Appendix B

On a class of $U(1) \times U(1)$ symmetric metrics found by V.Moncrief.

In this Appendix we shall prove that "strong cosmic censorship" holds in a six parameter family of non-polarized $U(1) \times U(1)$ symmetric metrics found by Moncrief¹ [93]. Apart from being interesting in their own right, these metrics provide a good testing ground for various a priori estimates one can obtain for general $U(1) \times U(1)$ symmetric metrics, cf. Chapter 3.

Throughout this Appendix the letter C denotes a constant the value of which may vary from line to line.

B.1 A harmonic map problem.

Let $x(t,\theta) = (\rho(t,\theta),\phi(t,\theta))$ be a map from two-dimensional Minkowski space to a two dimensional constant mean curvature hyperoboloid, set

$$X_{t} = \frac{\partial x}{\partial t}^{A} \frac{\partial}{\partial x^{A}} = \frac{\partial \rho}{\partial t} \frac{\partial}{\partial \rho} + \frac{\partial \phi}{\partial t} \frac{\partial}{\partial \phi}, \quad X_{\theta} = \frac{\partial x}{\partial \theta}^{A} \frac{\partial}{\partial x^{A}} = \frac{\partial \rho}{\partial \theta} \frac{\partial}{\partial \rho} + \frac{\partial \phi}{\partial \theta} \frac{\partial}{\partial \phi}.$$

On the hyperboloid one can introduce coordinates in which the metric takes the form

$$ds^2 = d\rho^2 + \sinh^2\rho\,d\phi^2\,.$$

¹A similar class of harmonic maps has been considered independently by Shatah and Tahvildar-Zadeh in [118]; *cf.* also [63].

The Christoffel symbols are easily calculated to be

$$\Gamma^{\rho}_{\phi\phi} = -\sinh\rho\cosh\rho\,, \quad \Gamma^{\rho}_{\phi\phi} = \frac{\cosh\rho}{\sinh\rho}\,,$$

so that the Gowdy equations

$$\frac{DX_t}{Dt} - \frac{DX_{\theta}}{D\theta} = -\frac{X_t}{t} ,$$

where D is the covariant derivative in the target space, $D_t \equiv D_{X_t}$, $D_{\theta} \equiv D_{X_{\theta}}$, take the form

$$\left(\frac{\partial^{2}}{\partial t^{2}} - \frac{\partial^{2}}{\partial \theta^{2}}\right)\phi = -\frac{1}{t}\frac{\partial\phi}{\partial t} - 2\coth\rho\left(\frac{\partial\rho}{\partial t}\frac{\partial\phi}{\partial t} - \frac{\partial\rho}{\partial\theta}\frac{\partial\phi}{\partial\theta}\right)$$
(B.1.1)

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \theta^2}\right)\rho = -\frac{1}{t}\frac{\partial \rho}{\partial t} + \sinh\rho\cosh\rho\left(\left(\frac{\partial \phi}{\partial t}\right)^2 - \left(\frac{\partial \phi}{\partial \theta}\right)^2\right). \tag{B.1.2}$$

It has been observed by V. Moncrief [93] that the ansatz

$$\rho = \rho(t) , \quad \phi = n\theta \tag{B.1.3}$$

is compatible with the above equations, which then reduce to a single ordinary differential equation for ρ

$$\frac{d^2 \rho}{d\tau^2} = -n^2 \sinh \rho \cosh \rho \, e^{-2\tau} \,, \quad (t = e^{-\tau}) \,. \tag{B.1.4}$$

For given θ_o the function $\rho(t)$ should be thought of as an affine parameter on the geodesic $\Gamma = \{\theta = \theta_o, \rho \geq 0\} \cup \{\theta = \pi + \theta_o, \rho \geq 0\}$ on the hyperboloid, rather than a radial coordinate constrained to satisfy $\rho \geq 0$, so that a change of sign of ρ means that $\rho(t)$ has crossed the origin along Γ . The following gives a complete description of the behaviour as $t \to 0$ of solutions of (B.1.4):

Proposition B.1.1 1. For $\tau_o > -\infty$ and for every solution $\rho \in C_2([\tau_o, \infty))$ of (B.1.4) there exist constants $0 \le |v_\infty| < 1$ and $\rho_\infty \in \mathbb{R}$ such that

$$|\rho(\tau) - v_{\infty}\tau - \rho_{\infty}| + |\frac{d\rho}{d\tau}(\tau) - v_{\infty}| \le C e^{-2(1-|v_{\infty}|)\tau}$$
 (B.1.5)

for all $\tau_o \leq \tau < \infty$, for some constant C.

2. For every $0 \le |v_{\infty}| < 1$ and every $\rho_{\infty} \in \mathbb{R}$ there exists a solution of (B.1.4) satisfying (B.1.5). If $\rho_{\infty} = v_{\infty} = 0$ then $\rho(\tau) \equiv 0$.

Proof: 1. Let

$$g(\tau) \equiv \left(\frac{d\rho}{d\tau}\right)^2 + \frac{n^2}{2} \cosh^2 \rho \, e^{-2\tau} \ .$$

We have

$$\frac{dg(\tau)}{d\tau} = -n^2 \cosh^2 \rho \, e^{-2\tau} \; ,$$

which shows that g is monotonically decreasing, so that $g_{\infty} = \lim_{\tau \to \infty} g(\tau)$ exists and we have

$$g(\tau) = g_{\infty} + n^2 \int_{\tau}^{\infty} \cosh^2 \rho(s) e^{-2s} ds \implies$$

$$\int_{\tau_o}^{\infty} \cosh^2 \rho(s) e^{-2s} ds < \infty . \tag{B.1.6}$$

For $\tau_1 \geq \tau_2$ it follows from (B.1.4) that

$$|\frac{d\rho}{d\tau}(\tau_1) - \frac{d\rho}{d\tau}(\tau_2)| = n^2 |\int_{\tau_2}^{\tau_1} \sinh \rho(s) \cosh \rho(s) e^{-2s} ds|$$

$$\leq n^2 \int_{\tau_2}^{\tau_1} \cosh^2 \rho(s) e^{-2s} ds,$$

which together with (B.1.6) implies that $\lim_{\tau\to\infty} \frac{d\rho}{d\tau}(\tau) = v_{\infty}$ exists.

Let us first assume $v_{\infty} = 0$, then for any $\epsilon > 0$ there exists τ_1 such for $\tau > \tau_1$ we have $\left|\frac{d\rho}{d\tau}\right| < \epsilon$, which implies that $|\rho| \le \epsilon \tau + C$, and (B.1.4) gives

$$\left| \frac{d^2 \rho}{d\tau^2} \right| \le C_1 e^{-2(1-\epsilon)\tau} \implies \left| \frac{d\rho}{d\tau} \right| \le C_2 e^{-2(1-\epsilon)\tau}$$

by integration, and one more integration shows that the limit $\lim_{\tau\to\infty} \rho(\tau) = \rho_{\infty}$ exists and we have

$$|\rho - \rho_{\infty}| \le C_3 e^{-2(1-\epsilon)\tau} \Rightarrow |\frac{d^2 \rho}{d\tau^2}| \le C_4 e^{-2\tau} \Rightarrow |\rho - \rho_{\infty}| \le C_5 e^{-2\tau}$$

for some constants $C_1 - C_5$, which had to be established for $v_{\infty} = 0$.

If $v_{\infty} \neq 0$, it follows that $\frac{d\rho}{d\tau}$ has constant sign for $\tau \geq \tau_1$, τ_1 large enough, so that ρ has constant sign for large enough times, and multiplying ρ by -1 if necessary we may

assume that for $\tau > \tau_1$ we have $\rho(\tau) > 0$, and also $v_{\infty} > 0$. Let us show that $v_{\infty} < 1$. Equation (B.1.4) implies that $\frac{d\rho}{d\tau}$ is non-increasing, so that if $0 < \frac{d\rho}{d\tau} (\tau_o) < 1$ we are done, let us therefore assume that $\frac{d\rho}{d\tau} (\tau_o) > 1$. Let $\tau_1 \leq \infty$ be such that for $\tau_o \leq \tau < \tau_1$ we have $\frac{d\rho}{d\tau} (\tau) > 1$, with $\frac{d\rho}{d\tau} (\tau_1) = 1$ if $\tau_1 < \infty$. For $\tau \in [\tau_o, \tau_1]$ we have

$$ho(au)-
ho(au_o)=\int_{ au_o}^{ au}rac{d
ho}{d au}(s)\,ds\geq au- au_o\,,$$

so that

$$\frac{d\rho}{d\tau}(\tau) = \frac{d\rho}{d\tau}(\tau_o) - \int_{\tau_o}^{\tau} \frac{n^2}{4} \left(e^{2(\rho(\tau) - s)} - e^{-2\rho(s) - 2s} \right) ds
\leq \frac{d\rho}{d\tau}(\tau_o) - \int_{\tau_o}^{\tau} \frac{n^2}{4} e^{2(\rho(\tau_o) - \tau_o)} ds + \frac{n^2}{4} \int_{\tau_o}^{\tau} e^{-2(\rho(\tau_o) + s)} ds
\leq \frac{d\rho}{d\tau}(\tau_o) - \frac{n^2}{4} (\tau - \tau_o) e^{2(\rho(\tau_o) - \tau_o)} + \frac{n^2}{8} e^{-2(\tau_o + \rho(\tau_o))} ,$$

which is smaller than 1 for sufficiently large τ so that $\tau_1 < \infty$, and our claim follows. Define

$$r = \rho(\tau) - v_{\infty}\tau .$$

The function r satisfies $\lim_{\tau\to\infty} \frac{dr}{d\tau} = 0$, setting $\lambda = 2(1-v_{\infty}) > 0$ one obtains

$$\frac{d^2r}{d\tau^2} = -\frac{n^2}{4} \left(e^{2r - \lambda \tau} - e^{-2r - 2(1 + v_{\infty})\tau} \right). \tag{B.1.7}$$

For $\tau > \tau_1(\epsilon)$, with $\tau_1(\epsilon) > 0$ sufficiently large, we have $\left|\frac{dr}{d\tau}\right| \le \epsilon$ for any $\epsilon > 0$, therefore $|r(\tau)| \le |r(\tau_1(\epsilon))| + \epsilon \tau$ and for $2\epsilon < \lambda/2$ one gets $\frac{d^2\tau}{d\tau^2} = O(e^{-\lambda\tau/2})$; by integration one obtains $\left|\frac{dr}{d\tau}(\tau_2) - \frac{dr}{d\tau}(\tau)\right| = O(e^{-\lambda\tau/2})$, for $\tau_2 > \tau$. Passing with τ_1 to ∞ one gets $\frac{dr}{d\tau} = O(e^{-\lambda\tau/2})$, which integrating again yields, for $\tau_2 > \tau$

$$|r(\tau_2) - r(\tau)| = O(e^{-\lambda \tau/2}),$$

it ensues in a simple way that there exists a constant ho_{∞} such that

$$|r(\tau) - \rho_{\infty}| = O(e^{-\lambda \tau/2}).$$

Coming back to the equation (B.1.7) satisfied by r we have in fact

$$\left|\frac{d^2r}{d\tau^2}\right| = O(e^{-\lambda\tau})^{-1},$$

which gives by a similar argument

$$\left| \frac{dr}{d\tau}(\tau) \right| + |r(\tau) - \rho_{\infty}(\tau)| \le C e^{-2(1-v_{\infty})\tau}$$

so that (B.1.5) follows.

2. Multiplying ρ by -1 if necessary we may assume $v_{\infty} \geq 0$. Equations (B.1.4) and (B.1.5) are equivalent to the following integral equation for $p(\tau) = \rho(\tau) - v_{\infty}\tau - \rho_{\infty}$:

$$p(\tau) = T(p)(\tau)$$

$$T(p)(\tau) = -\frac{n^2}{4} \int_{\tau}^{\infty} (s - \tau) (e^{2p(s) + 2\rho_{\infty}} - e^{-2p(s) + 2\rho_{\infty} - 4v_{\infty} s}) e^{-\lambda s} ds ,$$

with $\lambda=2(1-v_{\infty})$. Let $H=\{p\in C([\tau_1,\infty)), \|p(\tau)\|=\sup_{\tau}|e^{\lambda\tau/2}p(\tau)|<\infty\}$. One checks without difficulty that there exists $\tau_1(v_{\infty},\rho_{\infty},n)<\infty$ such that T takes the unit ball of H into itself, and that T is a contraction — the claim follows by the contraction mapping principle. Finally if $v_{\infty}=\rho_{\infty}=0$ then there are no "driving terms" in T so that the contraction property implies $p\equiv 0$.

Let us analyze the behaviour of solutions of (B.1.4) as $t \to \infty$ ($\tau \to -\infty$):

Proposition B.1.2 For $t_o > 0$ let $\rho \in C^2([t_o, \infty))$ be a solution of (B.1.4).

1. There exists a constant C such that

$$|\rho| + |\frac{d\rho}{dt}| \le Ct^{-1/2}$$
 (B.1.8)

2. There exist constants e_{∞} , C_1 such that

$$\left| t \left[\left(\frac{d\rho}{dt} \right)^2 + n^2 \sinh^2 \rho \right] - e_{\infty} \right| \le Ct^{-1}$$
 (B.1.9)

If $e_{\infty} = 0$, then $\rho \equiv 0$.

Remark: The proof below suggests very strongly that we have the expansion

$$\rho = A\cos(nt + \delta) t^{-1/2} + B_1(t) t^{-3/2} + B_2(t) t^{-5/2} + \dots$$

for some constants A, δ and some functions $B_i(t)$ which are polynomials in $\sin(nt)$ and $\cos(nt)$.

Proof: Define

$$\psi(t) = t^{1/2}\rho(t) ;$$

 ψ satisfies the equation

$$\frac{d^2\psi}{dt^2} = -\frac{\psi}{4t^2} - \frac{n^2t^{1/2}}{2}\sinh(2\rho) \ . \tag{B.1.10}$$

Let us set

$$e(t) = \left(\frac{d\psi}{dt}\right)^2 + \frac{\psi^2}{4t^2} + \frac{n^2t}{2}\left(\cosh(2\rho) - 1\right) ;$$
 (B.1.11)

we have

$$\frac{de}{dt} = -\frac{\psi^2}{2t^3} - n^2 V(\rho) , \qquad (B.1.12)$$

$$V(\rho) = \rho \sinh(2\rho) + 1 - \cosh(2\rho) .$$

We have V(0) = V'(0) = 0 and $V''(\rho) = 4\rho \sinh(2\rho) \ge 0$, thus $V(\rho) \ge 0$, so that

$$\frac{de}{dt} \le 0 , (B.1.13)$$

which shows that

$$\left(\frac{d\psi}{dt}\right)^2 \le C, \quad t\left(\cosh(2t^{-1/2}\psi) - 1\right) \le C \tag{B.1.14}$$

for some constant C. The inequality $\cosh(2\rho) - 1 \ge 2\rho^2$ and the second inequality in (B.1.14) give

$$\psi^2 \le C , \qquad (B.1.15)$$

and (B.1.8) follows. Taylor expanding $\cosh \rho$ to fourth order in (B.1.11) and making use of (B.1.15) one obtains

$$e(t) = \left(\frac{d\psi}{dt}\right)^2 + n^2\psi^2 + O(t^{-1}) . \tag{B.1.16}$$

From (B.1.13) it follows that e is monotone, therefore the limit $e_{\infty} = \lim_{t \to \infty} e(t)$ exists. There exists a constant C_V such that for $\rho \leq 1$ we have $|V(\rho)| \leq C_V \rho^4$, and since ρ tends to zero as t goes to infinity there exists a T such that for $t \geq T$ we have $|V(\rho)| \leq C_V \psi^4 t^{-2} \leq C' t^{-2}$, and integrating (B.1.12) one obtains

$$|e(t) - e_{\infty}| \le Ct^{-1}$$
, (B.1.17)

so that (B.1.16) leads to

$$(\frac{d\psi}{dt})^2 + n^2\psi^2 - e_{\infty} = O(t^{-1}) ;$$

a simple calculation gives

$$t[(\frac{d\rho}{dt})^2 + n^2 \sinh^2 \rho] = e_{\infty} + O(t^{-1})$$
,

which proves (B.1.9). Suppose finally that $e_{\infty} = 0$. The inequality (B.1.17) together with $e_{\infty} = 0$ implies

$$\left|\frac{d\psi}{dt}(t)\right| + \left|\psi(t)\right| \le Ct^{-1/2}$$
 (B.1.18)

Inserting (B.1.18) into (B.1.12) and repeating iteratively the above argument one shows that for any $\ell \in \mathbb{N}$ there exists $C(\ell)$ such that

$$|\psi(t)| + e(t) \le C(\ell) t^{-\ell}$$
 (B.1.19)

The inequalities (B.1.19) with $\ell = 2$ and $V(\rho) \leq C_V \rho^4$ give

$$n^2V(\rho) \le C_V n^2 \rho^4 = \frac{C_V n^2 \psi^4}{t^2} \le \frac{C_V n^2 C(2)^2}{t^3} \frac{\psi^2}{t^3} \le \frac{\psi^2}{2t^3}$$

for $t \ge t_1 = [2C_V n^2 C(2)^2]^{1/3}$, which leads to

$$\begin{split} -\frac{e}{t} &\leq -\frac{\psi^2}{4t^3} = \frac{1}{4} \left[\frac{de}{dt} - \left(\frac{\psi^2}{2t^3} - n^2 V(\rho) \right) \right] \leq \frac{1}{4} \frac{de}{dt} \\ \implies \frac{de}{dt} &\geq -\frac{4e}{t} \ , \end{split}$$

which implies

$$t_1 \le t_2 \le t_3$$
 $e(t_2) \le \frac{e(t_3)t_3^4}{t_2^4}$,

passing with t_3 to infinity one obtains $e(t) \equiv 0$, $\psi \equiv \rho \equiv 0$, which had to be established.

B.2 Moncrief's space-times.

Let $M = \{t \in (0, \infty), \theta, x^a \in [0, 2\pi]_{|\text{mod } 2\pi}, a = 1, 2\}$. Consider the following Gowdy-type metrics

$$ds^{2} = \gamma_{\mu\nu}dx^{\mu}dx^{\nu} = e^{2B}(-dt^{2} + d\theta^{2}) + \lambda t n_{ab} (dx^{a} + g^{a}d\theta)(dx^{b} + g^{b}d\theta) , \qquad (B.2.1)$$

$$n_{ab} dx^{a}dx^{b} = (\cosh \rho + \cos \phi \sinh \rho) (dx^{1})^{2} + 2 \sinh \rho \sin \phi dx^{1}dx^{2}$$

$$+ (\cosh \rho - \cos \phi \sinh \rho) (dx^{2})^{2} ,$$

$$\rho = \rho(t,\theta), \quad \phi = \phi(t,\theta) ,$$

where λ and g^a are real constants, $\lambda > 0$. For a metric of the form (B.2.1) the dynamical part of Einstein equations reduces to the equations (B.1.1)–(B.1.2), and assuming Moncrief's ansatz (B.1.3) one finds that B = B(t) (cf. e.g. eqs. (2.30) and (2.33) of [32]; the constants c_a appearing in these equations vanish for the metrics (B.2.1)), and

$$\frac{dB}{dt} = -\frac{1}{4t} + \frac{t}{4} \left[\left(\frac{d\rho}{dt} \right)^2 + n^2 \sinh^2 \rho \right].$$
 (B.2.2)

In this way we obtain a family of metrics parametrized by six parameters — λ , g^a , a=1,2, an integration constant B_o for B and two real constants parametrizing solutions of the equation (B.1.4), e.g. v_{∞} and ρ_{∞} given by Proposition B.1.1. (Out of these parameters of course only v_{∞} and ρ_{∞} are dynamically interesting.) We shall refer to these space-times as Moncrief's space-times.

Proposition B.2.1 All Moncrief's space-times are future causally geodesically complete.

Proof: If the constant e_{∞} given by Proposition B.1.2 vanishes ($\Rightarrow \rho \equiv 0$, cf. Proposition B.1.2) one easily checks that the metric can be put in Kasner's form with exponents $(p_1, p_2, p_3) = (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})$ or permutation thereof (cf. Section 2.4 for a description of Kasner metrics), in which case it is easy to show future geodesic completeness, we shall thus consider the case $e_{\infty} \neq 0$ only. Let $\Gamma(s) = \{x^{\mu}(s)\}$ be a future inextendible future

directed affinely parametrized causal geodesic. From $\gamma_{\mu\nu}\frac{dx^{\mu}}{ds}\frac{dx^{\nu}}{ds}=-\epsilon,\ \epsilon\in\{0,1\}$, and from

$$\frac{dp_a}{ds} \equiv \frac{d}{ds} \left(\gamma_{\mu\nu} \frac{dx^{\mu}}{ds} X_a^{\nu} \right) = 0 ,$$

where $X_a^{\nu} \frac{\partial}{\partial x^{\nu}}$ are the Killing vectors $\frac{\partial}{\partial x^a}$, a = 1, 2, one obtains the following equations,

$$e^{2B}[(\frac{dt}{ds})^2 - (\frac{d\theta}{ds})^2] = \epsilon + \bar{g}^{ab}p_ap_b \ ,$$

$$\frac{dx^a}{ds} = -g^a \frac{d\theta}{ds} + p^a, \quad p^a \equiv \bar{g}^{ab} p_b \; ,$$

where $\bar{g}^{ab} \equiv (g_{ab})^{-1}$, $g_{ab} = \lambda t n_{ab}$. The t part of the equations satisfied by a geodesic reads

$$\frac{d}{ds}(B^2\frac{dt}{ds}) = B^2e^{-2B}[(\epsilon + \bar{g}^{ab}p_ap_b)\frac{dB}{dt} - \frac{1}{2}\frac{\partial g_{ab}}{\partial t}p^ap^b].$$
 (B.2.3)

Non-spacelikeness of Γ implies that Γ can be parametrized by t, which allows us to rewrite (B.2.3) as

$$\frac{d}{dt}\left(B^4(\frac{dt}{ds})^2\right) = f , \qquad (B.2.4)$$

$$f \equiv 2B^4 e^{-2B} \left[\left(\epsilon + \bar{g}^{ab} p_a p_b \right) \frac{dB}{dt} - \frac{1}{2} \frac{\partial g_{ab}}{\partial t} p^a p^b \right]. \tag{B.2.5}$$

From (B.2.2) and Proposition B.1.2, point 2, we have

$$\frac{dB}{dt} = \frac{e_{\infty}}{4} + O(t^{-1}) \quad \Longrightarrow \quad B = \frac{e_{\infty}}{4}t + O(\ln t) \ ,$$

which together with (B.1.8) shows that f converges exponentially fast to zero as t goes to infinity, therefore there exists a constant C such that

$$B^4(\frac{dt}{ds})^2 \le C \ ,$$

which for t large enough gives

$$t^4 \left(\frac{dt}{ds}\right)^2 \le \left(\frac{8}{e_\infty}\right)^4 C ,$$

and for $s_2 \geq s_1$ one obtains

$$s_2 \ge s_1 + \left[3\left(\frac{8}{e_\infty}\right)^2 C^{1/2}\right]^{-1} \left(t^3(s_2) - t^3(s_1)\right) ,$$

so that $s_2 \to \infty$ as $t(s_2) \to \infty$, which had to be established.

Proposition B.2.2 Let Γ be either a past inextendible timelike curve parametrized by proper time, or an affinely parametrized past inextendible null geodesic, in a Moncrief's space-time. Then

- 1. Γ reaches the boundary t=0 in finite proper time or finite affine time, say s_o , and
- 2. we have

$$\lim_{s \to s_0} \left(R^{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} \right) |_{\Gamma}(s) = \infty \ .$$

Proof: From (B.2.2) and from Proposition B.1.1 it follows that there exists a constant B_o such that

$$e^{B} = e^{B_{o}} t^{(v_{\infty}^{2}-1)/4} \left(1 + O(t^{2(1-|v_{\infty}|)})\right)$$
 (B.2.6)

Consider first a timelike curve $\Gamma = \{x^{\mu}(s)\}$ parametrized by proper time s, with t(s) decreasing as s increases,

$$e^{2B}\left[\left(\frac{dt}{ds}\right)^2 - \left(\frac{d\theta}{ds}\right)^2\right] - \lambda t n_{ab} \left(\frac{dx^a}{ds} + g^a \frac{d\theta}{ds}\right) \left(\frac{dx^b}{ds} + g^b \frac{d\theta}{ds}\right) = 1.$$
 (B.2.7)

Equation (B.2.7) implies

$$e^B \frac{dt}{ds} \le -1$$

(recall that Γ is past-directed) which together with (B.2.6) gives, for $s_2 \geq s_1$, with $t(s_1)$ — small enough,

$$s_2 \le s_1 + \frac{8e^{B_o}}{3 + v_\infty^2} \left(t^{(3+v_\infty^2)/4}(s_1) - t^{(3+v_\infty^2)/4}(s_2) \right) ,$$

so that any timelike curve reaches t=0 in finite proper time. To prove the result for null geodesics, some more work is required. In what follows we shall write that

$$f \approx q$$

if

$$\lim_{t \to 0} \frac{f}{g} = 1 \ .$$

From (B.2.2) and from Proposition B.1.1 we have

$$\frac{dB}{dt}(t) \approx \frac{v_{\infty}^2 - 1}{4t}, \quad B(t) \approx \frac{v_{\infty}^2 - 1}{4} \ln t , \qquad (B.2.8)$$

$$ds^2 \approx e^{2B_o} t^{(v_{\infty}^2 - 1)/2} \left(-dt^2 + d\theta^2 \right) + \lambda t^{1 - |v_{\infty}|} \left\{ \frac{1 + \cos(n\theta)}{2} (dx^1 + g^1 d\theta)^2 + \sin(n\theta) (dx^1 + g^1 d\theta) (dx^2 + g^2 d\theta) + \frac{1 - \cos(n\theta)}{2} (dx^2 + g^2 d\theta)^2 \right\} , \quad (B.2.9)$$

$$\frac{\partial g_{ab}}{\partial t} \equiv \frac{\partial (\lambda t \, n_{ab})}{\partial t} \approx \frac{1 - |v_{\infty}|}{t} g_{ab} , \quad (B.2.10)$$

with (B.2.9) holding for $|v_{\infty}| > 0$, and (B.2.8), (B.2.10) holding for $0 \le |v_{\infty}| < 1$. Consider null geodesics such that $(p^1)^2 + (p^2)^2 \ne 0$; the case $p^1 = p^2 = 0$ is analyzed by a similar simpler argument. From (B.2.4)–(B.2.5) and (B.2.10) one obtains t small enough,

$$\frac{d}{dt} \left(B^4 \left(\frac{dt}{ds} \right)^2 \right) \approx -\frac{e^{-2B_o}}{2} \left(\frac{v_\infty^2 - 1}{4} \right)^4 \left(3 - 2|v_\infty| - v_\infty^2 \right) t^{-(1+v_\infty^2)/2} \ln^4 t \, \bar{g}^{ab} p_a p_b \le 0 ,$$

so that $B^4(\frac{dt}{ds})^2$ increases as t(s) goes to zero for $t(s_1) \leq t_1$, for some t_1 small enough, therefore for $s \geq s_1$

$$B^4 \left(\frac{dt}{ds}\right)^2 \ge C \ ,$$

and an argument similar to the one for timelike curves shows that Γ must reach t=0 in finite affine time.

To analyze the behaviour of the curvature near t=0, with the help of a SHEEP calculation² one finds

$$R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta}\approx\frac{e^{-4B}}{4t^4}\left[(1-v_\infty^2)^2(3+v_\infty^2)\right]\;,$$

and (B.2.6) gives

$$R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta} \ge Ct^{-(v_{\infty}^2+3)}$$
, (B.2.11)

for some constant C, so that the curvature blows up uniformly along all curves as t approaches zero.

From Propositions B.2.1, B.2.2, and C.2.4 one obtains

²The author is grateful to D. Singleton for performing this calculation.

Theorem B.2.1 Let $\Sigma = T^3$, let $X(\Sigma)$ be the space of Cauchy data for Moncrief's metrics. The Theorem-To-Be-Proved holds in $X(\Sigma)$, with $Y(\Sigma) = X(\Sigma)$; more precisely, every maximal Hausdorff development of a Cauchy data set for a Moncrief metric is globally hyperbolic, therefore unique, and inextendible, in vacuum or otherwise, in the class of Hausdorff Lorentzian manifolds with $C_{loc}^{1,1}$ metrics.