
Chapter 6

Sparse Matrix
Operations

Iterative

The following routines are described in the following pages:

Allocate, free, resize and compactify sparse matrix
Copy sparse matrix
Accessing sparse matrix entries
Sparse matrix-vector multiplication
Set up some access paths
General sparse matrix operations
Sparse matrix output
Sparse matrix input
Sparse row support routines
Sparse Cholesky factorise and solve
Sparse LU factorise and solve
Sparse BKP factorise and solve
Iteration structure initialisation
Iterative methods
Krylov subspace methods

To use these routines use the include statement

#include ~sparse.hw

for the basic sparse routines (nnote that this includes matrix. h); use

#include "sparse2.h"

for the sparse factorisation routines (this includes sparse. h); use

#include "iter.h"

149
151
153
154
155
157
158
160
162
165
167
169
171
173
177

for using the iterative routines (this includes sparse. h). Note that including
sparse. h means that matrix. his automatically included.

148

NAME
sp_get, sp_free, SP_FREE, sp_resize, sp_compact,
sp_get_list, sp_free_list, sp_resize_list- allocate, free and
resize sparse matrices

SYNOPSIS

#include "sparse.h"
SPMAT *sp_get(int m, int n, int maxlen}
void sp_free(SPMAT *A)
void SP_FREE(SPMAT *A)
SPMAT *sp_resize(SPMAT *A, int m, int n)
SPMAT *sp_compact(SPMAT *A, double tol)
int sp_get_vars(int m, int n, int maxlen,

SPMAT **Al, SPMAT **A2, .•. , NULL)
int sp_free_vars(SPMAT **Al, SPMAT **A2, ••• , NULL)
int sp_resize_vars(int m, int n,

SPMAT **Al, SPMAT **A2, ... , NULL)

DESCRIPTION

149

The routine sp_get () allocates and initialises a SPMAT data structure. It is
initialised so that the SPMAT returned is m x n, and that there are already maxlen
elements allocated for each row. This is to avoid excessive memory allocation/de­
allocation later on. Initially there are no elements in the matrix and so the len entry
of every row will be zero just after calling this routine.

The routine sp_free () deallocates all memory associated with the sparse matrix
structure A. The macro SP _FREE () calls sp_free () to deallocate A, but also sets
A to NULL, which makes this a safer way of freeing a sparse matrix.

The routine sp_resize () re-sizes the matrix A to be size m x n. Rows are
expanded as necessary, and information is not lost unless the matrix is reduced in size.

It should be noted that the sparse matrix data structure requires a separate memory
allocation for each row, unlike the dense matrix data structure. Thus more care must
be taken with sparse matrix data structures to avoid excessive time spent in memory
allocation and de-allocation.

An E_MEM error will be raised if the memory cannot be allocated.

Finally, the routine sp_compact () removes zero elements and elements with
magnitude no more than tol from the sparse matrix A. It does this in situ and requires
no additional storage. It may, however, raise an E_RANGE error if tol is negative.

The routines sp_get_vars (), sp_free_vars () and sp_resize_vars ()
respectively allocate, free and resize NULL-terminated lists of sparse matrices. These
operate in the same way as do the other •• _get_list (), •• _free_list () and
•• _resize_list () routines; note that sp_free_vars () sets Al, A2, etc. to
NULL pointers.

150 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

EXAMPLE

SPMAT *A;
int i, j, m, n;

I* get sparse matrix, with room for 5 entires per row *I
A= sp_get{m,n,S);

sp_set_val{A,i,j,3.1415926);

I* double size of A matrix *I
sp_resize{A,2*m,2*n);

I* remove entries of size <= lOA{-7} *I
sp_compact{A,le-7);

I* destroy A matrix *I
sp_free{A)

SOURCE FILE: sparse.c

151

NAME

sp_copy, sp_copy2 - Spare matrix copy routines

SYNOPSIS

#include "sparse.h"
SPMAT *sp_copy (SPMAT *A)
SPMAT *sp_copy2(SPMAT *A, SPMAT *OUT)

DESCRIPTION

The routine sp_copy {) returns a copy of A so that the object returned can be
freely modified without affecting A. (That is, it is a "deep" copy.) A new data structure
is allocated and initialised in the process.

The routine sp_copy2 () copies A into OUT, using all allocated entries in OUT in
doing so. In this way it avoids memory allocation and preserves the structure of the
nonzeros of OUT as much as possible.

The routine sp_copy2 () is especially useful in conjunction with the symbolic
and incomplete Cholesky factorisation routines. The idea is that the symbolic Cholesky
factorisation allocates aU the necessary nonzero entries; if a matrix with the original
nonzero pattern is to be factored, it can be copied using sp_copy2 () into the symbol­
ically factored matrix, and the incomplete Cholesky factorisation routine can then be
used to factor the copied matrix without fill-in or memory allocation. See the manual
entries on spiCHfactor () and spCHsymb () for more details.

EXAMPLE

SPMAT *A, *B;

A= sp_get(l00,100,4);
for (i = 0; i < A->m; i++

sp_set_val(A,i,i+l, .•.);

I* copy A matrix */
B = sp_copy(A);

for (i = 0; i < B->m; i++)
sp_set_val(B,i,i+2, •••);

sp_copy2(A,B);
/* now B and A represent same matrix,

but B has allocated (i,i+2) entries */

SEE ALSO

sp_get () and sp_resize {)

152 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

SOURCE FILE: sparse. c

153

NAME

sp_get_val, sp_set_val- Access to entries of a sparse matrix

SYNOPSIS

#include "sparse.h"
double sp_get_val(SPMAT *A, int i, int j)
double sp_set_val(SPMAT *A, int i, int j, double val)

DESCRIPTION

The routine sp_get_'Val() return!) the value in the (i,j)'th entry of A. If the
(i,j)'thentryhas not been allocated, then zero is returned. The routine sp_set_val ()
sets the value of the (i,j)'th entry of A to vai. If the (i,j)'th entry is not already
allocated, then if there is sufficient allocated space for the new entry, other entries will
be shifted as needed; if there is not sufficient space, then the row will be expanded by
sprow_xpd () .. Setting the value of an entry to zero does not "de-allocate" the entry.

If i or j are negative or larger than or equal to A->m or A->n respectively, then
an E_BOUNDS error will be raised.

EXAMPLE

SPMAT *A;
int i, j;
double val;

A= sp_get(100,100,4);

sp_set_val(A,i,j, (double)(i+j));

val = sp_get_val(A,i,j);

SEE ALSO

row_set_val()

BUGS

A more efficient approach would be to use a balanced tree structure.

SOURCE FILE: sparse.c

154 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

NAME

sp_mv _ml t, sp_ vm_ml t - sparse matrix-vector multiplication routines

SYNOPSIS

#include "sparse.h"
VEC *sp_mv_mlt{SPMAT *A, VEC *x, VEC *out)
VEC *sp_vm_mlt(SPMAT *A, VEC *x, VEC *out)

DESCRIPTION

The routine sp_mv_mlt () sets out to be the matrix-vector product Ax, and
sp_ vm_ml t () sets out to be the vector-matrix product xT A (or equivalently, AT x).
The vector out is created or resized if necessary, in particular, if out """' VNULL.

Both avoid thrashing on virtual memory machines. Unlike the dense matrix rou­
tines, there is no set of "core" routines for performing the underlying inner products
and "saxpy" operations efficiently.

EXAMPLE

SPMAT *A;
VEC *x, *y;

A= sp_get(100,100,4);
x = v_get(A->m};

I* compute y <- A.x */
y = sp_mv_mlt(A,x,VNULL);
I* compute y~T <- x~T.A */
sp_vm_mlt(A,x,y);

SOURCE FILE: sparse.c

NAME

sp_coLaccess, sp_diag_access- set up access paths

SYNOPSIS

#include "sparse.h"
SPMAT *sp_col_access (SPMAT *A)
SPMAT *sp_diag_access(SPMAT *A)

DESCRIPTION

155

In order to achieve fast access down columns, extra access paths were added.
However, operations such as setting values of (unallocated) entries upset these access
paths. Rather than keep them up-to-date continuously, which is rather expensive in
computational time, these access paths are only updated when requested.

There are flags in the sparse matrix data structure which indicate if these access
paths are still valid: they are A->flag_col and A->flag_:_diag respectively.
(Nonzero indicates they are valid.)

The fields of A that are set up by sp_col_access () are the A- >start_row []
and A->start_idx [] fields. The values A->start_row[col] and
A->start_idx[col] give the first row, and index into that row where the first
allocated entry of column col. The other fields set up by sp_col_access () are
the nxt_row and nxt_idx fields of each row_elt data structure in the sparse
matrix A. For a more thorough description of how these may be used, see §2.6.

The sp_diag_access () function only sets the diag field of the SPROW data
structure for each row in the sparse matrix A.

EXAMPLE

Using the column access fields to chase the entries in

SPMAT *A;
int i, j, idx;
SPROW *r;
row_elt *e;

I* set up A matrix *I
sp_set_val(A,i,j,3.1415926);

sp_col_access(A);
I* chase column j of A *I
i = A->start_row[j];
idx = A->start_idx[j];
while (i >= 0)
{

156

}

CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

r = &(A->row[i]);
e = &(r->elt[idx]);
printf("Value A[%d] [%d] = %g\n", i, j, e->val);
i = e->nxt_row;
idx = e->nxt_idx;

Getting diagonal values:

SPMAT *A;
int i, idx;
double val;

sp_diag_access(A);

I* to get A[i] [i] */
idx = A->row[i] .diag;
if (idx < 0.0)

val = 0.0;
else

val = A->row[i] .elt [idx] .val;

BUGS

The flags are not guaranteed to remain correct if you modify the sparse matrix data
structures directly, only if you use sp_set_ val () etc. is it guaranteed.

SOURCE FILE: sparse.c

NAME
sp_zero, sp_add, sp_sub, sp_smlt, sp..mltadd- General sparse
matrix operations

SYNOPSIS

#include "sparse.h"
SPMAT *sp_zero(SPMAT *A)
SPMAT *sp_add (SPMAT *A, SPMAT *B, SPMAT *out)
SPMAT *sp_sub (SPMAT *A, SPMAT *B, SPMAT *out)
SPMAT *sp_smlt(SPMAT *A, double alpha, SPMAT *out)
SPMAT *sp_rnltadd(SPMAT *A, SPMAT *B, double alpha,

SPMAT *.out)

DESCRIPTION

157

The routine sp_zero () zeros the allocated entries of A. Does not change the
"allocation" status of entries of A.

The routine sp_add () adds the sparse matrices A and B, and puts the result in
out. This routine may not be used in situ with either A == out orB == out.

The routine sp_sub () subtracts B from A and puts the result in out. This routine
may not be used in situ with either A == out orB == out.

The routine sp_smlt () computes the scalar product of alpha and A and puts
the result in out.

The routine sp_mltadd() computes A+ aB and puts the result in out. This
routine may not be used in situ with either A == out orB == out.

EXAMPLE

One way to clear the sparsity structure of a matrix follows:

SPMAT *A;

sp_zero (A) ; I* zeros entries */
sp_compact(A,O.O); /*removes zero entries */

SOURCE FILE: sparse.c

158 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME

sp_foutput, sp_output- Sparse matrix output

SYNOPSIS

#include <stdio.h>
#include "sparse.h"
void sp_foutput(FILE *fp, SPMAT *A)
void sp_output(SPMAT *A)

DESCRIPTION

The routine sp _f output () produces a printed representation of the sparse matrix
A on the file or stream fp. This representation can also be read in by sp_finput ().

The routine sp_output () is just a macro

#define sp_output(A) sp_foutput(stdout,(A))

which sends the output to stdout.

The form of the output consists of a header, a list of rows, each of which contains
a sequence of entries. Each entry is made up of a column number, a colon, and the
value for that entry. For example, the dense matrix

Matrix: 3 by 4
row 0: 0 1 0

row 1: 1 2 0

row 2: 0 0 1

can be represented as the sparse matrix with printed representation

SparseMatrix: 3 by 4

row 0: 1:1
row 1: 0:1
row 2: 2:1

EXAMPLE

SPMAT *A;
int i, j;

FILE *fp;

sp_set_val(A,i,j,3.1415926);

3:-1

1:2
3:1

sp_output (A) ; /* prints to stdout */

-1

.0

1

if ((fp=fopen("output.dat", "w")) == NULL
error(E_EOF,"func_name");

sp_foutput(fp,A); /*prints to output.dat */

SEE ALSO

sp_finput(),sp_input()

SOURCE FILE: sparseio.c

159

160 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME

sp_finput, sp_input- Input sparse matrix

SYNOPSIS

#include <stdio.h>
#include "sparse.h"
SPMAT *sp_finput(FILE *fp)
SPMAT *sp_input()

DESCRIPTION

The routine sp_finput {) allocates, initialises and inputs a sparse matrix of the
size input from file/stream fp. The routine sp_input () is just a macro

#define sp_input(} sp_finput(stdin)

If the input is not from a terminal, then the format must be the same as that produced
by sp_foutput () or sp_output (). If the input is from a terminal
(isatty (fileno (fp)) ! = 0) then the user is prompted for the necessary values
and information.

EXAMPLE

SPMAT *A;
FILE *fp;

A= sp_input(); I* read matrix from stdin */
if ((fp=fopen("input.dat","r")) ==NULL)

error(E_INPUT,"func_name")i
A= sp_finput(fp); /*read matrix from input.dat */

Example of interactive input session:

SparseMatrix~ input rows cols: 10 15
Row 0:

Enter <COl> <Val>
Entry 0: 2

Entry 1: 3
Entry 2: 0

Entry 2: 4

Entry 3: e
Row 1:

-7.32
1.5
2.75
1.3

or 'e' to end row

Note: entry ignored

Enter <col> <val> or 'e' to end row
Entry 0: e # Note: empty row

Row 2:
Enter <col> <val> or 'e' to end row
Entry 0:

BUGS

Does not allow more than a hundred entries per row.

The simple "editing" facilities ofm_finput () are not provided.

SOURCE FILE: sparseio.c

161

162 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME
sprow_add, sprow_sub, sprow_smlt, sprow_foutput,

sprow_get_idx, sprow_get, sprow~d, sprow~erge,
sprow~ltadd, sprow_set_val- Sparse row support routines

SYNOPSIS

#include "sparse.h"
int sprow_get_idx{SPROW *r, int col)

SPROW *sprow_get(int maxlen)
SPROW *sprow_xpd(SPROW *r, int newlen, int type)
SPROW *sprow_resize(SPROW *r, int newlen, int type)
SPROW *sprow_merge(SPROW *rl, SPROW *r2,

SPROW *r_out, int type)
SPROW *sprow_add(SPROW *rl, SPROW *r2, int jO,

SPROW *r_out, int type)
SPROW *sprow_sub(SPROW *rl, SPROW *r2, int jO,

SPROW *r_out, int type)
SPROW *sprow_smlt(SPROW *r, double alpha, int jO,

SPROW *r_out, int type)
SPROW *sprow_mltadd(SPROW *rl, SPROW *r2, double alpha,

int jO, SPROW *r_out, int type)
double sprow_set_val(SPROW *r, int j, double val)
void sprow_foutput(FILE *fp, SPROW *r)
void sprow_dump(FILE *fp, SPROW *r)

DESCRIPTION

The routine sprow_get_idx () uses binary search to find the location. of the
element in row r whose column number is col, which is returned. If the row r contains
an entry with column number col, then the index idx into r->elt [idx] (being
the entry in that row) is given by idx = sprow_get_idx (r, col). If there is no
element in row r whose column is col, then idx = sprow_get_idx (r, col) is
negative, but - (idx+2) is the index where an entry with column number col would
be inserted. An internal error is flagged by returning -1.

The routine sprow_get () allocates and initialises a sparse row data structure
(type SPROW) with memory for maxlen entries.

The routine sprow_xpd () reallocates the row r to allocate room for at least
newlen entries. If the current length (r->len) is already at least size newlen, then
the row's allocated memory is approximately double in size. For this routine and the
some of the following sprow_ •• () routines the type parameter is TYPE_SPROW
for a stand-alone sparse row, and TYPE_SPMAT for a sparse row in a sparse matrix
(SPMAT) data structure.

The routine sprow_resize () resizes the sparse row r to have length newlen;
if r is NULL, then a sparse row is created and returned.

163

The routine sprow_merge () merges two sparse rows, with values in rl taking
precedence over values in r2 if they have the same column number.

The routine sprow_add () adds rl to r2 to compute r_out by a "merging"
process. The applies only to columns with column numbers greater than or equal to
jO.

Theroutinesprow_sub() subtractsr2fromrltocomputer_out = rl - r2
by a "merging" process. The applies only to columns with column numbers greater
than or equal to j 0.

The routine sprow_smlt () computes the scalar product r_out = alpha*r.

The routine sprow_mltadd() setsr_out toberl+alpha.r2, bya"merging"
process. The applies only to columns with column numbers greater than or equal to
jO.

The routine sprow_set_ val () sets the j 'th element of row r to be val.
Memory allocation and shifting of entries is done as needed.

The routine sprow_foutput () prints a representation of the sparse row r onto
file/stream fp. This representation is not intended to be read back in.

EXAMPLE

Extracting a sparse matrix entry:

SPMAT *A;
SPROW *r, rl, r2;
row_elt *e;
int i, j, idx, idxl;

/* compute A[i] [j] */
r = &(A->row[i]);
idx = sprow_get_idx(r,j);
if (idx < 0)

else

/* -(idx+2) is where an entry in
column j would go if there were one */

val = 0.0;

val= r->elt[idx].val;

Shuffling a row:

/* build temporary sparse row rl
containing shuffled entries of r */

rl = sprow_get(lO);
for (idx = 0; idx < r->len; idx++)
{

e = &(r->elt[idx]);

164 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

old_col = e->col;

sprow_set_val(rl,new_col,e->val);
/* rl will be expanded if necessary */

}

Expanding a temporary row:

rl = sprow_xpd(rl,2*rl->len + 1);

Printing out a row as a separate structure for debugging:

print f ("Temporary row rl: \n") ;
sprow_foutput(stdout,rl);

SOURCE FILE: sparse.c

NAME
spCHfactor, spCHsolve, spiCHfactor, spCHsymb- Sparse
Cholesky factorisation and solve

SYNOPSIS

#include "sparse2.h"
SPMAT *spCHfactor(SPMAT *A)

VEC *spCHsolve(SPMAT *LLT, VEC *b, VEC *out)

SPMAT *spiCHfactor(SPMAT *A)
SPMAT *spCHsymb(SPMAT *A)

DESCRIPTION

165

The main routine of these is spCHfactor () which performs a sparse Cholesky
factorisation of the matrix A, which is performed in situ. The resulting system can
be solved by spCHsol ve () which returns out which is set to be the solution of
A. out = b where LLT is the result of applying spCHfactor () to A. To illustrate,
the following code solves the system A. x = b for x:

I* Initialise A and b */

spCHfactor (A) ;

/* A is now the Cholesky factorisation of original A,
stored in compact form */

spCHsolve(A,b,x);

The other routines provide alternatives to spCHfactor (). The routine
spCHfactor () allocates memory for fill-in as needed. As noted above regarding
sp_col_access () etc, this destroys the column access data stmcture's validity, and
so results in more time spent searching for elements within rows. This can be avoided
if there is no fill-in.

The routine spiCHfactor () performs Cholesky factorisation assuming no fill­
in. It does not even check that fill-in would occur in a correct Cholesky factorisation.
This routine is considerably faster than using spCHfactor (), but if the actual
factorisation results in fill-in, the computed "Cholesky" factor used in spCHsol ve (}
will not give correct solutions.

The routine spCHs:ymb () performs a "symbolic" factorisation of A. That is, no
numerical calculations are performed. Instead, the A matrix after spCHsymb () has
executed, contains allocated all entries where fill-in would occur. This means that
spCHfactor () is effectively equivalent to spCHsymb () followed by
spiCHfactor (). The advantage with having two separate routines is that the fill-in
can be computed once for a given pattern of nonzeros, and used for a number of sparse
matrices with just that pattem of nonzeros with spiCHfactor (). The code to do
this would look something like this:

166 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

I* Initialise pattern matrix *I

spCHsymb(pattern);
for (i = 0; i < num_matrices; i++
{ I* set up A matrix -- same nonzero pattern *I

}

sp_zero(pattern);
sp_copy2(A,pattern);
spiCHfactor(pqttern);
I* set up b vector *I

spCHsolve(pattern,b,x);

The spiCHfactor () routine can also be used to provide a good pre-conditioner
for the pre-conditioned conjugate gradient routines i ter_cg () and i ter_spcg () .

BUGS

An E_POSDEF error may be raised by spiCHfactor () even if the A matrix is
positive definite.

An E_POSDEF error will be raised by spCHsymb () if a diagonal entry is missing.

SEE ALSO

sp_copy2(),sp_zero(),iter_cg(),iter_spcg()

SOURCE FILE: spCHfactor.c

167

NAME
spLUfactor, spiLUfactor, spLUsolve, spLUTsolve- sparse LU
factorisation (Gaussian elimination)

SYNOPSIS

#include "sparse2.h"
SPMAT *spLUfactor (SPMAT *A, PERM *pivot, double alpha)
SPMAT *spiLUfactor(SPMAT *A, double alpha)
VEC *spLUsolve (SPMAT *LU, PERM *pivot, VEC *b, VEC *x)
VEC *spLUTsolve(SPMAT *LU, PERM *pivot, VEC *b, VEC *x)

DESCRIPTION

The routine spLUfactor () performs Gaussian elimination with partial pivoting
on A with a Markowitz type modification to avoid excessive fill-in. The alpha
parameter determines the trade-off between fill-in and numerical stability; the row
that is swapped with the pivot row is the one with the smallest number of nonzero
entries after the pivot column which has magnitude at least alpha times the largest
magnitude entry in the pivot column. This parameter must therefore be between zero
and one inclusive. If it is set to zero then alpha is effectively set to machine epsilon,
MACHEPS.

Note that A is over-written during the factorisation, and that pivot must be set
before being passed to spLUfactor ().

The routine spiLUfactor () computes a modified incomplete LU factorisation
without pivoting. Thus no fill-in is generated and all pivot (i.e. diagonal entries) are
guaranteed to have magnitude ~ a by adding to the diagonal entries. Thus in exact
arithmetic it computes LU = A+ D for some diagonal matrix D. Since it is not a
factorisation of A, it cannot be used directly to solve systems of equations.

The routine LUsol ve () solves the system Ax = b. The routine LUTsol ve {)
solves the system AT x = b. Both of these use the the matrix as factored by
spLUfactor (). They can also be used in situ with x == b.

EXAMPLE

Code for solving the sparse systems of equations Ax = band AT y = b is given
below:

I* Set up A and b */

pivot = px_get(A->m);
x = v_get(A->n);
y = v_get(A->m);
spLUfactor(A,pivot,O.l);
x = spLUsolve(A,pivot,b,x);
y = spLUTsolve(A,pivot,b,y);

168 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

An example of the use of spiLUfactor () will be given under the entry for
i ter_cg () , i ter_cgs {) and i ter_lsqr ().

BUGS

There may be problems with spLUsol ve () and spLUTsol ve () if A is not
square.

The routine spLUfactor () does not implement a full Markowitz strategy.

SEE ALSO

spCHfactor (), MACHEPS, LUfactor ()

SOURCE FILE: spLUfctr.c

NAME
spBKPfactor, spBKPsol ve -sparse Burich-Kaufmann-Parlett
factorisation

SYNOPSIS

#include "sparse2.h"
SPMAT *spBKPfactor(SPMAT *A, PERM *pivot, PERM *blocks,

double alpha)
VEC *spBKPsolve (SPMAT *A, PERM *pivot, PERM *blocks,

VEC *b, VEC *x)

DESCRIPTION

169

The routine spBKPfactor () performs the symmetric indefinite factorisation
methods of Bunch, Kaufmann and Parlett as described for BKPfactor () . However,
this routine uses a Markowitz type strategy to determine what pivoting to do; the
alpha argument is a lower limit on the relative size of the pivot block. The pivot
which satisfies this lower limit and which has the smallest number of entires in the
pivot row(s) is used. The value of alpha must be greater than zero but less or equal
to one. The value of one gives essentially the pivoting as occurs in BKPfactor ()
for the same matrix.

The actual factored matrix is stored in the upper triangular part of A; the strictly
lower triangular part of A is left unchanged.

The routine spBKPsol ve () is really just a translation of BKPsol ve () to the
sparse case, using just the upper triangular part of A.

EXAMPLE

A simple example of the use of these routines is

SPMAT
PERM
VEC

*A, *BKP;
*pvt, *blks;
*b, *x;

/* set up A matrix */

pvt = px_get(A->m);
blks = px_get(A->m);
BKP = sp_copy(A);
spBKPfactor(BKP,pvt,blks,O.l);
/* set up b vector */

x = spBKPsolve(BKP,pvt,blks,b,VNULL);

SEE ALSO

170 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

BKPfactor(),BKPsolve(),spLUfactor(),spLUsolve{).

SOURCE FILE: spbkp.c

171

NAME
iter_get, iter_free, iter_resize, iter_copy, iter_copy2,
iter ...Ax, iter-ATx, iter_Bx, iter_dump -Iteration data structure
initialisation

SYNOPSIS

#include "iter.h"
ITER *iter_get(int m, int n)
int iter_free(ITER *ip)
ITER *iter_resize(ITER *ip, int
ITER *iter_copy (ITER *in, ITER
ITER *iter_copy2(ITER *in, ITER
int iter_Ax (ITER *ip, Fun_Ax
int iter_ATx(ITER *ip, Fun_Ax
int iter_Bx (ITER *ip, Fun _Ax

new_m, int new_n)
*out)
*out)
Ax, void *Ax_par)
ATx, void *ATx_par)
Bx, void *Bx_par)

void iter_dump(FILE *fp, ITER *ip)

DESCRIPTION

These routines initialise the ITER data structure for use in applying iterative meth­
ods for large sparse or structured matrices. The routine iter_get {in, n) allocates
and initialises an ITER data structure for an m x n linear system Ax = b. The
ITER data structure can be deallocated by calling iter_free(ip). The routine
iter_resize () resizes the vectors in the ITER data structure appropriately for a
new_m x new_n matrix.

The routine iter_copy{) copies all of the values stored in in to out, and also
copies the vectors in->x and in->b to out->x and out->b respectively. The
routine iter_copy2 () also copies all of the values stored in in to out, but the
vectors out->x and out->b are unchanged.

For the iterative routines matrices are represented by functions. In particular, the
matrix A is represented by a function Ax which computes y = Ax given x by means
of

VEC *x, *y;
void *Ax _par;

y = (*Ax)(Ax_par, x, y);

Indeed the type Fun_Ax is defined by

typedef VEC *(*Fun_Ax)(void *Ax_par, VEC *x, VEC *out);

That is, an object of type Fun_Ax is a function (or equivalently a pointer to a function)
which takes a (user-definable) parameter Ax_par, the vector x and the destination

172 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

vector, and returns a vector. Strictly speaking the Ax_par parameter is not necessary
as one can set a global variable with Ax...:,Par and use it directly in the function
Ax. However, this requires communication through global variables (which is not a
good software engineering practice), and also requires the user to set and unset global
variables whenever the matrix changes. By using an extra (user-definable) parameter,
general routines can be written which can deal with a general class of problems.

While most of the values in the ITER structure must be set directly if you wish to
override the default values, the i ter_Ax () , i ter_ATx () ·and i ter_Bx () macros
are provided to simplify setting the fields which define the matrix-A, its transpose AT,
and the preconditioner B. For a list of the values stored in the ITER structure, and
their default values, see §2.8.

The contents of an. ITER dati ,struc~re cati. b~ durnped to a file or stream fp
using iter_dump.(fp, ip). This representation is just for debugging purposes and
cannot be rea,d back in.

As an example, here is how sparse matrix data structures can be represented in an
ITER data structure:

SPMAT *A;
ITER *ip;

ip = iter_get(A->m,A->n);
iter_Ax (ip, sp_mv_mlt, A);
iter_ATx(ip, sp_vm_mlt, A);
I* some extra parameters *I
ip->limit = 10000; I* limit to max number of steps *I
ip- >e'ps 1 ;:: le-9; I* error tolerance *I

The routine is sp_mv_mlt(A,x,out), which is the sparse matrix-vector,product
routine;. the sparse matrix data structure A is the first parameter, and is the ''user­
definable'' pointer. If the matrix AT is to be usedin an iterative routine, then the sparse
matrix data structure does not have to be touched; instead the sp_mv _ml t () routine
just needs to be replaced by sp_vm_mlt (),which computes y =AT x.

SEE ALSO

iter _cg, iter _cgs and the other iterative methods

SOURCE FILE: iterO.c

NAME
iter_cg, iter_cgne, it:er_cgs, iter....mgcr, iter_lsqr,

iter _gmres, iter _spcg, iter _spcgne, iter _spcgs,

iter _spmgcr, iter_spl:sqr- Iterative methods for linear equations

SYNOPSIS

#include "iter.h"

VEC

VEC

VEC

VEC

VEC

VEC

*iter_cg (ITER

*iter _cgne (ITER

*iter _cgs (ITER

*iter _lsqr {ITER

*iter _gmres{ITER

*iter_mgcr (ITER

*ip)

*ip)

*ip, VEC *rO)

*ip)

*ip)

*ip)

VEC *iter_spcg (SPMA'J£' *A, SPl.'iAT *LLT, VEC *b, Real tol,

\~C *x, int limit, int *steps}

VEC *iter_spcgne(SPMAT *A, SPMAT *B, VEC *b, Real tol,

VEC *x, int limit, int: *steps)

VEC *iter_spcgs(SPMAT *A, SPMAT *B, VEC *b, VEC *rO,

Real ·tol, VEC *x, int limit, int: *steps)

VEC *iter_splsqr(SPMAT *A, VEC *b, Real tol, VEC *x,
int limit, int *steps}

VEC *iter __ spgmres (SPMA.T *A, Sl?MAT *B, VEC *b, Real tol,

VEC *x, int k, int limit, int *steps)

VEC '*iter __ spmgcr(SPMAT *A, SPMAT *B, VEC *b, Real tol,

VEC *x, int k, int limit, int *steps)

DESCRIPTION

173

These routines provide iterative methods for solving systems of linear equations,
both symmetric and non-symmetric. The ITER data structure ip contains the informa­
tion about the matrix along with preconditioners, error tolerances, limits on numbers
of steps etc. The routines set some values in the ip data structure such as the solution
and the number of steps of the iterative method actually taken. The solution vector
ip- >X is returned.

Of these routines, i ter_cg () is the method of choice for positive definite
symmetric matrices; i ter_lsqr () is probably the most reliable; i ter_cgs (}

probably the least stable, but relatively fast when it works; iter_mgcr() and
iter_gmres ()I probably provides the best compromises between speed and relia­
bility for most nonsymmetric systems. The routine iter_cg () and iter_lsqr ()

require the least amount of memory.

The routine i ter_cg () implements the conjugate gradient method. This is for
symmetric positive definite matrices only, with symmetric positive definite precon­
ditioners. This is a well-known method for solving such systems since the 1970's.
The routine i ter_cg () implements the standard (pre-conditioned) conjugate gradi-

174 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

ent method as presented in Golub and Van Loan's Matrix Computations, § 10.3, 2nd
Edition (1989).

The routine i ter_cgne () implements the conjugate gradient method for the
normal equations AT Ax = ATb. This requires the ATx and ATx_par fields of ip
to be set. The preconditioner B (represented by Bx and Bx_par) must be symmetric
and positive definite, and is interpreted as the preconditioner for (A+ AT) /2. In fact,
this routine applies the conjugate gradient algorithm to AT BA using a modified inner
product. One way to obtain a suitable preconditioner is to use imcplete Cholesky
factorisation to get approximate factors of (A+ AT)/2. Note that an alternative to this
routine for least squares and related problems is iter_lsqr ().

The routine i ter_cgs () implements Sonneveld's CGS (Conjugate Gradients
Squared) method as described in CGS: A fast Lanczos-type solver for nonsymmetric
lilnear systems, SIAM l Scientific and Statistical Comp., lQ, pp. 36-52 (1989). This
is a somewhat unstable but fast algorithm for non-symmetric systems. The vector rO
passed to iter_cgs () is an auxiliary vector. A simple strategy is to set rO to be
a random vector on entry. It does not contain any useful information on exit. The
solution vector is returned.

The routines i ter_lsqr () implements the LSQR method of Paige and Saunders
as described in LSQR: an algorithm for sparse linear equations and sparse least
squares, ACM Transactions on Mathematical Software, 8, pp. 43-71 (1982). This
computes solutions to the least squares problem: achieving minx jjAx- bib. For this
routine, the functional parameter ATx for computing y = AT x must also be set in
the ip data structure as weU as the Ax parameter. The matrix A represented may be
non-square.

The routine i ter_gm.res () implements the Generalised Minimal RESidual
method (GMRES) of Saad and Schultz as presented in GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and
Statistical Comp., 7, pp. 856-869 (1986). A single step of GMRES involves building
up an approximation to A on a Krylov subspace span{r, Ar, A2r, ... , Ak-lr} where
k is the dimension of the Krylov subspace and r is the current residual. The entry
ip->k of ip contains the value of k used by iter_gmres ().

The routine i ter_mgcr 0 implements a fast Modified Generalized Conjugate
Residual algorithm of Leyk as presented in Modified generalized conjugate residuals
method for nonsymmetric systems of linear equations, Technical Report CMA-MR33-
93 of the School of Mathematical Sciences, Australian National University (1993).

There are also versions iter_sp .•. () which work with the sparse matrix data
structures. Here A is the sparse matrix and b is the right-hand side vector for the linear
system Ax = b; tol is the residual tolerance; limit is the maximum number of
steps of the iterative method; steps is set to the actual number of steps of the iterative
method actually used. If the last argument (for steps) is NULL, then it is not used.

In i ter_spcg (), LLT is the sparse matrix structure containing an approxi­
mate Cholesky factorisation of A; If LLT is NULL then no preconditioning is used. In

175

iter_spcgs (), rO is the auxiliary vector. In iter_spcgne (), iter_spcgs (),
iter_spgmres () and iter_spmgcr (), B is the (explicit) preconditioner. If B
is NULL then no preconditioning is used. In i ter_splsqr () there is no precon­
ditioning. In i ter_spgmres () and i ter_spmgcr (), k is the dimension of the
Krylov subspace used.

EXAMPLE

To implement Incomplete Cholesky/Conjugate Gradients (ICCG) for a sparse sym­
metric positive definite matrix A:

LLT = sp_copy(A);
spiCHfactor(LLT);
x = iter_spcg(A,LLT,b,le-6,VNULL,1000,&steps)

An example of using incomplete LU preconditioners for a nonsymmetric system
is:

VEC *myiLUsolve(SPMAT *LU, VEC *x, VEC *y)
{

return spLUsolve(LU,PXNULL,x,y);
}

main()
{

ITER *ip;

LU = sp_copy (A) ;
spiLUfactor(LU,alpha);
ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt, A);
iter_Bx(ip,myiLUsolve,LU);
rO = v_rand(v_get(A->m});
iter_cgs(ip,rO); I* using CGS •••
ip->k = 20; I* for GMRES *I

*I

iter_gmres (ip); I* using GMRES ••• *I
iter_mgcr(ip); I* using MGCR ••• *I
iter_ATx(ip, sp_vm_mlt, A);
iter_lsqr(ip); /*using LSQR ••. */
/* extract solution *I
printf("Solution is:\n"); v_output(ip->x);
printf ("Used %d steps\n", ip->steps);
}

SEE ALSO

176 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

iter _get () and related routines; spiCHfactor () , spiLUfactor ()

SOURCE FILE: itersym.c, iternsym.c

177

NAME
iter_lanczos, iter_lanczos2, iter_arnoldi,
iter_arnoldi_iref, iter_splanczos, iter_splanczos2,
iter_sparnoldi, iter_sparnoldLiref- Krylov subspace algorithms

SYNOPSIS

#include "iter.h"
void iter_lanczos (ITER *ip, VEC *a, VEC *b, Real *beta2,

MAT *Q)
VEC
MAT
MAT

void

*iter_lanczos2(ITER *ip, VEC *evals, VEC *err_est)
*iter_arnoldi (ITER *ip, Real *h_rem, MAT *Q, MAT *H)
*iter_arnoldi_iref(ITER *ip, Real *h_rem,

MAT *Q, MAT *H)
iter_splanczos(SPMAT *A, int k, VEC *xO,

VEC *a, VEC *b, Real *beta2, MAT *Q)
VEC *iter_splanczos2{SPMAT *A, int k, VEC *xO,

VEC *evals, VEC *err_est)
MAT *iter_sparnoldi(SPMAT *A, VEC *xO, int k,

Real *h_rem, MAT *Q, MAT *H)
MAT *iter_sparnoldi_iref{SPMAT *A, VEC *xO, int k,

Real *h_rem, MAT *Q, MAT *H)

DESCRIPTION

These routines implement the Lanczos and Arnoldi methods of extracting infor­
mation about large matrices by computing Krylov subspaces, and the effect of the
matrices on these subspaces. One of the main uses for these algorithms is to compute
approximate eigenvalues. Of these, the Lanczos method is for symmetric matrices,
and the Arnoldi method is for general matrices. For a matrix A and a start vector r,
the Krylov subspace of dimension k generated is

K(A, r, k) =span{ r Ar, ... , Ak-lr }.

Both the Lanczos and Arnoldi methods construct orthonormal bases (at least in exact
arithmetic) of the Krylov subspace K(A, r, k). The orthonormal bases form the rows
of Q. The approximation to A on the Krylov subspace generated is taken to be QAQT.
Note that the results of the Lanczos and Arnoldi methods are the same (in exact
arithmetic) for symmetric matrices.

If A is symmetric thenT = QAQT is tridiagonal and is represented by the vectors
a and b computed by the Lanczos algorithm:

ao bo
bo a1 bl

T = bl a2

178 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

If the purpose is to compute approximate eigenvalues, but not eigenvectors, then Q can
be NULL on entry to iter_lanczos (). Then Q is not accumulated and only a and
bare computed. The eigenvalues of A can be approximated by.eigenvalues ofT.

For general matrices H = QAQT is upper Hessenberg is computed by the Arnoldi
algorithm. The matrix H is returned by i ter_arnoldi () . That is, hij = 0
whenever i > j + 1; or alternatively, all entries below the first sub-diagonal of Hare
zero. The eigenvalues of A can be approximated by the eigenvalues of H. Unlike
iter_lanczos (),the routine iter_arnoldi () requires Q to be non-NULL and
of the correct size: k x n where A is n x n.

In iter_lanczos (), beta2 is set to the valuebk-l which is thevalueofthenext
off-diagonal entry should the process go one step further. If QT = [q0 , q11 ••• , qk-d
and qk would be the next basis vector computed, then

Thus, bk-l can be used to estimate errors in the eigenvalues and eigenvectors estimated
by the Lanczos method.

Similarly, in i ter_arnoldi (), h_rem is the value of the next sub-diagonal
entry that would occur if k was increased by one. Again, the formula

can be used to estimate errors in the eigenvalues and eigenvectors estimated by the
Lanczos method.

Note that for both the Lanczos and Arnoldi methods, the eigenvalues (and eigen­
vectors) that are first estimated with greatest accuracy are the most extreme one. For the
symmetric case, since the eigenvalues are real, the most positive and the most negative
eigenvalues can be quickly computed to reasonable accuracy. Interior eigenvalues take
considerably longer to obtain reasonable accuracy if at all. To compute approximate
eigenvectors: Let v be an eigenvector forT (in the Lanczos case) or H (in the Arnoldi
case). Then an approximate eigenvector for A is given by QT v. Note, however, then
eigenvalues converge faster than eigenvectors.

The Lanczos method is more efficient than the Arnoldi method. However, because
of this it suffers from some numerical instabilities. The reason for both comes down
to the fact that the Q matrix does not need to be stored for the Lanczos method. As a
result, the computed Q need not contain even nearly orthonormal rows; nearby rows
are nearly orthonormal, but widely separated rows of Q are not necessarily nearly
orthonormal. For the Arnoldi method, however, since Q is stored in its entirety,
orthogonality of each can be (and is) enforced against all other rows. In the context of
the Lanczos algorithm, this would be called complete reorthogonalisation, but is not
usually done because of its expense. The lack of orthonormality of Q's rows results in
some surprising behaviour: occasional spurious eigenvalues, and repeated eigenvalues
with multiplicities higher than in A.

179

Spurious eigenvalues can be detected by the Cullum and Willoughby algorithm
implemented by i ter_lanczos2 (). This routine is based on the algorithm in
Lanczos and the computation in specified intervals of the spectrum of large, sparse
real symmetric matrices, in "Sparse Matrix Proceedings 1978" pp. 220-255 (1979).
This routine produces error estimates for the eigenvalues based on the a, b and beta.2
values prod~ced from iter_lanczos (). The error estimate of the approximate
eigenvalue ,\i = eval-:>ve [i] is given by 'Tfi = err_est->ve [i]. If the error
interval [>,i- 'Tfi, ,\i +rti] contains another interval [:\j -rti,);i +rti], then the eigenvalue
is spurious.

Complete reorthogonalisation avoids both spurious eigenvalues and repeated eigen­
values. This can be achieved by using i ter_arnoldi () and then extracting just
the tridiagonal part of H.

The basic Arnoldi routine i ter_arnoldi () has a slight numerical instability in
that it uses unmodified Gram-Schmidt orthogonalisation.

The routine i ter_arnoldi_iref () uses a relatively cheap iterative refinement
extension which prevents problems with the Gram-Schmidt orthogonalisation.

For more information about the Lanczos and Arnoldi methods see Golub and Van
Loan's Matrix Computations, chapter 9, 2nd edition (1989).

There are versions i ter_sp ••• () which work with matrix data structures.

EXAMPLE

To get a good approximation to the smallest eigenvalue of a positive definite
symmetric matrix A:

SPMAT *A;
ITER *ip;
VEC *a, *b;
Real dummy;

ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt,A);
ip->k = krylov_dim;
v_rand(ip->x);
iter_lanczos(ip,a,b,&dummy,MNULL);
trieig(a,b,MNULL); /* eigenvalues left in a */
printf ("Min. e-val = %g\n", v_min{a));

The eigenvalues of A (A represented by a SPMAT data structure) can be approxi­
mately computed by

H = m_get (k, k);
S = m_get(k,k);
Q = m_get(A->m,k);

180 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

Q2 = m_get(k,k);
evals_re = v_get(k);
evals_im = v_get(k);

ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt,A);
ip->k = krylov_dim;
v _rand (ip- >X) ;

iter_arnoldi_iref(ip,&dummy,Q,H);
S = m_copy(H,S);
schur{S,Q2);
schur_evals(S,evals_re,evals_im);

To go on to compute approximate eigenvectors:

X2_re = m_get(k,k)
X2_im = m_get(k,k);
schur_vecs(S,Q2,X2_re,X2_im);
X_re ~ mv_mlt(Q,X2_re,MNULL);
X_im = mv_mlt(Q,X2_im,MNULL);

SEE ALSO

i ter_get, ... , iter _gmres

SOURCE FILE: itersym.c iternsym.c

