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Abstract. In this paper we extend the theory of real-valued increasing convex along rays 
functions for functions mapping into the semi-extended real line. We give a full description of 
the Fenche!-Moreau conjugate function to an increasing positively homogeneous of the first degree 
function. 
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1. Introduction. A function f is called abstract convex with respect to a class 
of elementary functions H if f can be represented as the upper envelope of a subset 
of H. The notion of abstract convexity plays a very important role in the study 
of various kinds of optimization problems (see for example [5, This notion is 
closely related to the Fenchel-Moreau conjugation theory [4, 5, 11] which is a natural 
extension of classical Fenchel conjugation [7]. From the point of view of this theory, 
it is quite natural to consider functions mapping into the semi-extended real line 
R+oo = RU { +oo }. There are some interesting examples of abstract convex functions 
(see for instance [4, 3, 6]). One of the most interesting classes of (non-convex) abstract 
convex functions is generated by the set H of all shifts of the so-called min-type 
functions defined on the nonnegative orthant R+. It has been shown in 2, 
that a real-valued function is abstract convex with respect to the set H if and only 
if this function is increasing and its restriction on each ray starting from the origin 
is convex. Functions with these properties are called !CAR (increasing convex-along­
rays) (see [1, 2, 10]). Real-valued ICAR functions are lower semicontinuous (Ls.c). 
These functions have interesting applications in global optimization (see, for example, 
[10, 8]). 

In this paper we study H-convex functions mapping into R+= where H is the 
above mentioned class of shifts of min-type functions. We prove that a function 
f : R+ --+ R+= isH-convex if and only if this function is l.s.c and ICAR. We show 
that the class of Ls.c ICAR functions f : R+. --+ R+oo is very large. In particular, 
each l.s.c function defined on the unit 'simplex S = {x E R+. : Li Xi = can be 
extended to an ICAR function. We describe also Fenchel-Moreau conjugate functions 
with respect to increasing positively homogeneous functions. 

2. Preliminaries. Let R be the set of real numbers and R+oo = R U { +oo }. 
In the sequel we shall require the following definitions and elementary results dealing 
with abstract convexity (see [5, 11]). 

DEFINITION 2.L Let X be an arbitrary set and H be a set offunctions h: X--+ 
R. A function f : X --+ R+oo is called abstract convex with respect to H or H -convex 
if there is a set U <;:;; H such that 

f(x) = sup{h(x) :hE U} for all x EX. 
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We suppose that the function -oo: x t-+ -oo for all x EX is also abstract convex. 

DEFINITION 2.2. 
1) The set 

s(f, H) ={hE H: h(x) :::; f(x) for all x EX}. 

of H -minor ants of a function j : X -+ R+oo is called the support set of f. 
2) The set U C H is called abstract convex with respect to H or H-convex if there 
exists a function f: X-+ R+oo such that U = s(f, H). 

REMARK 2 .1. It is easy to check that U is abstract convex if and only if there 
exists an H-convex function f such that U = s(J, 

The following assertion directly follows from the definitions. 

Proposition 2.1. A set U C H isH -convex if and only if for each h E H \ U 
there exists a point x EX such that h(x) > sup{h1(x) : h1 E U}. 

Let L be a set of real-valued functions defined on a set X. Shifts of functions 
l E L, that is functions h of the form h(x) = l(x)- c for all x EX with l E L, c E R 
are called L-affine functions. 

DEFINITION 2.3. Let L be a set of real-valued functions defined on a set X. Let 
f: X-+ R+oo or f = -oo. The function 

JL(l) = sup{l(x)- f(x): x EX} 

is called the (Fenchel-Moreau) L-conjugate with respect to the function f. The func­
tion 

f£*(x) = sup{l(x)- f£(l): l E L} 

is called the second £-conjugate with respect to L. 

Theorem 2.1. {see for example[4, 5, 11]) Let f :X -+ R+oo· Then f = JL* if 
and only iff is H -convex where H is the set of all L-affine functions. 

In the remainder of this paper we shall consider functions defined on the cone R+ 
all of vectors with nonnegative coordinates in n-dimensional Euclidean space R n. We 
shall use the following notation: 

~ Xi is the i-th coordinate of a vector x ERn; 
e if x,y ERn then x;?: y {=:::} Xi;?: Yi for all i E I= {1,2, ... ,n}; 
" if x, y ERn then x » y {=:::} Xi > Yi for all i E I; 
e~ R+. = {x =(xi) E R 1 : x;?: 0}; 
@ R++ = {x =(xi) E R 1 : x » 0}. 

We shall study abstract convex functions with respect to the set H of aU £-affine 
functions where L is the set of the so-called min-type functions, that is functions l 
defined on the cone R+ by 

l(x) = (l,x) (2.1) 
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where 

(l, x) = min lixi; 
iET(l) 

T(l) = {i: li > 0}. (2.2) 

We assume that the minimum over the empty set is equal to zero. We denote the 
vector (h, · · · , ln) by the same symboll as the function generated by this vector using 
(2.1). In order to describe abstract convex functions with respect to the mentioned 
above set H, we need the following definition. 

DEFINITION 2.4. A function f : R+ --+ R+oo is called convex-along-rays (GAR) 
if, for each y ~ 0, the function fv(>..) = f(>..y) is convex on the ray {A E R: ). > 0}. 

We shall show that a function f : X --+ R+oo is H -convex if and only if this 
function is increasing and CAR (briefly ICAR). A function f is called increasing if 
x ~ y ==> f(x) ~ f(y). For finite functions this result was established in [1, 2], see 
also [10]. 

3. ICAR :functions. In this section we shall study the simplest properties of 
ICAR functions R+ --+ R+oo· We need the following definitions. 

DEFINITION 3.1. A set U E R+ is called normalif (x E U, 0:::; x 1 :::; x) :=:} x' E 

U. A set u is called R+.-stable if (x E u, X 1 ~ ==} x 1 E u" 

Let f be an increasing function defined on R+. Then level sets 
c} are normal and level sets { x E R+ : ~ c} are R+ -stable. 
set dornf = {x E R+ : f(x) < +oo} is normal and the set 
R': -stable. -,-

E R+.: f(x):::; 
In particular, the 

= +oo} is 

Proposition 3.1. Let f be an !CAR function and x E R++" If there exists 
), > 1 such that ),x E dam f then the f is continuous at the point x" 

Proof Let x~c --+ x. Take a positive number c such that 1 + c :::; .A. For large k 
the inequality (1- c)x :::; Xk :::; (1 + s)x holds. Since the function f is increasing we 
have 

f((l- c)x) :::; f(xk):::; !((1 + c)x); f((I- c:)x):::; f(x) :::; + c:)x). 

Since the convex function fx : o: H f(o:x) is continuous on the segment (0, it 
follows that !((1 + c:)x) - /((1- c:)x) -> 0 as c:--+ 0. 0 

REMARK 3.1. A finite ICAR function can be discontinuous at a boundary point 
of the cone R+. For example the function 

x»O 
otherwise 

is ICAR and discontinuous at each boundary point of R+ excluding the origin. 

It was shown in [1, 2] that a finite ICAR function is l.s.c on R+. At the same 
time there exist ICAR functions R+ --+ R+oo which are not l.s.c . For example the 
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function 

is not l.s.c . 

g2(x) = { 'Ei Xi 'Ei Xi < 1 
+oo otherwise 

We now present some examples of !CAR functions. 

EXAMPLE 3.1. A positively homogeneous of degree m ~ 1 increasing function 
defined on R+ is ICAR; in particular a function 

(3.1) 

with m1 + ... mn ~ 1 is I CAR. 

EXAMPLE 3.2. A polynomial with nonnegative coefficients is ICAR. 

Let H be the set of all L-affine functions, where L is the set of all min-type 
functions defined by (2.1). It is easy to check that the following assertion holds. 

Proposition 3.2. An H -convex function f : R+ --+ R+oo is l.s.c and !CAR. 

The following statement shows that the class of ICAR functions is very large. 

Proposition 3.3. Let f be a l.s.c function defined on the unit simplex S = 
{ x E R+ : 'Ei Xi = 1}. Then there exists an !CAR extension off, that is an !CAR 
function f : R+ --+ R+oo such that i( x) = f ( x) for all x E S. 

The proof is based on the following assertion. 

Lemma 3.1. Let Q be a compact topological space and H be a set of continuous 
functions defined on Q such that 
1} H is a conic set: h E H, .A > 0 ==? .Ah E H; 
2} for each hE H and c > 0 the function x 1-t h(x)- c belongs to H; 
3) for any c > 0, z E Q and any neighbourhood V of z there exists h E H which is a 
"support to an Urysohn peak", that is 

h(z) > 1- c, h(x):::; 1 for all x E Q, h(x):::; 0 for all x ¢ V. (3.2) 

Then for each l.s.c function f : Q --+ R+oo there exists a set V C H such that 
f(x) = suphEV h(x) for all x E Q. 

This lemma was proved in [4] with the following assumption instead of 2): His a 
convex set and negative constants belong to H; actually these assumptions were used 
only in order to prove 2). 

Proof. (of Proposition 3.3): Let Hs be the set of all functions hs defined on the 
simplex S by hs(x) = (l, x} - c with l E R+., c E R. Clearly conditions 1) and 2) 
from Lemma 3.1 hold for the set Hs. Let us check that condition 3) holds as well. 
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Let z E S. Consider the vector l = 1/z where 

It is clear that (l, z) = 1. Since 

if Zi>O 

if Zi=O 

n n 

LXi = LZi 
i=l i=l 

(3.3) 

for xES it follows that for x f z there exists an index j such that Xj < Zj. Clearly 
j E T(z). Therefore 

(l,x) = min Xi < 1. 
iE/(z) Zi 

Consider the function h' defined on S by h'(x) = (l,x) - 1. We have h(z) = 0 
and h(x) < 0 for x f z. Let V be an open neighbourhood of a point z and 'TJ = 
- max{h(x) : x E S \ V} > 0. Consider the functions h" (x) = h'(x) + 'f/1 with 
0 < 'f/1 < 'TJ and h(x) = h" (x)frJ1• We have 

II ) I h (z = 'TJ, h" ( x) < 'f/1 for all x f z, h" (x) < 0 for all x rf. V, 

so 

h(z) = 1, h(x) < 1 for all x f z, h(x) < 0 for all x rf. V. 

Thus the condition 3) from Lemma 3.1 holds. Let f: S E R+oo be a l.s.c function. It 
follows from Lemma 3.1 that there exists a set U C H such that f(x) = suphEU h(x) 
for all x E S. Consider now the function 1 defined on R+. by 

J(x) = sup{h(x) : x E U}. 

It follows from Proposition 3.2 that 1 is an ICAR function. We have also J(x) = f(x) 
for xES. D 

REMARK 3.2. Proposition 3.1 shows that the following assertion is valid: if a 
finite l.s.c function f is discontinuous at a point x E S then j(>.x) = +oo for any 
extension 1 of this function and for any>.> 1. Thus J(y) = +oo for ally» x. 

It can be shown (see [8]) that each positive Lipschitz function defined on S has a 
locally Lipschitz (hence finite) extension f. 

4. H-convex functions. Proposition 3.2 shows that each H -convex function 
f: R+. ---* R+oo is l.s.c and ICAR. The following result was established in [1, 2], see 
also [10]. 

Theorem 4.1. A real-valued function f defined on R+. isH -convex if and only 
iff is an !CAR function. 
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The proof of Theorem 4.1 (see [2]) is based on the following construction. For a 
function f : R+. -t R consider its positively homogeneous extension j defined by 

f(x, A) = Af (~), (x,A) E Z (4.1) 

where Z = R+. x (0, +oo). It can be shown that a real-valued function f is ICAR if 
and only if j E :F where :F is the set of all finite functions F defined on the set Z 
such that 

a1) F is positively homogeneous of the first degree; 
a2 ) the function x t-t F(x, A) is increasing on R+. for each A > 0; 
a3) for each (x, A) the function g(J.£1, J.£2) = F(J.t1X, J.£2A) is sublinear on the cone 

{J.£1 ~ O,J.£2 > 0}. 
It can be shown that a function f : R+. -t R is H -convex if and only if its positively 
homogeneous extension j is H*-convex where H* is the set of all functions h* defined 
on the set Z by the formula 

h*(x, A) = (l, x) - CA (4.2) 

with l E R+, c E R. The following assertions hold: 

Proposition 4.1. IfF E :F then for all (y, v) E Z the set 8F(y, v) = {h* E H* : 
h* ~ F, h*(y, v) = F(y, v)} is not empty. 

It follows from this proposition that each FE :FisH*- convex, hence each ICAR 
real-valued function isH-convex. H-convexity of a real-valued ICAR function implies 
its lower semicontinuity. 

As it was mentioned above, an ICAR function f : R+. -t R+oo is not necessary 
l.s.c, so we can not extend Theorem 4.1 for all ICAR functions. We will extend it only 
for l.s.c ICAR functions mapping into R+oo· We shall use the construction described 
above. 

The positively homogeneous extension j can be defined by (4.1) for an arbitrary 
function f mapping into ~00 • Let f : R+. -t ~oo be a l.s.c function. Consider the 
function 

and its lower regularization cl f: 

xEZ 
otherwise 

(clj)(x,A) = min(f(x,A), liminf ft(x1,A1)) 
(x',A')-+(x,>..), (x' ,A')#(x,>..) 

(x, A) E R++l· 

It is clear that cl j is a positively homogeneous function which maps Rn+l into R+oo· 
Since f is l.s.c it follows that the function j is also l.s.c on the cone Z, so 

A A X 
clf(x,A) = f(x,A) = Af().) for x E R+, A> 0. 

Let us denote by :F1 the set of all functions F : R++l -t R+oo such that 
b1 ) F is l.s.c and positively homogeneous of the first degree; 
b2) F(O, 1) < +oo; 
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b3) the function x H F(x, >.) (x E Rf.) is increasing for each >. > 0. 
b4 ) for each (x, >..) with x E Rf. and >. > 0 the function 

is sublinear. 
The following statements hold. 

(4.4) 

Lemma 4.1. Iff : Rf. --+ R+oo is a l.s.c !CAR function and domf = {x E 

Rf.: f(x) < +oo} is not empty then cl} E :fi. 

Proof. It is dear that cl j is a l.s.c and positively homogeneous of the first degree 
function. Since dom f f:. 0 and f is increasing it follows that 0 E dom f so cl j(o, 1) ::; 
j(O, 1) = f(O) < +oo. It is easy to check that monotonicity off implies monotonidty 
of the function x H d }(x, >..) (x E Rf.) for each.\ > 0. Sublinearity of the function g 

defined on the set domg = {p = ,p2): g(p) < +oo} by (4.4) with F = cl} easily 
follows from convexity of the function a H f((aj>.)x). D 

Lemma 4.2. Let H* be the set of all functions {4.2) with l E L and c E R. If 
the extension j of a function f is H, -convex then f is H -convex. 

Proof. There exists a set U C L x R such that }(x, >..) = SUP(l,c)EU( (l, - c>..) 
for (x, >.) E Z. By applying (4.3), we have 

f(x) = f(x, 1) = sup ((l, 
(l,c)EU 

Thus the desired result follows. 

-c) = sup h(x). 
h=(l,c)EU 

Proposition 4.2, Each function FE :F1 is H*-convex. 

D 

The scheme of the proof of Proposition 4.2 is similar to the scheme of the proof 
of Proposition 4.1 presented in [2]. We need the following assertion in order to realize 
this scheme. 

Lemma 4.3. Let g: R~ --+ R+oo be a l.s.c sublinear function such that g(O, 1) < 
+oo and the function P,1 H g(p1, /-t2) is increasing for each f.t2 :::: 0. Then there exists 
a closed convex set v+ E R 2 such that g(pl' /-L2) = SUPv=(Vi,V2)EV+ Vlf.tl + V2J.!2 for 
each (Pl, P2) E R~ and v1 :::: 0 for each v E V+. 

Proof. Let 9+ be a function defined on R 2 by 

(PI, P2) E R 2 , !-L2 :::: 0 
(Pl>P2) E R 2, f.J2 < 0 

where 1-LT = max(p1 , 0). It is easy to check that 9+ is a sub linear l.s.c function defined 
on R 2 . Thus there exists a convex closed set V+ = 8g+(O) such that 9+(f-Lt,f-L2 ) = 
SUPvEV VI/-Ll + V2/-t2· Let v E v+. Then for each /-Ll < 0 we have (with P2 = 1) 

VIJ.!l + V2::; 9+(/-Ll, 1) = g(O, 1) < +oo. 
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Hence v1 ;::: 0. For any vector (J.L1,J.L2) E R~ we have: 

g(J.Lb f.L2) = 9+(J.Lr, J.L2) = sup V1J.L1 + V2J.L2· 
vEV+ 

Since VI ;::: 0 for each v E v+, the desired result follows. 

Proof. (of Proposition 4.2): Consider the set 

D 

U = {(l, c) : (l, x) - c.X ::; F(x, A) for all (x, A) E R~ x R+} (4.5) 

We need to show that F(y, v) = sup(!,c)EU( (l, y) - cv) for all (y, v) E R~ x R+· 
Let (y, v) E R+ x R+ be a fixed vector. Let g be a sublinear function defined on 

the cone R~ by 

Since F is a Ls.c sublinear function it follows that the function g is l.s.c sublinear as 
well. Since the function x 1---t F(x, A) is increasing for each >.. > 0 it follows that the 
function p,1 1---t g(J.L11 p,2 ) is increasing for each p2 . We have also g(O, 1) = F(O, v) = 
vF(O, 1) < +oo. It follows from Lemma 4.3 that there exists a set V+ E R 2 such that 

(For the definition of the vector ~ see (3.3).) 
y 

Let us check that for all (x, >..) E R+ x R+ and for each v = (vt, v2 ) E V+ : 

F(x, >..) ;::: (x, >..). (4.6) 

First assume that v1 = 0. Let x E R+.. Since the function x 1---t F(x, >..) is increasing, 
we have for >.. > 0: 

>.. >.. 
hv(x, .A)= v2-::; g(O,-) = F(O, >..)::; F(x, >..). 

1/ v 

Now assume that v1 > 0. In such a casey i- 0. In fact if y = 0 then for all t-t1 > 0 we 
have, with Jt2 = >../ v : 

V1J.L1 + V2Jt2 ::; g(J.Lb Jtz) = F(O, Jt2v) = F(O, A.) = >..F(O, 1) < +oo 

and we obtain a contradiction to the inequality v1 > 0. If F(x, >..) = +oo then the 
inequality (4.6) holds. Assume now that F(x, .A) < +oo and (4.6) does not hold for 
the vector (x, >..). Then there exists a number (3 such that hv(x, >..) > (3 > F(x, >..). 
We have 

>.. >.. 
v2- ::; g(O,-) = F(O, .A) ::; F(x, >..) < (3. 

v 1/ 
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Since 

( ) ( 1 } A . Xi A 
hv x,A =v1 -,x +v2-=v1 mm -+v2-

y v iET(y) Yi v 
(4.7) 

and hv (x, A) > {3, it follows that 

Therefore 

Since the function x 1--+ F(x, A) is increasing we have 

1 A 1 A A f3 > F(x, A) ;:::: F( -(/3- v2-y, A) = g( -(/3- v2-y,-) 
~ v ~ v v 

Thus we have a contradiction which shows that (4.6) holds. Let l = vdy and c = 
-v2jv. It follows from (4.6) that (l,c) E U where U is defined by (4.5). Hence we 
have 

F(y, v) = g(1, 1) = sup v1 + v2 = sup hv(Y, v) ::; sup (l, y) - cv. 
v=(vt.v2)EV+ vEV+ (l,c)EU 

On the other hand the definition of the set U shows that 

sup (l, y) - cv ::; F(y, v). 
(l,c)EU 

Thus the desired result follows. D 

Theorem 4.2. A function f: R+-+ ~00 with domf 'f. 0 isH- convex if and 
only iff is a l.s.c !CAR function. 

Proof The proof directly follows from Proposition 3.2, Lemma 4.1, Lemma 4.2 
and Proposition 4.2. D 

REMARK 4.1. Clearly the functions f = +oo and f = -oo are H-convex. 

Theorem 4.3. Let f : R+ -+ R+oo. The equality f = f'i* holds if and only iff 
is an !CAR function. 

Proof It follows immediately from Theorem 2.1, Theorem 4.2 and Remark 4.1. 
D 
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Consider now £-conjugate functions f£. By definition 

f£(l) = sup (min lixi- f(x)). 
xER+ iET(l) 

(4.8) 

We indicate some simple properties of the conjugate functions. For each nonempty 
subset I of the set N = {1, 2, ... , n} consider the cone 

R~+ = {x E Rf.: Xi> 0, (i E I), Xi= 0 (if. I)}. (4.9) 

The restriction of a function g : R+. -t R+oo on the cone R~+ is denoted by 9I. Let 
f : Rf. -t R+oo. The following assertions hold. 

1) The function f£ is CAR; 
2) The restriction off£ on the cone R~+ is ICAR for each I. 
3) Let l E R+., I C T(l) and the vector l1 be defined as follows: 

if i E I 
if i '/.I. 

Then fL(li) ~ f£(l). Indeed since I= T(li) C T(l) we have 

Thus if is increasing then f'i(li) = JL(l) for all I C N. The following example 
shows that the function f£ is not necessarily increasing and therefore not necessarily 
I CAR. 

EXAMPLE 4.1. Let f be a function defined on R 2 by f(x) = min(x1,x2), e1 = 
(1, 0), l = It is dear that l > e1 . We have 

f£(el) = sup(x1 - min(x1, x2)) =sup max(O, X1 - x2) = +oo. 
X X 

f'i(l) = sup(min(x1,x2)- min(x1,x2)) = 0. 
X 

Thus f£(el) > f£(e2)· 

In the next section we give a description of the £-conjugate function for increasing 
positively homogeneous (IPH) functions. 

5. IPH functions and thei:r support sets. A function p : R+. -t R+oo is 
called positively homogeneous if p(Ax) = Ap(x) for all x E R+. and A> 0. Clearly an 
increasing positively homogeneous (IPH) function is ICAR. It follows from Theorem 
4.2 that for each l.s.c IPH function there exists a set U C R+. x R+oo such that 

p(x) = sup ((l,x)- c) for all x E R~. 
(l,c)EU 

We have for each A > 0: 

Ap(x)=p(Ax)= sup (l,Ax)-c=A sup ((l,x)-~) forall xERf.. 
(!,c)EU (!,c)EU A 
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Thus 

c 
p(x) = sup ((l,x)- -d for all x E R+.. 

(l,c)EU A 

(5.1) 

It follows from (5.1) that there exists a set VCR+ such that p(x) = sup1Ev(l, x) for 
all x E R+ so 

p(x) = sup{(l,x): l E s(p,L)} for all x E R+ (5.2) 

where s(p, L) is the support set of the function p (see Definition 2.2): 

s(p,L) = {l E R+: (l,x) ~ p(x) for all x E R+.}. 

The equality (5.2) shows that each IPH function pis abstract convex with respect 
to the set L of all functions of the form (2.1). Clearly the converse is also true: an 
abstract convex with respect to L function is IPH. 

Proposition 5.1. Let p be an !PH function. Then p£ = Os(p) where 8(U) is the 
indicator function of a set U C R+: 

6u(l) = { +~ if lEU 
if l r¢ u. 

Proof. It easily follows from .. the positive homogeneity of p. D 

Thus a description of £-conjugate with respect to an IPH function p is reduced 
to a description of abstract convex with respect to L sets, that is (see Definition 2.2 
and Remark 2.1) subsets U of the set L which enjoy the following property: there 
exists an IPH function p such that U = s(p). 

First we discuss some properties of the set L. Of course we can identify this 
set with the cone R+. However we have to distinguish the algebraic, ordering and 
topological properties of the set L of vectors l E R+ and the set of min-type functions 
belonging to L which are generated by vectors l E L using (2.1). Note that the conic 
structure of the set R+ is isomorphic to the conic structure of the set L. Thus for 
), > 0 the function x 1--t (,\l, x} which is generated by the vector A.l is equal to the 
function A.l where l(x) = {l, x). (Recall that we use the same notation for both a 
vector and the function generated by the vector.) So we can identify Land R+ only 
as conic sets. 

Let us consider the usual 'functional' order relation C:: on the set L: 

DEFINITION 5.1. For l\ l 2 E L 

l 1 C:: 12 {::::::} l 1 (x) ~ l 2 (x) for all X E R+.. 

Proposition 5.2. For l1 , l2 E L we have l1 C:: l2 if and only if 

Tczt) C TUZ) and l} ~ lT for all i E TW ). (5.3) 
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Proof. 1) Let l1 !:::: l2 • Assume T(ll) ct. T(l2 ). Then there exists j E T(ll) 
such that j (/. T(l2 ). Take a vector x E R+ such that Xi = 1 for i E 7(l2) and 
Xj = 0. Then l1 (x) = 0 and l2 (x) = miniE7(!2) q > o. Since l1 (x) < l2 (x) it follows 
that the inequality l1 !:::: l2 is not valid. We have a contradiction which shows that 
7(l1) C T(l 2 ). Now assume that there is k E 7(l1) such that ll < l~. Take a vector 

1 r 
y such that Yk = 1 and Yi >~for all i E T(ll), i # k, and Yk > l~ for all i E 7(l2). 

Then 

and we have a contradiction again. Thus (5.3) holds. 
2) Now assume that (5.3) is valid for vectors l1 and l 2 • For x E R+ we have 

l 1 (x) = min l}xi > min l}xi > min l~Xi = l2 (x). 
iET(ll} - iE7(12 } - iE7(12 } 

D 

In order to describe support sets we need the following definitions. 

DEFINITION 5.2. A subset U of the ordered set Lis normal if 

(Compare this definition with Definition 3.1.) 

DEFINITION 5.3. A subset U of the set Lis closed-along-rays if 

An> 0, AnX E U (n = 1,2, ... ) and An-t A ==> AXE U. 

Definition 5.3 is consistent with the conic structure of the set L which is isomor­
phic to the conic structure of the set R+. 

Proposition 5.3. A subset U of the ordered set L is L-convex if and only if U 
is closed-along-rays and normal. 

Proof. It is easy to check that an £-convex set is closed-along-rays and normal. 
Now let U be a closed-along-rays and normal subset of the cone L. We have to show 
that the inequality 

l(x) ~sup l'(x) for all x E R+ 
l'EU 

implies the inclusion lEU. Equivalently we need to show (see Proposition 2.1) that 
if l E L and l (/. U then there is a x E R+ such that l(x) > sup1,eu l'(x). Let us 
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consider such a vector l rf_ U. Since U is closed-along-rays there is an c > 0 such that 
1 

(1- c)l rf_ U. Let x = (x1, 0. 0 ,xn) = (I- c)l that is 

1 
Xi= (1 _ c)li for all i E T(l)), Xi = 0 for all i rf. T(l). 

We have l(x) = miniEI(I) liXi = 1/(1- c) > l. Now let l1 E U. Since U is normal the 
inequality l' ~ (1 - c)l is not true. Applying Proposition 502 we can conclude that 
either 

T(l') rt. T( (1 - c )l) = T(l) (5.4) 

or 

T(n c T(l) but 3 io E T(l) such that ( < (1- c)lio· (505) 

Assume (5.4) holds. Then we can find an index i 1 E T(l') such that i 1 rJ_ T(l). Since 
xi' = 0 we have (l',x) = 0 < (l,x). Now assume that (5.5) is valid. Then Xi 0 > 0. 
Hence 

l'(x) = min z:xi < z: Xi < (1- c)li Xi = 1. iEI(l') . - •o o o o 

Thus we have constructed a vector x with the property 

l(x) > 1 2: sup l 1(x). 
I'EU 

D 

REMARK 5.1. We say that a subset u of the set L is pointwise dosed if zk E 

U (k = 1, 2, ... ) and lk -+k-++oo l implies l E U. It follows directly from the definition 
of abstract convex sets that an £-convex set is pointwise dosed. So Proposition 5.3 
shows that a normal dosed-along-rays subset of L is pointwise closed. 

Theorem 5.1. A function g: L-+ R+oo is L-conjugate with respect to an !PH 
function p if and only if g coincides with the indicator function of a normal closed­
along-rays subset of L. 

Proof It follows directly from Proposition 5.1 and Proposition 5.3. D 

Consider now IPH functions defined on the cone R++· Let L be the set of all 
functions of the form x-+ (l, x) with l 2: 0. 

Theorem 5.2. {9] Let p be an !PH function defined on R++· Then 

- 1 
s(p, L) = { x E R++ : p(-) 2: 1}. 

X 
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Let p be an IPH function defined on R+.. For each nonempty I C N = {1, ... , n} 
consider the restriction PI of the function p on the cone R~+ defined by (4.9). Let 
L1 = {l E L : /(l) = I}. 

Proposition 5.4. Let p be an IPH function defined on R+.. Then 

s(p,L) = U I 1 
{x E R++: PI(-)~ 1}U{O}. 

X 
I eN, I# 

Proof. By applying Theorem 5.2 we have: 

s(p, L) = {l E L: (l, x} ~ p(x) for all x E R+.} 

= U {l C L, 'T(l) =I: (l,x} ~ p(x) for all x E R~+} U {0} 
ICN,I=/-0 

= U {lELI:lEs(p~,LI)}U{O} 
I eN, 1=1-0 

= U {xER~+: PI(.!:_)~ 1}U{O}. 
X 

ICN, 1=1-0 

The proof is complete. 

Let us give an example. 

0 

EXAMPLE 5.1. Let p(x) = EiEN aiXi with ai > 0 for all i E N. We have for 
nonempty I C N: PI(x) = EiEI aiXi. Thus 

and 

s(p,L)= U {xER~+:L:~ ~1}U{O}. 
ICN,I=/-0 iEI ' 

In particular if n = 2 then s(p, L) is the union of zero and three sets: two of them are 
segments on the coordinate axes: 

The third set is 
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