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BOUNDARY IillGULARITY FOR SOLUTIONS OF THE EQUATION OF 

PRESCRIBED GAUSS CURVATURE 

John I.E. Urbas 

We describe a. recent boundary regularity result for the equation of prescribed 

Gauss curvature 

(1) 

in the case that the gradient of the solution is infinite on some relatively open portion 

of the boundary of the domain. To see how this situation arises, we recall that to 

solve the Dirichlet problem for (1) on a smooth, uniformly convex domain n c IR11 we 

need two conditions on the function K . First, -vve need 

(2) 

where w 
n 

J. K < w 
0 n' 

is the measure vf the unit ball in IR11 , to obtain a bound for the maximum 

modulus of the solution in terms of its boundary values, and second, vve need 

(3) K(x) :S ttclist(x,iJn) 

for some positive constant p. to obtain a boundary gradient estimate. \Ve then have 

the following theorem (see [4]). 

THEOREM 1 Let !1 be a d,l convex dorrwin in IR11 and let K E C1' 1(0) 

be a positive function sati.sfying ( 2) and ( 3). Then the Dirichlet problern 

(4) 2 . (. 2 !n+2)/2 cletD u=h(x) l+IDul )' in !1, 

u = IP on !)[! 
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If the condition (3) is weakened (but (2) is ma.intainecl) it is not generally 

possible to solve the Dirichlet problem (4) in the classical sense, but it is possible to 

find a convex solution of ( 1) which satisfies the boundary condition u [ 8 n = r.p in a 

certain optimal sense (see [6]). In general this is satisfied in the classical sense at some 

points of f)fi , while at otl'.er points it is not, and we have 

(5) lim inf u(x) < r.p(x0) 
X--iXO 

xEfi 

at such a point x0 E of! . If K does not grow too fast near 8fi (for example 

K E Ln(fi)) we find that 

(6) lim !Du(x0)1 =oo. 
X-tXO 

xEfi 

In fact, if K is strictly positive in a neighbourhood of x0 , then u is continuous up 

to the boundary near x0 [7], Corollary 3.11), so (S) and (6) hold not just at x0 

but for all boundary points sufficiently close to x0 . 

If instead of (2) we have the extremal condition 

(7) 

it is not possible to solve the Dirichlet problem ( 4) in any reasonable sense. In this 

case there is a convex generalized solution u of ( 1) which is unique up to additive 

constants, and under a r~;striction on the growth of K near D fi (for example 

K E L n( !1)) it follows that ( 6) holds for all x0 E f) fi , and consequently u E if 

K E cl'1(fi) is positive (see [S], [7]). 

Now let us return to the boundary regularity question. vVe have recently 

proved the following result (see [8]). 
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THEOREM 2 Let n be a bounded domain in IRn and suppose that for some 

x0 E a 0 , which we may take to be the origin, f = a 0 n BRo is a connected, C2' 1 

uniformly convex portion of ofl. Suppose that K E cl'1(i1) is a positive function and 

u E C2(0) is a convex solvtion of (1) satisfying (6) for each x0 E r. Then there is a 

number p E ( O,R0) , depending only on n, R0 , f , sup K , infK > 0 
0 0 

IlK II 1 1 _ , such that the following hold: 
c ) (0) 

(i) u E C0'1/ 2(nnB) and for any x,y E finB P we have 

(8) 1/2 lu(x)- u(y)l::: C11x-yl . 

(ii) graph [ulnnBP] is a C2'o: hypersUJjace for any o: E (0,1), and we have 

(9) llvll 1 (\ -.-· ::: C,) 
C ' (((HnB )xiR)ngraphu) ~ 

p 

whe7'C v = (Du' - 1 ) zs the norrnalvectorfield to gra.ph u . 
(l+IDui 2)1/ 2 

(iii) 

(10) 

I nl rnB is of class Cl,o: for an11 o: E (0,1) and we have 
p 

and 

cl depends only on 11 ' Ro ,r l sup K ' infK > 0 and IlK II 1 1 - ' and c') l c3 
0 0 c ' (fi) -

depend in addition on o: . 

If r and K arc more regul;u·, we obtain correspondingly better regularity 

assertions in (ii) and (iii); in particular, if r and K are C00 , then vi nnB and 
p 

I 

I ( ;OJ' u rnB are 
p 
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We briefly sketch the main ideas involved in the proof of Theorem 2. First we 

need to get some control on the behaviour of u near r . A key ingredient here is a 

regularity result ( [7], Corollary 3.11) which tells us <that u E C0' &( nnBR I ) for some 
0 2 

small & = &(n) > 0 , and 

(11) lu(x)- u(y)l ::S Clx-yla 

for all x,y E DnBRo/2 , where C depends only on n, R0 , f and i~fK > 0 . It is 

interesting that this boundary regularity result mal<es no use of the boundary 

condition (6), or indeed, of any boundary condition. 

It is also crucial to our argument to estimate carefully how fast Du blows up 

near r. We have ([8], Lemma 2.2) 

(12) I Du(x) 1 :::: Cdist(x,anr112 

for all x E BR0/2n {xED:dist(x,8D) < () for some positive constants C and c1 

depending only on n , R0 , r and sup K . 
n 

The estimates (11) and (12) are the main preliminary estimates we need. 

Once we have these it is quite straightforward to show that on 

BR012n{xED:dist(x,8D) < c1} we have 

(13) 

for some small positive /3 = j](n) , where 8u is the tangential gradient of u relative 

to r . From this we easily get a HOlder estimate for the normal vector field v of the 

form 

(14) 

for all x0 E f n BRo/2, x E DnBRo/2, where 'Y = ?(n). is a small positive constant. 
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Once we have (14) we can express graph u near 0 as the graph of a convex 

function w over a subdomain of the vertical tangent plane to r x IR at 0 . 'vVe find 

that w satisfies an equation 

(15) 2 - 2 (n+2)/2 detD w = K(y,w)(l+IDwl ) 

in D={yEIRn:lyl <R, Y11 >w(y')} for suitable controlled R > 0 and 

wE C0,a(B~~-l) with w( 0) = 0 . Here the positive y n direction corresponds to the 

negative x11+1 direction in the original coordinates, y' = (y1, ... ,y11_ 1), and we have 

assumed without loss of generality that u( 0) = 0 . On the "free boundary" 

E = BR n {Y11 = w(y')} we have the two conditions 

w = '1/J on E , 

(16) 

where ~' E C2' 1(BR) is the function representing r x IR near 0 as a graph over the 

vertical tangent plane at 0 . Finally, from (11) and the uniform convexity of r , and 

from ( 14), we obtain the important dilation estimates 

(17) 

for all y ED, y0 E E, where ')' = ')'(n) > 0, 8= 8(n) 2: 2, and C0 , C1 are controlled 

positive constants. 

The free boundary problem (15), (16) is similar to the free boundary problems 

studied by Kinderlehrer and Nirenberg [1]. However, their regularity results cannot be 

applied since we do not have sufficient regularity of E and of w near E . INe would 

need E E C1 and w E C2(D U E) to apply their results; all we have so far is E E CO,a 

and wE C2(D) n C1(D U E) . Nevertheless, their technique can be used. We introduce 

z = Dw as the new independent variables and define the Legendre transform w* of w 

by 
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n 

Then w* E C2(B~1 ) n C0 > 1(B~1 ) is a convex solution of a Monge-Ampere equation 

detD 2w* = f(z,w*,Dw*) 

in a half-ball B~1 = {zEIRn:lzl < R1 , zn >0} of controlled radius (by virtue cit (17)), 

and f is positive and of c:<tss cl>1 . Furthermore, by virtue of (16) we have w* = f' 

on the flat boundary position of B~1 , where 1/J* is a C2>1 uniformly convex 

function. Using minor modifications of standard techniques in the theory of 

Monge-Ampere equations we can then show that w* E C2,a(B+) for all 0:' E (0,1) for 
t7 

some controlled positive fJ. This gives us the assertions of Theorem 2 for the original 

function u by going back through the various coordinate transformations. 

It is interesting to compare Theorem 2 with an analogous result of Lin [2], [3] 

for the equation of prescribed mean curvature. On this basis it seems reasonable to 

conjecture that similar rGsults will eventually prove to be true for more general 

curvature equations. 
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