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PROBLEMS WITH DIFFERENT TIME SCALES 

1 . INTRODUCTION 

Perhaps t.he simplest problem with different time scales is given 

by the initial value problem for the ordinary differential equation 

(1.1) fdy /dt 
it 

ay + e t > 0 ' y (0) 

Here E a are constants with 0 < E << 1 , 

Real a < 0 The solu·tion of (L1) is given by 

(1.2) y ('c) Ys (t) + YR (t) 

vvhere 

~(t) 
it. . -·1 

e (-a+lE) , (t) 
~-' 

0(1) and 

Thus it consists of ·the slowly varying par'c y S (t) and ·the rapidly 

changing par·t y f< (t) There are two fundamen·tally different situations 

l a = -1 . In >:his case yR (t) decays rapidly and outside 

a boc~ndary layer the solu·tion of (1.1) varies slowly. l\ilany people have 

developed numeJ:ica.l me·thod.s 'co solve problerns of this kind (see for 

example ~15]) ana VI8 shall not conside~ ·i:his case,. 

;') a. = i is R Ct:) c1oes not-: decay and 

y (t) 
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develop methods to prepare the init.ial data such tha·t the fast 'cime scale 

is suppressed. We shall describe one such method. 

Initialisation. It prepares the initial data in such a way that 

·the fast time scale is not activated. In the above example vle need only 

to choose 

(l. 3) (0) (-a·l·ie:l -l -1 . 2 
-a (l+l.E/a- (£/a) + ... ) . 

Then yR ('t) := 0 and the solution of our problem consis·ts only of the 

slowly varying part (t) • For more complica·ted problems one can 

determine (0) only approximately. The rapidly changing part will 

always be present but eve can reduce its amplitude to the size 0 (Ep) , 

p = 1,2, .... An effective way to do this is to use the "'bounded 

derivative principle"' which is based on the following observation: 

If y(·t) varies •:m the slow 'cime scale ·then d\Jy/dt\J ~ 0(1) for 

v = l,2, ... ,p where p > 1 is some suitable nu~er. Therefore our 

principle is 

Choose the initial- value y (OJ y 0 such that fmo ·t 0 

(L4) v = l,2, ... ,p 0 

using the differential equo:tion v;e can express the derivatives at 'c 0 in terms 

of y(O) • Therefore 'ijJe can determine y (0) such tha·t (1. 4) is 

satisfied without solving the differential equations. 

Le·t us apply ·this principle to our example. dy/d·ti t=O 0 (1) if 

and only if 

ay(O) -1 + O(E) 
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i.e. 

(1. 5) y(O) 0 (1) • 

If we choose y(O) according to (1.5) then 

y(O) - y8 (0) =-1/a + £y1 - 1/(-a+i£) 0(£) 1 

i.e. the amplitude of yR(t) is 0(£) for all times. We consider now 

the second derivative. The differential equation gives us 

ady/dt + ieit 

2 21 Thus d y/dt t=O = 0(1) if and only if 

ady/dtlt=O - i + 0 (£) 1 

i.e. 

- i/a2 + £y2 I 
2 21 d y/dt t=O 

and by (1.5) 

(1.6) y(O) 2 - 1/a(l+i£/a) + £ y 2 

In this case we obtain for the amplitude 

The above procedure can be continued. If we choose the initial 

data such that the first p time derivatives are 0(1) then the 

amplitude of the fast part of the solution is 0(£p) • We are going to 
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indicate that; resul'cs of this kind are valid for very general sys'cerns of 

linear and nonlinear ordinary and partial differen·tial equa·tions. 

2. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

In this section we consider sys·tems of ordinary differential 

equations 

(2.1) dy/dt 
1 
-A(t)y + f(y,-t) 
2 

y(O) t ::: 0 . 

Here s > 0 is a small constant, y ( (l) (2) (n) )T 
Y 11Y f om o J!y is a vector 

* function with n components, A(t) P"" (t.) is a sk8v1-hermit:ien matrix 

and f (y, t) is a vec'cor function which depends nonlinear·ly on y and 

t We assume also that ~O{l) cmdtha·t A(t) and f(y,-t) have 

p derivat.ives wit.h respec·t t,o all variables a.nd t.hat tb.ese deriva·tives 

can be est:imated by expressions 0 (l) 11.1 > 0 a 

natural number. Thus there are ·two ·time scales presen·t, a slow 0 { J.) 

and a fast 0(1/E) . 

IN'e assume also ·t.hat ·th'" eigenvalues H of l\ (t.) are either 

ident.ically zero or differen"t from ze:rco for al}_ times I' i ~ e" the Jt:-aJl.k 

A (<t} is independent of t OnE: can prove 

THEOHEM 2.1 

that 

Here 

There is an intel"Val 0 < t < '1' and a c:onstani; 

sup 
o::t::::T 

{t:) < 

o { 1) and 'I' does not depend on s 

such 
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We shall now discuss how to choose ·the initial data. 

restriction we can assume that (2.1) has the form 

du/dt 
l 

(t)u + g·(y,t) 

(2.2) 

rn 
dv/dt = h(y ,·t) , y = (u,v) ~ , 

where 1',1 has full rank and h is independe:n·t of E: 

dY/dtit=O = 0(1) if and only if 

0 (s) • 

Thus 

(2.3) u(O) 0 (1) 

and 

(2 .4,) 

0 (1) . 

. 2 I 21 
u u. dt lt=O 

l 
(O)du/dt+ /d·t)u)t +0(1) 

tt=O 

1 
(O)(A.,(O)q. + g(O,v(O),O)) + 0(1) 

.c j_ 

2 21 Therefore d u/dt ·t=O 0(1) if and only if 

(0) 
-1 

(O)g(O,v(O) ,0) + sq2 0 (l) 

u(O) -l\0)-g(O,"·;_r(Q) .vO) -:- 0 
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(2,5) tells us that u(O) is determined by v(O) up ·to terms of order 

0 This process can be continued. If vve demand that p ·time 

derivatives are bom1ded independently of c- then u(O) is determined by 

v (OJ up ·to ·terms of order 0 (sp) • 

We can now use our results to derive reduced sys-tems. We kno\v, 

that if v1e choose the initial data such that p time deriva-tives are 

bounded independently of s , ·then u is determined by v up to terms 

of order 0 This relation can be derived for every fixed t with 

'rhus we can replace i:he differential equation for u by 

the above relation between u and v lole obt.ain reduced systems which 

become more and more refined depending on the number of ·time deriva-tives 

••hich stay bollilded. The crudes'c system is 

(2.6) u 0 , dv/dt h(O,v,t) 

and an improved sys·tem is given by 

(2. 7) (t)u(t) + sg(O,v(t) ,t) 0 dv/d·t 

3. PARTIAL DIFFERENTIAL 

The earlier resul-ts can be generalized to partial differential 

equations. In this section ;,1e consider equations of the fortn 

(3 .1) (u,x,t,s3/8x)u + F(x,t) 

is s space dimensions. Here , P1 are first order differential 

operators with symmetric matrices as coefficients. The main assump-tion 

is that the number of eigenvalues x ~ 0 of the symbol 
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s 
i I 

j=l 
A.(x,t)uJ. 

J J 

does not depend on 'che frequency w and x , t . Then the bounded 

derivative principle is valid, i.e. the follmving theorem holds 

THEOREM 3.1 Assume that aU derivatives 

I . \) 
' \) +].l l 3 I u(x,t)/(lx1 

\) 

3 s~ J.ll 
XS ot t=O Jvl + J.l := Evi + J.l < P 

are bounded independently of s Then we can estimate these derivatives 

independently of s in a time 'inter'val 0 ::: t ::: 'I' , T independent of 

s , provided p ~ [1sl + 2 . Here ["}s] 'Ls the largest integer 1vith 

Bsl ::: s/2 . 

. As an application we consider the shallow ~later equations which 

play a central role in geophysics. In meteorology they govern tvm 

classes of motions with differen·t time scales, consisting of low 

frequency Rossby waves and high frequency inertialgravity waves. Often 

one is note interested in the iner'cial gravity vJaves which then have to be 

filtered ouL Ini·tialisa·tion procedures have been considered for a 

long time and we refer to [3] for a more detailed account of the 

development. In Cartesian coordina_tes x and y , directed eastward 

and northward respectively, the shallow water equa-tions including ·the 

effect of gravity (see for example [lll) are expressed by 

ut + uu + + ghx - fv 0 ' X 

(3. 2) + uv + 
X 

+ + fu 0 ,, 

ht + {uh) + (vhl + (ux +vy) 0 
X . . y 
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Here t is time, u and v are the velocity components in the x and 

y directions, h0 is the mean height of the homogeneous fluid, h 

denotes the deviation from the mean height 
-2 

g := 10 ms 

gravity acceleration and f denotes the coriolis force. 

is the constant 

For simplicity 

only, we assume that f is constant. Using typical scale parameters 

(see for example [3]), we can write (3.2) in nondimensional form 

(3.3) 

Here 

du -1 
0 

dt + e: (hx-fv) I 

dv -1 0 dt + e: (h +fu) I y 

dh -2 2 
dt + e: (l+e: h) (u +v ) 

X y 

d a +u_1_+v_2_ 
dt = at ax (ly 

0 I e: << 1 

The system (3.3) is not exactly of the form as discussed earlier. 

However the proofs in [5], [14] can be modified to cover this case because 

we can symmetrize the equations by introducing new variables 

u(l+e:<l>) 

We shall now use the bounded derivative principle to determine 

the relations the initial data have to satisfy such that only the Rossby 

waves are present. 

of e: at t = 0 if 

(3.4) h - fv 
X 

The first time derivatives are bounded independently 

h + fu 
y 
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Thus the data have to be (approximative1y) in geostrophic balance and the 

divergence has to be small. If we choose the initial data according to 

(3.4) then these relations hold also at later times. We can therefore 

assume that a,b,o are smooth functions and can rewrite the equations 

(3.3) in the form 

(3. 5) du/dt + a 0 , dv/dt + b o , dh/dt + (l+e2h>o 0 

Also, we can write (3.4) as 

(3 .6) £(a +b ) 
X y 

h + h + f(u -v ) , a - b 
XX yy Y X Y X 

u + v 
X y 

efo , 

The second time derivatives are bounded independently of £ if 

da/dt , db/dt , do/dt are 0(1) . This leads to 

(3.7) 

where 

the Jacobia11. 

du /dt + dv /dt 
X y 

(du/dt) + (dv/dt) - ](u,v) 
X y 

e-1 (h +h +f~) - J(u,v) , 
XX yy 

is the vorticity and ](u,v) = (u ) 2 + 2u v + (v ) 2 
X y X y 

Thus we have to choose the initial data such that the 

balance equation 

(3.8) 

is satisfied. 

h + h + f~ + El(u,v) 
XX yy 

Using (3.7) we can write (3.6) in the form 



(3 0 9) + b + ](u,v) 
y 
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a - b y X 
sfo , u + 

X 

da/dt 0 (1) ' db/dt 0(1) give us correspondingly 

0 

0 

or, using the 

+ u h + v h - fb 
X X X X y 

+ u h + v h + fa 
y y X y y 

geostrophic relat,ions 

+ f (u v-v u) + fa y y 

O(s) 
' 

0 (E:) 

0 (E:) • 

The las,t two rela,tions are compa,tible because if we crossdifferentiate 

them we obtain (3.7). Thus o is determined by 

(3, 11) o + o + f ( (u v-v u) + (u v-v u) l 
XX yy X X X y y y 

0 (E:) 0 

We shall now discuss how one can find initial data such that the 

relations (3.9) and (3.11) are satisfied. Let the vorticity 

* * be given. Then \ve determine preliminary velocities u , v from 

* * u + v 
X y 0 ' 

and determine 6 as the solution of 

cS 
XX 

0 . 

'rhe final values u , v , h , a and b are the solu'cions of 
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u + v E2o ' u E; ' h + h + ft; - ](u,v) 0 ' X y y XX yy 

(3.l2b) a + b + J (u,v) 0 ' a - b Efo 
X y y X 

Instead of solving the original system wi·th proper initial data 

we can also replace {3.3) by a reduced system. In [4] we have made a 

detailed s·tudy of the system 

du/dt + a 0 , dv/dt + b 0 ' 

a + b + ] (u,v) 
X y 0 ' 
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