NON-DIFFERENTIABLE INVEX

B. D. CRAVEN*

Abstract

It is well known that various properties of constrained optimization, such as converse Karush-Kuhn-Tucker and duality, remain valid when convex hypotheses are much relaxed, e.g. to invex. But convex does not need derivatives, whereas invex does. However, there is a property intermediate between convexifiable (by transformation of the domain) and invex, which gives a nondifferentiable extension of invex. Its properties will be surveyed.

AMS subject classification. 90 C 26 .

1. Introduction. This survey describes the relations between invex functions and some other related functions, namely functions convexifiable by a diffeomorphism of the domain space, and an intermediate class of protoconvex functions, which give an invex analog of nondifferentiable convex functions. Protoconvex functions satisfy a basic alternative theorem, from which follow necessary and sufficient conditions for a class of constrained optimization problems. Under some restrictions, a local protoconvex property follows from invex. Jeyakumar and Mond's V-invex generalization of invex is shown to relate to a scaling of a constraint system.

A differentiable vector function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is invex if

$$
\begin{equation*}
(\forall x, p) F(x)-F(p) \geq F^{\prime}(p) \eta(x, p) \tag{1.1}
\end{equation*}
$$

defining \geq by an order cone $K \subset \mathbb{R}^{k}$. For the minimization problem:

$$
\begin{equation*}
\text { MIN } f(x) \text { subject to }-g(x) \in S \tag{1.2}
\end{equation*}
$$

let $f=(f, g)$ and $K:=\mathbf{R}_{+} \times S$ (or $K:=Q \times S$) if f is vector-valued, and MIN denotes weak minimum with order cone Q). It is well known [6] that the invex property makes necessary Karush-Kuhn-Tucker (KKT) conditions sufficient for a minimum, and also suffices for duality results. Derivatives can be relaxed to Clarke differentials for Lipschitz functions.

Now F is convex if $\eta(x, p)=x-p$, and a convex function need not be differentiable. There are several variants of invex that do not require derivatives. Current progress is described. With suitable definitions,

(without derivatives)		(with derivatives)
convexifiable \Rightarrow protoconvex	\Rightarrow	invex
\Downarrow	$? \Leftarrow$	\Downarrow
Basic Alternative Theorem		Converse KKT

Necessary \mathcal{G} Sufficient Lagrangian Conditions

[^0]2. Main Definitions and Results. F is convexifiable if $H:=F \circ \phi^{-1}$ is convex, for some invertible transformation ϕ. From H convex, for $0<\alpha<1$,
\[

$$
\begin{align*}
(1-\alpha) F(p)+\alpha F(x) & =(1-\alpha) H(\phi(p))+\alpha H(\phi(x)) \\
& \geq H((1-\alpha) \phi(p)+\alpha \phi(x)) \\
& =F(\xi(\alpha, x, p)), \tag{2.1}
\end{align*}
$$
\]

where

$$
\begin{aligned}
\xi(\alpha, x, p) & :=\alpha^{-1}((1-\alpha) \phi(p)+\alpha \phi(x)) \\
& (=(1-\alpha) p+\alpha x \text { if } F \text { is convex }) .
\end{aligned}
$$

If ϕ is differentiable, then there exists

$$
\begin{equation*}
\left.(\partial / \partial \alpha) \xi(\alpha, x, p)\right|_{\alpha=0}=\phi^{-1 \prime}(\phi(p))[\phi(x)-\phi(\alpha)] \equiv \eta(x, p) \tag{2.2}
\end{equation*}
$$

The combination of the convexlike property (2.1) (see [7]) with (2.2) has been called protoconvex (see [5], also [4] where it was called miniconvex).

If F is also differentiable, then invex follows from protoconvex by letting $\alpha \rightarrow 0$ in (2.2) If F is Lipschitz, then $F^{\prime}(p) \eta(x, p)$ is replaced by Clarke's generalized directional derivative $F^{\circ}(p, \eta(x, p))$, [1].

From (2.1) there follows the Basic Alternative Theorem [7] (see also 2, [3]) for a convexlike function $F: \Gamma \rightarrow Y$, where Γ is convex, and an ordering defined by a closed convex cone in Y, namely :

$$
(\nexists x \in \Gamma) F(x)<0 \Rightarrow(\exists 0 \neq \rho) \rho F(\Gamma) \geq 0
$$

Applied to problem (1.2), with $\operatorname{int} S \neq \emptyset$, and $f(p)=0$, it gives :

$$
\text { MIN at } p \Leftrightarrow F(x) \notin-\operatorname{int} K \Leftrightarrow(\exists 0 \neq \rho \in K *) \rho F(.) \geq 0 .
$$

So $(\tau f+\lambda g)() \geq$.0 , with $\tau \neq 0$ if a constraint qualification (such as Slater's : $\left.\left(\exists x_{0}\right)-g\left(x_{0}\right) \in i n t S\right)$ is assumed.

If f and g are Lipschitz, then Wolfe's dual problem is:

$$
\begin{equation*}
\text { MAX } f(u)+v g(u) \text { such that } u \in S *,(f+v g)^{\circ}(u, .) \geq 0 \tag{2.3}
\end{equation*}
$$

Then weak duality follows from protoconvex, since

$$
(f+v g)(x)-(f+v g)(u) \geq(f+v g)^{\circ}(u ; \eta(x, u)) \geq 0
$$

if x is feasible for (1.2), and u, v is feasible for (2.3), so that $f(x) \geq f(u)+v g(u)$.

3. Relation of invex to protoconvex.

Proposition 1. Let $F \in C^{2}$ be invex at p with C^{2} scale function η. If quadratic terms dominate higher-order terms, then F is protoconvex near p.

Proof. By shift of origin, $p=0$ and $F(p)=0$ may be assumed. Then the invex property is expressed by $(\forall x) F(x) \geq F^{\prime}(0) \eta(x, 0)$. It is required to prove that

$$
F(x) \geq F^{\prime}(0) \eta(x, 0) \Rightarrow(\forall \alpha \in(0,1)) \alpha F(x) \geq F(\xi(\alpha, x, 0)
$$

To do this, expand $F(x)=A x+x^{T} B . x$ and $\eta(x, 0)=x+x^{T} D . x$ up to quadratic terms. The dot subscript means a matrix for each component. Then invex requires that B. $-A D . \geq 0$, where here ≥ 0 for matrices means positive semidefinite. Substituting the trial function

$$
\xi(\alpha, x, 0):=\alpha(x+x T D \cdot x)-\alpha^{2} x^{T} D \cdot x
$$

leads to the requirement that

$$
A\left(x+x^{T} D \cdot x-\alpha x^{T} D_{x}\right)+\alpha x^{T} B . x \leq A x+x^{T} B . x .
$$

and thus to

$$
(\forall \alpha \in(0,1))(1-\alpha)(B .-A D .) \geq 0
$$

which is true from invex.
REmark 1. Calculations with quadratic functions can only show that invex holds locally. Unless the functions are positive definite, which gives convexity, the inequalities can only hold in a restricted domain, until the function 'turns over'.

One approach towards a global property is by a preliminary transformation of the domain, to map it into a local region. By shift of origin, $p=0$ can be assumed. Choosing polar coordinates $x=(r, \theta)$, where $r=\|x\|$ and θ lies on the unit sphere, a possible transformation of the domain is given by

$$
\hat{x}=\kappa(x) \Leftrightarrow \hat{r}=\tanh k r, \hat{\theta}=\theta .
$$

Suppose that F is a C^{2} vector function, and $F \circ \kappa^{-1}$ is invex over a local domain (in which quadratic terms dominate). Since invex is invariant to a diffeomorphism of the domain, it follows that F is also invex, over a larger domain.
4. V-invex. Jeyakumar \& Mond [8] defined a relaxation of invex, called V-invex. In the present notation, a weight function $\beta_{j}()>$.0 is assumed for each constraint $g_{j}(x) \leq 0$, and the property is:

$$
(\forall x) g_{j}(x)-g_{j}(p) \geq \beta_{j}(x) g_{j}^{\prime}(p) \eta(x, p)
$$

It suffices to assume this for constraints active at p. From this, converse KKT readily follows.

However, if the real function $r_{j}()>$.0 , then

$$
g_{j}(.) \leq 0 \Rightarrow G_{j}(.):=r_{j}(.) g_{j}(.) \leq 0 .
$$

Thus, given positive functions r_{j}, the constraints $g_{j}() \leq$.0 are equivalent to the constraints $G_{j}() \leq$.0 .

Suppose that $g_{j}($.$) is invex with scale function \eta(.,$.$) . If g_{j}(p)=0$ then

$$
\begin{aligned}
G_{j}(x)-G_{j}(p)=G_{j}(x) & =r_{j}(x)\left[g_{j}(x)-g_{j}(p)\right] \\
& \geq r_{j}(x) g_{j}^{\prime}(p) \eta(x, p) \\
& =\left[r_{j}(x) / r_{j}(p)\right] G_{j}^{\prime}(p) \eta(x, p)
\end{aligned}
$$

Thus $G_{j}($.$) is V$-invex with weight function $\beta_{j}(x, p)=r_{j}(x) / r_{j}(p)$.

REFERENCES

[1] F. H. Clarke. Optimization and Nonsmooth Analysis, Wiley-Interscience, New York (1983).
[2] B. D. Craven, Mathematical Programming and Optimal Control, Chapman \& Hall, London (1978).
[3] B. D. Craven, Control and Optimization, Chapman \& Hall, London (1995).
[4] B. D. Craven, Relations between invex concepts, Proc. of Optimization Miniconference, University of Ballarat, B. M. Glover, V. Jeyakumar, and G. T. Anderson (eds),(1994), 42-53.
[5] B. D. Craven, Relations between invex properties, WSSIAA 5 (1995), 25-34.
[6] M. A. Hanson, On the sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1980), 545-550.
[7] V. Jeyakumar, Convexlike alternative theorems and mathematical programming, Optimization 16 (1985), 643-652.
[8] 豸. Jeyakumar and B. Mond, On generalized convex mathematical programming, J. Austral. Math. Soc., Series B 34 (1992), 43-42.

[^0]: *Department of Mathematics, The University of Melbourne, Vic. 3052, Australia. email craven@ms.unimelb.edu.au

