
231 

CRYSTALLINE GEOMETRIC CRYSTAL GROWTH 

by Jean E. Taylor 

Department of :Mathematics, Rutgers University, New Brunswick, NJ 08903 

taylor@math.rutgers.edu 

In geometric crystal growth, the normal velocity of the interface is the product of the 

mobility of the interface in that normal direction with the force driving the crystal to grow. 

This force is often a constant n, representing the decrease in free energy per unit volume 

due to the crystal growing, plus the "weighted mean curvature," representing the change 

in surface energy per unit volume swept out by the growth. A survey of nine mathematical 

formulations of such motion is in preparation [TCH]. 

This paper is a progress report on the "crystalline" formulation, in which the surface 

free energy ~I is so highly anisotropic that the equilibrium crystal shape 

W = {x: x · n:::; 1(n) for every unit vector 

is a polyhedron, with its set of normals equal to a specified finite set .N. It was first 

introduced in [Tl] and was discussed in [T2]. 

Crystalline geometric crystal growth is studied for three reasons: ( 1) sometimes phys

ical problems require it, (2) it ought to be useful as a natural polyhedral approximation to 

more smooth motions, and (3) it has an interesting formulation and theory of its own, in 

which curvature is not defined at points but on line or plane segments. Results have been 

proved which sometimes parallel the results for motion by mean curvature and which some

times are strikingly different [T3]. Also, a computer program has been written which com

putes this motion, for immersed as well as embedded and multiple-grain-junction curves in 

the plane (with and without fixed boundaries), and another program is under development 

for surfaces. These programs are illustrated in the a videotape which is part of [T4]. (A 

very early version of this program was demonstrated in [T2].) A related program for the 

motion of curves in 2-d was developed by Roberts and is described in [R]. 
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In the crystalline formulation, the partial differential equation for geometric crystal 

growth becomes a system of ordinary differential equations for the distances of the flat 

segments {S;} of the surface from some fixed origin: 

ds;/dt = -M(n;)($1 + wmc(i)). 

Here wmc( i) stands for the analog of the weighted mean curvature for the ith plane seg

ment, namely the rate of increase in surface energy with volume under deformations con-

sisting of changing the distance of a single plane. For surfaces in 3-space, one computes 

where l;j is the length of the intersection of segment S; and Sj (and is thus 0 if those 

segments are not adjacent in the interface), O;j is 1 or -1, depending on whether the type 

of the S;- Si edge is regular (like that in W) or im1erse (like that in the central inversion 

of W) [TC], and f;j is a factor determined by the normals and -y, 

(In 2-d, area(S;) is replaced by length(S;) and the l;j are simply omitted.) For directions 

not in N' to be interpreted consistently as varifolds, the mobility M must be determined 

by its values on N via M(an1 +bn2 +cn3 ) = aM(n1 ) +bM(n2 )+ cM(n3), assuming facets 

with orientations n 1 , n 2 , and n 3 meet at a corner of W and a,b, and c are nonnegative 

numbers. 

A major issue is to determine when additional facets must be added to those in the 

initial surface or to the surface at later stages of its motion. This issue has been completely 

settled for curves in the plane and partially settled for surfaces in three-space. Insertions 

of such facets is required in particular when corners are "too sharp" and when there are 

fixed boundaries. 

To extend the definition of the motion to the case where there are junctions of three 

or more curves (there is a parallel formulation for surfaces in 3-d), one recasts the problem 
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as a variational problem: given a network at some particular time, if we let h; be the rate 

at which facetS; is to move (so that ds;/dt = h;) and let l; be the length offacet S;, then 

the variational problem, to first order, is to maximize the decrease in total free energy, 

subject to 

- L(nl;h; + CT;A(n;)h;), 
i 

L(h;/M(n;))h;Z; =constant. 
i 

This constraint says that the integral of the driving force over the region swept out by 

the motion is a prescribed constant. (If no motion can decrease the total free energy, 

then the variational formulation is abandoned and one simply sets h; = 0 for all i.) For 

triple junctions, one adds the constraint that the three segments continue to meet (e.g., if 

segments 1, 2, 3 form a triple junction, then there exists a point p such that n; · p = h; 

for i = 1, 2, 3); the formula for computing the net change in surface free energy also now 

depends on the new intersection point p. Because it may be advantageous to add a new 

infinitessimal line segment at a triple junction, one has to do the maximization over all 

possible such additions of line segments; the best addition may well be a segment which 

is a varifold, having a normal which is not in .N, but the correct varifold solution can be 

closely approximated by using small segments of alternating good orientations. It should 

be, and is, the case that this variational approach gives the same result when 'Y = 0 as 

does the use of characteristics or the least time formulation [T5]. 

Both the theory and the computer program have been fairly extensively developed in 

the 2-dimensional case; the full three dimensional case is only partially investigated and 

programmed at this point. The way in which the motion for an arbitrary 'Y and M can be 

approximated by this type of polyhedral motion is also to be investigated. 
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