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HANKEL OPERATORS ON THE PALEY-WIENER SPACE IN Rd
Peng Lizhong

Let I = (—W,ﬂ)d = {f € RS : - < fj <7, i=1,...,d} and let

X 4 denote the characteristic function of Id . Denote the Fourier
I

transform of g by F(g) = ¢ and the inverse Fourier transform of f

by F I(£) = F :

. 1 —if.
(1) i =y de g()e 1 Tax
and
1 ife
(2) f(x) = (;W—)Wi Jle £(E)e’s *dg .

d

The Paley-Wiener Space on I , PW(Dd) , 1is defined to be the

image of Lz(Id) under F—1 , i.e.

N pi(1Y) = {F‘l(xldf) : £ e’y

As is well known, f is in PW(Id) if and only if it is the

RN d . . .
restriction to R~ of an entire function of exponential type at most

172
(m+e,...,m+e) in cd which satisfies [fll, = [ J‘d lf(x)l2dx]
R

Id

Toeplitz operator on PW(Id) with symbol b is defined by

Let P denote the projection defined by (P dg)A =X dé . The
I I

(4) T,(£) = P (bf) . for £ € PW(I%) .
I

And the Hankel operator on PW(Id) with symbol b is defined by

= d
5 £) = P (bf) , for £ € PW(I%) .
(5) By(£) = P 4(oF) . for

oo
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Because PW(Id) is preserved when taking complex conjugates, these
two operators on PW(Id) are unitary equivalent. But as they have
properties similar to those of classical Hankel operators (see below),

we prefer the name Hankel operators in both cases.

In [7]. Rochberg has studied the Hankel operators on PW{I) , i.e.

the case of one dimension, the results he obtained are as follows:

Let 6(x) = 1™ s WY g € cg(m) . supp ¥ C [-4w,—-w/2] .

W(E) =1 on [Br-ml. wp(E) =w(E) . ¥ =1-v-J .

[

(P_b)" = X(_m,o]B . (Bp) = x[0,+m)ﬁ .

THEOREM A (Rochberg [7])

1. 0T, 0 = uP_(§2b*¢R)n + HP+(92b * g

. + Wb % Y0,

BMO BMO

2. Tb is compact if and only if P_(ézb * ¢R) and P+(92b * ¢L } are

in CMO and lim b % @c(x) =0 ;

Ix [
3. TN, = Ubll, = NP (B2 % yo)ll, + P, (8% % % JI, + Wb % ¥ I
; b'S g =~ - R/'B + L/'B c . p’
P p P p L
for | {p <, where Sp are Schatten-von Neumann ideals, Bp are

classical Besov spaces B;/p’p(m) .
He also gives a characterization of %p
THEOREM B (Rochberg [7]) Suppose that supp b€ 2I , 1 { p < ® , then

[ AEE) distjn$j * prp ,
P J€Z L

where {<pJ.}J.€Z is a partition of unity for 21 with respect to the
singular points =27 and 2w , distj = the distance from the centre of

support set of ¢j to the complement of 2I .

In the end of [7], Rochberg proposed several open questions, e.g.

do the Sp criteria in Theorem A and B extend to all positive p ? what
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are the analogs of above results in Rd ? what are the basic functional

anlytic results for the spaces %p ?

We study the Hankel operators on PW(Id) , i.e., the case of

d-dimension, and answer the questions.

Taking Fourier transform, we get
(6) T, (£)7(§) = B(E-v)x_4(E)x 4(m)E(n)dn .
b LRd [ rxd &

This turns out to be a paracommutator with symbol b , Fourier kernel

X d(f)x d('r;) and index s = ¢t = 0, see Janson and Peetre [3]. But now
I I .
the Fourier kernel x d(§)x d(n) does not satisfy the conditions in
I I

Janson and Peetre [3], and so it cannot be dealt with in the framework

of [3]. We have to look for a new approach.

Note that Tb = Tﬁ b * where (sz) =X b . We assume that

2 (21)¢
supp b C (21)d throughout this paper.

As is well known, there exist two important decompositions in
Harmonic analysis: the Whitney decomposition for open set of Ri and the
Littlewood-Paley decomposition for Rg . When d =1, the
Littlewood—Paley‘decomposition for Ré can be regarded as a Whitney
decomposition of the open set Ré with boundary + ® . We refine this
idea and give an appropriate decomposition for Id such that it
possesses the properties of both the Whitney decomposition and the
Littlewood-Paley decomposition. Using this decomposition we define a
new kind of Besov spaces B;’q for s € Rd , 0dp ., qg<® . It turns

out to be quite a success to characterize the Schatten-von Neumann ideal

criteria for Hankel operators acting on PW(Id) .
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. _ . T
Let Aj =0, for j=1.2,..., Ay={E€l: €1 < 1D

A ={E€T: ol (e codnugper: 2 lr ¢ ¢ 29 . for

0

j=-1,-2,... , A, =A, " UA UA,. . Thus I= U A, .
) J j-1 J j+l e je—o 3

Let Z_ denote the set {0,-1,-2,...} , for j € Zﬂ ,
A, =A, x...xA, , A, =4, x...xA, , then we have
d Jl Jd Jd Jl Jd
(N - u,a

=z

This gives a decomposition of Id .

~ [ - 3 -~
Take ¢, € Cy(R} such that supp ¢; C {E : IEl < T} . «4(§) 2C

on {£: IEI <5} . 9(E) = b(-E) . Let $,(¥)

= &0(2_j(I§I -+ ;3. 7)) . for j=-1,-2,..., and let
2_J

d

ﬁj(f) = I Gj (§i) , for j € Zf , moreover we can also require that
= i=1 i

2 61(5) =1 if ¢ € Id , i.e., it is a partition of unity for

jez?

9.
DEFINITION 1 For 1 {p®, s € Rd )
(8) w1y = {f es'@®) :supp 1, wmn
P H (19
P
d s v
- u[ T (mI1E. 1) f(f)] < w} .
. 1 p
i=1
It is obvious that PW(Id) = g(Id) .
DEFINITION 2 For s € RS, 0<p,q < ®.
(9) BS 9(1dy - {f es'®Y : supp 219, ugN
P s,q,.d
B 9(1%)

_ [.de (2Soi"f " ¢i"p)q]1/q ‘ w} .
J



135

It is obvious that B;/p’p(2I) = %p for d=1, 1 <{p<>.

For o € Rd , the operator I is defined by

d o,
(m-1E.1) * B(E) . for f €S
i=1 B I

{f es'@®Y : supp f C Id} .

(176)° (&)

d

We obtain the basic functional analytic results for B;’q(Id) ‘as

follows.
THEOREM 1
(i) B;’q(Id) is a quasi-Banach space if s € Rd , 0<(p,gql™
(Banach space if 1 ¢ p,q { ®} , and the quasi-norms HfH¢s q,.d with
B "3(I7)
p

different choices {wi} are equivalent.
(i1) B;1/2""’1/2)’2(Id) _ H§1/2,...,1/2)(Id) )

(iii) S . C B;’q(ld) cs'

14 o
(iv) If p.gq<®, S d is dense in B;’q(Id) .
I
S,q s,q
0,.d 1,.d .
™ B, ‘aher tah . o g <q .
o

(vi) Vo € Rd ., I” maps B;’q(Id) isomorphically onto B;_U’q(ld) .

THEOREM 2 Let s € Rd , 1 {p,g<®, then
s, d, |’ -s,q',.d
(10) [Bp E¢ )] =B % (19
where L + }r =1, L + lr =1.
P p q q

THEOREHE 3 Let so,s1 € Rd , 1¢ Pq:Pq-9q:9; (o, 0<08<1,

% 0 1. %* 0 1 * .0 1
s = (1—9)s1 + 8s” (i.e. s| = (l—e)s1 + Gs1 s oeee s Sg = 1 B)sd + Gsd),
110 L0

P P; Py

1 _16 + 2

9% = 4y q;
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Then
sO 1 D
99 d Bl P | s* B3
(1) b, ah s Tlad)] -l
0 Py [e]
Extending the definition of Tb ; we consider Tz’t defined by

S.t.on - d S5 d ti R
(12) (1250 = [BE-m T G-1g, D) ' T (-in 1) X g(E0X g (man

i=1 i=1
where x,t € Rd . We obtain a characterization of the Schatten-von
Neumann ideal S of Ti’t in terms of
b€ Bs+t+(1/p,...,1/p),p((21)d) )

THEOREM 4 Suppose that 0 < p{® , s,t € Rd with

s..t, > max(~-1/2,-1/p) . Then Tt ¢ Sp if and only if

i’ 71 b
b € Bs+t+(1/p,...,1p),p((21)d) ) ]
t
(13) ntse = libll .
b 'S +t+(1/p,....1/p), d
P BIS) (1/p P) p((2I) )

To prove it, for 1 { p { ® we follow the procedure of Janson and

Peetre [3], for 0 < p < 1 we follow the procedure of Peng [5].

Note that if p = ® , Theorem 4 does not contain the result of

Tb = Tg’o . VWe have the following direct result.

Let J, = ag 9y (E) = x(21)d(§) - Jo(E) . Then b=b +by ,
where b0 =b 3 ¢O s b1 =b 3¢ wl .

THEOREM 5 If b1 € BMO , b, €L . Then Tb €S8, and

(14) IT, Il < C(lIb, lgy o + HbOHLm) .

For the converse result, we get it only for d =1 .
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THEOREM 6 If d=1, T, is bounded on PW(I) ., then B, € BMO ,

b 1
bO €L, and
(15) "blnBMO + IIbOIlLoo < CHTbH .
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