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Abstract. It is well known that various properties of constrained optimization, such as con­
verse Karush-Kuhn-Tucker and duality, remain valid when convex hypotheses are much relaxed, e.g. 
to invex. But convex does not need derivatives, whereas invex does. However, there is a prop­
erty intermediate between convexifiable (by transformation of the domain) and in vex, which gives a 
nondifferentiable extension of invex. Its properties will be surveyed. 
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1. Introduction. This survey describes the relations between invex functions 
and some other related functions, namely functions convexifiable by a diffeomor­
phism of the domain space, and an intermediate class of protoconvex functions, which 
give an invex analog of nondifferentiable convex functions. Protoconvex functions sat­
isfy a basic alternative theorem, from which follow necessary and sufficient conditions 
for a class of constrained optimization problems. Under some restrictions, a local pro­
toconvex property follows from invex. Jeyakumar and Mond's V-invex generalization 
of invex is shown to relate to a scaling of a constraint system. 

A differentiable vector function F: Rn --+ Rk is invex if 

(Vx,p) F(x)- F(p) ~ F 1(p)ry(x,p), (1.1) 

defining~ by an order cone K C Rk. For the minimization problem: 

MIN f(x) subject to - g(x) E S, (1.2) 

let f = (f, g) and K := R+ x S (or K := Q x S) iff is vector-valued, and MIN denotes 
weak minimum with order cone Q). It is well known [6] that the invex property 
makes necessary Karush-Kuhn-Tucker (KKT) conditions sufficient for a minimum, 
and also suffices for duality results. Derivatives can be relaxed to Clarke differentials 
for Lipschitz functions. 

Now F is convexifr;(x,p) = x-p, and a convex function need not be differentiable. 
There are several variants of invex that do not require derivatives. Current progress 
is described. With suitable definitions, 

(without derivatives) (with derivatives) 

convexifiable :::} protoconvex :::} in vex 

Basic Alternative Theorem Converse KKT 

Necessary f3 Sufficient Lagrangian Conditions 
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2. Main Definitions and Results. F is convexifiable if H := Fo¢>- 1 is convex, 
for some invertible transformation¢. From H convex, for 0 <a< 1, 

where 

(1- a)F(p) + aF(x) = (1- a)H(¢(p)) + aH(<jJ(x)) 
;=:: H((l- a)¢(p) + a¢;(x)) 

= F(~(a, x,p)), 

~(a,x,p) := a-1 ((1- a)¢;(p) + a¢;(x)) 

(= (1- a)p +ax ifF is convex). 

If ¢; is differentiable, then there exists 

(2.1) 

(8/8a)~(a,x,p)la=O = q;-I '(¢>(p))[¢(x)- ¢(a)]= ry(x,p) (2.2) 

The combination of the convexlike property (2.1) (see [7]) with (2.2) has been called 
protoconvex (see [5], also [4] where it was called miniconvex). 

IfF is also differentiable, then in vex follows from protoconvex by letting a -+ 0 in 
(2.2) IfF is Lipschitz, then F 1(p)ry(x,p) is replaced by Clarke's generalized directional 
derivative F 0 (p, 7J(x, , [1]. 

From (2.1) there follows the Basic Alternative Theorem [7] (see also 2, [3]) for 
a convexlike function F : r -+ Y, where r is convex, and an ordering defined by a 
dosed convex cone in Y, namely : 

(jl x E r) F(x) < 0 => (30 :1 p)pF(f);::: 0. 

Applied to problem , with intS :1 0, and = 0, it gives : 

MIN at p {:} F(x) 1- -intK {:} (30 :1 p E K*) pF(.);::: 0. 

So ( r f + ;::: 0, with r :1 0 if a constraint qualification (such as Slater's 
(3xo) - g(x0 ) E intS) is assumed. 

Iff and g are Lipschitz, then Wolfe's dual problem is: 

MAX f(u) + vg(u) such that u E S*, + .) ;::: 0. (2.3) 

Then weak duality follows from protoconvex , since 

(! + vg)(x)- + vg)(u) ;::: (! + vgt(u; 71(x, u)) ;::: 0 

if xis feasible for (1.2), and u, vis feasible for (2.3), so that f(x) ;=:: + vg(u). 

3. Relation of invex to protoconvex. 
Proposition 1. Let F E C2 be invex at p with C2 scale function r;. If quadratic 

terms dominate higher-order terms, then F is protoconvex near p. 

Proof. By shift of origin, p = 0 and F(p) = 0 may be assumed. Then the invex 
property is expressed by (Vx)F(x) ;=:: F'(O)r;(x,O). It is required to prove that 

F(x);::: F'(O)ry(x, 0) => (Va E (0, 1)) aF(x) ;::: F(~(a, x, 0). 
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To do this, expand F(x) = Ax+xT B.x and ry(x, 0) = x+xT D.x up to quadratic terms. 
The dot subscript means a matrix for each component. Then invex requires that 
B. -AD. ~ 0, where here ~ 0 for matrices means positive semidefinite. Substituting 
the trial function 

~(a,x,O) :=a(x+xTD.x) -o?xTD.x 

leads to the requirement that 

A(x + xT D.x- axT Dx) + axT B.x::; Ax+ xT B.x . 

and thus to 

(Va E (0, 1)) (1- a)(B. -AD.) ~ 0 

which is true from invex. D 

REMARK 1. Calculations with quadratic functions can only show that in vex holds 
locally. Unless the functions are positive definite, which gives convexity, the inequal­
ities can only hold in a restricted domain, until the function 'turns over'. 

One approach towards a global property is by a preliminary transformation of 
the domain, to map it into a local region. By shift of origin, p = 0 can be assumed. 
Choosing polar coordinates x = (r, B), where r = llxll and() lies on the unit sphere, a 
possible transformation of the domain is given by 

x = ~~:(x) {::} f =tanh kr, iJ =B. 

Suppose that F is a C2 vector function, and F o ~~:- 1 is invex over a local domain {in 
which quadratic terms dominate). Since in vex is invariant to a diffeomorphism of the 
domain, it follows that F is also invex, over a larger domain. 

4. V -invex. Jeyakumar & Mond [8] defined a relaxation of in vex, called V-invex. 
In the present notation, a weight function /3j(.) > 0 is assumed for each constraint 
gj(x) ::; 0, and the property is: 

(Vx)gj(x)- gj(P) ~ /3j(x)gj(p)ry(x,p). 

It suffices to assume this for constraints active at p. From this, converse KKT readily 
follows. 

However, if the real function rj(.) > 0, then 

gj(.)::; 0::} Gj(.) := rj(.)gj(.)::; 0. 

Thus, given positive functions rj, the constraints gj(.) ::; 0 are equivalent to the 
constraints G j (.) ::; 0. 

Suppose that gj(.) is invex with scale function ry(., .). If gj(p) = 0 then 

Gj(x)- Gj(p) = Gj(x) = rj(x)[gj(x)- gj(p)] 

= [rj(x)frj(p)]Gj(p)ry(x,p). 

Thus Gj(.) is V-invex with weight function /3j(x,p) = rj(x)frj(p). 
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