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VARIATIONAL TECHNIQUES AND OPEN 

PROBLEMS IN THE RECOVERY OF 

SURFACE SHAPE FROM IMAGE SHADING 

M.J. Brooks 

Abstract. Shading, or brightness variation, exhibited within an image 
is a well-known cue for what is variously termed surface shape, depth, 
or form. As examples, artists commonly use tonal values in drawings to 
convey a realistic impression of 3-dimensionality, and make-up is some­
times used to give facial shape a flattering appearance. Just how shape 
might be recovered from shading has long been studied. However, it is only 
with the advent of computer vision in the last 25 years that substantial 
progress has been made. It transpires that the problem takes the form 
of a first-order partial differential equation. The pioneering automated 
method for determining surface shape from image shading was based on 
the use of the equations of characteristic strips. This suffered from several 
drawbacks which were partly overcome with the introduction of parallel 
schemes, based on minimisation techniques, for use on a 2-dimensional 
rectangular grid. Typically, these schemes are directed at recovering com­
ponents of surface normals defined over a region of the image. Recovery of 
actual depth is left to a subsequent stage of integration. The variational 
calculus has now become the standard mathematical device by which new 
schemes are developed. It has also served as a useful means by which their 
shortcomings may be analysed and rectified. This paper presents the ma­
jor iterative techniques in the field, and discusses various open problems 
and difficulties that remain. 

1. Introduction 

A monochrome photograph of a smooth object will typically exhibit brightness vari­
ation, or shading. Of interest to researchers in computer vision has been the inverse 
problem of how object shape may be extracted from image shading. This shape­
from-shading problem has been shown by Horn [7] to correspond to that of solving 
a first-order partial differential equation. Specifically, one seeks a function u(x, y), 
representing surface depth in the direction of the z-axis, satisfying the image irra­
diance equation 

over n. Here R is a known function (the so-called reflectance map) capturing the il­
lumination and surface reflecting conditions, E is an image formed by (orthographic) 
projection of light along the z-axis onto a plane parallel to the xy-plane, and n is 
the image domain. Subscript denotes partial differentiation. In this formulation, it 
is implicitly assumed that: 



12 

10 A small surface portion reflects light independently of its position in space. 
Thus, scene radiance emitted in a given direction is dependent only on the 
illumination, the light-scattering properties of the surface material, and the 
surface normal. By implication, light sources are infinitely far away, and internal 
surface reflections are disallowed. 

e Image irradiance is equal to the projected scene radiance. 

Subsequent to the elucidation of the problem's fundamental form, much effort 
has been expended on generating computational techniques for solving the image 
irradiance equation. It is the aim of this introductory article to summarise the main 
iterative techniques developed to solve this problem, and to indicate some remaining 
major difficulties in the field. For a more detailed treatment of marry of the issues 
covered herein, the reader is referred to Horn and Brooks [9], as well as to the 
annotated bibliography in Horn and Brooks [10]. 

It is useful to consider a specific example of a shading problem. Assume that an 
overhead, distant point-source illuminates a Lambertian surface. A small portion of 
such a surface acts as a perfect diffuser, appearing equally bright from a.ll directions. 
Let a small surface portion with normal direction ( -ux, -uy, 1) be illuminated by 
a distant, overhead point-source of unit power in direction (0, 0, 1 ). The emitted 
radiance, as prescribed by Lambert's law, is given by the cosine of the angle between 
the two directions, namely ( u; + u; + 1 )-112 . Since image irradiance is assumed to 
be identical in value with scene radiance, the corresponding image E( x, y) satisfies 

(u; + u~ + 1)-112 = E(x,y); 

this, then, is the image irradiance equation appropriate for a Lambertian surface 
illuminated by a distant, overhead point-source, which may be written in the form 
of an eikonal equation 

+ = £(x, y), 

where £(x,y) = (E(x,y))- 2 -1. This relatively simple form is amenable to fun­
damental analysis (see Brooks et al. [1,2]). Now, in the event that our image is 
actually that of a unit sphere, our problem becomes that of solving 

over the unit disc. If the light source is instead in the direction pointed to by the 
unit vector (a, b, c), then the image irradiance equation becomes 

( -aux- bu 11 +c) 
( 2 z 1,112 = ax+ by+ c(l -
UX + tly + ) I 

over that portion of the image which is positively valued. It should be emphasised 
that these are the among the simplest cases arising in the shape-from-shading prob­
lem. Nevertheless, they arise from a reasonably realistic model that gives rise to 
very pleasing shading patterns. Often, however, the reflectance map may be more 
complex, or may be known only in numerical form. 
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It is important to appreciate the nature of the boundary conditions involved in 
solving the problem. Usually, these take the form of Neumann boundary conditions, 
where surface normals are prescribed at perhaps one or two (singular) points inside 
the domain, as well as at points around the periphery. An occluding bounda·ry is 
particularly useful in this context. Suppose that light exitant from a smooth rock 
is projected orthographically onto the image. Then, because the object disappears 
smoothly from view, we may compute normals at those points on the object that 
correspond to points on the boundary of its image. Given such a boundary point, 
then the corresponding normal on the object is constrained to be perpendicular to 
the boundary contour, and to lie in a plane parallel to the image-plane. It is essen­
tial that any computational shape-from-shading technique be able to incorporate 
bounding normals of this kind. 

Finally, there .are many potential applications of work in this area. These, 
for example, include automated interpretation of medical, satellite, and synthetic­
aperture radar imagery, as well as the enhancement of visual capabilities in robotics. 
Of course, a further benefit of research in this area may well be an enhanced under­
standing of the human visual system's processing of shading information. 

2. Foundational shape from shading techniques 

We now review some of the major iterative techniques employed in shading 
analysis. It should be noted that the names given to the various methods are not 
standard in the field. Note additionally that we do not concern ourselves with local 
techniques which employ rather drastic assumptions about surface shape in order 
to transform the problem from one of global character to one of local character. 

2.1 Characteristic strip naethod 

The first automated scheme for solving the shape from shading problem was 
developed at MIT by Hom [7]. This we now review, using a modified form of 
Woodham's account [16]. Given the image irradiance equation 

E(x,y) = R(p(x,y),q(x,y)), 

where p = u.x and q = uy, we may obtain, by differentiation, the pair of equations 

Ex =px 

Ey = Py Rp + qy Rq. 

Here, subscript again denotes partial differentiation with respect to the given vari­
able. Using the chain rule, small movement in the image may be related to change 
in surface gradient by the approximations 

b.p ~ D.x Px + D.y Py 

b.q ~ D.x qx + !:ly qy. 

These equations may be conveniently rewritten in the form 

( !:lp ' !:lq f ~ H( !:lx ' !:ly f 
(Ex, Eyf = 1i(Rp, Rq)r, 

(1) 
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where 'H. is the Hessian matrix 

The recovery of shape is now based on the following steps: 

(i) Assume.that Rand E are given (although either may be in discrete form), and 
that at some point ( x, y) the values p( x, y) and q( x, y) are known. 

(ii) Calculate Rp(p(x,y),q(x,y)), Rq(p(x,y),q(x,y)), Ex(x,y) and Ey(x,y), using 
first-difference approximations, if necessary. 

(iii) Choose a constant a such that movement in the image defined by (~x, ~y) is 
small when defined according to the equation 

(2) 

The right-hand-sides of equations (1) are thus related by a constant of propor­
tionality. 

(iv) Conclude that (~p,~q)T = a(Ex ,Ey)T, and that the gradient value at (x + 
~x, y + ~y) is therefore (p + ~p, q + ~q ). Here, the assumption is made that 
the Hessian remains almost constant over small movement in the xy-plane, 
and so the left-hand-sides of equations (1) are also related by the constant of 
proportionality a. 

Expressing this formally, we may infer from (2) that 

Let f = (~x2 + ~y2 ) 1 12 be a fixed, desirable step size in the image. Then, at any 
given point ( x, y) in the image with gradient (p(x, y), q(x, y )) , 

a= r(Rp 2 + R/)-112. 

We thus arrive at the following iterative method 

ak = r(R/ + R/)-IfZ 

(xk+I,yk+I)=(xk+akRp, yk+akRq) 

p(xk+1, yk+1) = p(xk, yk) + ak Ex(xk, yk) 

q(xk+I, yk+I) = q(xk, yk) + akEy(xk, yk), 

where, again, it should be noted that Rp and Rq are each dependent on the gra­
dient (p(xk,yk),q(xk,yk)). This scheme essentially computes normals along base 
characteristic curves in the image. In this version, successive step sizes in the image 
are each guaranteed to be of length 7. Prior to computation, values for p and q are 
required along an initial curve that cuts across the base curves. 
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In the presence of accurate data, Horn showed that the method performs well. 
However, drawbacks with the approach are that: 

(a) the scheme is susceptible to noise in that errors are likely to be con1pounded as 
computation proceeds. 

(b) given the necessity of following base characteristic curves, coverage of the do­
main tends to be uneven, resulting in an inhomogeneous density of normals 
determined. 

(c) the method is not amenable to parallelism on a grid. 

(d) coverage of the image domain will only be extensive if the initial curve of starting 
conditions is appropriately shaped. 

2.2 Gradient regularization m.ethod 

This technique is similar to various early attempts at formulating an iterative 
scheme suitable for parallel implementation on a grid. It is considered here because it 
captures some essential features and pitfalls of this approach, and serves to motivate 
successive approaches. 

We seek a solution, defined over the image domain H, to the equation 

E(x,y)- R(p(x, y),q(x, y)) = 0. 

This we may express in variational terms as the need to find functions p and q, 
defined over n, that minimise the functional 

Jl ( E(x, y)- R(p(x, y), q(x, y))) 2 dx dy. 

This expression may be regarded as a means of measuring the difference between 
the actual image, and the image implied by a given choice of functions p and q. 
However, the minimisation problem as stated may not be well-posed (in the sense of 
having a unique solution shape): in general, many function pairs might minimise the 
integral. Accordingly, we adopt a regularization term [13] that essentially increases 
the likelihood of the minimisation problem being well-posed. the new component of 
the functional penalises change in p and q, leading to the following: 

The two error measures are balanced by the choice of the scalar ,\. The Euler 
equations for this minimisation problem can. be determined and then simplified to 
read 

(E- R)Rp + A\72p = 0 

(E- R)Rq +). \72q = 0, 
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where 

is the Laplacian operator. A solution to the Euler equation is assumed to minimise 
the functional Accordingly, we attempt to solve the Euler equations by employing 
first-difference approximations to yield the iterative scheme 

Here, E is the spacing between picture cells, and the approximation 

' 2 } 4 (-1 \7 p i,j ::::::; E2 Pi,j -

is adopted, where the local average, Pi,j, is given by 

= ~(Pi,j+l + Pi+l,j +Pi,j-1 + Pi-I,j)· 

Ikeuchi & Horn have observed [11) that schemes of this type exhibit improved sta­
bility and convergence when the smoothed values and are used instead of 
Pi,j and q;,.i as to R and its various derivative functions. 

This approach to the shading problem has the obvious merit of being suited to 
parallel implementation on a grid. It will also operate in the presence of noisy data, 
given the minimisation formulation, enabling a "best" solution to be determined. 
There are, however, some serious problems with the scheme presented: 

No account is taken of the fact that the sought functions p and q are dependent. 
Thus, it is likely that a pq-field converged upon will fail to correspond to a 
genuine surface. 

(b) Ideally, a functional should be designed so that solutions evaluate to zero. Fail­
ing this, the minimisation procedure may well go "beyond" the correct solu­
tion towards a functional value of zero. In the case that functions p and q 
are found that cause the above functional to evaluate to zero, then E( x, y) -
R(p(x, y), q(x, y)) = 0 and (p; + p~ + q~ + q~) = 0 everywhere in the domain. 
The former equality is, of course, desirable. However, the latter will only be 
satisfied by a plane! Thus, even when given the correct solution as its starting 
shape, the scheme will tend to move away from (or "warp") it somewhat. 

The scheme is not appropriate for use when occluding boundaries arise, since at 
least one of the gradient functions will increase without limit as the boundary 
is approached. 

(d) There is no proof of convergence for the scheme. 
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(e) Minimisation approaches such as this are susceptible to local minima, given 
that the search space is unlikely to be wholly convex. 

3. Accommodating the occluding boundary 

Having previously noted the importance of the occluding boundary, we now look 
at two methods that, unlike the previous technique, are able to handle bounding 
normals that are in the plane of the image. 

3.1 Stereographic parameter method 

This approach, due to Ikeuchi & Horn [11], was the first to employ explicitly 
the variational calculus. It is closely related to the gradient regularization tech­
nique (although preceeding it), but differs in that an alternative parameterisation 
is employed. 

If we consider a unit sphere resting on the origin of an xy-plane, then surface 
normals on the southern hemisphere may be mapped onto the plane by gnomonic 
projection. Here, a line is drawn from the centre of the sphere to a point in the 
plane. This point then represents the normal that is situated at the intersection of 
line and sphere. The values of x and y in such a mapping correspond directly to the 
gradient values of the associated normal; that is, p = x and q = y. It may be seen 
from this visualisation that, as we approach the equator of the sphere, at least one of 
p and q increases without limit. Thus, a drawback of the gradient parameterisation 
approach is its inability to incorporate critical boundary conditions associated with 
the occluding boundary discussed earlier. 

If, instead of the gnomonic projection, we employ stereographic projection, this 
time drawing a line from the north-pole of the sphere to the plane below, we uniquely 
associate normals on the southern hemisphere with points (!,g) in a circle of radius 
2 centred on the origin. Our two parameterisations are then related by the equations 

f = 2p 
1 + ,_,jrl=--r=· =P:;;=z =+=q:::::2 and 

2q 
g - ----~======= 

- 1 + ,jl + p2 + q2. 

'vVe may now develop a technique employing f and g. Let the reflectance map now 
be parameterised on f and g. For convenience, the name R is retained despite its 
altered dependency. \Ve use the functional 

which is now to be minimised with respect to f and g. The analysis now proceeds 
analogously to that presented in the section on the gradient regularization method, 
resulting in the scheme 
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Here, as before, f denotes the spacing between picture cells, while f and g are the 
local averages of f and g. 

This approach overcomes the problem of dealing with the occluding bound­
ary. However, other drawbacks given in the gradient regularisation method are still 
present. 

3.2 Unit-normal method. 

In this approach, Brooks & Horn [3] adopt a unit-normal parameterisation. The 
reflectance map R is now assumed to be configured with respect to the unit-normal 
function n(x, y). We seek to minimise the functional 

with respect to n( x, y ). Here, !-l(x, y) is a Lagrangian multiplier function used to 
impose the constraint that n( x, y) be a unit vector. The associated Euler equation 
reduces to 

from which we derive the scheme 

As usual, we have that 

In the specific case that a Lambertian surface is illuminated by a point source in 
direction s, we obtain the reflectance map 

R., ( n( x, y)) = n( x, y) · s. 

Substituting this directly into the aforementioned result, we obtain in this special 
situation the scheme 

Here, the mode of operation of the scheme is apparent: for each point, a new normal 
is computed by taking an average of normals in the neighbourhood, and adjusting 
this either towards or away from the light source by an amount dependent on the 
brightness error of the estimate. 
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Brooks and Horn also developed a method that is aimed at recovering both 
shape and source direction from shading information. The functional 

is now minimised not only with respect to the function n(x, y), but also with respect 
to the variable s. Details of the latter minimisation are omitted here (see [3]), but 
the resulting coupled scheme is 

k+l -k 102 . ' k k k 
n1;; = n; 1- + -.,-(E; j- n; 1. • s ) s 

'"' 1 4A. 1 ' 

This performs reasonably well in simple situations, is elegantly formulated, and 
overcomes the occluding boundary problem. It requires less information about the 
scene conditions than many other techniques. However, other drawbacks previously 
mentioned still apply. It should be noted that the coupled scheme faces increased 
prospect of succumbing to local minima. in the search space. 

4. Incorporating integrability 

The following techniques seek to ensure that the generated vector field of nor­
mals corresponds to a genuine surface. 

4.1 Gradient integrability method 

This method reverts to the problematic gradient parameterisation, but com­
pensates by tackling the problem of the non-integrability of gradient fields discussed 
previously. 

In the gradient regularisation method, we do not take into account the fact that, 
for C 2 surfaces, the gradient functions p and q are related over Q by the equation 

Py(x,y)- qx(x,y) = 0. 

In order to remedy this, Horn & Brooks [9] employ the functional 

in which departure from integrability is penaiised. The corresponding Euler equa­
tions may now be derived and written as 

(E- R)Rp + ),(Pyy- qxy) = 0 

(E- R)Rq+ >x(qxx- Pyx)= 0. 



20 

Employing the usual finite-difference approximations, we arrive at the scheme 

k+1 ·k 1-k € 2 k k k k 
Pi,i = Pi,i - 2qi,i + 2.A (E;,;- R(P;,;, q;,j))Rp(P;,;, q;,;) 

k+l ·k 1 -k € 2 k k k k 
qi,i = qi,i- ?,Pi,i + 2 .A (E;,;- R(P;,;, q;,j))Rq(P;,;, q;,;), 

where 
Pi,j = i(Pi,j+l + Pi,j-d and 

are the vertical average of p and the horizontal average of q, respectively, while 
Pi,j and 'ifi,j are estimates of the cross derivatives (times E2 ) obtained using the 
approximations 

Pi,i = ~(Pi+l,j+l + Pi-1,j-l - Pi-1,j+l - Pi+I,j-1) 

'ifi,j = i(qi+1,j+1 + qi-1,j-1- qi-1,j+1- qi+l,j-1)· 

It has been noted i:n [9] that this scheme is almost equivalent to that of Strat [15]. 
The latter method was the first successful parallel scheme on a grid and was derived 
using a conventional (as opposed to a variational) minimisation technique. 

We observe the following: 

(a) When the correct solution is given as initial values for Pi,j and q;,j, the scheme 
has the obviously desirable property of warping the surface hardly at all. This 
is in marked contrast to the previously listed variational schemes which are 
often prone to flattening correct initial surfaces. 

(b) The use of an integrability penalty term by no means ensures that the resulting 
field will be integrable. If the minimum value of the functional is non-zero, 
perhaps due to a noisy image, then the integrability relation may not hold ev­
erywhere. Clearly, the penalty function does not in general enforce integrability. 

(c) Convergence of the scheme is much slower than the aforementioned methods. 

(d) The inability to handle the occluding boundary is apparent once again. 

A detailed discussion of these points may be found in [9]. 

4.2 Fourier projection method 

A quite different approach to the devising of an integrable iterative scheme is 
taken by Frankot & Chellappa [5]. Here a correction mechanism is employed that 
enforces integrability. In particular, the method cycles through the following steps: 

(i) Use any given shading scheme to generate a new normal field. 

(ii) If necessary, convert the normals to pq-form. The resulting field (p( x, y ), q( x, y)) 
will not, in general, correspond to a gradient field (such that Pv = qx)· 
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(iii) Project the non-integrable field (p, q) onto the nearest gradient field (p, q). 

(iv) Convert the new gradient field back to the parameterization required by the 
shading algorithm (assuming the scheme is not already in pq). 

Clearly, the novel step here is (iii), and this we now describe in brief. Assume that 
we may usefully represent a surface z( x, y) by the finite expansion 

z(x, y) = L C(w) ei(w·(x,y)) 

WE!! 

where w = (wh w2 ) is a two-dimensional index, Q is a finite set of indices across the 
image domain, ei(c.v,x+w2 y) are Fourier, orthonormal basis functions, and C(w) are 
Fourier coefficients. It then follows that the gradient may be expressed as: 

Zx(x, y) = p(x, y) = L iw1C(w) ei(w,x+wzy) 

WEfl 

"(x y)- q(x y)- V iw C(w\ei(w,x+wzy) 
..... y ' - ' ' - .Lr 2 / 

WEfl 

Now, suppose that p and q are non-integrable estimates of the gradient values. These 
may be represented in the form 

p(x,y) = L iwlCl(w)ei(<<~,x+wzy) 

WElt 

q(x, y) = 

Note that, in this case, our non-integrable estimates do not have the same Fourier co­
efficients. INe now seek the gradient field (p, q) that is nearest to our non-integrable 
field q). This >Ve may do by minimising the functional 

with respect top and q. Substituting into this measure the expressions for p, q, p, 
and q, and minimising with respect to the coefficients C, it may be shown that 

We are therefore in a position to determine the nearest integrable field by substi­
tuting this expression into the above equations for p and q .. 

Probiems with this approach are that the gradient parameterisation is retained, 
and that the Fourier technique requires periodic boundary conditions. The latter 
factor constitutes a severe limitation. Furthermore, there is no a priori reason to 
suppose that this projection method will result in final estimates of improved quality. 
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4.3 Height projection method 

This method may be regarded as a variation of the previous technique, except 
that projection is now achieved by finding an actual surface that best matches the 
current estimates of the normals. 

Given a possibly non-integrable field (p, q), we may determine the graph z that 
best fits this field by minimising the following functional 

flo (zx- p)2 + (zy- q) 2 dxdy 

with respect to z. This leads to the Euler equation 

from which the iterative scheme 

k+1 -k € ( ) 
zi,j = z;,j - 8 Pi+I,j - Pi....,I,j + q;,,j+I - q;,j-1 

is readily generated. Thus, the "nearest" surface to the field (p,q) is calculated, and 
from this an integrable field (p, q) may now be derived by taking the appropriate 
first-differences of z. This method was advanced by Simchony et al. (14]. 

4.4 Height and gradient method 

In this integrated approach, not unrelated to the height projection method, 
Horn (8] and (independently) Zheng & Chellappa (17] seek to minimise the functional 

J fo ( E(x, y)- R(p(x, y),q(x, y))) 2 + -\(p; + p'! + q; + q;) 

p,((zx - p)2 + (zy- q)2) dx dy 

with respect to z, p and q. The associated Euler equations may be simplified to 
read 

-\V2p+ (E- R)Rp + p,(zx- p) = 0 

X\12q + (E- R)Rq + p,{zy- q) = 0 

Y'2 Z - Px - qy = 0. 

A discrete approximation of these equations then results in the scheme 

where a= 6/(6 + p,), (3 = p,/(2e (p, + 6)), 1 = 1/(6 + p,), 6 = 4,\fe2 , and P;,j, q;,j, 
and Zi,j are the usual local averages. 
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An important idea associated with this scheme is that as a solution is ap­
proached, the parameter A is made to fall away to zero. In this way, the regularisa­
tion factor gives the early benefit of a rapid "push" towards a solution without the 
later disregard for integrability. See Harris [6] for related work concerning surface 
interpolation. 

5. Open problems 

5.1 Convergence 

An important property of an iterative scheme is that it be provably convergent. 
A further requirement is, of course, that the estimate converged upon be accurate: 
a convergent scheme is of little value if it settles upon an estimate that is far from 
the correct solution. 

Proof of the convergence of an iterative scheme in this field is rare, as is indicated 
by the dearth of papers in the area (however, see [12, 4]). A major problem here 
is that the commonly adopted functionals are not readily amenable to the standard 

methods used to prove convergence. 

A similar problem arises in relation to the need for a scheme to generate a good 
estimate. Here it is necessary to avoid converging to estimates that "reside" in local 
minima. This can be done by designing a functional that is convex in nature, with 
the desired solution at the (single) minimum point in the space. However, it is very 
difficult to achieve this within the constraints of the problem. For example, the 
brightness-error measure 

- R(p(,y),q(x,y))) 2 

seems to be a natural and essential component, yet it is almost certain to lead to 
non--convexity of the overall functional (depending on the choice of R). There are 
in addition many subtleties associated with the significance of Euler equations (see, 
for example, Courant & Hilbert [?]). 

Another problem arises in relation to methods that reduce the effect of regu­
larisation over time. It is unclear whether the remaining portion of the iterative 
scheme has "push" in the direction of the solution. Further investigation into the 
num.erical aspects of shading schemes is clearly needed. 

5.2 Boundary conditions 

Given a particular shape-from-shading problem, a reasonable question arises as 
to whether it is well-posed (assuming that we are provided, say, with an image, some 
knowledge of the scene conditions, and prescription of some of the solution surface's 
normals). Here we think of well-posed as meaning the problem has a unique solu­
tion shape. Since recovery of shape from shading can, with sufficient information, be 
formulated as a first-order partial differential equation, the problem is thus equiv­
alent to that of determining whether the partial differential equation has a unique 
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solution, given the data and boundary conditions. This is a notoriously difficult 
mathematical problem on which progress has been made only for the relatively sim­
ple situation in which a point source illuminates a Lambertian surface, since this 
then reduces to an eikonal equation. (However, results here are nonetheless very 
valuable.) More work needs to be done in this area of uniqueness and ambiguity so 
as to generalise the few results already obtained (see [1] and its references; see also 
[2] for consideration of the related existence problem). 

5.3 Treatment of occluding boundary and integrability 

An unresolved problem in shading analysis has been the design of a scheme 
that is sensitive both to the problems of integrability and the occluding boundary. 
Recall that a field of 3-vectors parameterised on gradient should have the property 
that Py = qx if it is to correspond to the projection of a C2 surface's normals. It is 
therefore appropriate that this equation should, in some form or another, influence 
the design of an iterati've scheme. However, the pq-parameterisation does not permit 
occluding boundary normals to be incorporated. This suggests that an alternative 
formulation of integrability should be considered. Horn & Brooks [9] investigated 
just this problem, and their results are now described in brief. 

Recall that earlier we used stereographic parameters in the derivation of a 
shading scheme. These parameters are related to gradient values according to the 
equations 

p = 4- J2- g2 
4f 

and q = 4 J2 2' - -g 

4g 

so that Py - qx = 0 may be expressed as 

jy(4 + J2- g2 )- 9x(4- J2 + g2 ) + 2(gy- fx)Jg _ O 
(4-f2-g2)2 - . 

This equation, even when multiplied by ( 4- J2 - g2) 2 , is rather unwieldy, leading 
to very complicated Euler equations. These in turn offer little hope of generating 
tractable iterative schemes. 

We may instead seek an integrability constraint using the unit-normal param­
eterisation. Let :X:, y and z denote unit vectors in the x, y and z directions, respec­
tively. We have that 

n·x 
p= ---A 

n·z 
from which we may determine that 

and 
n·y 

q=---A) 
n·z 

Py = -[nnyy]/(n · z) 2 

qx = +[nnx:X:J/(n·z)2 • 

(Here [abc] denotes the vector triple product a· (b x c), see [9] for detailed steps.) 
The constraint (py- qx) = 0 can thus be written as 

1 
(n·z)2([nnxx}+[nnyyl) =0. 
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A useful "non-integrability" measure to employ in a functional might therefore be 

1[ ~] [ A,)z ~ n nx x + n ny YJ . 

This is pursued in [9] with a resulting iterative scheme that is unwieldy and awkward. 

The challenge therefore remains to generate an iterative scheme sensitive both 
to the occluding boundary and the issue of integrability. 
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