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ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS

OF NONLINEAR ELLIPTIC PROBLEMS IN RN

fFzzat S, Noussair

Congider the elliptic problem

(D] Lu = f(x,u), X ¢ RN
(2) u e Cz(RN). lim u(x) =0,
[ x>
for N » 3, where
N
3 du
tu=- ¥ T —(a,.(x)7/):
i,3=1 axi i3 X

1+a N

each a,. ¢ C (R), 0<a< 1, the matrix (aij(X)) ig bounded and

ij loc

uniformly positive definite in RN, and the conditions (A) below hold,

Our main objective is to prove the existence of positive -solutions
of (1), (2), and obtain asymptotic estimates. A prototype of this class
ie the equation

3) - Au =p (x)uT, X £ RN.

N + 2
N -2

1 <r« and p(x) # 0 is a locally Holder continuous function in

N b

o -
R, satisfying 0 ¢ p(x) ¢ C(1 + |x|%) for some constants C,
1 <b <N/2, The problem hasg been the subject of intengsive
investigations in recent years. In particular, there are several

resulte on the existence of positive sgolutions of equation (1) which are

bounded below by positive constants, see, for example, [5]. [6]. and the
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references therein. We do not know of any existence result in the
literature for the problem in (1), (2). To obtain our main result, we
employ a new approach, developed here, based on combining a variational

method and the barrier method. i.e. super-and-subsclutions,

Hypotheses (A):

a) f(x,u) 1is locally Holder continuous, and there exists an open

set UC RN such that lim E(XUU) =« uniformly in x ¢ U,
U
B) 0 < £(x,w) € C o+ x|

N N -2.-1

2b < inf (’ Z_ e (aijxj))(. Z_ aijxixj{xl )

N i,j=1 1 i,3=1
X€ER
N N 2. -1
¢esup (Y T —(a,.x.NnNC ¥ a,.xzx.x| ™) = 2a
N .i,j=1 axl 133 i,3=1 1313

for all x ¢ RN and u > 0, where a,b,r.C are positive constante with

1 <b<a< N2, and 1 <r ¢ (N + 2)/(N - 2).

c) there is a number 1/2 > 8 > 0 such that for all x ¢ RN,

u > 0, we have
u

guf(x,u) » F(x,u) = [ f(x.t)dt.
0

Notice that (b) is satisfied for (3) with the choice a = N/2.

THEOREM, Lot the hypotheses (K) hold, Then (1) has infinitely
many bounded positive entire solutions., There 1s alsa at /east one
positive solution of (1), (2), satrsfying

2. 1-a-¢ b

C (1 + %19 <ulx) € C (1 + |x|2)1“

for ® e RN, where C1. C2 and € are positive constants,
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To prove this result, we proceed as follows:
1. Using the variational approach in [1], we construct positive

solutions Uy of the problems

(4) Lu + 1/k u = £(x,u), ¥ ¢ RN,

k=1, 2, ... . Each Uy ig determined as a critical point, in the

Sobolev sgpace Wé/Z(RN) = E, of the functional

1 N u_ 3u 2
Jk(u) = E’j [. Z aij ax ax. t 1/k u™ldx - ¢),
RN i,j=1 i J

where ¢(u) = [ F(x,u(x))dx.

RN

To see this, notice first that hypotheses (a) and (b) imply that

each Jk' k=1, 2, ..., is well-defined and is in Cl(E). From
hypothesis (c) and the embedding theorem 2.2 in [2], it can be shown that
the functional ¢ is weakly sequentially compact on E. Thus. the
argument in [8&] may be adapted to show that the Palais-Smale condition

holds, i.e. every sequence {¢n} C E such that le(¢n)] ¢ M and

Ji(¢n) > 0 in norm in E¥(the dual space) as n 2 «, has a convergent

subsecquence in E, It is not hard to show, see [9], that for some
nonincreasing sequences Sk' %G . k=1, 2, .... of positive numbers,
Jk(u) 2 o, on IUIE = Sk' and Jk(U) >0 for 0 < IulE < 6k'

On the other hand, hypothesis (a) implies that there is an e ¢ E

with e(x) > 0, supp e CU, IeIE > 81, and Jk(te) <0 for all

k.t » 1. It thus follows that the conditions of the well-known
Mountain-Pass lemma [1], [9] are satisfied, and therefore the numbers

inf max J, (u) = € k=1, 2, ...,
rel' uey
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are positive critical values of Jk‘ where TI' is the set of all

continuous paths in E connecting 0 and e. Let Uy be the

corresponding critical points. Thus u, are positive classical

solutions of (4) by standard theorems on elliptic regularity. It is

not hard to see from hypothesis (c¢) and the variational character of U -

that
(5) f{vu, | # < M.
k2R
Therefore
(6) fu i <M,
k L2N/(N—2)(RN)

by the Sobolev embedding theorem, where M is a positive constant
independent of k.

2. We use (5), (6), and a device due to H, Brezis and T. Kato [3].
to show (Lemma 1 below) that for sufficiently large g, the norms

fu, # are uniformly bounded in k. Since u, may be considered
K ARl k

as a solution of the linear problem Lu = Ek(x) = f(x,uk(x)) - 1/k uk(x).

lemma 1 and a standard interior Hélder estimate (Theorem 8.24 in [4])

imply that
(7) sup u, (x) € M,
N k
®ER
for some positive constant M, independent of k. Thug a subsequence,

say {uk}, converges locally uniformly in C2(RN) to a solution u » 0,

by standard theorems on elliptic regularity. If u % 0, then u is a
positive solution of (1), (2), If u =0, lemma 2 establishes the
existence of a supersolution v(x) = C(1 + |x!5)1—b, for some positive

constant C, such that uk(x) ¢ v(x), % ¢ RN, for all sufficiently
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large k; and the existence of a positive solution of (1), (2) follows
from the well-known barrier method [6], [7]. The asymptotic estimate on
a positive solution of (1) and (2) may be deduced from the maximum

2—2b—s. C’X'Z—Za’ x> 1.

principle using the comparison functions C|x|
Finally, the existence of infinitely many positive solutiong of equation
(1) which are bounded from above and below by positive constants follows

from known results, see [5], [61, [7].

LEMVA 1. Let {uk} " E  be a segquence of positive classical

solutions of (4) satisfying (5), Then for sufficiently large q

fu B <M
ko,

for some constant M, Independent of k.

Proof. Multiplication of (4) by uﬁ. p > 1, integration by parts,

using the uniform ellipticity. the hypothesis uk(x) 2 0, and condition

(¢c). we obtain

4p(1 + p)—l i v u}1{/2(1+p)‘2

RN R

dx < M [ (uk(x))p+7dx,
N

where M is a positive constant, independent of k. Let € >0 be

arbitrary and let

5 o DN

’

o = 8p+r—2N(N—2)'1
. .

Then, for p » 2N(N - 21~y e have

-1 -1
't'p+r < €|t|p+(N+2)(N—2) . ce't|2N(N—2)

Using (6) we then have
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1 1

+4(N-2) dx + CeC)‘

-1 _
0 ol eIV e g (N2 ()

RN RN

1

where g = N(p + 1)(N - 2)" ", and M,C are constants, independent of

k. Applying Holder’'s inequality we obtain

(N-2)N"!

-1 A _ -
¢ ol an ¢ ce(f ol @y @M yZNN2) )
R

f
N RN RN
The conclusion of Lemma 1 then follows by choosing ¢ sufficiently

small,

LEMVA 2. Assume {uk) to be a segquence of positive classical

solutions of (4) satlsfiing (7)., and converging locally uniformiy

1]

N)toﬁ

2
In CY(R 0. Then there exists a superscolution v of

(1) and (2) such that v(x) 2 uk(x) for all x ¢ RN, and for

all k sufficiently large.

Proof. Define v(x) = C(1 + [x%)'7P,

Simple calculations. using

hypothesis (b), shows that Lv(x) » £(x,v(x)) for sufficiently small
2.1-b . . .

c > 0. Now let ¢'O = K1 + 21D with k chosen, using hypothesis

(b), such that L¢; » %K(l + |x:2)“b. Since u, satisfies

Luk ¢ C(l + |xl2)_b by (4), (7) and hypothesis (b). we can choose k

N

large encugh such that er‘va(x) 2 Luk(x) for all x ¢ R . Thus

¢O(x) > uk(x) for all k, and for all x ¢ RN. by the maximum

principle, We then have Luk ¢ C(1 + |x|)2)—b)(d>0(x))7'. Therefore,
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€ > 0 can be chosen such that b + ¢ < a and Luk ¢ C(1 + lz»d)’?)—b—€

for all k=1, 2, ..., and all x ¢ RN. Now let

#,0 = KA + 1215177 Gith K chosen such that Lé, > 3K(1 + |x15H)7C,
Then, as before, uk(x) € ¢1(x), X £ RN, k=1, 2, ..., by the maximum
principle, This implies that we can choose R large enough such that
uk(x) ¢v(x), k=1,2, ..., Izl R,

Finally, we use the uniform convergence hypothesgis of {uk} to

u=0, on |x| ¢R, to choose kO such that uk(x) ¢ v(x), X ¢ RN,

and k » kO'



279

REFERENCES

[1] A. Ambrosetti and P.H. Rabinowitz, Z2wa/ varsational methods In
eritical point theory and applications, J. Funct. Anal., 14 (1973),

349-381.

2] M.S. Berger and M. Schechter, Zmbedding theorems and quasilinear
elliptic boundary value problems for unbounded domains, Trans.

Amer, Math. Soc. 172 (1972), 261-278.

[3]1 H. Brezis and T. Kato, Remarks on the Schrodinger operator with
singular compley potentials, J, Math., pures et appl. 58 (1978),

137-151.

[4] D. Gilbarg and N.S. Trudinger, £//iptic partial differential
equations of second order, 2nd edition, Springer-Verlag,

Berlin/Heidelberg/New York/Tokyo, 1983.

[5] C.E. Kenig and W.M, Ni, An exterior dirichlet problem with
applications to some nonlinear equstions arising in geometry, Rmer,

J. Math. 106 (1984), 689-702.

[6] T. Kusanco and S. Oharu, Bounded entire solutions of second order
semilinear elliptic eguations with applications to parabolic rinrtial

value problems, Indiana Univ., Math, J. 34 (1985), 85-95,

-1
[71 W.N. Ni, On the elliptic eguation hu + K(xyuNH2I (N-2) © 0,

1ts generalizations, and applications in geometry , Indiana Univ,

Math, J. 31 (1982). 492-529.



280

[81 L. Nirenberg, Frariational and topological methods in nonlinear

mroblems, Bull, Amer. Math, Soc, 4 (1981), 267-302.

[9] E.S. Noussair and C.A. Swanson, Pasitive solutions of semilinear
elliptic problems in unbounded domains, J. Differential Equations
57 (1985), 349-372.

School of Mathematics,
University of New South Wales,
Kensington, NSW, 2033,
AUSTRALIA,



