
1. INTRODUCTION 

The euntz algebra 
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GROUP ACTIONS ON CUNTZ ALGEBRAS 

A.L. Carey and D.E. Evans 

0 (1<n< 00 ) 
n 

is the e* -algebra generated 

by the r•ange of a linear map s from en to the bounded linear operators 

on an infinite dimensional Hilbert space which satisfies 

( 1 • 1 ) 

( 1 .2) 

h. E en , j = 1 , 2 
J 

I:. 1 s(e.)s(ej)* = 1 , 
J= ,n J 

where < , > is an inner product on n e , {e. }· 1 J J= ,n 
an orthornormal basis 

with respect to this inner product and the identity operator. One 

may think of On as a 'non-commutative version'of the unit sphere in 

en . This analogy is reinforced by the fact that the noncompact lie group 

U(n, 1) acts automorphically on On by gener·alised Mobius transformations. 

This U(n,1) action was introduced by Voiculescu [6], however, understanding 

his proof of its existence requires some stamina on the part of the reader. 

We show here that the action may be defined using just elementary algebra 

and the result of' euntz [3] that On is uniquely determined by the relations 

(1.1) and (1.2) satisfied by s . 

2. THE U(n,1) ACTION 

Define a row vector s = (s(e1 ) , ... ,s(en)). Then with s• denoting 

the column vector with entries s(e.)* (j = 1 , ... ,n) one has from (1 .1) 
J 

and (1 .2) the relations 

(2 .1) ss* = 1, s*s = diag(1, ... ,1) 

If A, B are n x n matrices over C and sAs* denotes the obvious matrix 

product then 
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(2.2) sAs*sBs* = SABs* , sAs*s{h) = s(Ah) , h E Cn 

and also 

(2.3) s(h) = s.ht • 

Now not8 that if U(n,1) denotes the group of (n+1)x(n+1) matrices 

A such .that 

(2.4) AJA* = J , J = diag(-1, 1, ... , 1) 

then each such A may be written 

(2.5) 

n 
with a0 E C , h1 , h2 E C and A1 an nxn matrix. Now (2.4) implies 

for example: 

(2.6) 

N::Jw define 

(2.7) 

LEMMA 2.1. uA is a well defined unitary in On 

= 1 n 

Proof. Using A*JA = J and the ensuing relations, corresponding to 

(2.6), one checks that exists in 0 
n 

Then these relations 

also give, after some elementary algebraic manipulations, uA*uA = 1 = uAuA* 

LEMMA 2.2. (Takesaki) There is a bijection between unitaries u in On 

and unital endormorphisms a of on given by 

u = I . a( s ( e . ) ) s ( e . ) * and a( s ( e . ) ) 
J J J l 

u s(e.) 
l 
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Moreover a is an automorphism if and only if there exists a unitary 

u' in on with a(u') = u* . 

Proof". See [4]. (The proof uses only elementary algebra and uniqueness 

of the Cuntz algebra). 

From the preceding lemmas and (2.7) we now have a map A+ aA from 

U(n, 1) into the initial endormorphisms of 

matter to verify the relation 

(2.8) 

so that with B = A-1 one has -1 
UA' = UA 

and hence is a homomorphism into 

0 . But now it is an easy 
n 

Aut 0 
n 

So we have proved: 

THEOREM 2.3. (Voiculescu) The map A + aA with 

aA(s(h)) 

is a homomorphism of U(n,1) into Aut 0 
n 

Remark 2.4. For n = define On to be C(T) then the corresponding 

action of U(1,1) is of course well known. Let 

A 
eiQ r a 

l 8 

8 
O:SQ:S2 Q E C . th I ro 12- I Q 12 --a , ~-' w1 "" ~-' 

then we have 

A.z -1 (a- 8z) (- 8 +.az) , z ~ T . 

Similarly there exists an action of U(n,1) on the unit ball in en 

by such fractional linear transformations for which the 0 action may 
n 

be regarded as a non-commutative analogue.· 

( 
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o:r 

where ® 0 en ::: e 

Define for h E en , o(h) : Fn + Fn by 

Then the map h + O(h) satisfies 

(3, 1) 

(3.2) 

where Pn 
operator. 

is the projection onto c c f 
- n 

and is the identity 

The C*-algebra T is generated by the range of o n and 

is generated by the range of o and is uniquely determined by the 

relations (3.1) and (3.2) [5]. Moreover we have the exact sequence 

O+K+ T ->0 + 0 
n 

where K denotes the ideal of compact operators on The following 

is an analogue of lemma 2.2, 

LEMMA 3.1. There is a bijection between partial isometries v in 

v*v = - Pn , vv* < 1 

and unital endo.r::morphisms (3 of T given by 
n 

v ::: L 13( o( e . ) o( e . ) *) 
J J J 

i3( o(h)) :: vo(h) . 

T n 

Moreover 13 is an automorphism if and only if there exists a partial isometry 

v' E T such that 
n 
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This action has some interesting properties, for example: 

THEOREM 2 • 5 • The U( n, 1) action on on is ergodic. 

(By ergodic we mean that the only fixed points for the action are multiples 

of the identity operator). The preceding theorem follows from the stronger 

result: 

THEOREM 2.6. For each A E U(n, 1) of the form 

[ ho~ oh l A = exp w 

n 
hE C 

there exists a state WA on On such that for all x,y,z E On 

(2.9) lim 
n-700 

(this is known as a 3-point cluster property [1]). 

To see that theorem 2.5 follows from theorem 2.6 one needs the fact that 

On is a simple C*-algebra so that the G.N.S. cyclic representation 1TA , 

corresponding to WA is faithful. If ~A is the G.N.S. cyclic vector then 

(2.8) says that if x is fixed by the aA-action: 

from which TIA(x) = WA(x).1 and hence that x = WA(x) using faithfulness. 

More details of this and other properties of the action may be found in [2]. 

3. A PROBLEM 

There is an extension of 0 by the compacts defined as follows. 
n 

Let F n denote the Hilbert space direct sum of the tensor powers. of en 
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v'*v' v'v'* < and S(v') = v* . 

The proof of this lemma is much the same as that for lemma 2 .• 2. Now F is 
n 

often called the full Fock space so that our next result should be contrasted 

with the corresponding results for the CA.R and CCR algebras acting on their 

respective Fock spaces. 

LEMMA 3.2. If B is an .automorphism of Tn then there is a unitary U· on 

F such that U0(h)U* = S(o(h)) if and only if one of the following 
n 

equivalent conditions holds: 

(i) there is a unitary u in Tn such that u(1 - Pnl = v 

(ii) the projections and are equivalent in T 
n 

Using these facts U(n, 1) action on T may be defined. Firstly note 
n 

that Tn is isomorphic to the subalgebra of On+1 generated by 

s(e1 J, ... ,s(en) with PQ = s(en+1 Js(en+1 l* = p [5]. Then we apply: 

LEMMA 3.3. If B is a unital endomorphism of Tn corresponding to 

as in lemma 3.1 then the following are equivalent: 

(il B extends to an endormorphism of On+1 , 

(ii) there is a unitary u in ·On+1 such that u(1 - p) = v , 

(iii) the projections S(pl and p are equivalent in On+1 . 

VET 
n 

Now for A. E U ( n, 1 ) the existence of an automorphism B A. follows from 

lemma 3.3 applied to the partial isometry vA.: 

(here we use the same notation for o as we used for s) and the unitary 



u 
A 

which are clearly related by 

1\ asanelementof U(n+1,1): 

P. -
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:: uA ( 1 -p) . Note that here w·e regard 

r ao 
< h1 , > 0 

h2 A1 0 

l 0 0 1 J 

If follo1t1s immediately from lemma 3.2 that there is a representation 

A + UA of U ( n, l ) by 

where g. ( j 
J 

1 , ... m) lie in C11 , the notation for A is as in section 2 

and 

(Hei"e S1 is the element 1 ED 0 ED 0 @ in F ) 
n 

PROBLEM. (Voiculescu) What are the irreducibles and their multiciplicities 

in this representation? 

It is knmm that this representation does decompose into a direct sum of 

irreducibles each occurring 1t1ith finite multiplicity [6]. Moreover this 

problem can be formulated in a purely algebraic way since the action of the 

Lie algebra of U(n,1) , by derivations on .the tensor algebra over Cn 

is easily computed from the preceeding formulae. The problem then becomes 

one of finding certain lo1r1est weight vectors for the Lie algebra action. 
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l1. THE ANALOGY WITH THE HOMOGENEOUS SPACE SU(n,1 )/U!nl 

The preceeding is perhaps easier to understand by analogy with the 

well known U(n,1) action on the bounded symmetric domain 

SU ( n, 1 ) /U ( n) 

To see how this analogy carries through we will show that there is a Hilbert 

space of analytic functions on D which carries a representatlon of U(n,1) 

equivalent to the cyclic representation of U(n,1) on Fn generated from 

n . Introduce the functions 

These are holomorphic and linearly independent on D and a pre-Hilbert 

space structure is obtained on their linear span by writing 

< e ' , e > w w 
- -1 ( 1-w' .w) 

For A E U(n,1) define an action on D by 

z _,. 

for A = 

Now the functions ew satisfy the identity 

A.z 

from which it follows that one has a unitary representation A ->- WA of 

U(n, 1) on the completion HD of the linear span of e via w 
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Then is clearly a cyclic vector for the representation W (In fact 

one deduces easily that W is an irreducible representation). Moreover 

there is an isometric map such that 

as 

(ao - o(h2 ll-1n, -1 < (bo - 0 (k2)) ,Q > 

(aobo - < 
-1 

= h2' k2 >) 

= < e_ -1 E e6 -1k > 
ao 2 0 2 

= < WAeO ' WBeO > 

< h1 , • > , B 

for A = 

So the cyclic subrepresentation of U(n,1) on Fn generated from Q 

is equivalent via n to a representation on holomorphic functions on D 

Notice that the function (z,w) + e (z) is related to the Bergman kernel 
w 

of the domain D . 

For the case n = 1 from remark 2.4 it is not hard to see that the 

corresponding representation on F, is the usual one of U(1,1) on the 

Hardy space. Ergodicity may be verified by elementary arguments in this 

case. 
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