = 0(e%) .

R S
The above procedure can be continued. If we choose the initial

data such that the first p time derivatives are 0(1l) then the

amplitude of the fast part of the solution is O(EP) . We are going to
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indicate that results of this kind are valid for very general systems of

linear and nonlinear ordinary and partial differential equations.

2. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

In this section we consider systems of ordinary differential

equations
1
(2.1) dy/dt = E—A(t)y + £(y,t) , y(0) = yo , t =0 .
Here ¢ > 0 is a small constant, y = (y(l),y(z),...,y(n))T is a vector

%
- A (t) isa skew-hermitien matrix

function with n components, A(t)
and £(y,t) is a vector function which depends nonlinearly on y and
t . We assume also that yO = 0(1) and that A(t) and £(y,t) have
p derivatives with respect to all variables and that these derivatives
can be estimated by expressions Kl|y|m + K2 B Kj =0(1) , m>0a
natural number. Thus there are two time scales present, a slow 0(1)

and a fast 0(1/eg) .

We assume also that the eigenvalues H of a(t) are either
identically zero or different from zero for all times, i.e. the rank of

A(t) is independent of t . One can prove

THEOREM 2.1 There is an interval 0 <+t < T and a constant Kp such

that

b P
sup ) |aVywy/ee’| =k ) |a5y/at“|t=o| .
0<t<T v=0 P =0

Here Kp = 0(1) and T does not depend on € .
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We shall now discuss how to choose the initial data. Without

restriction we can assume that (2.1) has the form

du/dt = = A (t)u + gly,t)
(2.2)
T
dv/dt = h(y,t) , y = (u,v)  ,
where Al has full rank and h is independent of ¢
dy/dt =0 = 0(1) 4if and only if
Alu(O) = 0(e) .
Thus
(2.3) u(0) = €d; » 9y T 0(1L)
and
(2.4) du/dt £=0 = Al(O)ql + g(0,v(0),0) + O(e) .
2 2 2 2
(2.3) guarantees that d7v/dt™ = 0(1l) . For d u/dt we have
d2 /dt2 = l-(A (0)du/dt+ (da, /dt)u) + 0(1)
v t=0 g ‘MptPeu 1 £=0

1
= 7 B0 (A, (0)qy + g(0,v(0),0)) + O(1)

Therefore dzu/dt2 = 0(1) 4if and only if

t=0

-1
ql(O) = - Al (0)g(0,v(0),0) + edy s 9y = 0(1)

2

or

(2.5) u(0) = - ealt(0)g(0,v(0),0) + 0(e?)
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(2.5) tells us that u(0) is determined by v(0) up to terms of order
0(62) . This process can be continued. If we demand that p time
derivatives are bounded independently of € then u(0) is determined by

v(0) wup to terms of order O(ep) .

We can now use our results to derive reduced systems. We know,
that if we choose the initial data such that p time derivatives are
bounded independently of € , then u is determined by v wup to terms
)

of oxder Of(e . This relation can be derived for every fixed t with

0=t

1A

T . Thus we can replace the differential equation for u by
the above relation between wu and v . We obtain reduced systems which
become more and more refined depending on the number of time derivatives

which stay bounded. The crudest system is

(2.6) u=0, dv/dt = h(0,v,t)

and an improved system is given by

(2.7) Al(t)u(t) + eg(0,v(t),t) = 0, dv/dt = h(u,v,t) .

3. PARTIAL DIFFERENTIAL EQUATIONS

The earlier results can be generalized to partial differential

equations. In this section we consider equations of the form

(3.1) u, =

™ |-

Po(x,t,a/ax)u + Pl(u,x,t,ea/ax)u + F(x,t)

is s space dimensions. Here PO B Pl are first order differential

operators with symmetric matrices as coefficients. The main assumption

is that the number of eigenvalues % # 0 of the symbol
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B o(x,t,iw) =i ) A.(x,tw,

0 j=1 ) J

does not depend on the frequency w and x , t . Then the bounded

derivative principle is valid, i.e. the following theorem holds

THEOREM 3.1  Assume that all derivatives

v v
|v|+u 1 S, M L
d wlx,t) /%" ... 3x 0t lt=0 oo vl +w=tv, vusp
are bounded independently of e . Then we can estimate these derivatives

independently of e in a time interval 0 =+t =T, T <independent of
€ , provided p = [3s] + 2 . Here [}s] <s the largest integer with

[$s] = s/2 .

As an application we consider the shallow water equations which
play a central role in geophysics. In meteorology they govern two
classes of motions with different time scales, consisting of low
frequency Rossby waves and high frequency inertial gravity waves. Often
one is not interested in the inertial gravity waves which then have to be
filtered out. Initialisation procedures have been considered for a
long time and we refer to [3] for a more detailed account of the
development. In Cartesian coordinates x and y , directed eastward
and northward respectively, the shallow water equations including the

effect of gravity (see for example [11]1) are expressed by

u, + uu + vuy + ghx - fv =0,

(3.2) vt + v, + vvy + ghy + fu

]
o

ht + (uh)x + (vh)y + ho(ux+vy) =0 .
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Here t is time, wu and v are the velocity components in the x and
y directions, h0 is the mean height of the homogeneous fluid, h

denotes the deviation from the mean height g = 10 ms_2 is the constant
gravity acceleration and £ denotes the coriolis force. For simplicity

only, we assume that £ 1is constant. Using typical scale parameters

(see for example [31), we can write (3.2) in nondimensional form

du -1

—C:{E+€ (hx—fv) =0,

dv -1
(3.3) Er + € (hy+fu) =0,

dh -2 2

e + & " (l+e h)(ux+vy) =0 , e << 1 .
Here

a _ 3 kR N

dt—8t+u3x+v8y'

The system (3.3) is not exactly of the form as discussed earlier.
However the proofs in [5], [14] can be modified to cover this case because

we can symmetrize the equations by introducing new variables

i
u(l+ed) = 5%3 , vi(l+ed) = e°% .
We shall now use the bounded derivative principle to determine
the relations the initial data have to satisfy such that only the Rossby
waves are present. The first time derivatives are bounded independently

of ¢ at t =0 Aif

(3.4) h = fv =¢a , hy + fu=¢€¢b , u +v_ =¢3d8 .
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Thus the data have to be (approximatively) in geostrophic balance and the
divergence has to be small. If we choose the initial data according to
(3.4) then these relations hold also at later times. We can therefore
assume that a,b,§ are smooth functions and can rewrite the equations

(3.3) in the form
(3.5) du/dt +a =0, dv/dt +b =0 , dh/dt + (1+32h)6 =0
Also, we can write (3.4) as

= h h = - =
(3.6) e(ax+by) x + Sy + f(uy vx) , a bx cf§

The second time derivatives are bounded independently of ¢ if

da/dt , db/dt , d6/dt are O0(1) . This leads to

c?ds/dat = du /At + dv _/dt = (du/dt)  + (dv/dat) - J(u,v) =
x v X v

(3.7) = - (ax+by) - J,v) =
= e tn _+n+£8) - T(u,v)
XX yy ’ 7
where & =u_ - v is the vorticity and J(u,v) = (u )2 + 2u v+ (v )2
’ v x ! x v x v
the Jacobian. Thus we have to choose the initial data such that the

balance equation

(3.8) h  +h  + fE +eJ(u,v) = 0(e)

is satisfied. Using (3.7) we can write (3.6) in the form
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2
(3.9) a + by + J(u,v) = 0(e”) , a, - b = ef§ , u, o+ v, =€ § .

da/dt = 0(1) , db/dt = 0(1) give us correspondingly
§ +uh +v.h - fb=20() ,
x X X Xy
§ +uh +v.h + fa = 0(g) ,
Yy Y X Yy
or, using the geostrophic relations

6x + f(uxv—vxu) - fb = 0(g) ,

(3.10)

6y + f(uyv—vyu) + fa O(s) .

The last two relations are compatible because if we crossdifferentiate

them we obtain (3.7). Thus & is determined by

(3.11) Gxx + ayy + f((uxv-v‘xu)x + (uyv—vyu)y) = 0(e) .

We shall now discuss how one can find initial data such that the

relations (3.9) and (3.11) are satisfied. Let the vorticity uy - vX = £
¥ *
be given. Then we determine preliminary velocities u , v from
%* * * *
u_ + vy =0, u -v_=¢§

and determine ¢ as the solution of

* % * %k % % * %
[ + 6 + f((uv-vu) + (uv-vu))=20.
XX vy X x ‘x v v 'y

The final values u , v , h , a and b are the solutions of
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(3.12a) u +v._=¢6, u -v_=E, h_ __+ hyy + £f§ - J(u,v) =0 ,

(3.12b) a +b +J(u,v) =0, a -b_=c¢cf§ .
X Yy X

Instead of solving the original system with proper initial data
we can also replace (3.3) by a reduced system. In [4] we have made a

detailed study of the system

du/dt +a =0, dv/dt +b =0,

a +b +Ju,v) =0, a -b = ¢ef§ .
X vy N X
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