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CN THE EX I STEI'CE OF PC61 T I VE ENTIRE SO...UT I CNS 

(1) 

(2) 

OF NONLINEAR ELLIPTIC PROBLEMS IN RN 

Ezzat s. Noussa.ir 

Consider the elliptic problem 

u € 

Lu = f(x,u), x € RN 

lim u(x) = 0, 
lxl~"' 

for N I 3, where 

Lu 
N a au 
[ -a- (a .. (x)-a -); 

i,j=l xi lJ xj 

each 0 <a< 1, the matrix is bounded and 

uniformly positive definite in RN, and the conditions (A) below hold. 

Our main objective is to prove the existence of positive-solutions 

of (1), (2), and obtain asymptotic estimates. A prototype of this class 

is the equation 

(3) 
N 

X € R , 

1 < r < ~ ~ ~· and p(x) ~ 0 is a locally Holder continuous function in 

RN, satisfying 0 ( p(x) ~ C(l + lxl 2)-b for some constants C, 

1 < b < N/2. The problem has been the subject of intensive 

investigations in recent years. In particular, there are several 

results on the existence of positive solutions of equation (1) which are 

bounded below by positive constants, see, for example, [5], (6]. and the 
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references therein. We do not know of any existence result in the 

literature for the problem in (1), (2). To obtain our main result·, we 

employ a new approach, developed here, based on combining a variational 

method and the barrier method. i.e. super-and-subsolutions. 

Hypotheses (A) : 

a) f(x,u) is locally Holder continuous, and there exists an open 

set U c RN such that lim f(x~u) .. uniformly in x <: U. 
u~ 

2b < inf 
Xf:RN 

N __ a__ N -2 -1 
[ a (a .. x .))( [ ai]'xix).lxl ) 

i,j=1 xi lJ J i,j=l 

2a 

for all x <: RN and u ~ 0, where a,b,r,C are positive constants with 

1 < b <a ~ N/2, and 1 < r < CN + 2)/(N- 2). 

c) there is a number 1/2 > 8 > 0 such that for all 

u > 0, we have 

u 
8uf(x,u) ~ F(x,u) = J f(x.Udt. 

0 

N 
X <: R , 

Notice that (b) is satisfied for (3) with the choice a N/2. 

THEOREivt. let t.!Je hypotheses (A) bold. Then (1) blts infinitely 

many bounded positive entire solut.ions. There is also <'it least one 

positive solution of (1), (2). &'iti •. ::;fyinq 

(1 I 12)1-a-<: ( ) C1(1 + lxl2)1-b C2 + X ~ U X ( 



274 

To prove this result, we proceed as follows: 

~. Using the variational approach in [1], we construct positive 

solutions uk of the problems 

(4) 

k = 1, 2, ... 

Sobolev space 

Lu + 1/k u = f(x,u), x s ~. 

Each uk is determined as a critical point, in the 

N 
[ I: 
i,j=1 

where t/>(u) f F(x,u(x))dx. 

~ 

To see this, notice first that hypotheses (a) and (b) imply that 

each Jk. k = 1, 2, •••• is well-defined and is in c1(E). From 

hypothesis (c) and the embedding theorem 2.2 in [2], it can be shown that 

the functional ¢ is weakly sequentially compact on E. Thus. the 

argument in [8] may be adapted to show that the Palais-Smale condition 

holds, i.e. every sequence {t/>n} C E such that IJk (¢n) I ,. M and 

J~(¢n) ~ 0 in norm in E*(the dual space) as n ~ "', has a convergent 

subsequence in E. It is not hard to show, see [9], that for some 

nonincreasing sequences ok. ak. k = 1, 2, of positive numbers, 

On the other hand, hypothesis (a) implies that there is an e s E 

with e(x) ~ 0, supp e C U, leiE > o1 , and Jk(te) < 0 for all 

k,t ) 1. It thus follows that the conditions of the well-known 

Mountain-Pass lemma [1], [9] are satisfied, and therefore the numbers 

inf max Jk(u) = ck, k = 1, 2, ... , 
rsr usr 
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are positive critical values of Jk, ••here r is the set of all 

continuous paths in E connecting 0 and e, Let uk be the 

corresponding critical points. Thus uk are positive classical 

solutions of (4) by standard theorems on elliptic regularity. It is 

not hard to see from hypothesis (c) and the variational character of uk. 

that 

(5) 

Therefore 

(6) 

by the Sobolev embedding theorem, where M is a positive constant 

independent of k. 

2. We use (5), (6), and a device due to H. Brezis and T. Kato [3]. 

to show (Lemma 1 below) that for sufficiently large q, the norms 

are uniformly bounded in k. Since may be considered 

as a solution of the linear problem Lu = fk(x) = f(x.uk(x))- 1/k ukC:d. 

lemma 1 and a standard interior Holder estimate (Theorem 8.24 in [4]) 

imply that 

(7) sup uk(x) ( M, 
X£RN 

for some positive constant M, independent of k. Thus a subsequence. 

say {uk}. converges locally uniformly in c2CRN) to a solution u I' 0. 

by standard theorems on elliptic regularity. If u ~ 0. then u is a 

positive solution of (1). (2). If u = 0. lemma 2 establishes the 

existence of a supersolution v(x) = CO + lxi 2 )1-b. for some positive 

constant C, such that uk(x) '( v(x), :< £ RN. for all sufficiently 
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large k; and the existence of a positive solution of (1), (2) follows 

from the well-known barrier method [6], [7]. The asymptotic estimate on 

a positive solution of (1) and (2) may be deduced from the maximum 

2-2b-£ 2-2a principle using the comparison functions Clxl , clxl , lxl > 1. 

Finally, the existence of infinitely many positive solutions of equation 

(1) which are bounded from above and below by positive constants follows 

from known results, see (5], [6], (7], 

LB/ivlll. 1 . E .be a sequence oi positive c.htssio.'il 

sol ution...c: oi ( 4) &"'tis.t}'ing ( 5) • Tben Ior suit:ic.iently la.rqe q 

I or some constc'mt M, independent of k. 

Proof. Multiplication of (4) by uk. p > 1, integration by parts, 

using the uniform ellipticity. the hypothesis uk(x) # 0, and condition 

(c). we obtain 

where M is a positive constant, independent of k. 

arbitrary and let 

€: 

-1 r-(N+2)(N-2) 

Then, for p ~ 2N(N - 2)-i - r we have 

Let € > 0 be 

-1 -1 
ltlp+r ( tltlp+(N+2)(N-2) + c lti2NCN-2) 

€ 

Using (6) we then have 



where 

-1 
(f uq dx)CN-2)N 

N k 
R 

-1 q = N(p + 1)(N- 2) , 

277 

and M,C are constants, independent of 

k. Applying Holder's inequality we obtain 

-1 
(f uq dx)(N-2)N 

N k 
R 

The conclusion of Lemma 1 then follows by choosing e sufficiently 

small. 

LEMviA. 2. 

solutions of (4) -'*-'itist:_ving (7). and converging locally uniformly 

Then there exists a supersolut.ion v o[ 

aJJ k su.[.[.fc.ientJy large. 

Proof. Simple calculations. using 

hypothesis (b). shows that Lv(x) I f(x,v(x)) for sufficiently small 

c > o. Now let ¢0 = K(1 + lxl) 2)1-b with k chosen, using hypothesis 

Cb), such that L¢0 Since uk satisfies 

2 -b Luk ~ CC1 + lxl ) by (4), (7) and hypothesis (b). we can choose k 

large enough such that L¢0 Cx) ~ Luk(x) for all x e ~. Thus 

for all k, and for all x e by the maximum 

principle. We then have Luk 2 -b ~· C(1 + lxl) ) )C¢0Cx)) . Therefore. 
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2 -b-t 
t > 0 can be chosen such that b + t <a and Luk ~ C(1 + lxl) ) 

for all k = 1, 2, ... , and all x t RN. Now let 

N x t R , k = 1, 2, .•• , by the maximum 

principle. This implies that we can choose R large enough such that 

~(x) ( v(x), k = 1, 2, ... , lxl) R. 

Finally, we use the uniform convergence hypothesis of {uk} to 

u = 0, on lxl ( R, to choose k0 such that uk(x) ( v(x), N 
X £ R , 
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