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ON SUFFICIENT CONDITIONS FOR OPTIMALITY

%*
S. Rolewicz, Warszowa )

Let f,gl,...,gm be continuously differentiable real valued functions
defined on a domain § of n-dimensional real space R". We consider the

following optimization problem.

£(x) - inf
(1)
gi(x) <0, xe .
Let x0 e . We assume that at xo all constraints gi are active,
i.e. gi(xo) =0 .

THEOREM 1 ([91): Suppose that at the point x. all gradients of 9; s

0

Vg, » are linearly independent. Suppose that at x. Kuhn-Tucker necessary

[¢]
conditions for optimality hold, i.e. there are Ai > 0 such that

(2) V(E +Z Aigi) %, =0 .

If all Ai >0 ,i=1,2,...,m , then % is a local minimum of problem

0
(1) 2f and only if it is a local minimum of the following equality problem

£(x) +inf
(3)
qi(x) =0 .
'The proof of Theorem 1 is elementary and uses only the implicit
functions theorem. Theorem 1 gives a very useful algorithm for reducing a

problem of sufficient condition for problem (1) to well-=known classical

*
) This work was partially supported by Monash University, Clayton,
Victoria.
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problem (3). 1In this way we can obtain sufficient condition of optimality
of orxder higher than 2. It is important that this algorithm needs only to
invert one fixed matrix determined by the gradients.

Now we shall present a simple example

EXAMPLE T ([9]). Let

2
gl(x,y,z) = -(x+y) + 2z
4
gz(x,y,z) ==~y + 3z
f(x,v,2) = x + 2y = x2 + y2 - z2 B

It is easy to check that for (0,0,0) Kuhn-Tucker conditions hold for
Al = l2 =1.

Using the theorem we can replace problem (1) by problem (3). Thus
y = z4 y X = 22 - z4 and f = x + 2y - x2 + y2 - 22 = 226 . It implies
that (0,0,0) is a local minimum of problem (1).

Replacing £ by
2

fa =x + 2y = axz + y2 -2

we are able to prove that for o > 1 the corresponding problem does not
have local minimum, at (0,0,0) . In both cases the corresponding
conditions are of the order higher than 2. (6 in the first case 4 in the
second. one.)

This basic theorem can be extended in the following way.

THEOREM 2 ([9]): Suppose that at the point x_ all gradients of g, s

0
Vgi are linearly independent. Suppose that at X the Kuhn-Tucker
necessary conditions for optimality hold. Suppose that xi >0,
i=1,2,.24P s Ai =0 for i=p+tl,...,m . Then %, 18 a local minimum
of the problem (1) <if and only if it is a local minimum of the following

problem
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£(x) + inf

i
o
=

I

(4) g; (x) = 1,2,...4p

IA
o
=
]

gi(x) ptl,cee,m .

There is a natural question. The existing second order sufficient
conditions [3], [7] (historical discussion of the subject is well presented
in [4]) did not request linear independence of the gradients Vgi but

positiveness of the second differential on the set

m
(5) T=[ T

where

T, = {x :(Vgi,x)

]
o
[
e
Hh
>

[y

\4

o

(6)

A

T.
i

{x :(Vgi,x) < 0} if Ai =0 .

Observe that in fact the set T can be described by a linearly
independent subset Vgi where span(Vgi ) = span(Vgi) . Thus basing on

J J
Theorem 2 we can obtain the following

THEOREM 3 ([121): Let f,gl,...,gm be k=-time continuously
differentiable functions defined on a domain Q c R®. Suppose at x,€Q
qZZ constraints are active, <.e. gi(xo) =0, i=1,2,...,m. Suppose that
there are Al,... ,Am > 0 such that the differentials of the Lagrangian
m
L(x) = £(x) + Z A;q;(x)

i=1

are equal to zero till the order k-1 for all h e W', t.e.

|
o

dlL(xo,h) i=1,2,...,k-1

and that

dkL(xo,h) >0 for he T

where T <is defined by (4). Thus X, 18 a local minimum of problem (1).
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For k = 2 the result was known much earlier [31, [7].
The natural question which arises is about extensions of the theorems

given above on Banach spaces. It can be done in the following way

b4

THEOREM 4 ([101): ILet X, Y. Y, 2 be Banach spaces. Let Y, ¥,

be ordered spaces. Let Q be a domain in X . Let ¥ be a real valued
function defined on Q .

Let G, tQ>Y G, Q> Y, H:X > 2 be continuously differentiable

1 2

operators. We consider the following problem.

F(x) - inf

G, (x) £0
(7 t

G2(x) <0

H(x) =0 .

Suppose that at the point Xq all constraints are active

Gl(xo) = Gz(xo) = H(xo) =0.

Suppose that the differential VG, xVG, xVH is a surjection of X onto

1

Yy XY, XZ . Suppose that there are linear functionals

* * *
¢l € Yl B ¢2 € Y2 B Ve

such that the differential of the Lagrangian

(8) d(L(x),h) = d(F(x) + ¢1(Fl(x)) + ¢2(Gl(x)) + P(H(x)):h) =0 .

If ¢, is uniformly positive,. i.e. there is C >0 such that

(9) iyl < Co, (¥)

forall ye¥ ,v2 0 s then %, is a local solution of problem (6

if and only if it is a local solution of the following equality problem
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F(x) > inf
Gl(x) =0
Gz(x) <0

H(x) =0 .

The hypothesis that ¢l P ¢2 , U are linear is not essential; it is
enough that they are odd.
Theorem 4 can be generalized to Lipschitz functions in the following

way.

THEOREM 5 ([101): ©ILet X, Y, Y Z , @ be as in Theorem 4. Let

2 B

G, s X~ Yl s G

1 XY, , H:X > 2. e shall not assume continuity of

2

those operators, but we assume that the multi-function

T(eryzrz) = {x 26X =¥, sz =y, Hx = z}

18 locally Hausdorf continuous, i.e. for each neighbourhood Q of x

0
there is a neighbourhood N of %, s Ql c Q and a neighbourhood W of
(Gl(xo) s G2(xo) 5 H(xo)) in the space ¥, XY, X7 and a constant X > 0
such that

AT(yy,¥,02) 0 Qs T(¥y,7,02) 0 Q)
< ki (leYZIZ) - (3—71';2:2) “l 7

where 4 denotes the Hausdorf distance of spaces and | "l denotes an

arbitrary norm in ¥) XY, XZ .. coineiding on Y s T.@. lI(y,O,O)lIl = Hyﬂy .

2 1
. . . * * *
If there are linear continuous funetﬁona@¢l €Y . ¢2 €Y, . Yea

such that ¢l z0, ¢2 z 0 and ¢l s uniformly positive (i.e.(9) holds)

and the function

S FE) 0 (G () + 0,(G, (%)) + PH(X))

satisfies the Lipschitz condition with constant M., then X is a local
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solution of the problem (6)if and only if it a local solution of

problem (7) provided
(10) MKC < 1 .

Theorem 5 gives Thedrem 4 via Ljusternik theorem [5]. Other conditions
warranting [' is locally Lipschitz, can be found in the papers [1], [2],
[8l.

Theorem 5 presented above can also be used to obtain results of

sufficient conditions for Pareto minimization.

THEOREM 6 ([13]1): Let X , ¥ Z , P be Banach spaces. Suppose

l’Yz.’

that the spaces Y P are ordered. Let U be a domain in X and

l’ Y2 3
let ¥, G, , G, , H be continuously differventiable operators
1 5 Y P

F:U+P, G :U>Y , G :U>Y, , H:U>Z. We are looking for a local

Pareto minimum of the following problem

F(x) - inf

G, (x) £0
(11) .
G2(x) <0
H(x) = 0 .

Suppose that

(1) there are continuous linear functionals

* }\ * )\ *
o eP , 1 € Yl ’ 5 € Y2 ’ Y € %

such that

]
o
~

a(VF) + Al(VGl) + Xz(VGZ) + v (VH)

where VF , VGl ’ VG2 , VH are the differentials of F , Gl , G. , H taken

2

at the point g (this is called a necessary condition of optimality
of the Kuhn-Tucker type).

(ii) the functionals o , kl ’ AZ are positive and O, , A, are

1 1
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uniformly positive <.e., there are positive constant ¢ , C c, such

l 1
that for p=zo0, ¥, 20,

N

Ipll < Cy O(P)

A

Iy I < .
vl s¢p A )
(iii) the constraints are astive at %, ,Lee..,
Gl(xo) =0 , GZ(XO) =0, H(XO) =0 ;
(iv) F 4is a surjection on P and. (VGl,VGz,VH) 18 a surgjection on
Xy X
Yl Y2 H .

(v) the space L. = ker VF and the halfsubspace

1

L2 = ker VGl n ker Vu n {x :VGz(x) < o}

have a positive gap d , i.e.;

Izl = 1}, inf{lx-vyl, x e L

d = max (inf{lx -yl, % € Ll, v € Lz, 17

vy € L2, (5! ih >o0.

Then Xq is a- loeal Pareto minimum of problem (11).
In the theorem presented above condition (v) is very restrictive.

Unfortunately simple examples [14] show that this condition is essential.
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