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MORSE INEQUALITIES AND ESTIW\TES FOR THE 

NUMBER OF SOLUTIONS OF NONLINEAR EQUATIONS 

E" N, Dancel' 

In ·this lecture, I want to discuss how ~1orse inequalities apply in 

more gener·al situations where mappings are no-t bounded below, where there 

are degenerate critical points, and where we have some informa·tion of hmv 

solutions of ·the cm:responding differential equa·tions joi.n critical· 

points, lr·le 'chen discuss an applica·tion to elliptic partial differen'cial 

equa'cion and some coun'cerexamples which show tha·t our estima·l:es for the 

nm"!lber of solutions of 'che elliptic problem are, in a sense, best possible. 

The proof of mos·t of the result:s given depend e,pon t.he homotopy index 

of Conley [3]. However, nearly all the results can be understood vJithout: 

knowing ·the homotopy index, 

l, MORSE INEQUALITIES 

We discuss various generalizations of the Morse inequalities. There 

are tvm points I should make clear at the outset. Firstly, our approach is 

based on Conley's homotopy index [3]. This is a much more general 

invariant for bounded solutions of a.utonomous ordinary differential 

equations vJhicb. should be much better knovm and used" Secondly, ·we will 

res·trict ourselves to proble.ms on a finite-dimensional space though one 

could construct a ·theory for some infinite-dimensional problems by using 

Rybakowskii generalization of ·the homotopy index to infinite-dimensional 

semi-flovrs ( [ 13] , [ 14] ) . 

\1\Je start by reviewing 'che classical Morse inequlai ties. Assume that 

F is a 
2 c function on a compact manifold M of dimension n ., The 
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critical points of f are the points where Vf(x) = 0 . A critical point 

is said to be non-degenerate if D2f(x) is invertible, (Note that we 

define o2f(x) by using a suitable chart round x .) Let i(x) denote 

the number of negative eigenvalues of o2f(x) . This is called the index 

of x Similarly, we can define i (L) for any self-adjoint linear map L • 

(This makes sense even if x is degenerate.) Assume now that all ·the 

critical points of f on M are non-degenerate. It follows easily that 

there are only a finite number of critical poin·t of f on M Let 

T 
{x 0 } denote them and let 

l. i=l 
c. denote the Betti numbers of M 

1. 
(These 

are non-negative integers which depend only on M and are determined from 

the homology of M .) Finally, let ~ denote the number of critical 

points of index k Then the classical Morse inequalid.es are that 

s 
(-1) s-j 

s 
(-l)s-j (1) " :2: :E c . .. 

j=O j=O J 

for 0 s s s n ' with equality when s = n Note ·that, for s = n ' this 

is simply the Poincare-Hopf theom1m relating the Euler characteristic of M 

to i:he degrees of critical points on M 'rhe inequali'cies (1) are known 

as the Morse inequalities and have been used a grea·t deaL 

We '\'?ant ·to consider some generalizations o Firstly, \te re'i'nri·te 1:he 

classical Morse inequali·ties in a form which is more convenient for 

generalizations, If is a non-degenerate critical point of f let 

i (xrn) and ·to be zero otherwise (~.oJhere 0 s j s n ) ., 

These numbers are called the Betti num."bers of the critical point x The 

Morse inequalities can no'\<; be '#rit·ten as 

(2) 
s 
:E 

j=O 

T 
:E 

i=l 
B. (f I X 0 ) <: 

J :;_ 

s 
L 

j=O 
(-l)s-j 

m 

cj 

(It is easily checked that these are the same inequalities as before.) In 

this form, i·t turns out that the Morse inequalities are still true even if 

f has degenerate critical points provided ·that f has only a finite 
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number of critical points. In this case, the Betti numbers B. (f, x.) , 
J ~ 

0 s j s n , of a degenerate critical point are defined to be the Betti 

numbers of h(-Vf, T) , where h denotes the homo·topy index in the sense 

of [3l and T is a small neighbourhood of X. • 
~ 

(It can be shown that the 

definition is independent of T .) In addition~ the Morse inequalities (2) 

hold for functions f on Rn provided that f has isolated critical 

points3 that the correct c. 
J 

are used (where c. 
J 

nO?.J depends on f J and 

provided that (i) the critical points of f Ue in a compact set and 

(ii) there is a compact set w such that every heteroclinic orbit of the 

differential equation 

(3) X' (t) Vf(x(t)) 

lies in l!J (By a heteroclinic orbit, we mean a solution W(t) of (3) 

such that W(t) + a as t + -oo and W(t) + b as t + 00 , where a and 

b are critical points of f (The reason for the occurrence of hetero-

clinic orbits is that they are the only non-constant bounded solutions of 

(3) defined on R • Here, we are using 'chat the critical points of f are 

isolated.) Assumption (ii) above holds in many cases. For example, it 

holds if there is a K > 0 such that JIV'f(x)ll ~ K if llxll is large. 

Hence we have found a version of the Morse inequalities "l'lhich apply to 

functions on with degenerate critical points. Note that our functions 

need not be bounded above or below. (There is nothing special anout Rn 

we could consider any n-dimensional manifold.) Note that our approach 

above follows Conley [3] and Dancer [5]. 

For the above Morse inequalities to be useful in analysis, .,,e have to 

be able to calculate the c. and to understand the Betti numbers of 
~ 

degenerate critical points. We discuss the first of these problems and 

then return to the second. Proofs can be found in [5]. 

We assume as before that f is a c 2 function on Rn satisfying 
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conditions (i) and (ii). The numbers c. are defined to be the Betti 
~ 

numbers of B 
r 

is a ball with centre zero and large 

radius r • However, this formula is often not convenient for 

computations. More importantly from this formula and homotopy invariance 

properties of the homotopy index, we see that if ft : Rn + R are 

functions depending on t E [0,1] such that the map (x,t) + Vxft (x) is 

continuous and such that 

(4) 

for llxll <:: R1 and t € [0, 1] , then the c.'s 
~ 

are the same for each 

This means that we can often calculate the ci's by deforming f to a 

simpler map. For example, if we can deform f (as above) to the map 

x + ( Lx,x) , where L is self-adjoint and invertible, one easily sees that 

cj = oj,i(L) (These conditions certainly hold if Vf(x) -Lx = o(llxll) as 

llxll + oo .) As a second example, if one can deform f to a map with no 

critical points, one easily sees that ci 0 for all i Thus one can 

calculate the ci in many cases. 

Now, we need to consider the calculation of the Betti numbers of 

degenerate critical points. Without loss of generality, one can assume 

that the critical point is at the origin. My basic point here is that it 

is possible to understand quite well the Betti numbers of a degenerate 

critical point. Indeed, the problems with the calculation of the Betti 

numbers are similar to the problems of the calculation of the degree of a 

degenerate critical point. I should point out that there were two earlier 

definitions of the Betti numbers of a critical point (Morse [12] and 

Gromoll and Meyer [7].) OUr definition is equivalent to theirs but seems 

easier to work with. For example, a question in [7] can be easily resolved 

from our approach. 

Let k =dim N(D2f(O)) , where N denotes the kernel. Then it can be 
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proved that B.(f,O) = 0 
J 

if j < i(O) or if j > i(O) + k • Moreover if 

Bi (O) (f ,0) '/' 0 , then Bj(f,O) = oi(O),j while if Bi(O)+k(f,O) '/' 0 

t = i(O) + k • (Hence, in all other cases, 

then 

B. (f,O) 
J 

ot . ,J 
where 

B. (f,O) 
J 

0 for j ::; i (0) and j ~ i (0) + k • ) In particular, we see that 

B.(f,O) can only be non-zero for at most k-1 values of j (at most 1 
J 

if k=l). Note that B. (f,O) 
J 

are all non-negative integers. (They can 

be all zero.) In general, several of the B. (f,O) 
J 

can be non-zero and 

they may each be larger than 1 These possibilities make the possible 

presence of degenerate critical points a major impediment to estimating 

numbers of solutions. The above restrictions on the Betti numbers of a 

degenerate critical point are best possible in the sense that given a 

linear operator L , and non-negative integers 

00 

a. , j = i (L) + ll, ... , 
J 

i (L) + k-1 , then there is a C function f such that 1/f (0) = 0 

~2f(O) 

for j 

L , f has an isolated critical point at 0 and B.(f,O) 
J 

i(L) +1, ••• , i(L) +k-1 • Here k =dim N(L) • (We do not know 

if f can be chosen real analytic.) 

I discuss briefly some of the steps in the proofs of the above 

results. The idea is to use the implicit function theorem to show that the 

equation 

(5) Pl/f (r +v) 0 

has a unique small solution 
2 .l 

v(r) E N(D f(O)) for each small 

r E Here I-P is the orthogonal projection onto 

One can then prove that B. (f,O) =B .. (L) (g,O) 
J J-~ 

where 

g(r) = f(r+v(r)) and g is considered as a function on N(D2f(O)) 

(This is essentially the Liapounov-Schmidt reduction.) It turns out that 

B. (f,O) 0j,i(Ll 
exactly when 0 is a local minimum of g and 

J 

B. (f,O) 0j,i(Ll+k 
exactly when 0 is a local maximum of g . 

J 

If we know more about g , one can obtain more information. If f is 
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00 

C , then, generically, g is of the form g1 + g 2 where \7g1 (x) ;;& 0 for 

x E N(D2f(O))\{O} , g1 (ax) = ctsg1 (x) and g 2 (x) = o (llxll 5 ) as x + 0 In 

this case, B.(g,O) is simply the (j-l)th Betti number of 
J 

{r E N(D2f(O)): lirJI = 1, (r) 2 Note that, if s = 

odd and s = 4 ) one can calculate gl without having to 

makes the computations much easier" It can be shown that 

only be large :!.f k + s is large. 
n 

(-l)j B. (f,O) = index(f,O) 
J 

It can be proved that 2: 
j=l 

3 (or if 

solve (5) 

B.(f,O) 
J 

, where 

f is 

This 

can 

index(f,O) denotes the degree of the isolated zero of l!f at the origin. 

('l'his is to be expec'ced since the last Horse inequality is an inequality.) 

It follows easily from this foL-mula and our comments above that, if k = 1 , 

the Be'cti numbers of f at zero are determined from i (0) and index (f, 0) 

while, if k ~ 2 , the same is true except that we now also need to 

dist:inguish between when g has a maximum and a minimum at 0 • 

There is a rather different way one can look at these questions. 

Suppose that one has a critical point constructed by some minimax argument .• 

Then one txies to see what one can discover abou"t its Betti numbers. 

Asstwe f : Rn ~ R is , f has an isolated local minimuro" at z and 

there is a v E Rn such ·that f (v) s f (z) • Finally assume that 

II {l!fl has a. positive lovJer bound whenever f (y n) is bounded and 

lly II is large. Then it is v1ell known "that f has a critical point on 
n. 

-1 
f -(c) 1 ~•here c is defined as follows. (This is known as -the mountain 

pass theorem.) We let !/, denote the set of continuous paths joining z 

to v and c inf sup f(q) • We then have the following resulL 
t qd 

THEOREM: Eofer ([8], [9]), Dancer [5], Tian [16].Assume that (i) f 

satisfies the above assumptions, that (ii) each critical point in (c) 

is isolated in Rn and that (iii) the smalles-t real eigenvalue of o2 f (x) 

is simple for x in Rn Then there is a critical point b in f-·l (c) 

such that B. (f,b) ~ o1 .• J ,] 
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The interest in this theorem is that it gives complete information on 

the Betti numbers of b even though b may be quite degenerate< The 

theorem is very useful because a great many critical points in analysis are 

constructed by the above procedure. We will consider applications later. 

Note that assumption (iii) tends to be automatically satisfied in 

applications to second-order elliptic equations. If assQmption (iii) is 

deleted, one can only prove that B1 (f,b) # 0 • (The result above is no·t 

true without some such assQmption.) More recently Hofer [10] has proved a 

version of the theorem where the isolatedness assumption is deleted. He 

and Ekelund have used this result to obtain some very nice theorems on the 

minimal period problem in Hamiltonian Mechanics. It would be nice to know 

something about the Betti numbers of critical points established by other 

minimax arguments. 

As in Bott [1], the Morse inequalities (2) still hold if there are 

manifolds of critical points rather than just isolated critical points, 

(We now have to talk about ·the Betti numbers of the manifold of critical 

points.) 

One advantage of the present approach ·to Morse inequalities is that 

one can sometimes get extra information if one knows enough on which 

critical poin·ts are joined by heteroclinic orbits (where the direction of 

flow is important). Assume that f satisfies our basic conditions earlier 

for a map on Rn (or a compact manifold). Assume -that the critical points 
d 

of f can be 'N'ritten as a disjoint union U M. in such a way -that if "1'1 
i=l 1. 

is a heteroclinic orbit of x'(t) = -Vf(x(t)) with W(-00 ) EM. and 
1. 

W (oo) E M. , then j :<: i 
J 

(This last condition is the important condition.) 

such a decomposition is called a Morse decomposition. With each Mi , one 

neighbourhood T. 
1. 

of 

M. such that T. n M. 
1. 1. J 

H. 
1. 

(To do this, one chooses a 

union the heteroclinic orbits joining points of 

(jl for j '1- i . Then B.(f,M.) 
J 1. 

are defined to be 
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·the Betti m:mlbers of h ( -Vf ,T.) . ) 
l 

It can 'chen be proved that the !"lorse 

inequali·ties hold for t:he that is, 

s 
(-1) 5 -j 

d s 
(-l)s-j (6) 2: 1: B. ?: :;:; 

j=O i=l J j=o 

(~Jit.h c. as before) for 0 ~ s ::; n t'ITith equality if s = n ., Note ·that (I 
J 

in general, we only expec·t resuLts of ·the above type to hold if there is 

some restriction on the heteroclinic orbits. I should clarify our 

assurnptions on heteroclinic orbits. We can always renumber ·the M, 
J. 

so 

that our condition holds if and only if ·there is no cycle among the Yi. "s 
l 

(where, by a cycle, we mean heteroclinic orbit:s , such Jchat 

(-oo) E Mj (r-l) 3 
p (oo) E (r) and j (l) ·- j (p) ) To evaluate t.he 

r 

B.(f,M.) 
' we ·try to deform f ·to 

J ~ 
a map where M. contains a single 

l 

cri·tical point or is empty" i>Ve ltlill give an example later. Note tha:t 

above resu.l't still holds even if M. coni:ains e.n infinite number of 
J. 

the 

critical· points btr'c is closed provided Y~re change the defini-tion of het,en:o-

clinic orbit t.o require ·that w('t) + M. 
l 

as and as 

t + co (ra'cher than ap:proaching single critical points). 'rhese results are 

special cases of results in [3]. 

Lastly, it is possible t:o use the Morse type approach ·to c:ei·t:Lca.l 

point 'cheory to give a different proof of the well-kno·wn resul·t that any 

2 c map on a compa.ct manifold M has at least ccd:egory M 

points. The idea here is t.o use t.he "box-like" neighbourhood of a critical 

point construc·ted in [5] t.o show that: {x : f (x) :5: a} changes category by 

at most l if a crosses a critical value con·ta.ining a single critical 

point. In addition, one com use similar ideas to show tha'': if w E (M) 

has the property that ws ~ 0 (\vhere we mean the cup produc·t), then there 

exist distinct crit:ical points {xi}~=l in M such that Bri (f,l\) r! 0 " 

'rhis shows how the product structure of the cohomology ring gives some 

information on the type of critical points we obtain. Note that the a.bove 
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resul·ts answer some questions left open in [5] and that the "box-like" 

neig"lrbourhood we mentione.d above is used ·to obtain further properties of 

B. (f 
J 

in [5] o 

20 APPLICATIONS 

. In this section, vle consider rather briefly t-.Jo applications of the 

ideas in Section l and men·tion some related counter-exainples. 

Firstly, we consider the equation 

f(x,u) in n 
(7) 

u 0 on ::m. 

Here, it is assu.med "chat n is a bounded domain in Rn 
' f is cl 0!1 

rlXR 
' 

f(x,O) = 0 for X E Q £ 2 ' (x,O) = a(x) > 0 in Q and 

"(x,t) + b(x) as It!+ oo uniformly in x (·though this could be 

v?eakened to the corresponding assumption on f ) . Finally, assume t.hat 

f 1 .I I 2 l 2 
7z Vul - Y~U dx > 0 

Q 
if and u ,t 0 , ·that 1 

is not an eigenvalue of 

(8) -.l\h A ah 

and that the second eigenvalue of this problem is less ·than 1 (for 

Dirichlet boundary conditions). Then (cf. Hofer [8]) (7) has at least 4 

non-trivial solutions. We sketch a proof. Clearly, we can assume that (7) 

has only a finite number of solu'cions. We first use p<Jsitive operator 

theory t.o construc·t a non-trivial non-negative solution of (7) such 

that u+ has degree 1 and every eigenvalue of -6.- £ 2 • ( ,u+)I has no 

negative eigenvalues (cf. [6]). I'c is not difficult ·to deduce tha·t is 

a local minimum of the functional f n , I Vu 12 - F ( ,u)dx on 

where F(x,t} f(x,s) ds • We can also construct a non-positive 

solution u with similar properties. We can no;,7 use a Liapounov-Schmidt 
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reduction to reduce our problem to an equivalent finite-dimensional problem 

and then use Theorem 1 (essentially with u+ = v , u_ = z or vice versa) 

to construct a critical point b with Bet·t.i numbers 61, j Since the 

linearization at 0 has at least 2 negative eigenvalues, it follows from 

our earlier comments that b ~ 0 By our earlier formula for the degree 

in terms of the Betti numbers, b has degree -1 Thus u+ i u each 

have degree 1 while b has degree -1 and 0 has degree ±l (because 

it is non-degenerate). Since the total degree is easily seen to be 1, it 

follows that there must be ano·ther solution, as required. (No·te that, in 

the sketch of the proof above, we have no'c been careful to distinguish 

between (7) and the equivalent finite-dimensional problem. As in [5], 'che 

condition that -!::, - ai is invertible (for Dirichle-t boundary conditions) 

can be \lieakened considerably and indeed, if in ·the last s·tep of the proof 

we use Morse inequalities rather than degree, we see that the above 

argument only fails if the Bet.ti nu .. rn.bers of ·the critical point 0 have a 

rather particular form. 

If f(x,t) is odd in t , a theorem of Clark [2] implies that (7) has 

at least 2k non-trivial solutions if the kth eigenvalue of (8) 

(counting multiplicity) is less than l One might hope for a similar 

result without the oddness assumption. Unfortunately this is false. 

Recently [6], the author has cons'cructed an example for :i1 the open unit 

ball in R11 for c.rhich the (n+l) th eigenvalue is less than 1 bu·t 'chere 

are only 4 non~trivial solutions (and all 5 solutions are non-

degenerate). The example can be constructed so that f is "nearly 

independent of x " and "nearly odd in t " The essential idea is to make 

a small perturbation from the case \'l'here f is independent of x . Note 

that for the above ·counter-·example, the branches of solutions bifurcating 

from 0 of 



t.u = A.f(x,u) 

u = 0 
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in B 

on <lB 

for A ~ 1 must have a complicated structure in the case where the first 

(n+l) eigenvalues_of (8) are simple. (The counter-example can be chosen 

so this holds.) 

The above methods can also be used to obtain partial results on Lazer 

and McKenna's conjecture [11] on the number of solutions of asymptotically 

homogeneous problems (as in [5] or [8]) and to construct a counter-example 

to a slight variant of their conjecture. 

Lastly, we illustrate very briefly the use of Morse decompositions. 

Consider (7) again but with different assumptions on a and b {where, 

for simplicity, we now assume f is independent of x ). We assume that 

b > a > 0 , that neither a nor b are eigenvalues of -t. (for Dirichlet 

boundary conditions) that a is greater than the first eigenvalue of -t. 

that (a,b) contains an eigenvalue of -t. and finally that tf(t) > 0 

for t ~ 0 • Then (7) has a solution which changes sign in n . We sketch 

a proof avoiding numerous technical details. Assume the result is false. 

We then have a Morse decomposition of the solutions M1 u M2 u M3 , where 

M1 denotes the non-trivial positive solutions, M2 is the non-trivial 

negative solutions and M3 = {0} • (To see that this is indeed a Morse 

decomposition, one uses the maximum principle to see that, if a solution 

u(t,x) of the natural parabolic equation corresponding to (7) is positive 

in n for some l' > 0 , then the same·. is true for t > T If one 

replaces f by A.f and choose A. large, we see that M1 is empty. 

Since one can use homotopy invariance arguments to prove that 

is independent of A , it follows that Bj(f,M1) = 0 for all 

0 for all j . One can then easily get a 

contradiction to the Morse inequalities (6) (since (a,b) intersects the 

eigenvalue of -t. ). The above result admits a number of variants. 
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