11 Ends of Complete Minimal Surfaces

By Osserman’s theorem, any complete minimal surface of finite total curvature is an
immersion X : M = Sy — {p1, -, p-} = R3 where S}, is a closed Riemann surface of
genus k. Consider conformal closed disks D; C S such that p; € D; and p; € D; for
j # 1. Denote D} := D; —{p;}. For any such D;, the restriction X : D} — R3 is called a
representative of an end of X at p; or simply an end. When we say that some property
holds at an end of X at p;, for example embeddedness, we mean that there is a disk
like domain D; such that for any disk like domain p; € U; C D;, X :U; — {p;} satisfies
the property. Such a representative X : U; — {p;} — R? is called a subend of the end
X:Df — R3.

Osserman’s theorem says that the Gauss map g extends to p; and the extended g is
a meromorphic function. Since N = 77!og we have a well defined normal vector N (p;)
at p;, which we call the limit normal at p;. This also defines a limit tangent plane at
the end E; corresponding to p;.

Intuitively, and we will prove it later (see Proposition 11.5), F; = X(D}) C R3
is an unbounded set. Moreover, since M — U;_, D} is precompact, X (M) — Ul_, E;
is bounded. Thus if X is an embedding, an end E; is just a connected component of
X (M) — B, where B is any sufficiently large ball in R? centred at 0.

In this section, all ends considered are ends of some complete minimal surface of
finite total curvature.

Now consider the Enneper-Weierstrass representation of the complete minimal sur-
face X : M — R3. By (6.20)

1
A2 =2 (161 + 62l + 19]*) -

Now let 7 : [0,1) — D7 be a regular curve such that |r'(t)| = 1 and lim;; 7(¢) = p;. By
completeness,

/ A (@) [ ()] dt = oo,

This implies that A(q) — oo as ¢ — p. Since ¢;’s are meromorphic, one of them must
have a pole at p. Hence let z be the local coordinate of D; such that z(p;) = 0, we must

have
c

1
A? == (|¢) ? ) ~ o, 11.46
3 (81 + 16l +100F") ~ (11.46)
where ¢ > 0 and m > 1 is an integer.
Definition 11.1 If A2 ~ ¢/|2|*™ at an end, we say that A has order m at that end.

Remark 11.2 Since A? is the pull back metric of X : M — R3, we see that the order
of A is invariant under an isometry in R3. Precisely, if A is an isometry of R3 then AX
and X has the same pull back metric A2. Thus the order of A at an end is invariant.
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X being complete requires that the order of A at an end is at least one. In fact, we
can prove that the order of A at an end is at least 2.

Lemma 11.3 Let X : M = S, — {p1,---,p.} = R3 be a complete minimal immer-
ston with finite total curvature, and (w1, ws,ws) its Enneper- Weierstrass representation.
Then at each p;, at least one of wy, wa, w3 has a pole of order at least 2.

Proof. Let (Dj,z) be a coordinate neighbourhood such that z(p;) = 0 and on Dz,
(w1, wa, w3) = (@1, P2, 3)dz.

We have shown that at least one of ¢1, ¢, ¢3 has a pole at p;. Som > 1. If m =1,
there are complex constants c¢;, ¢, and c3, not all zero, such that f; := ¢, — ¢;/z is
holomorphic in D;. Now

R(cslogz) =R [(g— fi)dz=X; =R [ fidz, i=1,23,
are well defined harmonic functions on D}. Since
R(cilog z) = (Re;) log |2| — (S¢;) arg z,
¢; must be real. But
O=di+g+ds=I+f+F+(A+E+d)/2+2afi+af+cfs)/z

Comparing the terms of the same order, it must be that ¢; = 0 for 7 = 1, 2, 3. But then
¢; = f; is holomorphic and bounded in D;, contradicting the fact that X is complete.

Now recall that by definition X : S, — {p1,---,p-} = R? is complete if and only if
for any divergent curve 7y the arc length of X o~ is infinity. Thus either X oy goes to
infinity in R?® or X oy stays in a compact set of R? but has infinite arc length. To study
these two cases, we introduce the concept of properness.

Definition 11.4 A mapping X : M — N between two topological spaces is proper if
for any compact set C C N, X~!(C) is also compact.

Proposition 11.5 (Osserman) If X : M — R? is a complete minimal surface of finite
total curvature then X 1is proper.

Proof. We know that M = Sy — {p1,---,p.} where S}, is a closed Riemann surface of
genus k. Let p € {p1,---,p,}. Since the order of A is invariant under isometries of R3,
after a rotation, we may assume that g(p) = 0. There is a coordinate disk U C Sy at p
such that z(p) = 0 and |z| < 1 on U. So we can write that g(z) = 2"h(z), where n > 0
and h(0) # 0. On U — {p}, n must have a pole of order m > 2, hence we can write
n = f(z)dz where



where F' is holomorphic and a_,, = F(0) # 0. We can write

Recall that

L 1) (1 + 62(2)).

512 = 3G (1= (@), bale) =

Since on the loop C := {|z| = p < 1},
0 = §R/C¢1dz—i§}%/c¢2dz

1 1 _
- 5ave/c(a_l —b_l)z"ldz+z—2-S/C(a_1+b_1)z Ly
= mi(a_; +b_,) (by the residue theorem),

we have
a_i1 = —'b__l. (1147)

Let X(2) = (X!, X2, X?)(2), then

(X1 =iX?)(2) = R [ (e~ [ o)+ (X'~ iX?)()

- %/ NAY dﬁﬂ'(\‘f/z LHQO + 2O+ (X = iX2) (z0)
= = dC——/ (€)d¢ + (X1 —iX5)(20)
; B | —
N —l;,, i §i=§_m T2+ g(am —bo)log ]
iE— i1
= %_f:%zl—m + %(a—l —b_1)log 2| + O(|=/*™™). (11.48)

Since a_,, # 0 and m > 2, (11.48) shows that |X|? — co as z — 0. Thus for any
compact set B C R?, there are open disks p; € D; C Sy such that X~Y(B) C Sy—Ul_, D
is compact. O

We want to know how to determine whether an end is embedded by looking at the
Enneper-Weierstrass representation.

Lemma 11.6 If the order of A at an end is m = 2, then there is an open conformal disk
D such that X :D — {p} — R? is an embedding, where p is the puncture corresponding
to the end.
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Proof. In the proof of Proposition 11.5, since n > 1 and m = 2 we see that b_; = 0
and hence a_; = 0 by (11.47). Now by the same calculation which led to (11.48),

(X' —iX?)(2) = —5—;— + O(|z|). (11.49)

Obviously for some 0 < p < 1 small enough, X; — Xy : D — {p} :={z € U|0 < |2] <
p} — C is one to one and lim;| | X; —iX5|(2) = co. Hence X is an embedding.

O D—{p}

When A has order 2 at an end, we can get more information about the behaviour of
X at that end; in fact this end can be expressed as a minimal graph with a very nice
growth property. To prove this, we first show:

Lemma 11.7 Letp € {p1,---,p,} and A have order 2 at p. Then there are R > 0 and
p > 0 such that the mapping X' —1X%: D — {p} — C defined in Lemma 11.6 is onto

{¢ € ClEl > R}.

Proof. We have seen in Lemma 11.6 that for some 0 < p < 1, X! —iX%2: D —
{p} = {0 < |2| < p} — C is one to one and limj, o |X' — iX?|(2) = oco. Let
R = max),—,{|X* — iX?|(z)}. Note that a := (X' — iX?)({|2| = p}) is a Jordan curve
in C. If thereisa ¢ € C, |£] > Rand € ¢ (X' —iX?)(D—{p}), then thereisa0 <r < p
such that min,—{|X1 — iX2|(2)} > |¢|. Let 8 := (X' —iX?)({|z| = r}), then B is a
Jordan curve in C and anf = 0. Let Q:= C — {0} — {¢}, where « and § are not free
homotopic to each other in . But clearly (X*—iX?)({r < |2| < p}) C Q and ¢(4,t) :=
(X1 —iX))[(r+tlp—7))e?],0<t<1,0< 0 < 2m, is a homotopy from 3 to « in €.
Thus we get a contradiction. This contradiction proves that £ € (X! —iX?)(D — {p}).
The lemma is proved. O

Theorem 11.8 Let the notation be as in Lemmas 11.6 and 11.7. Then there is an
R >0 and ane € (0,1) such that outside the solid cylinder {(x1, s, 73) € R® |22+ 13 <
R%}, X(0 < |z| <€) is a graph (z1,Z9,u(z1,72)) over the z,To-plane. Furthermore,
asymptotically,

u(z1,79) = alogr + B+ 72 (nz1 + 1222) + O(r™2), (11.50)

12 and a, B, 71 and v are real constants.

where r = (2% + z3)
Proof. We have proved that there is an € € (0,1) such that the mapping X! —iX? :
D* := {z|0 < |z|] < ¢} — C is one to one and onto |{| > R for some R > 0. Let
Q = {|¢| > R}. For any (z1,73) € Q there is a unique z € D* such that z; = X*(z)
and 7y = X?(2). Define u(z,z2) = X3(2) on (X' —iX?)71(Q), then u is a well defined
function. Now use the data written down in the proof of Proposition 11.5, recalling that
g(2) = 2"h(2), f(2) = a_227 2+ 32 a;2%, and s0 ¢3(2) = a_yh(0)2" 2 +a_sh/(0)2" ! +
z;’in bizl.
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We consider the two cases of n =1orn > 1. If n =1, let C := {|z| = €;} for some
"0 <€ <e. Since

0= §R/C #3(z)dz = R(a_zh(0)277),
we see that o := —a_sh(0) # 0 is real. Thus
u(z, 7)) = X3(2) = §R/: $3(0)d¢ + X3 (20)
= —alog|z| + R(a_2h'(0)2) + O(|z]*) + X3(2).

By (11.49),
2 _ 2 la_s|? _ 1 |la_s|? 2
=l - i = 28 1 00) = o (128 4 o).
[

2logr = —2log |z| + log ( + O(|z|2)> = —2log|z| + 2log |(12;2| +0(]z)]?).

Also by (11.49),

] _9 —a_2($1 + Zl‘g) _9
— =24+ 0 e .
? 2(zy — iz2) +00r™) 272 +00r™)
Thus there are real constants y; and 7, such that
MNT1 + V22
R(a_oh'(0)2) = s

Setting 8 = —alog 1‘15—2—1 + X3(29), we have
u(zy, T2) = alogr + B+ 172 (1x1 + Yax2) + O(r™2).

If n > 1 then ¢3 is bounded in D*, hence o = 0. In this case, the end approximates
a plane. O

We have shown that if A has order 2 at an end, then that end is embedded and is a
minimal graph. Next we will show that if an end is embedded, then A must have order
2 at that end.

An outline of the proof is as follows: If m > 2 and g(0) = 0 then

(X! = iX?)(z) = = +O(1=]'™)
with & > 1. This shows that (X' —iX?) is not one to one, and lim,|,o | X;—iX5|(2) = oco.
But it is possible that the surface X = (X, X2, X3) is embedded. However, intuitively
we know that X is a graph over C — B, where B is a large disk in C, since our surface
has a limit tangent plane corresponding to the puncture. It follows that X is embedded
is equivalent to X' — iX? being one to one. The next lemma gives a rigorous proof of
this fact.
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Lemma 11.9 Let D and p be as in Proposition 11.5. If X : D—{p} is an embedding then
there is an R > 0 such that X is a graph over R*— Bg, where B := {z € R*||z| < R}.
In particular, A has order 2 at p.

Proof. We assume that the limit normal to X at p is (0,0, —1). Let P(zy,z5,73) =
(z1,z2) be the perpendicular projection. Let C, := {(21,22,23) € R? |z} + 22 = r?},
V. i= {11, 29, 23) € R3| 2% + 22 > r?}.

We will prove that there is an R > 0 such that P: X (D —{p})NVz — R?— Bp is one
to one and onto R? — Bg. Hence X is a graph over R? — Bg. Moreover, [ X ~1(V3)] is
a homotopically non-trivial Jordan curve Jg C D — {p}, hence X~!(Vy) is conformally
a punctured disk.

Since the limit normal of X at p is (0,0,—1), there is an 0 < p < 1 such that
N3(2) < —1/2 for any 0 < |2| < p. Let D} := {2|0 < [2] < p}. Since X is continuous,
there is an R > 0 such that | X! — iX?|?(z) < R? for |z| = p. For any r > R, consider
the set X~ (C,) C Dj. Since N3(z) < —1/2 for any 0 < |z| < p, X is transverse to
Cy. (i.e., X(Dj) and C, have different tangent planes at common points.) This implies
that X~*(C,) is a family of one-dimensional submanifolds in D7. From the expression
for X' — 1X? we know that | X' — iX?|(2) — co when |z| — 0, hence any component
J. of X71(C,) is a compact one-dimensional submanifold, i.e., it is a Jordan curve in
D3. If J, is homotopically trivial, then it bounds a disk like domain  C D7. We will
prove that | X! — iX?|?(z) = r? on Q. In fact, let z € Q be such that | X! — iX2|?(2)
achieves a maximum or minimum other than 72 on Q. Then z is an interior point of
and D|X' —iX?|?(z) = (0,0). This says that

(X1 X0 (XY X)) =0, (X'X%),e(X',X?)=0. (11.51)

Since (X', X?%)(z) # (0,0), (11.51) implies that (X', X?), and (X', X2), are linearly
dependent. This then implies that N3(z) = 0, contradicting N3(z) < —1/2. But
if |X!—4X?% = r%on Q, X maps Q to C,, another contradiction to the fact that
N3(z) < —1/2 in Dj;. These contradictions prove that J, is homotopically non-trivial.
Now if X~!(C,) has more than one component, say J! and J2. The above argument
shows that they are both homotopically non-trivial. Thus they are in the same Z,
homotopy class, and bound a compact doubly-connected domain 2 C Dj. By the same
argument we can prove that X () C C,, which is impossible. Thus we have shown that
Jr = (| Xt =i X??)7Hr?) = X~1(C,) is a homotopically non-trivial Jordan curve in Dy,

Now X : D7 — R? is an embedding, so « := X(J,) is a Jordan curve on C,. Let
B:St— D7 be a parametrisation of J,. If B(t;) = 2; € J, for i = 1, 2 where 2; # 2, and
(X1, X?)(21) = (X!, X?)(22), then there is a ¢ € ST such that o/(¢) = C(0,0, 1) for some
non-zero constant C. Since o/(t) is a tangent vector of X, we must have N3(3(t)) =0,
a contradiction to N3(z) < —1/2. This shows that P: X (J,) — 8B, is one to one and
onto for any r > R; hence (X', X?) is one to one and onto R? — Bj. a
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Remark 11.10 The fact that X is an embedding is used only when claiming that
“a = X(J,) is a Jordan curve. Hence it is true that (JX! —iX?>)71(r?) = X~Y(C,)
is a homotopically non-trivial Jordan curve when X is only an immersion. In general,
P:X(J.) — 0B, is an m to one projection except for a finite number of points in 9B,.
The number m is the I; in Theorem 12.1.

An immediate application of Theorem 11.8 and Lemma 11.9 is:

Corollary 11.11 If X: Sy —{p1,...,pn} = R? is a complete minimal embedding, then
the limit normal must be parallel.

Definition 11.12 An embedded end of a complete immersed minimal surface in R? of
finite total curvature is a flat (or planar end) if @ = 0 in (11.50), and is a catenoid end
otherwise.

Remark 11.13 We have proved that X is embedded at an end F if and only if A has
order 2. Let p be the puncture corresponding to E. From the proof of Theorem 11.8,
we know that F is flat if and only if p is a branch point of the Gauss map g.

Finally, we give a description of the image of a flat end at the limit height.

Proposition 11.14 Let E = X(D — {p}) be an embedded flat end and g have branch
order k > 0. Let B be as in Theorem 11.8, and B be a large ball centre at (0,0, ).
Then (E — B)N{(z,y,2) € R®|z = 8} has 2k components.

Proof. Without loss of generality we may assume that g(p) = 0 and g(z) = zF*!. Now
n = 2"2h(z)dz, h(0) # 0, so

Xy(2) = B+ R (%h(O)z’j +o(|2").

Thus X35*(8) N (D — {p}) consists of k curves intersecting at z = 0. This is equivalent
to (E — B)N{(z,y,2) |z = [} consisting of 2k components. o
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