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COMPUTATIONAL IMPLEMENTATIONS OF THE DORODNITSYN
BOUNDARY LAYER FORMULATION

C.A.J. Fletcher

1. INTRODUCTION

Conventionally the boundary layer governing equations are discretised by
treating the velocity components, u and v, as the dependent variables and the
coordinates, x and y in two dimensions, as the independent variables. However
there are many advantages in adopting a Dorodnitsyn boundary layer formulation
which uses a non-dimensional normal velocity gradient as the dependent variable

and x and u as the independent variables.

An immediate computational advantage is that an infinite domain in the y
direction is replaced by a finite domain in u; u is scaled to vary between
zero and unity in traversing the boundary layer. The scaling of u means that
the grid automatically captures the boundary layer growth in the downstream
direction. 1In (x,y) space periodic readjustment of the boundary layer grid at

the downstream stations is computationally expensive.

In the Dorodnitsyn formulation is is convenient to specify a uniform grid
in the u direction. For the finite element Dorodnitsyn formulation this permits
a higher accuracy to be achieved. In contrast in physical space a non-uniform
grid is invariably required which implies, for the finite difference or finite
element method, a larger truncation error than if a uniform grid is used. The
use of a uniform grid in u-space provides high resolution in physical space
adjacent to the wall. This is particularly important for turbulent boundary

layers.

For two-dimensional flows the Dorodnitsyn formulation offers the additional
advantage of avoiding the explicit appearance of the normal velocity component,
v. Although it can be recovered if required. Consequently only one equation

is solved with the Dorodnitsyn formulation.

By choosing the non-dimensional velocity gradient as the dependent variable
the shear stress is computed accurately. This is particularly important in

determining the skin friction behaviour.
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2. DORODNITSYN BOUNDARY LAYER FORMULATION

In this section the Dorodnitsyn formulation of the equations governing two-
dimensional, turbulent boundary layer flow with blowing or suction in the normal

direction, is described.

For two-dimensional turbulent boundary layer flow the governing equations can

be written in the following form,
du/dx + v/dy = O (1)
udu/dx + vdu/dy = uedue/dx + {l/Re}B[(l-va/v)Bu/By]/By . (2)

In eq. (2) the expression vaBu/By has replaced the Reynolds stress, -pu'v', where Vi

is the eddy viscosity. The equation system, (1) and (2) is parabolic in character

and requires initial conditions
u(xo,y) = ui(y) and v(xo,y) = vi(y) (3)
and boundary conditions,
u(x,0) = 0 , v(x,0) = Ve and u(x,e0) = ue(x) (4)
where v is the prescribed normal velocity at the wall.
In egs. (2) and (4), ue(x) is the known velocity distribution at the outer edge
of the boundary layer. 1In egs. (1) to (4) u, Uy, and v have been nondimensionalised

with a reference velocity U, and x and y have been nondimensionalised with a refe-

rence length L. Consequently the Reynolds number, Re = UmL/v.
The following variables are introduced,

* 3
£ = L) ue(x')dx' , n = Re u_y

E

[ r = = ! '
u’ = u/ue , v Re v/ue and w=v' + nu {Bue/ai}/ue

Then egs. (1) and (4) také the form,

gé an = O‘ (5)
du
u’ du’ 1 e 3 ou’
P ou gu _ L _£.< ou
u' 5% + v Ty 5 * 5 {(l+vT/v) - } ' (6)
with auxiliary conditions,
u’' =0 , w= Re% vw/ue atn=0 andu’' =1 atn=owo. (7)

Equations (5) and (6) are combined in the following way,

fk x equation (5) + (dfk/du') z equation (6) = 0 , (8)

where fk(u') is a general test function. Evaluation of eg. (8), after dropping the

7

superscript ', gives



du_ Jf of
_ 1 e 'k k 3
35 (uf ) + = (wf ) = —-u -E _311 {

An integration with respect to n is made,
) du 4af o df
1 e k P ] Bu}
P T e ememes s - e o — .
: ruf dn + [Wfk:}o - = J“’eu (1-u®)dn +J o on {(l YR dan (10)
(o) (e} ©

The function, fk’ is chosen so that fk(w) = 0. The second stage of the Dorodnitsyn

P,

Q2

formulation changes the variable of integration from n to u and introduces new

dependent variables,

T = 1/@® = 53u/on . (11)
As a result eqg. (10) becomes
1 1 1
du daf daf
9 3 =8| k.2 k3
3E ufk®du - ReF fk(o) =% E = (1-u®) @du + T {(1+VT/\))T} du,
(] e 0 (]
(12)

where the wall-blowing parameter, F = Vw/ue'

Equation (12) is the Dorodnitsyn turbulent boundary layer formulation with a
known normal velocity, Vit at the wall. In the original Dorodnitsyn method, polyno-
mial trial solutioms for G@ and T are utilised. The original Dorodnitsyn formula-
tion (the Method of Integral Relatioms) is effective as long as the number of unknown
coefficients in the trial solution is small (say N = 2 to 4). The Method of Integral

Relations is described by Holt (1977).

3. DORODNITSYN SPECTRAL FORMULATION

In this formulation the polynomial trial functions and the test function fk' in

eq. (12) are replaced by related orthonormal functions, gk(u). The orthonormal

functions are constructed as follows,
g W = [ e (1-uw’ (13)

where the coefficients erk are evaluated via the Gram-Schmidt orthonormalisation

process (Isaacson and Keller, 1966) so that
1

[ gj(u) gk(u) w(u)du
(o]

1 if j =k (14)

0 if 3 #k

The appropriate form of w(u) will be indicated below.
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The trial solution is

1 N=1
@ = —(_]—:G)—bo + z bjgj(u) . (15)

j=1

With Iy replacihg fk in eq. (12), and substitution of eg. (15), the following is

obtained
1
a N--1
= {%o + ‘Z bjgj(u)} qk(u) {u/(l—u)} du = Ck (16)
=1
©
where
1 1
3 1 due dgk - dgk 3 (l+vT/v)
Ck = Re ng(o)-!- G;-ag—- Eu_ (1-u )@du + :iu— "é—a {-‘—® } du (17)

e] o

A comparison of egs. (14) and (16) indicates that the choice, w(u) = u/(l-u),

permits a significant simplification of eg. (16). That is eq. (16) becomes

dbk/dg cC, .- cN vk/vN , k=1, ... N-1 (18)

k

[]

and dbo/dE CN/VN , when k =N . (19)

where Vk etc. can be evaluated, once and for all, as

1
v, o= f gk(u) u/(l=u) du . (20)
(e}
The spectral formulation is implemented by numerically integrating egs. (18) and
(19) in the & direction. The variable-step, variable-order predictor-corrector

method due to Gear (1971) is particularly suitable for this purpose.

Accurate solutions using the Dorodnitsyn spectral formulation are obtained with,
typically, N = 4 to 6 in eq. (15). The Dorodnitsyn spectral boundary laver formula-
tion has been applied to incompressible (Fletcher and Holt, 1975) and compressible
(Fletcher and Holt, 1976) laminar flows and to incompressible (Yeung and Yang, 1981;
Fletcher and Fleet, 1984b) and compressible (Fleet and Fletcher, 1983) turbulent

flows.

DORODNITSYN FINITE ELEMENT FORMULATION

Trial solutions are introduced for C) and (l+vT/v)T, in eq. (12), in the

following way,

I

® =

Nj(u)/(l—u)Sj(E) (21)

=1
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and
M
(v /T = §  (1~u)N, (W) (1+V_/V) T, (&) (22)
T 29 J T 373
j=
In egs. (21) and (22) the factor (l-u) has been introduced to ensure that @3 and T
have the correct behaviour at the edge of the boundary layer. The terms Nj(u) are

one-dimensional shape functions, typically linear or quadratic (Fletcher, 1984).

In eg. (22) the trial solution has been introduced for the group of terms,
(l+vT/v)T. This is an example of the group finite element formulation (Fletcher,

1983) and is partly responsible for the very economical execution of the current
algorithm.

The test function, fk(u), is given the following form,
fk(u) = (l~u)Nk(u) P (23)

which ensures that fk(u) = 0 at the outer edge of the boundary layer, u=l.

The substitution of egs. (21) to (23) into eg. (12) indicates that a modified
Galerkin method is produced. Evaluation of the various integrals produces the fol-

lowing system of ordinary differential eqguations for the nodal values, Gj and Tj,

M % 1 due M
y cc . d8./dE =Re u_ F & +{—-—~} y EF . 0,
521 k3 3 e 1k u, dag =1 kj °j
M
+ . 24
+ ug .Z A (140 /V) STy (24)
j=1
where 51k =1 if k =1
=0 if k # 1
The various coefficients in eq. (24) are given by
1 1
-
= = N, {=—= (l-u) - N 1+u) &
CCkj NkNj u du , Eij 5 & (1=-u) k} (1+u) du
© o
(25)
1
de de
= — - - -_— - - N d
and AAkj Em (1-u) Nj](du (1-u) - k} u
(o)

The system of equation (24), has a very compact form due to simultaneously prescribing
trial solutions for Gj and Tj' However this feature prevents eg. (11) being satis-

fied except at the nodes, where ej = l/Tj, or in the limit M - o,



70

An efficient non-iterative, implicit marching algorithm for the system of
equations,(25), is described by Fletcher and Fleet (1984a). This paper also provides

numerical convergence results for the Dorodnitsyn finite element formulation.

A comparison with finite difference solutions (STAN 5) obtained for turbulent
boundary layers in different pressure gradients is made by Fletcher and Fleet (1984b).
STAN5 (Reynolds, 1976) is typical of the more efficient finite difference boundary
layers formulations. Solutions obtained with the present method, DOROD-FEM, demons-
trate comparable accuracy to those produced by STANS5. However DOROD-FEM is about

ten times more economical than STANS.

The superior economy comes partly from the ability of the Dorodnitsyn formula-
tion to obtain accurate solutions with fewer points across the boundary layer, and

partly from the economical implementation of the finite element method.
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