
Chapter 6 

Sparse Matrix 
Operations 

Iterative 

The following routines are described in the following pages: 

Allocate, free, resize and compactify sparse matrix 
Copy sparse matrix 
Accessing sparse matrix entries 
Sparse matrix-vector multiplication 
Set up some access paths 
General sparse matrix operations 
Sparse matrix output 
Sparse matrix input 
Sparse row support routines 
Sparse Cholesky factorise and solve 
Sparse LU factorise and solve 
Sparse BKP factorise and solve 
Iteration structure initialisation 
Iterative methods 
Krylov subspace methods 

To use these routines use the include statement 

#include ~sparse.hw 

for the basic sparse routines (nnote that this includes matrix. h); use 

#include "sparse2.h" 

for the sparse factorisation routines (this includes sparse. h); use 

#include "iter.h" 
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for using the iterative routines (this includes sparse. h). Note that including 
sparse. h means that matrix. his automatically included. 
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NAME 
sp_get, sp_free, SP_FREE, sp_resize, sp_compact, 
sp_get_list, sp_free_list, sp_resize_list- allocate, free and 
resize sparse matrices 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_get(int m, int n, int maxlen} 
void sp_free(SPMAT *A) 
void SP_FREE(SPMAT *A) 
SPMAT *sp_resize(SPMAT *A, int m, int n) 
SPMAT *sp_compact(SPMAT *A, double tol) 
int sp_get_vars(int m, int n, int maxlen, 

SPMAT **Al, SPMAT **A2, .•. , NULL) 
int sp_free_vars(SPMAT **Al, SPMAT **A2, ••• , NULL) 
int sp_resize_vars(int m, int n, 

SPMAT **Al, SPMAT **A2, ... , NULL) 

DESCRIPTION 
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The routine sp_get () allocates and initialises a SPMAT data structure. It is 
initialised so that the SPMAT returned is m x n, and that there are already maxlen 
elements allocated for each row. This is to avoid excessive memory allocation/de­
allocation later on. Initially there are no elements in the matrix and so the len entry 
of every row will be zero just after calling this routine. 

The routine sp_free () deallocates all memory associated with the sparse matrix 
structure A. The macro SP _FREE () calls sp_free () to deallocate A, but also sets 
A to NULL, which makes this a safer way of freeing a sparse matrix. 

The routine sp_resize () re-sizes the matrix A to be size m x n. Rows are 
expanded as necessary, and information is not lost unless the matrix is reduced in size. 

It should be noted that the sparse matrix data structure requires a separate memory 
allocation for each row, unlike the dense matrix data structure. Thus more care must 
be taken with sparse matrix data structures to avoid excessive time spent in memory 
allocation and de-allocation. 

An E_MEM error will be raised if the memory cannot be allocated. 

Finally, the routine sp_compact () removes zero elements and elements with 
magnitude no more than tol from the sparse matrix A. It does this in situ and requires 
no additional storage. It may, however, raise an E_RANGE error if tol is negative. 

The routines sp_get_vars (), sp_free_vars () and sp_resize_vars () 
respectively allocate, free and resize NULL-terminated lists of sparse matrices. These 
operate in the same way as do the other •• _get_list (), •• _free_list () and 
•• _resize_list () routines; note that sp_free_vars () sets Al, A2, etc. to 
NULL pointers. 
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EXAMPLE 

SPMAT *A; 
int i, j, m, n; 

I* get sparse matrix, with room for 5 entires per row *I 
A= sp_get{m,n,S); 

sp_set_val{A,i,j,3.1415926); 

I* double size of A matrix *I 
sp_resize{A,2*m,2*n); 

I* remove entries of size <= lOA{-7} *I 
sp_compact{A,le-7); 

I* destroy A matrix *I 
sp_free{A) 

SOURCE FILE: sparse.c 
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NAME 

sp_copy, sp_copy2 - Spare matrix copy routines 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_copy (SPMAT *A) 
SPMAT *sp_copy2(SPMAT *A, SPMAT *OUT) 

DESCRIPTION 

The routine sp_copy {) returns a copy of A so that the object returned can be 
freely modified without affecting A. (That is, it is a "deep" copy.) A new data structure 
is allocated and initialised in the process. 

The routine sp_copy2 () copies A into OUT, using all allocated entries in OUT in 
doing so. In this way it avoids memory allocation and preserves the structure of the 
nonzeros of OUT as much as possible. 

The routine sp_copy2 () is especially useful in conjunction with the symbolic 
and incomplete Cholesky factorisation routines. The idea is that the symbolic Cholesky 
factorisation allocates aU the necessary nonzero entries; if a matrix with the original 
nonzero pattern is to be factored, it can be copied using sp_copy2 () into the symbol­
ically factored matrix, and the incomplete Cholesky factorisation routine can then be 
used to factor the copied matrix without fill-in or memory allocation. See the manual 
entries on spiCHfactor () and spCHsymb () for more details. 

EXAMPLE 

SPMAT *A, *B; 

A= sp_get(l00,100,4); 
for ( i = 0; i < A->m; i++ 

sp_set_val(A,i,i+l, .•. ); 

I* copy A matrix */ 
B = sp_copy(A); 

for ( i = 0; i < B->m; i++ ) 
sp_set_val(B,i,i+2, ••• ); 

sp_copy2(A,B); 
/* now B and A represent same matrix, 

but B has allocated (i,i+2) entries */ 

SEE ALSO 

sp_get () and sp_resize {) 
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SOURCE FILE: sparse. c 
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NAME 

sp_get_val, sp_set_val- Access to entries of a sparse matrix 

SYNOPSIS 

#include "sparse.h" 
double sp_get_val(SPMAT *A, int i, int j) 
double sp_set_val(SPMAT *A, int i, int j, double val) 

DESCRIPTION 

The routine sp_get_'Val() return!) the value in the (i,j)'th entry of A. If the 
(i,j)'thentryhas not been allocated, then zero is returned. The routine sp_set_val () 
sets the value of the (i,j)'th entry of A to vai. If the (i,j)'th entry is not already 
allocated, then if there is sufficient allocated space for the new entry, other entries will 
be shifted as needed; if there is not sufficient space, then the row will be expanded by 
sprow_xpd ( ) .. Setting the value of an entry to zero does not "de-allocate" the entry. 

If i or j are negative or larger than or equal to A->m or A->n respectively, then 
an E_BOUNDS error will be raised. 

EXAMPLE 

SPMAT *A; 
int i, j; 
double val; 

A= sp_get(100,100,4); 

sp_set_val(A,i,j, (double)(i+j)); 

val = sp_get_val(A,i,j); 

SEE ALSO 

row_set_val() 

BUGS 

A more efficient approach would be to use a balanced tree structure. 

SOURCE FILE: sparse.c 
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NAME 

sp_mv _ml t, sp_ vm_ml t - sparse matrix-vector multiplication routines 

SYNOPSIS 

#include "sparse.h" 
VEC *sp_mv_mlt{SPMAT *A, VEC *x, VEC *out) 
VEC *sp_vm_mlt(SPMAT *A, VEC *x, VEC *out) 

DESCRIPTION 

The routine sp_mv_mlt () sets out to be the matrix-vector product Ax, and 
sp_ vm_ml t () sets out to be the vector-matrix product xT A (or equivalently, AT x ). 
The vector out is created or resized if necessary, in particular, if out """' VNULL. 

Both avoid thrashing on virtual memory machines. Unlike the dense matrix rou­
tines, there is no set of "core" routines for performing the underlying inner products 
and "saxpy" operations efficiently. 

EXAMPLE 

SPMAT *A; 
VEC *x, *y; 

A= sp_get(100,100,4); 
x = v_get(A->m}; 

I* compute y <- A.x */ 
y = sp_mv_mlt(A,x,VNULL); 
I* compute y~T <- x~T.A */ 
sp_vm_mlt(A,x,y); 

SOURCE FILE: sparse.c 



NAME 

sp_coLaccess, sp_diag_access- set up access paths 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_col_access (SPMAT *A) 
SPMAT *sp_diag_access(SPMAT *A) 

DESCRIPTION 
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In order to achieve fast access down columns, extra access paths were added. 
However, operations such as setting values of (unallocated) entries upset these access 
paths. Rather than keep them up-to-date continuously, which is rather expensive in 
computational time, these access paths are only updated when requested. 

There are flags in the sparse matrix data structure which indicate if these access 
paths are still valid: they are A->flag_col and A->flag_:_diag respectively. 
(Nonzero indicates they are valid.) 

The fields of A that are set up by sp_col_access () are the A- >start_row [] 
and A->start_idx [] fields. The values A->start_row[col] and 
A->start_idx[col] give the first row, and index into that row where the first 
allocated entry of column col. The other fields set up by sp_col_access () are 
the nxt_row and nxt_idx fields of each row_elt data structure in the sparse 
matrix A. For a more thorough description of how these may be used, see §2.6. 

The sp_diag_access () function only sets the diag field of the SPROW data 
structure for each row in the sparse matrix A. 

EXAMPLE 

Using the column access fields to chase the entries in 

SPMAT *A; 
int i, j, idx; 
SPROW *r; 
row_elt *e; 

I* set up A matrix *I 
sp_set_val(A,i,j,3.1415926); 

sp_col_access(A); 
I* chase column j of A *I 
i = A->start_row[j]; 
idx = A->start_idx[j]; 
while ( i >= 0 ) 
{ 
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} 
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r = &(A->row[i]); 
e = &(r->elt[idx]); 
printf("Value A[%d] [%d] = %g\n", i, j, e->val); 
i = e->nxt_row; 
idx = e->nxt_idx; 

Getting diagonal values: 

SPMAT *A; 
int i, idx; 
double val; 

sp_diag_access(A); 

I* to get A[i] [i] */ 
idx = A->row[i] .diag; 
if ( idx < 0.0 ) 

val = 0.0; 
else 

val = A->row[i] .elt [idx] .val; 

BUGS 

The flags are not guaranteed to remain correct if you modify the sparse matrix data 
structures directly, only if you use sp_set_ val ( ) etc. is it guaranteed. 

SOURCE FILE: sparse.c 



NAME 
sp_zero, sp_add, sp_sub, sp_smlt, sp..mltadd- General sparse 
matrix operations 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_zero(SPMAT *A) 
SPMAT *sp_add (SPMAT *A, SPMAT *B, SPMAT *out) 
SPMAT *sp_sub (SPMAT *A, SPMAT *B, SPMAT *out) 
SPMAT *sp_smlt(SPMAT *A, double alpha, SPMAT *out) 
SPMAT *sp_rnltadd(SPMAT *A, SPMAT *B, double alpha, 

SPMAT *.out) 

DESCRIPTION 
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The routine sp_zero () zeros the allocated entries of A. Does not change the 
"allocation" status of entries of A. 

The routine sp_add () adds the sparse matrices A and B, and puts the result in 
out. This routine may not be used in situ with either A == out orB == out. 

The routine sp_sub () subtracts B from A and puts the result in out. This routine 
may not be used in situ with either A == out orB == out. 

The routine sp_smlt () computes the scalar product of alpha and A and puts 
the result in out. 

The routine sp_mltadd() computes A+ aB and puts the result in out. This 
routine may not be used in situ with either A == out orB == out. 

EXAMPLE 

One way to clear the sparsity structure of a matrix follows: 

SPMAT *A; 

sp_zero (A) ; I* zeros entries */ 
sp_compact(A,O.O); /*removes zero entries */ 

SOURCE FILE: sparse.c 
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NAME 

sp_foutput, sp_output- Sparse matrix output 

SYNOPSIS 

#include <stdio.h> 
#include "sparse.h" 
void sp_foutput(FILE *fp, SPMAT *A) 
void sp_output(SPMAT *A) 

DESCRIPTION 

The routine sp _f output ( ) produces a printed representation of the sparse matrix 
A on the file or stream fp. This representation can also be read in by sp_finput (). 

The routine sp_output () is just a macro 

#define sp_output(A) sp_foutput(stdout,(A)) 

which sends the output to stdout. 

The form of the output consists of a header, a list of rows, each of which contains 
a sequence of entries. Each entry is made up of a column number, a colon, and the 
value for that entry. For example, the dense matrix 

Matrix: 3 by 4 
row 0: 0 1 0 

row 1: 1 2 0 

row 2: 0 0 1 

can be represented as the sparse matrix with printed representation 

SparseMatrix: 3 by 4 

row 0: 1:1 
row 1: 0:1 
row 2: 2:1 

EXAMPLE 

SPMAT *A; 
int i, j; 

FILE *fp; 

sp_set_val(A,i,j,3.1415926); 

3:-1 

1:2 
3:1 

sp_output (A) ; /* prints to stdout */ 

-1 

.0 

1 



if ( (fp=fopen("output.dat", "w")) == NULL 
error(E_EOF,"func_name"); 

sp_foutput(fp,A); /*prints to output.dat */ 

SEE ALSO 

sp_finput(),sp_input() 

SOURCE FILE: sparseio.c 
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NAME 

sp_finput, sp_input- Input sparse matrix 

SYNOPSIS 

#include <stdio.h> 
#include "sparse.h" 
SPMAT *sp_finput(FILE *fp) 
SPMAT *sp_input() 

DESCRIPTION 

The routine sp_finput {) allocates, initialises and inputs a sparse matrix of the 
size input from file/stream fp. The routine sp_input () is just a macro 

#define sp_input(} sp_finput(stdin) 

If the input is not from a terminal, then the format must be the same as that produced 
by sp_foutput () or sp_output (). If the input is from a terminal 
(isatty ( fileno ( fp)) ! = 0) then the user is prompted for the necessary values 
and information. 

EXAMPLE 

SPMAT *A; 
FILE *fp; 

A= sp_input(); I* read matrix from stdin */ 
if ( (fp=fopen("input.dat","r")) ==NULL) 

error(E_INPUT,"func_name")i 
A= sp_finput(fp); /*read matrix from input.dat */ 

Example of interactive input session: 

SparseMatrix~ input rows cols: 10 15 
Row 0: 

Enter <COl> <Val> 
Entry 0: 2 

Entry 1: 3 
Entry 2: 0 

Entry 2: 4 

Entry 3: e 
Row 1: 

-7.32 
1.5 
2.75 
1.3 

or 'e' to end row 

# Note: entry ignored 

Enter <col> <val> or 'e' to end row 
Entry 0: e # Note: empty row 



Row 2: 
Enter <col> <val> or 'e' to end row 
Entry 0: 

BUGS 

Does not allow more than a hundred entries per row. 

The simple "editing" facilities ofm_finput () are not provided. 

SOURCE FILE: sparseio.c 
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NAME 
sprow_add, sprow_sub, sprow_smlt, sprow_foutput, 

sprow_get_idx, sprow_get, sprow~d, sprow~erge, 
sprow~ltadd, sprow_set_val- Sparse row support routines 

SYNOPSIS 

#include "sparse.h" 
int sprow_get_idx{SPROW *r, int col) 

SPROW *sprow_get(int maxlen) 
SPROW *sprow_xpd(SPROW *r, int newlen, int type) 
SPROW *sprow_resize(SPROW *r, int newlen, int type) 
SPROW *sprow_merge(SPROW *rl, SPROW *r2, 

SPROW *r_out, int type) 
SPROW *sprow_add(SPROW *rl, SPROW *r2, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_sub(SPROW *rl, SPROW *r2, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_smlt(SPROW *r, double alpha, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_mltadd(SPROW *rl, SPROW *r2, double alpha, 

int jO, SPROW *r_out, int type) 
double sprow_set_val(SPROW *r, int j, double val) 
void sprow_foutput(FILE *fp, SPROW *r) 
void sprow_dump(FILE *fp, SPROW *r) 

DESCRIPTION 

The routine sprow_get_idx () uses binary search to find the location. of the 
element in row r whose column number is col, which is returned. If the row r contains 
an entry with column number col, then the index idx into r->elt [idx] (being 
the entry in that row) is given by idx = sprow_get_idx ( r, col). If there is no 
element in row r whose column is col, then idx = sprow_get_idx ( r, col) is 
negative, but - ( idx+2) is the index where an entry with column number col would 
be inserted. An internal error is flagged by returning -1. 

The routine sprow_get ( ) allocates and initialises a sparse row data structure 
(type SPROW) with memory for maxlen entries. 

The routine sprow_xpd ( ) reallocates the row r to allocate room for at least 
newlen entries. If the current length (r->len) is already at least size newlen, then 
the row's allocated memory is approximately double in size. For this routine and the 
some of the following sprow_ •• ( ) routines the type parameter is TYPE_SPROW 
for a stand-alone sparse row, and TYPE_SPMAT for a sparse row in a sparse matrix 
(SPMAT) data structure. 

The routine sprow_resize () resizes the sparse row r to have length newlen; 
if r is NULL, then a sparse row is created and returned. 
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The routine sprow_merge ( ) merges two sparse rows, with values in rl taking 
precedence over values in r2 if they have the same column number. 

The routine sprow_add () adds rl to r2 to compute r_out by a "merging" 
process. The applies only to columns with column numbers greater than or equal to 
jO. 

Theroutinesprow_sub() subtractsr2fromrltocomputer_out = rl - r2 
by a "merging" process. The applies only to columns with column numbers greater 
than or equal to j 0. 

The routine sprow_smlt () computes the scalar product r_out = alpha*r. 

The routine sprow_mltadd() setsr_out toberl+alpha.r2, bya"merging" 
process. The applies only to columns with column numbers greater than or equal to 
jO. 

The routine sprow_set_ val () sets the j 'th element of row r to be val. 
Memory allocation and shifting of entries is done as needed. 

The routine sprow_foutput ( ) prints a representation of the sparse row r onto 
file/stream fp. This representation is not intended to be read back in. 

EXAMPLE 

Extracting a sparse matrix entry: 

SPMAT *A; 
SPROW *r, rl, r2; 
row_elt *e; 
int i, j, idx, idxl; 

/* compute A[i] [j] */ 
r = &(A->row[i]); 
idx = sprow_get_idx(r,j); 
if ( idx < 0 ) 

else 

/* -(idx+2) is where an entry in 
column j would go if there were one */ 

val = 0.0; 

val= r->elt[idx].val; 

Shuffling a row: 

/* build temporary sparse row rl 
containing shuffled entries of r */ 

rl = sprow_get(lO); 
for ( idx = 0; idx < r->len; idx++ ) 
{ 

e = &(r->elt[idx]); 
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old_col = e->col; 

sprow_set_val(rl,new_col,e->val); 
/* rl will be expanded if necessary */ 

} 

Expanding a temporary row: 

rl = sprow_xpd(rl,2*rl->len + 1); 

Printing out a row as a separate structure for debugging: 

print f ( "Temporary row rl: \n" ) ; 
sprow_foutput(stdout,rl); 

SOURCE FILE: sparse.c 



NAME 
spCHfactor, spCHsolve, spiCHfactor, spCHsymb- Sparse 
Cholesky factorisation and solve 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spCHfactor(SPMAT *A) 

VEC *spCHsolve(SPMAT *LLT, VEC *b, VEC *out) 

SPMAT *spiCHfactor(SPMAT *A) 
SPMAT *spCHsymb(SPMAT *A) 

DESCRIPTION 
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The main routine of these is spCHfactor () which performs a sparse Cholesky 
factorisation of the matrix A, which is performed in situ. The resulting system can 
be solved by spCHsol ve () which returns out which is set to be the solution of 
A. out = b where LLT is the result of applying spCHfactor ( ) to A. To illustrate, 
the following code solves the system A. x = b for x: 

I* Initialise A and b */ 

spCHfactor (A) ; 

/* A is now the Cholesky factorisation of original A, 
stored in compact form */ 

spCHsolve(A,b,x); 

The other routines provide alternatives to spCHfactor (). The routine 
spCHfactor () allocates memory for fill-in as needed. As noted above regarding 
sp_col_access () etc, this destroys the column access data stmcture's validity, and 
so results in more time spent searching for elements within rows. This can be avoided 
if there is no fill-in. 

The routine spiCHfactor () performs Cholesky factorisation assuming no fill­
in. It does not even check that fill-in would occur in a correct Cholesky factorisation. 
This routine is considerably faster than using spCHfactor (), but if the actual 
factorisation results in fill-in, the computed "Cholesky" factor used in spCHsol ve ( } 
will not give correct solutions. 

The routine spCHs:ymb ( ) performs a "symbolic" factorisation of A. That is, no 
numerical calculations are performed. Instead, the A matrix after spCHsymb ( ) has 
executed, contains allocated all entries where fill-in would occur. This means that 
spCHfactor () is effectively equivalent to spCHsymb () followed by 
spiCHfactor (). The advantage with having two separate routines is that the fill-in 
can be computed once for a given pattern of nonzeros, and used for a number of sparse 
matrices with just that pattem of nonzeros with spiCHfactor (). The code to do 
this would look something like this: 
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I* Initialise pattern matrix *I 

spCHsymb(pattern); 
for ( i = 0; i < num_matrices; i++ 
{ I* set up A matrix -- same nonzero pattern *I 

} 

sp_zero(pattern); 
sp_copy2(A,pattern); 
spiCHfactor(pqttern); 
I* set up b vector *I 

spCHsolve(pattern,b,x); 

The spiCHfactor () routine can also be used to provide a good pre-conditioner 
for the pre-conditioned conjugate gradient routines i ter_cg ( ) and i ter_spcg ( ) . 

BUGS 

An E_POSDEF error may be raised by spiCHfactor ( ) even if the A matrix is 
positive definite. 

An E_POSDEF error will be raised by spCHsymb ( ) if a diagonal entry is missing. 

SEE ALSO 

sp_copy2(),sp_zero(),iter_cg(),iter_spcg() 

SOURCE FILE: spCHfactor.c 
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NAME 
spLUfactor, spiLUfactor, spLUsolve, spLUTsolve- sparse LU 
factorisation (Gaussian elimination) 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spLUfactor (SPMAT *A, PERM *pivot, double alpha) 
SPMAT *spiLUfactor(SPMAT *A, double alpha) 
VEC *spLUsolve (SPMAT *LU, PERM *pivot, VEC *b, VEC *x) 
VEC *spLUTsolve(SPMAT *LU, PERM *pivot, VEC *b, VEC *x) 

DESCRIPTION 

The routine spLUfactor () performs Gaussian elimination with partial pivoting 
on A with a Markowitz type modification to avoid excessive fill-in. The alpha 
parameter determines the trade-off between fill-in and numerical stability; the row 
that is swapped with the pivot row is the one with the smallest number of nonzero 
entries after the pivot column which has magnitude at least alpha times the largest 
magnitude entry in the pivot column. This parameter must therefore be between zero 
and one inclusive. If it is set to zero then alpha is effectively set to machine epsilon, 
MACHEPS. 

Note that A is over-written during the factorisation, and that pivot must be set 
before being passed to spLUfactor (). 

The routine spiLUfactor () computes a modified incomplete LU factorisation 
without pivoting. Thus no fill-in is generated and all pivot (i.e. diagonal entries) are 
guaranteed to have magnitude ~ a by adding to the diagonal entries. Thus in exact 
arithmetic it computes LU = A+ D for some diagonal matrix D. Since it is not a 
factorisation of A, it cannot be used directly to solve systems of equations. 

The routine LUsol ve ( ) solves the system Ax = b. The routine LUTsol ve { ) 
solves the system AT x = b. Both of these use the the matrix as factored by 
spLUfactor (). They can also be used in situ with x == b. 

EXAMPLE 

Code for solving the sparse systems of equations Ax = band AT y = b is given 
below: 

I* Set up A and b */ 

pivot = px_get(A->m); 
x = v_get(A->n); 
y = v_get(A->m); 
spLUfactor(A,pivot,O.l); 
x = spLUsolve(A,pivot,b,x); 
y = spLUTsolve(A,pivot,b,y); 



168 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS 

An example of the use of spiLUfactor () will be given under the entry for 
i ter_cg ( ) , i ter_cgs {) and i ter_lsqr (). 

BUGS 

There may be problems with spLUsol ve ( ) and spLUTsol ve ( ) if A is not 
square. 

The routine spLUfactor () does not implement a full Markowitz strategy. 

SEE ALSO 

spCHfactor (), MACHEPS, LUfactor () 

SOURCE FILE: spLUfctr.c 



NAME 
spBKPfactor, spBKPsol ve -sparse Burich-Kaufmann-Parlett 
factorisation 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spBKPfactor(SPMAT *A, PERM *pivot, PERM *blocks, 

double alpha) 
VEC *spBKPsolve (SPMAT *A, PERM *pivot, PERM *blocks, 

VEC *b, VEC *x) 

DESCRIPTION 
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The routine spBKPfactor ( ) performs the symmetric indefinite factorisation 
methods of Bunch, Kaufmann and Parlett as described for BKPfactor ( ) . However, 
this routine uses a Markowitz type strategy to determine what pivoting to do; the 
alpha argument is a lower limit on the relative size of the pivot block. The pivot 
which satisfies this lower limit and which has the smallest number of entires in the 
pivot row(s) is used. The value of alpha must be greater than zero but less or equal 
to one. The value of one gives essentially the pivoting as occurs in BKPfactor ( ) 
for the same matrix. 

The actual factored matrix is stored in the upper triangular part of A; the strictly 
lower triangular part of A is left unchanged. 

The routine spBKPsol ve ( ) is really just a translation of BKPsol ve ( ) to the 
sparse case, using just the upper triangular part of A. 

EXAMPLE 

A simple example of the use of these routines is 

SPMAT 
PERM 
VEC 

*A, *BKP; 
*pvt, *blks; 
*b, *x; 

/* set up A matrix */ 

pvt = px_get(A->m); 
blks = px_get(A->m); 
BKP = sp_copy(A); 
spBKPfactor(BKP,pvt,blks,O.l); 
/* set up b vector */ 

x = spBKPsolve(BKP,pvt,blks,b,VNULL); 

SEE ALSO 
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BKPfactor(),BKPsolve(),spLUfactor(),spLUsolve{). 

SOURCE FILE: spbkp.c 
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NAME 
iter_get, iter_free, iter_resize, iter_copy, iter_copy2, 
iter ...Ax, iter-ATx, iter_Bx, iter_dump -Iteration data structure 
initialisation 

SYNOPSIS 

#include "iter.h" 
ITER *iter_get(int m, int n) 
int iter_free(ITER *ip) 
ITER *iter_resize(ITER *ip, int 
ITER *iter_copy (ITER *in, ITER 
ITER *iter_copy2(ITER *in, ITER 
int iter_Ax (ITER *ip, Fun_Ax 
int iter_ATx(ITER *ip, Fun_Ax 
int iter_Bx (ITER *ip, Fun _Ax 

new_m, int new_n) 
*out) 
*out) 
Ax, void *Ax_par) 
ATx, void *ATx_par) 
Bx, void *Bx_par) 

void iter_dump(FILE *fp, ITER *ip) 

DESCRIPTION 

These routines initialise the ITER data structure for use in applying iterative meth­
ods for large sparse or structured matrices. The routine iter_get {in, n) allocates 
and initialises an ITER data structure for an m x n linear system Ax = b. The 
ITER data structure can be deallocated by calling iter_free(ip). The routine 
iter_resize () resizes the vectors in the ITER data structure appropriately for a 
new_m x new_n matrix. 

The routine iter_copy{) copies all of the values stored in in to out, and also 
copies the vectors in->x and in->b to out->x and out->b respectively. The 
routine iter_copy2 () also copies all of the values stored in in to out, but the 
vectors out->x and out->b are unchanged. 

For the iterative routines matrices are represented by functions. In particular, the 
matrix A is represented by a function Ax which computes y = Ax given x by means 
of 

VEC *x, *y; 
void *Ax _par; 

y = (*Ax)(Ax_par, x, y); 

Indeed the type Fun_Ax is defined by 

typedef VEC *(*Fun_Ax)(void *Ax_par, VEC *x, VEC *out); 

That is, an object of type Fun_Ax is a function (or equivalently a pointer to a function) 
which takes a (user-definable) parameter Ax_par, the vector x and the destination 
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vector, and returns a vector. Strictly speaking the Ax_par parameter is not necessary 
as one can set a global variable with Ax...:,Par and use it directly in the function 
Ax. However, this requires communication through global variables (which is not a 
good software engineering practice), and also requires the user to set and unset global 
variables whenever the matrix changes. By using an extra (user-definable) parameter, 
general routines can be written which can deal with a general class of problems. 

While most of the values in the ITER structure must be set directly if you wish to 
override the default values, the i ter_Ax ( ) , i ter_ATx ( ) ·and i ter_Bx ( ) macros 
are provided to simplify setting the fields which define the matrix-A, its transpose AT, 
and the preconditioner B. For a list of the values stored in the ITER structure, and 
their default values, see §2.8. 

The contents of an. ITER dati ,struc~re cati. b~ durnped to a file or stream fp 
using iter_dump.(fp, ip). This representation is just for debugging purposes and 
cannot be rea,d back in. 

As an example, here is how sparse matrix data structures can be represented in an 
ITER data structure: 

SPMAT *A; 
ITER *ip; 

ip = iter_get(A->m,A->n); 
iter_Ax ( ip, sp_mv_mlt, A); 
iter_ATx(ip, sp_vm_mlt, A); 
I* some extra parameters *I 
ip->limit = 10000; I* limit to max number of steps *I 
ip- >e'ps 1 ;:: le-9; I* error tolerance *I 

The routine is sp_mv_mlt(A,x,out), which is the sparse matrix-vector,product 
routine;. the sparse matrix data structure A is the first parameter, and is the ''user­
definable'' pointer. If the matrix AT is to be usedin an iterative routine, then the sparse 
matrix data structure does not have to be touched; instead the sp_mv _ml t ( ) routine 
just needs to be replaced by sp_vm_mlt (),which computes y =AT x. 

SEE ALSO 

iter _cg, iter _cgs and the other iterative methods 

SOURCE FILE: iterO.c 
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iter_cg, iter_cgne, it:er_cgs, iter....mgcr, iter_lsqr, 

iter _gmres, iter _spcg, iter _spcgne, iter _spcgs, 

iter _spmgcr, iter_spl:sqr- Iterative methods for linear equations 

SYNOPSIS 

#include "iter.h" 

VEC 

VEC 

VEC 

VEC 

VEC 

VEC 

*iter_cg (ITER 

*iter _cgne (ITER 

*iter _cgs (ITER 

*iter _lsqr {ITER 

*iter _gmres{ITER 

*iter_mgcr (ITER 

*ip) 

*ip) 

*ip, VEC *rO) 

*ip) 

*ip) 

*ip) 

VEC *iter_spcg (SPMA'J£' *A, SPl.'iAT *LLT, VEC *b, Real tol, 

\~C *x, int limit, int *steps} 

VEC *iter_spcgne(SPMAT *A, SPMAT *B, VEC *b, Real tol, 

VEC *x, int limit, int: *steps) 

VEC *iter_spcgs(SPMAT *A, SPMAT *B, VEC *b, VEC *rO, 

Real ·tol, VEC *x, int limit, int: *steps) 

VEC *iter_splsqr(SPMAT *A, VEC *b, Real tol, VEC *x, 
int limit, int *steps} 

VEC *iter __ spgmres (SPMA.T *A, Sl?MAT *B, VEC *b, Real tol, 

VEC *x, int k, int limit, int *steps) 

VEC '*iter __ spmgcr(SPMAT *A, SPMAT *B, VEC *b, Real tol, 

VEC *x, int k, int limit, int *steps) 

DESCRIPTION 
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These routines provide iterative methods for solving systems of linear equations, 
both symmetric and non-symmetric. The ITER data structure ip contains the informa­
tion about the matrix along with preconditioners, error tolerances, limits on numbers 
of steps etc. The routines set some values in the ip data structure such as the solution 
and the number of steps of the iterative method actually taken. The solution vector 
ip- >X is returned. 

Of these routines, i ter_cg () is the method of choice for positive definite 
symmetric matrices; i ter_lsqr () is probably the most reliable; i ter_cgs (} 

probably the least stable, but relatively fast when it works; iter_mgcr() and 
iter_gmres ()I probably provides the best compromises between speed and relia­
bility for most nonsymmetric systems. The routine iter_cg () and iter_lsqr () 

require the least amount of memory. 

The routine i ter_cg () implements the conjugate gradient method. This is for 
symmetric positive definite matrices only, with symmetric positive definite precon­
ditioners. This is a well-known method for solving such systems since the 1970's. 
The routine i ter_cg () implements the standard (pre-conditioned) conjugate gradi-
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ent method as presented in Golub and Van Loan's Matrix Computations, § 10.3, 2nd 
Edition (1989). 

The routine i ter_cgne () implements the conjugate gradient method for the 
normal equations AT Ax = ATb. This requires the ATx and ATx_par fields of ip 
to be set. The preconditioner B (represented by Bx and Bx_par) must be symmetric 
and positive definite, and is interpreted as the preconditioner for (A+ AT) /2. In fact, 
this routine applies the conjugate gradient algorithm to AT BA using a modified inner 
product. One way to obtain a suitable preconditioner is to use imcplete Cholesky 
factorisation to get approximate factors of (A+ AT)/2. Note that an alternative to this 
routine for least squares and related problems is iter_lsqr (). 

The routine i ter_cgs () implements Sonneveld's CGS (Conjugate Gradients 
Squared) method as described in CGS: A fast Lanczos-type solver for nonsymmetric 
lilnear systems, SIAM l Scientific and Statistical Comp., lQ, pp. 36-52 (1989). This 
is a somewhat unstable but fast algorithm for non-symmetric systems. The vector rO 
passed to iter_cgs () is an auxiliary vector. A simple strategy is to set rO to be 
a random vector on entry. It does not contain any useful information on exit. The 
solution vector is returned. 

The routines i ter_lsqr () implements the LSQR method of Paige and Saunders 
as described in LSQR: an algorithm for sparse linear equations and sparse least 
squares, ACM Transactions on Mathematical Software, 8, pp. 43-71 (1982). This 
computes solutions to the least squares problem: achieving minx jjAx- bib. For this 
routine, the functional parameter ATx for computing y = AT x must also be set in 
the ip data structure as weU as the Ax parameter. The matrix A represented may be 
non-square. 

The routine i ter_gm.res () implements the Generalised Minimal RESidual 
method (GMRES) of Saad and Schultz as presented in GMRES: a generalized minimal 
residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and 
Statistical Comp., 7, pp. 856-869 (1986). A single step of GMRES involves building 
up an approximation to A on a Krylov subspace span{r, Ar, A2r, ... , Ak-lr} where 
k is the dimension of the Krylov subspace and r is the current residual. The entry 
ip->k of ip contains the value of k used by iter_gmres (). 

The routine i ter_mgcr 0 implements a fast Modified Generalized Conjugate 
Residual algorithm of Leyk as presented in Modified generalized conjugate residuals 
method for nonsymmetric systems of linear equations, Technical Report CMA-MR33-
93 of the School of Mathematical Sciences, Australian National University (1993). 

There are also versions iter_sp .•. () which work with the sparse matrix data 
structures. Here A is the sparse matrix and b is the right-hand side vector for the linear 
system Ax = b; tol is the residual tolerance; limit is the maximum number of 
steps of the iterative method; steps is set to the actual number of steps of the iterative 
method actually used. If the last argument (for steps) is NULL, then it is not used. 

In i ter_spcg (), LLT is the sparse matrix structure containing an approxi­
mate Cholesky factorisation of A; If LLT is NULL then no preconditioning is used. In 
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iter_spcgs (), rO is the auxiliary vector. In iter_spcgne (), iter_spcgs (), 
iter_spgmres () and iter_spmgcr (), B is the (explicit) preconditioner. If B 
is NULL then no preconditioning is used. In i ter_splsqr () there is no precon­
ditioning. In i ter_spgmres () and i ter_spmgcr (), k is the dimension of the 
Krylov subspace used. 

EXAMPLE 

To implement Incomplete Cholesky/Conjugate Gradients (ICCG) for a sparse sym­
metric positive definite matrix A: 

LLT = sp_copy(A); 
spiCHfactor(LLT); 
x = iter_spcg(A,LLT,b,le-6,VNULL,1000,&steps) 

An example of using incomplete LU preconditioners for a nonsymmetric system 
is: 

VEC *myiLUsolve(SPMAT *LU, VEC *x, VEC *y) 
{ 

return spLUsolve(LU,PXNULL,x,y); 
} 

main() 
{ 

ITER *ip; 

LU = sp_copy (A) ; 
spiLUfactor(LU,alpha); 
ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt, A); 
iter_Bx(ip,myiLUsolve,LU); 
rO = v_rand(v_get(A->m}); 
iter_cgs(ip,rO); I* using CGS ••• 
ip->k = 20; I* for GMRES *I 

*I 

iter_gmres ( ip); I* using GMRES ••• *I 
iter_mgcr(ip); I* using MGCR ••• *I 
iter_ATx(ip, sp_vm_mlt, A); 
iter_lsqr(ip); /*using LSQR ••. */ 
/* extract solution *I 
printf("Solution is:\n"); v_output(ip->x); 
printf ("Used %d steps\n", ip->steps); 
} 

SEE ALSO 
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iter _get () and related routines; spiCHfactor () , spiLUfactor ( ) 

SOURCE FILE: itersym.c, iternsym.c 
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NAME 
iter_lanczos, iter_lanczos2, iter_arnoldi, 
iter_arnoldi_iref, iter_splanczos, iter_splanczos2, 
iter_sparnoldi, iter_sparnoldLiref- Krylov subspace algorithms 

SYNOPSIS 

#include "iter.h" 
void iter_lanczos (ITER *ip, VEC *a, VEC *b, Real *beta2, 

MAT *Q) 
VEC 
MAT 
MAT 

void 

*iter_lanczos2(ITER *ip, VEC *evals, VEC *err_est) 
*iter_arnoldi (ITER *ip, Real *h_rem, MAT *Q, MAT *H) 
*iter_arnoldi_iref(ITER *ip, Real *h_rem, 

MAT *Q, MAT *H) 
iter_splanczos(SPMAT *A, int k, VEC *xO, 

VEC *a, VEC *b, Real *beta2, MAT *Q) 
VEC *iter_splanczos2{SPMAT *A, int k, VEC *xO, 

VEC *evals, VEC *err_est) 
MAT *iter_sparnoldi(SPMAT *A, VEC *xO, int k, 

Real *h_rem, MAT *Q, MAT *H) 
MAT *iter_sparnoldi_iref{SPMAT *A, VEC *xO, int k, 

Real *h_rem, MAT *Q, MAT *H) 

DESCRIPTION 

These routines implement the Lanczos and Arnoldi methods of extracting infor­
mation about large matrices by computing Krylov subspaces, and the effect of the 
matrices on these subspaces. One of the main uses for these algorithms is to compute 
approximate eigenvalues. Of these, the Lanczos method is for symmetric matrices, 
and the Arnoldi method is for general matrices. For a matrix A and a start vector r, 
the Krylov subspace of dimension k generated is 

K(A, r, k) =span{ r Ar, ... , Ak-lr }. 

Both the Lanczos and Arnoldi methods construct orthonormal bases (at least in exact 
arithmetic) of the Krylov subspace K(A, r, k ). The orthonormal bases form the rows 
of Q. The approximation to A on the Krylov subspace generated is taken to be QAQT. 
Note that the results of the Lanczos and Arnoldi methods are the same (in exact 
arithmetic) for symmetric matrices. 

If A is symmetric thenT = QAQT is tridiagonal and is represented by the vectors 
a and b computed by the Lanczos algorithm: 

ao bo 
bo a1 bl 

T = bl a2 
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If the purpose is to compute approximate eigenvalues, but not eigenvectors, then Q can 
be NULL on entry to iter_lanczos (). Then Q is not accumulated and only a and 
bare computed. The eigenvalues of A can be approximated by.eigenvalues ofT. 

For general matrices H = QAQT is upper Hessenberg is computed by the Arnoldi 
algorithm. The matrix H is returned by i ter_arnoldi ( ) . That is, hij = 0 
whenever i > j + 1; or alternatively, all entries below the first sub-diagonal of Hare 
zero. The eigenvalues of A can be approximated by the eigenvalues of H. Unlike 
iter_lanczos (),the routine iter_arnoldi () requires Q to be non-NULL and 
of the correct size: k x n where A is n x n. 

In iter_lanczos (), beta2 is set to the valuebk-l which is thevalueofthenext 
off-diagonal entry should the process go one step further. If QT = [q0 , q11 ••• , qk-d 
and qk would be the next basis vector computed, then 

Thus, bk-l can be used to estimate errors in the eigenvalues and eigenvectors estimated 
by the Lanczos method. 

Similarly, in i ter_arnoldi (), h_rem is the value of the next sub-diagonal 
entry that would occur if k was increased by one. Again, the formula 

can be used to estimate errors in the eigenvalues and eigenvectors estimated by the 
Lanczos method. 

Note that for both the Lanczos and Arnoldi methods, the eigenvalues (and eigen­
vectors) that are first estimated with greatest accuracy are the most extreme one. For the 
symmetric case, since the eigenvalues are real, the most positive and the most negative 
eigenvalues can be quickly computed to reasonable accuracy. Interior eigenvalues take 
considerably longer to obtain reasonable accuracy if at all. To compute approximate 
eigenvectors: Let v be an eigenvector forT (in the Lanczos case) or H (in the Arnoldi 
case). Then an approximate eigenvector for A is given by QT v. Note, however, then 
eigenvalues converge faster than eigenvectors. 

The Lanczos method is more efficient than the Arnoldi method. However, because 
of this it suffers from some numerical instabilities. The reason for both comes down 
to the fact that the Q matrix does not need to be stored for the Lanczos method. As a 
result, the computed Q need not contain even nearly orthonormal rows; nearby rows 
are nearly orthonormal, but widely separated rows of Q are not necessarily nearly 
orthonormal. For the Arnoldi method, however, since Q is stored in its entirety, 
orthogonality of each can be (and is) enforced against all other rows. In the context of 
the Lanczos algorithm, this would be called complete reorthogonalisation, but is not 
usually done because of its expense. The lack of orthonormality of Q's rows results in 
some surprising behaviour: occasional spurious eigenvalues, and repeated eigenvalues 
with multiplicities higher than in A. 
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Spurious eigenvalues can be detected by the Cullum and Willoughby algorithm 
implemented by i ter_lanczos2 (). This routine is based on the algorithm in 
Lanczos and the computation in specified intervals of the spectrum of large, sparse 
real symmetric matrices, in "Sparse Matrix Proceedings 1978" pp. 220-255 (1979). 
This routine produces error estimates for the eigenvalues based on the a, b and beta.2 
values prod~ced from iter_lanczos (). The error estimate of the approximate 
eigenvalue ,\i = eval-:>ve [i] is given by 'Tfi = err_est->ve [i]. If the error 
interval [>,i- 'Tfi, ,\i +rti] contains another interval [:\j -rti, );i +rti], then the eigenvalue 
is spurious. 

Complete reorthogonalisation avoids both spurious eigenvalues and repeated eigen­
values. This can be achieved by using i ter_arnoldi () and then extracting just 
the tridiagonal part of H. 

The basic Arnoldi routine i ter_arnoldi ( ) has a slight numerical instability in 
that it uses unmodified Gram-Schmidt orthogonalisation. 

The routine i ter_arnoldi_iref () uses a relatively cheap iterative refinement 
extension which prevents problems with the Gram-Schmidt orthogonalisation. 

For more information about the Lanczos and Arnoldi methods see Golub and Van 
Loan's Matrix Computations, chapter 9, 2nd edition (1989). 

There are versions i ter_sp ••• ( ) which work with matrix data structures. 

EXAMPLE 

To get a good approximation to the smallest eigenvalue of a positive definite 
symmetric matrix A: 

SPMAT *A; 
ITER *ip; 
VEC *a, *b; 
Real dummy; 

ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt,A); 
ip->k = krylov_dim; 
v_rand(ip->x); 
iter_lanczos(ip,a,b,&dummy,MNULL); 
trieig(a,b,MNULL); /* eigenvalues left in a */ 
printf ("Min. e-val = %g\n", v_min{a)); 

The eigenvalues of A (A represented by a SPMAT data structure) can be approxi­
mately computed by 

H = m_get (k, k); 
S = m_get(k,k); 
Q = m_get(A->m,k); 
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Q2 = m_get(k,k); 
evals_re = v_get(k); 
evals_im = v_get(k); 

ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt,A); 
ip->k = krylov_dim; 
v _rand ( ip- >X) ; 

iter_arnoldi_iref(ip,&dummy,Q,H); 
S = m_copy(H,S); 
schur{S,Q2); 
schur_evals(S,evals_re,evals_im); 

To go on to compute approximate eigenvectors: 

X2_re = m_get(k,k) 
X2_im = m_get(k,k); 
schur_vecs(S,Q2,X2_re,X2_im); 
X_re ~ mv_mlt(Q,X2_re,MNULL); 
X_im = mv_mlt(Q,X2_im,MNULL); 

SEE ALSO 

i ter_get, ... , iter _gmres 

SOURCE FILE: itersym.c iternsym.c 


