Appendix B

On a class of U(1) x U(1) symmetric
metrics found by V.Moncrief.

In this Appendix we shzﬂl prove that “strong cosmic censorship” holds in a six parameter
family of non-polarized U(1) x U(1) symmetric metrics found by Moncrief' [93]. Apart
from being interesting in their own right, these metrics provide a good testing ground
for various @ priori estimates one can obtain for general U(1) x U(1) symmetric metrics,

¢f. Chapter 3.

Throughout this Appendix the letter C denotes a constant the value of which may vary

from line to line.

B.1 A harmonic map problem.

Let z(¢,0) = (p(t,0), 4(t,0)) be a map from two-dimensional Minkowski space to a two

dimensional constant mean curvature hyperoboloid, set

9z49  9pd 940 0z49  9pd 04 d
Xi=o s =t mms Xoe=7 5= 2ot reme
a9t 0zA 9t dp | Ot 08 90 924 009p " 0900

On the hyperboloid one can introduce coordinates in which the metric takes the form

ds® = dp® + sinh? pd¢? .

1A similar class of harmonic maps has been considered independently by Shatah and Tahvildar-Zadeh
in [118]; ¢f. also [63].
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The Christoffel symbols are easily calculated to be

cosh p

Iy = —sinhpcoshp, T4, = smhp

so that the Gowdy equations

DX, DXy X
Dt Do t’

where D is the covariant derivative in the target space, D; = Dy,, Dy = Dy,, take the

form
AV, 3 89 8p 0
(5a-3m)¢ = —15 —2te(G 5~ 50) (B.1.1)
# 2y 1op a\: (g
(e —am)e = 1 tomoeoshe((5) ~(55) ) (®12)

It has been observed by V. Moncrief [93] that the ansatz

p=p(t), $=no (B.13)

is compatible with the above equations, which then reduce to a single ordinary differential

equation for p
d*p
dr?
For given 0, the function p(t) should be thought of as an affine parameter on the geodesic

I'={0 =6,p>0U{0 =x+8,p > 0} on the hyperboloid, rather than a radial

= —n’sinhpcoshpe™, (t=¢7"). (B.1.4)

coordinate constrained to satisfy p > 0, so that a change of sign of p means that p(¢) has
crossed the origin along I'. The following gives a complete description of the behaviour

as t — 0 of solutions of (B.1.4):

Proposition B.1.1 1. For 7, > —oo and for every solution p € Co([7,,0)) of
(B.1.4) there exist constants 0 < |ve| < 1 and po € IR such that

d - -V T
[P(7) = vaoT = pool + [ 77(7) = voo] < O 720 hD (B.1.5)

fordll 7, < T < o0, for some constant C.
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2. For every 0 < |vo| < 1 and every po, € IR there exists a solution of (B.1.4)
satisfying (B.1.5). If poo = veo = 0 then p(7) = 0.

Proof: 1. Let
2
g(m) = (j—ﬁ)z + 7—;— cosh? pe™?" .
We have
dg(r) _ .

= —n? cosh®pe™?" |
dr

which shows that ¢ is monotonically decreasing, so that go, = lim,_,, g{7) exists and we

have

9(7) = goo +n? /oo cosh? p(s) e %ds =
/oo cosh? p(s) e™®ds < oo . (B.1.6)

For 7 > 7, it follows from (B.1.4) that

dp 2 K —2s
E(Tl) - 2;(7‘2” n I/T2 sinh p(s) cosh p(s) e™** ds|

nZ/ " cosh? p(s)e™*ds
T2

IA

which together with (B.1.6) implies that lim, .o %(7) = v, exists.

Let us first assume vo, = 0, then for any € > 0 there exists 73 such for 7 > 7, we have

|%| < ¢, which implies that |p| < er + C, and (B.1.4) gives
dp —2(1—¢)7 dp —2(1=¢)7
lﬁlﬁcle (1=9 ﬁl‘éﬂSCze e,

by integration, and one more integration shows that the limit lim, o p(7) = poo exists

and we have
=2(1-¢)r a? —-27 —-27
Ip = posl < Co 709 = 2RI Cae™ = [p— puol < Cre™

for some constants C; — Cs, which had to be established for v, = 0.

If voo # 0, it follows that % has constant sign for 7 > 7, 7 large enough, so that p

has constant sign for large enough times, and multiplying p by —1 if necessary we may
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assume that for 7 > 7 we have p(7) > 0, and also ve, > 0. Let us show that v, < 1.
Equation (B.1.4) implies that 2 is non-increasing, so that if 0 < % (7,) < 1 we are done,
let us therefore assume that %f (1) > 1. Let 74 < oo be such that for 7, < 7 < 71 we

have 2 (7) > 1, with 2 (1) = 1 if 7y < 0. For 7 € [r,, 7] we have
o) o) = [ Ls)ds 27—,

so that

L) = L) = [ o (@000 2

dr
dp ™ n? 2p(r0)— neofro_
< ZF — | 2o g2e(ro)=70) g _/ 2(p(70)+s)

- dr (TO) ./1'0 4 € s+ 4 To € ds

dp

n2 Tl2
< (1) = (7= o) 2007 gl

which is smaller than 1 for sufficiently large 7 so that 71 < co, and our claim follows.
Define

r=p(T) = VooT .

The function r satisfies lim, .o & = 0, setting A = 2(1 — vs,) > 0 one obtains

2 2
d’r . __n_ (621-—/\1' .

F = 1 6_27‘_2(1+U°°)T) . (B17)

For 7 > 71(€), with 7(€) > 0 sufficiently large, we have | ~| < e for any € > 0, therefore
[r()] < |r(m1(€))| + er and for 2¢ < )/2 one gets < d 22 = O(e~*/?); by integration
one obtains |4 (r;) — 9 (7)| = O(e~*"/?), for 7, > 7. Passing with 71 to co one gets

& = O(e~*"/?), which integrating again yields, for 7, > 7
Ir(r2) = ()| = O(e™"%),
it ensues in a simple way that there exists a constant p., such that
Ir(7) = poo| = O(e™*/?).

Coming back to the equation (B.1.7) satisfied by r we have in fact

&?r

=0,
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which gives by a similar argument

d
| (O] 4 Ir(r) = poo(7)] < C 72070,

so that (B.1.5) follows.

2. Multiplying p by —1 if necessary we may assume vs, > 0. Equations (B.1.4) and

(B.1.5) are equivalent to the following integral equation for p(7) = p(7) — VeoT — poo:

p(r) =T(p)(7)
2 oo
T(p)(T) — __PZ_/ (.S _ T)(e2p(s)+2poo _ e—2p(s)+2poo—4v°°s) e—)\s ds ,

with A = 2(1 — ve). Let H = {p € C([r,0)), ||p(7)|| = sup, |e*/?p(7)| < co}. One
checks without difficulty that there exists 71(veo, poo,?) < 00 such that T' takes the unit
ball of H into itself, and that T is a contraction — the claim follows by the contraction
mapping principle. Finally if v, = poo = 0 then there are no “driving terms” in T so

that the contraction property implies p = 0. m|

Let us analyze the behaviour of solutions of (B.1.4) as t — oo (7 — —o0):
Proposition B.1.2 Fort, > 0 let p € C*([t,,00)) be a solution of (B.1.4).
1. There exists a constant C such that
lp| + l% <ctV?, (B.1.8)
2. There exist constants ey, Cy such that
t[(%i—)2 + n?sinh® p] — €| < Ct71 . (B.1.9)
If e =0, then p=0.
Remark: The proof below suggests very strongly that we have the expansion

p = Acos(nt +8)t7/2 4 By(t)t™/* 4+ By(1) 1™ + ...
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for some constants A, § and some functions B;(t) which are polynomials in sin(nt) and
cos(nt).
Proof: Define

(1) = (1) ;

%) satisfies the equation

d21/) 1/) n2t1/2

S =l T sinh(2) . (B.1.10)
Let us set
() = (B 1+ L 1 2 (conh(2) ~ 1) (B.L11)
we have 2
% _ _%% —n2V(p), (B.1.12)

V(p) = psinh(2p) + 1 — cosh(2p) .

We have V(0) = V'(0) = 0 and V"(p) = 4psinh(2p) > 0, thus V(p) > 0, so that

%—; <0, (B.1.13)
which shows that
(%)2 <C, t(cosh(2t™7p)—1) < C (B.1.14)

for some constant C. The inequality cosh(2p) — 1 > 2p% and the second inequality in
(B.1.14) give

PE<C, (B.1.15)

and (B.1.8) follows. Taylor expanding cosh p to fourth order in (B.1.11) and making use

of (B.1.15) one obtains ‘

e(t) = (

From (B.1.13) it follows that e is monotone, therefore the limit ey, = lim;_,o e(t) exists.

%)2 +n¥p+ 031 . (B.1.16)

There exists a constant Cy such that for p < 1 we have |V(p)| < Cvp?, and since

p tends to zero as i goes to infinity there exists a T such that for ¢ > T we have

[V(p)| < Cyyp*t=? < C't72%, and integrating (B.1.12) one obtains

le(t) — ew| < C71, (B.1.17)
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so that (B.1.16) leads to
d -
(B0 4 2 — e = O()
a simple calculation gives
£{(%2Y2 4+ n?sinh? ] = eoo + O(t™Y)
dt Pl = €oo 9

which proves (B.1.9). Suppose finally that e, = 0. The inequality (B.1.17) together
with e, = 0 implies

d

d_tf(t)l + @) < CtY2 . (B.1.18)
Inserting (B.1.18) into (B.1.12) and repeating iteratively the above argument one shows
that for any £ € IN there exists C(£) such that

[ (t) +e(t) < CO)t* . (B.1.19)

The inequalities (B.1.19) with £ = 2 and V(p) < Cyp* give

Cvnzz/) C’x/n"’C’(2)2 gb2

2 2 4 _
n“V(p) < Cvn'p" = 2 13 B 2t3

for t > t; = [2Cyn%C(2)?]'/3, which leads to

e d)z de )? 2 1 de
-GN Al hall it
T [dt (2t3 V)| <31
de 4e
= >
= @c T
which implies
e(ts)ts

t; Sty <3 e(ty) < .

passing with ¢3 to infinity one obtains e(t) =0, ¥ = p = 0, which had to be established.
o
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B.2 Moncrief’s space—times.

Let M = {t € (0,00), 0, 2* € [0,27]jmod2r,a = 1,2}. Consider the following Gowdy-type

metrics
ds® = v,,dz"dz” = e*P(—dt® + db?) + Mng (dz® + g°df)(dz® + g*dh) (B.2.1)

ngp dz®dz® = (cosh p + cos ¢ sinh p) (dz')? + 2sinh psin ¢ dz'dz?
+(cosh p — cos ¢ sinh p) (dz?)? |

p=pt0), ¢= ¢(ta0) ’

where A and ¢* are real constants, A > 0. For a metric of the form (B.2.1) the dynamical
part of Einstein equations reduces to the equations (B.1.1)-(B.1.2), and assuming Mon-
crief’s ansatz (B.1.3) one finds that B = B(t) (cf. e.g. egs. (2.30) and (2.33) of [32]; the

constants ¢, appearing in these equations vanish for the metrics (B.2.1)), and

% = —:}i + 2[(2—5)2 + n?sinh? p] . (B.2.2)
In this way we obtain a family of metrics parametrized by six parameters — A, g“,'
a = 1,2, an integration constant B, for B and two real constants parametrizing solutions
of the equation (B.1.4), e.g. vy and po given by Proposition B.1.1. (Out of these

parameters of course only ve, and p are dynamically interesting.) We shall refer to

these space-times as Moncrief’s space-times.

Proposition B.2.1 All Moncrief’s space-times are future causally geodesically com-

plete.

Proof: If the constant e, given by Proposition B.1.2 vanishes (= p = 0, ¢f. Proposition
B.1.2) one easily checks that the metric can be put in Kasner’s form with exponents
(p1,p2,p3) = (%,%,—3) or permutation thereof (cf. Section 2.4 for a description of Kasner
metrics), in which case it is easy to show future geodesic completeness, we shall thus

consider the case e, # 0 only. Let I'(s) = {z#(s)} be a future inextendible future
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directed affinely parametrized causal geodesic. From 'y,w%% = —¢, € € {0,1}, and

from

dp, _ d dz* _,
ds ~ ds (V"U—C—IZX“ =0,
where X7 —52—,, are the Killing vectors 5%, a = 1,2, one obtains the following equations,

dt do
2B 8y (QVgy ~ab
e [(dS) (dS)] €+g PaPb

d‘ra___afl_e__l_a a — —ab

where g% = (gas)7", gab = Atng. The t part of the equations satisfied by a geodesic
reads

d a8t o 2B —ab dB  19ga , 4

(B 5) =B [(e+ 3" peps) 735 P rl. (B.2.3)

Non-spacelikeness of I' implies that I' can be parametrized by ¢, which allows us to

rewrite (B.2.3) as
d dt
= <B4(2§)2) =f, (B.2.4)

_ dB lag b
— 4 ,~2B ab S22 Y5aeb a b
f =28 e+ 3%paps)— = 557 P°P] - (B.2.5)

From (B.2.2) and Proposition B.1.2, point 2, we have

dB ey -1 _ e
E"T+O(t) p— B_4t+0(lnt),

which together with (B.1.8) shows that f converges exponentially fast to zero as ¢ goes
to infinity, therefore there exists a constant C such that
dt
B4 2N\2 < C
(Grsc,

which for ¢ large enough gives
dt\? 7 8\*
OO
(ds) ~ \ew ¢
and for s, > s; one obtainsr

3328 +[3 <ei)2 c1/y-1 (t3(32) — t3(31)) ,

so that s, — oo as ¢(s3) — oo, which had to be established. o

o]

102



Proposition B.2.2 Let I' be either a past inextendible timelike curve parametrized by
proper time, or an affinely parametrized past inextendible null geodesic, in a Moncrief’s

space-time. Then

1. T reaches the boundary t = 0 in finite proper time or finite affine time, say s,, and

2. we have

lim (R"‘ﬁ"‘sRag,yg) |p(s) =00 .

s—3g

Proof: From (B.2.2) and from Proposition B.1.1 it follows that there exists a constant
B, such that '
ef = ePorlva=t/i (1 4 O(2A-PeD)) (B.2.6)

Consider first a timelike curve I' = {2*#(s)} parametrized by proper time s, with #(s)

decreasing as s increases,

dt do dz® dé\ [dz* de
2B Olye (U o LRI I A L D 9
¢ [(ds) (ds) ] = Ay (ds t9 ds) <ds t9 ds) ! (B-2T)
Equation (B.2.7) implies
di
B
<
e S 1

(recall that T is past—directed) which together with (B.2.6) gives, for s, > sy, with #(s;)

— small enough,

8ePBeo
55 < 8y + T (t(3+v?x,)/4(sl) _ t(3+vg°)/4(s2)) ’

so that any timelike curve reaches ¢ = 0 in finite proper time. To prove the result for

null geodesics, some more work is required. In what follows we shall write that

X
)

if

im==1.
t—»Og
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From (B.2.2) and from Proposition B.1.1 we have

dB vi -1 v —

1

Int, (B.2.8)

ds? ny ¢2Bo 1 (v%-1)/2 (_dt2 + d02) + ,\tl"luool{l + C;S(nﬂ)

(dz' + ¢g*df)?

— cos(n#)

+sin(n) (dz' + g'db)(dz?® + g*df) + ! 5
Ogap _ O(At ngp) L= |veol
ot — ot ¢ e
with (B.2.9) holding for |ve| > 0, and (B.2.8), (B.2.10) holding for 0 < |ve| < 1.

(dz® + g*d0)*} , (B.2.9)

(B.2.10)

Consider null geodesics such that (p*)? + (p?)? # 0; the case p' = p? = 0 is analyzed
by a similar simpler argument. From (B.2.4)—(B.2.5) and (B.2.10) one obtains ¢ small

enough,

d —2B, 2 _1\¢ )
_‘;l_t (34(%)2) oy _6 - (voo4 1) (3 _ 2|v°o| _ 'l)go)t_(l+v°°)/2 1Il4t§abpapb <0 ,
S

so that B*(4)? increases as t(s) goes to zero for t(sy) < ¢y, for some ¢; small enough,

2
(2) e

and an argument similar to the one for timelike curves shows that I' must reach ¢ = 0 in

therefore for s > s;

finite affine time.

To analyze the behaviour of the curvature near ¢ = 0, with the help of a SHEEP

calculation? one finds

R R~ S (1= 0223 +02)]
44
and (B.2.6) gives
RPY R 55 > Ct~(t3) | (B.2.11)

for some constant C, so that the curvature blows up uniformly along all curves as ¢

approaches zero. |

From Propositions B.2.1, B.2.2, and C.2.4 one obtains

2The author is grateful to D. Singleton for performing this calculation.
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Theorem B.2.1 Let & = T3, let X(Z) be the space of Cauchy data for Moncrief’s
metrics. The Theorem-To-Be-Proved holds in X (X), with Y(X) = X(X); more precisely,
every mazximal Hausdorff developement of a Cauchy data set for a Moncrief metric is
globally hyperbolic, therefore unique, and inextendible, in vacuum or otherwise, in the

class of Hausdorff Lorentzian manifolds with C;! metrics.

N5



