MORSE INEQUALITIES AND ESTIMATES FOR THE
NUMBER OF SOLUTIONS OF NONLINEAR EQUATIONS

E.N. Dancer

In this lecture, I want to discuss how Morse inequalities apply in
more general situations where mappings adre not bounded below, where there
are degenerate critical points, and where we have some information of how
solutions of the corresponding differential equations join“critical’
points. We then discuss an application to elliptic partial differential
equation and some counterexamples which show that our estimates for the
number of solutions of the elliptic problem are, in a sense, best possible.

The proof of most of the results given depend upon the homotbpy index
of Conley [3]. However, nearly all the results can be understood without

knowing the homotopy index.

1. MORSE INEQUALITIES

We discuss various generalizations of the Morse inequalities. There
are two points I should make clear at the outset.» Firstly, our approach is
based on Conley's homotopy index [3]. This is a much more general
invariant for bounded solutions of autonomous ordinary differential
equations which should be much better known and used. Secondly, we will
restrict ourselves to problems on a finite-dimensional space though one
could construct a theory for some infinite-dimensional problems by using
Rybakowskii generalization of the homotopy index to infinite-dimensional
semi-flows ([13], [14]).

We start by reviewing the classical Morse inequlaities. Assume that

F is a C2 function on a compact manifold M of dimension n . The



critical points of £ are the points where Vf(x) = 0 . A critical point
x 1s said to be non-degenerate if sz(x) is invertible. (Note that we
define sz(x) by using a suitable chart round x .) Let i(x) denote
the number of negative eigenvalues of sz(x) . This is called the index
of x . Similarly, we can define i(L) £for any self-adjoint linear map L.
(This makes sense even if x is degenerate.) Assume now that all the
critical points of £ on M are non-degenerate. It follows easily that
there are onlyia finite number of critical point of £ on M . Let

{xi}f ) denocte them and let c; denote the Betti numbers of M . (These
are :;n-negative integers which depend only on M and are determined from

the homology of M .) Finally, let Mk denote the number of critical

points of index k . Then the classical Morse inequalities are that
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for 0 <s <n , with equality when s = n . Note that, for s = n , this
is simply the Poincaré-Hopf theommrelating the Euler characteristic of M
to the degrees of critical points on M . The inequalities (1) are known
as the Morse inequalities and have been used a great deal.

We want to consider some generalizations. Firstly, we rewrite the
classical Morse inequalities in a form which is more convenient for
generalizations. If x is a non-degenerate critical point of £ , let
Bj(f, xm) =1 if j = i(xm) and to be zero otherwise (where (0< 3j <n ).
Thesé numbers are called the Betti numbers of the critical point X - The

Morse inequalities can now be written as

v

s = T S .
(2) T 1% T B.(£, x.) 2 T (-1) c.
j=0 i=1 s

(It is easily checked that these are the same inequalities as before.) In
this form, it turns out that the Morse inequalities are still true even if

£ has degenerate critical points provided that £ has only a finite



number of critical points. In this case, the Betti numbers Bj(f, xi) )
0< j<n, of a degenerate critical point x, are defined to be the Betti
numbers of h(-Vf, T) , where h denotes the homotopy index in the sense
of [3] and T is a_small neighbourhood of xi . (It can be shown that the
definition is indépendent of T .) In addition, the Morse inequalities (2)
hold for functions £ on R provided that £ has isolated critical
points, that the correct c; are used (where o now depends on £ ) and
provided that (i) the critical points of £ 1lie in a compact set and

(ii) there is a compact set W such that every heteroclinic orbit of the

differential equation
(3) x'(t) = VE(x(t))

lies in W . (By a heteroclinic orbit, we mean a solution W(t) of (3)
éuch that W(t) a as t > -° and W(t) b as t +® , where a and
b are critical points of £ . (The reason for the occurrence of hetero-
clinic orbits is that they are the only non-constant bounded solutions of
(3) defined on R . Here, we are using that the critical points of £ are
isolated.) Assumption (ii) above holds in many cases. For example, it
holds if there is a K > 0 such that [IVE(x)ll 2 K if |x|| is large.
Hence we have found a version of the Morse inequalities which apply to
functions on R° with degenerate critical points. Note that our functions
need not be bounded above or below. (There is nothing special anout R® .
we could consider any n-dimensional manifold.) Note that our approach
above follows Conley [3] and Dancer [5].

For the above Morse inequalities to be useful in analysis, we have to
be able to calculate the ci and to understand the Betti numbers of
degenerate critical points. We discuss the first of these problems and
then return to the second. Proofs can be found in [5].

We assume as before that £ is a c2 function on R" satisfying



conditions (i) and (ii). The numbers c, are defined to be the Betti
numbers of h(-VE, Br)‘, where Br is a ball with centre zero and large
radius r . However, this formula is often not convenient for
computations. More importantly from this formula and homotopy invariance
properties of the homotopy index, we see that if ft : R" >R are Cg
functions depending on t e [0,1] such that the map (x,t) - fot(x) is

continuous and such that

(4) I fot(X)lI 2K >0

for |zl = Rl and t e [0,1]1 , then the ci's are the same for each ft .
This means that we can often calculate the ci's by deforming £ to a
simpler map. For example, if we can deform £ (as above) to the map

x +{(Lx,x) , where L is self-adjoint and invertible, one easily sees that

c., = §

5 3,1 (These conditions certainly hold if VE(x) -Lx = o(lxll) as
)

x| +® .} As a second example, if one can deform £ to a map with no
critical points, one easily sees that c; = 0 for all i . Thus one can
calculate the c; in many cases.

Now, we need to consider the calculation of the Betti numbers of
degenerate critical points. Without loss of generality, one can assume
that the critical point is at the origin. My basic point here is that it
is possible to understand quite well the Betti numbers of a degenerate
critical point. Indeed, the problems with the calculation of the Betti
numbers are similar to the problems of the calculation of the degree of a
degenerate critical point. I should point out that there were two. earlier
definitions of the Betti numbers of a critical point (Morse [12] and
Gromoll and Meyer [7].) Our definition is equivalent to theirs but seems
easier to work with. For example, a question in [7] can be easily resolved
from our approach.

Let k = dim N(sz(O)) , where N denotes the kernel. Then it can be



proved that Bj(f,O) =0 4if j < 1i(0) oxr if j > i(0) + k . Moreover if

Bi(o)(f,o) # 0 , then Bj(f,O) = 61(0),j while if Bi(0)+k(I'o) # 0 then
Bj(f,O) = 6t 5 where + = 1(0) + k . (Hence, in all other cases,

1
Bj(f,O) =0 for J <i(0) and Jj = i(0) +k .) In particular, we see that

Bj(f,O) can only be non-zero for at most k-1 wvalues of 3§ (at most 1

if k =1 ). Note that Bj(f,O) are all non-negative integers. (They can
be all zero.) In general, several of the Bj(f,O) can be non-zero and
they may each be larger than 1 . These possibilities make the possible

presence of degenerate critical points a major impediment to estimating
numbers of solutions. The above restrictions on the Betti numbers of a
degenerate critical point are best possible in the sense that given a
linear operator L , and non-negative integers aj , J o= i(L) +lz,...,
i(L) +k-1 , then there is a Coo function £ such that VE£(0) = 0 ,

p%£(0)

L , £ has an isolated critical point at 0 and Bj(f,O) = a,

for 3

]

i(L) +1, ..., i(L) +k=1 . Here k = dim N(L) . (We do not know
if £ can be chosen real analytic.)

I discuss briefly some of the steps in the proofs of the above
results. The idea is to use the implicit function theorem to show that the

equation

(5) : PVE(r +v) = 0O

has a unigue small solution v(xr) e N(sz(O))l for each small
r e N(sz(o)) . Here I-P is the orthogonal projection onto N(sz(O)) .

One can then prove that Bj(f,O) = Bj—i(L)(g'O) where L = sz(O) B
2

glr) = £(r+v(r)) and g is considered as a function on N(D"£(0)) .
{This is essentially the Liapounov-Schmidt reduction.} It turns out that

Bj(f,O) exactly when 0 1is a local minimum of g and

=%5,1@

Bj(f,o) exactly when O is a local maximum of g .

= %51 @

If we know more about g , one can obtain more information. If £ is



c” , then, generically, g is of the form g1-+g2 where Vgl(x) # 0 for
X € N(sz(o))\{o} ’ gl(ax) = asgl(x) and gz(x) =o(Ixl®) as x>0 . 1In
this case, Bj(g,o) is simply the (j-1)th Betti number of

{r ¢ N(sz(O)): el = 1, gl(r) > 0} . Note that, if s =3 (or if £ is
odd and s = 4 ) one can calculate gl without having to solve (5) . This
makes the computations much easier. It can be shown that Bj(f,O) can
only be large if k+s is large.

It can be proved that % (-l)j Bj(f,O) = index(£,0) , where
index (£,0) denotes the degrizlof the isolated zero of V£ at the origin.
(This is to be expected since the last Morse inequality is an inequality.)
It follows easily from this formula and our comments above that, if k =1,
the Betti numbers of £ at zero are determined from i(0) and index(£,0)
while, if k = 2 , the same is true except that we now also need to
distinguish between when g has a maximum and a minimum at O .

There is a rather different way one can look at these questions.
Suppose that one has a critical point constructed by some minimax argument.
Then one tries to see what one can discover about its Betti numbers.

Agssume f Rn + R 1is C2 ;, £ has an isolated local minimum at 2z and
there is a Vv ¢ Rn such that £(v) < £(z) . Finally assume that
VH(Vf)(yn)H has a positive lower bound whenever f(yn) is bounded and
Hynﬂ is large. Then it is well known that £ has a critical point on
f—l(c) , where c¢ is defined as follows. (This is known as the mountain

pass theorem.) We let & denote the set of continudous paths joining =z

to v and c¢ = inf sup f£(gq) . We then have the following result.
2 qel

THEOREM: Hofer (181, [91), Dancer [51, Tian [16].Assume that (i) £
satisfies the above assumptions, that (ii) each eritical point in f_l(c)
is isolated in R" and that (iii) the smallest real eigenvalue of Df (x)

ig simple for x in R° . Then there is a critical point b in £ e

L (£,b) = .
such that Bj( b) 61,3



The interest in this theorem is that it gives complete information on
the Betti numbers of b even though b may be quite degenerate. The
theorem is very useful because a great many critical points in analysis are
constructed by the above procedure. We will consider applications later.
Note that assumptién (iii) tends to be automatically satisfied in
applications to second-order elliptic equations. If assumption (iii) is
deleted, one can only prove that Bl(f,b) # 0 . (The result above is not
true without some such assumption.) More recently Hofer [10] has proved a
version of the theorem where the isolatedness assumption is deleted. He
and Ekelund have used this result to obtain some very nice theorems on the
minimal period problem in Hamiltonian Mechanics. It would be nice to know
something about the Betti numbers of critical points established by other
minimax arguments.

As in Bott [1l], the Morse inequalities (2) still hold if there are
manifolds of critical points rather than just isolated critical points. .
(We now have to talk about the Betti numbers of the manifold of critical
points.)

One advantage of the present approach to Morse inequalities is that
one can sometimes get extra information if one knows enough on which
criticgl points are joined by heteroclinic orbits (where the direction of
flow is important). Assume that £ satisfies our basic conditions earlier
for a map on R® (or a compact manifold). Assume that the critical points
of £ can be written as a disjoint union ‘ﬁ Mi in such a way that if W
is a heteroclinic orbit of x'(t) = -Vf(x(t;;l with W(-») ¢ Mi and
W(®) € Mj , then j 2 i . (This last condition is the important condition.)
Such a decomposition is called a Morse decomposition. With each M, , one
can associate Betti numbers Bj(f,Mi) . (To do this, one chooses a
neighbourhood Ti of Mi union the heteroclinic orbits joining points of

Mi such that Ei n Mj =¢ for j#i . Then Bj(f’Mi) are defined to be



the Betti numbers of h(—Vf,Ti) .) It can then be proved that the Morse

inequalities hold for the Mj , that is,
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J
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(6) (-1) = Bj(f,Mi) >

0 i=1 j

I Mn

3 0
(with cj as before) for 0 < s < n with equality if s =n . Note that,
in general, we only expect results of the above type to hold if there is
some restriction on the heteroclinic orbits. I should clarify our
assumptions on heteroclinic orbits. We can always renumber the Mi .so
that our condition holds if and only if there is no cycle among the Mi's
(where, by a cycle, we mean heteroclinic orbits {Pr}5=l , such that

Pr(—w) e M ’ Pr(w) € M, and j(1) = j(p) ). To evaluate the

j(x-1) j(x)

Bj(f,Mi) , we try to deform £ to a map where Mi contains a single
critical point or is empty. We will give an example later. Note that the
above result still holds even if Mi contains an infinite number of
critical points but is closed provided we change the definition of hetero=-
clinic orbit to require that w(t) - Mi as t > =0 agnd w(t) - Mj as

t + © (rather than approaching single critical points). These results are
special cases of results in [3].

Lastly, it is possible to use the Morse type approach to critical
point theory to give a different proof of the well-known result that any
02 map on a compact manifold M has at least category M critical
points. The idea here is to use the "box-like" neighbourhood of a critical
poin£ constructed in [5] to show that {x :f(x) < a} changes category by
at most 1 if a crosses a critical value containing a single critical
point. In addition, one can use similar ideas to show that if w ¢ Hr(M)
has the property that wS # 0 (where we mean the cup product), then there
exist distinct critical points {Xi}§=l in M such that Bri(f'xi) #0 .
This shows how the product structure of the cohomology ring gives some

information on the type of critical points we obtain. Note that the above



results answer some questions left open in [5] and that the "box-like"
neighbourhood we mentioned above is used to obtain further properties of

Bj(f,xi) in [5].

2. APPLICATIONS
.In this section, we consider rather briefly two applications of the
ideas in Section 1 and mention some related counter-examples.

Firstly, we consider the equation

£(x,u) in @

-Au
(7)
u=0 on of .

Here, it is assumed that { is a bounded domain in r® , £ is Cl on

QxR , £(x,0) =0 for x e Q, f2'(x,0) =a(x) >0 in  and
fz'(x,t) + b(x) as |t] + o uniformly in x - (though this could be
weakened to the corresponding assumption on £ ). Finally, assume that

1,2

J %|Vu|2 - ’/zbu2 dx > 0 if u e w2'2(Q) nw () and u# 0 , that 1
Q

is not an eigenvalue of

(8) -Ah = X ah

and that the second eigenvalue of this problem is iess than 1 (for
Dirichiet boundary conditions). Then (cf. Hofer [8]) (7) has at least 4
non-trivial solutions. We sketch a proof. Clearly, we can assume that (7)
has only a finite number of solutions. We first use positive operator
theory to construct a non-trivial non-negative solution u+ of (7) such
that u, has degree 1 and every eigenvalue of -A - fz'( ,u+)I has no
negative eigenvalues (cf. [6]). It is not difficult to deduce that u+ is
a local minimum of the functional f %qu[z - F( ,u)dx on Wl'z(Q) y
where F(x,t) = Jt f(x,s) ds . We can also construct a non-positive

0
solution u_ with similar properties. We can now use a Liapounov-Schmidt
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reduction to reduce our problem to an equivalent finite-dimensional problem
and then use Theorem 1 (essentially with u+ =V , u = 2z Or vice versa)

to construct a critical point b with Betti numbers dl,j . Since the
linearization at O has at least 2 negative eigenvalues, it follows from
our earlier comments that b # 0 . By our earlier formula for the degree
in terms of the Betti numbers, b has degree =~1 . Thus u+ ¢ u_ each
have degree 1 while b has degree =1 and 0O has degree =1 (because
it is non-degenerate). Since the total degree is easily seen to be .l , it
follows that there must be another solution, as required. (Note that, in
the sketch of the proof above, we have not been careful to distinguish
between (7) and the equivalent finite-dimensional problem.) As in [5], the
condition that -A - al is invertible (for Dirichlet boundary conditions)
can be weakened considerably and indeed, if in the last step of the proof
we use Morse inequalities rather than degree, we see that the above
argument only fails if the Betti numbers of the critical point 0 have a
rather particular form.

If f£(x,t) dis odd in t , a theorem of Clark [2] implies that (7) has
at least 2k non-trivial solutions if the kth eigenvalue of (8)
(counting multiplicity) is less than 1 . One might hope for a similar
result without the oddness assumption. Unfortunately this is false.
Recently [6], the author has constructed an example for § the open unit
ball in R® for which the (n+l)th eigenvalue is less than 1 but there
are 6nly 4 non-trivial solutions (and all 5 solutions are non-
degenerate). The example can be constructed so that £ is "nearly
independent of x " and "nearly odd in t ". The essential idea is to make
a small perturbation from the case where £ is independent of x . WNote
that for the above counter-example, the branches of solutions bifurcating

from 0 of



11

Au

]

Af(x,u) in B

u=20 on 0B

for A £ 1 must have a complicated structure in the case where the first
(n+l) eigenvalues of (8) are simple. (The counter-example can be chosen
so this holds.)

The above methods can also be used to obtain partial results on Lazer
and McKenna's conjecture [11] on the number of solutions of asymptotically
homogeneous problems (as in [5] or [8]) and to construct a counter-example
to a slight variant of their conjecture.

Lastly, we illustrate very briefly the use of Morse decompositions.
Consider (7) again but with different assumptions on a and b (where,
for simplicity, we now assume £ is independent of x ). We assume that
b > a > 0 , that neither a nor b are eigenvalues of =A (for Dirichlet
boundary conditions) that a is greater than the first eigenvalue of -A ,
that (a,b) contains an eigenvalue of -A and finally that t£(t) > 0
for t # 0 . Then (7) has a solution which changes sign in § . We sketch
a proof avoiding numerous technical details. Assume the result is false.
We then have a Morse decomposition of the solutions M, u M_ U M_ , where

1 2 3

Ml denotes the non-trivial positive solutions, M2 is the non=-trivial
negative solutions and M3 = {0} . (To see that this is indeed a Morse
decomposition, one uses the maximum principle to see that, if a solution
u(t,x) of the natural parabolic equation corresponding to (7) is positive
in Q for some T > D , ﬁhen the same. is true for t > T . If one

replaces £ by Af and choose A large, we see that M is empty.

1
Since one can use homotopy invariance arguments to prove that Bj(kf,Ml)
is independent of )\ , it follows that Bj(f,Ml) =0 for all 3 .
Similarly, Bj(f'MZ) = 0 for all j . One can then easily get a

contradiction to the Morse inequalities (6) (since (a,b) intersects the

eigenvalue of -A ). The above result admits a number of variants.
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