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Abstract. A controller which minimises the 1-l2 norm of the closed loop transfer function for 
a linear time invariant plant, subject to an output disturbance decoupling constraint is found. The 
problem formulation results in an optimization over a parameter Q(s) which is constrained to be 
a diagonal transfer matrix. The solution method relies on an 1-l2 isometric isomorphism between 
transfer matrices and transfer vectors. 
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L Introduction. Decoupling controllers which, in closed loop, eliminate inter­
actions between the various reference and output signals are interesting both from a 
theoretical and a practical viewpoint. Earlier work includes [5], [6], and [2]. Recent 
theoretical results in [11] give algebraic conditions for the solvability of the output 
decoupling problem, as well as a characterisation of all possible stabilising controllers 
which simultaneously satisfy a decoupling constraint. The practical problem of choos­
ing a particular decoupling controller, however, still remains. 

Decoupling may be a desirable design goal for a number of reasons. It eliminates 
the effect of interactions between outputs so that each output may be controlled 
independently so that once a decoupling precompensator has been found its possible 
to undertake independent controller design for each loop. 

This paper presents a method for determining an 11.2 optimal [14], [1] controller, 
subject to a decoupling constraint on the output. The method may potentially be 
extended to the case of non-zero closed loop off-diagonal element constraints. Solving 
for an optimal decoupling controller lends insight into the performance costs associ­
ated with a decoupling restriction. The unconstrained optimal cost can be compared 
to the constrained one and hence that associated with the decoupling constraint eval­
uated. Quantifying the cost associated with decoupling enables an understanding of 
the trade-offs involved, and hence whether decoupling is desirable. 

Work on a similar problem [15], [16], is motivated by the observation that an 11.2 

optimisation criterion may be useful for selecting a decoupling controller. The solution 
presented here exploits an alternative method of solution and overcomes the hurdle 
(15] of performing quadratic optimisation over a diagonal transfer matrix parameter. 
Specifically, we rely on and extend the work in [11]. 

The structure of this paper follows. Firstly we define decoupling ( diagonalizing) 
control, and restate results related to all decoupling controllers. We discuss the mo­
tivation for solving the 1-l2 optimal decoupling problem before defining the problem 
rigourously and presenting the solution. We finish with an example and a conclusion. 
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2. Preliminaries. 

2.1. Notation and Definitions. A column vector is indicated by an unscripted 
lower case variable, for example, v. The hermitian (conjugate transpose) and trans­
pose operators allow row vectors to be denoted as v* or vT. A subscripted lower case 
variable Vj indicates the scalar ith element of v. Superscripts distinguish different 
variables with the same base name e.g. v1 , v2 etc. 

The (i,j)th element of a matrix A is denoted by [AL,i' A diagonal transfer matrix 
Ad(s) is defined as a transfer matrix where the off-diagonal elements are zero. We 
denote as 'D, the set of all proper and stable diagonal transfer functions, that is 

'D = { Ad(s) : [Ad(s)]ij = 0 Vi::/::. j, Ad(s) E 1-locn}. 

·_~_·he symbols 1-l2 and 1-l;}- represent [24] the Hilbert spaces [23] corresponding 
to (finitely dimensioned) transfer matrices (functions) which are strictly proper and 
analytic in respectively the closed right half and closed left half complex plane C. 
The symbol £ 2 denotes the Hilbert space corresponding to the direct sum 1i2 @ 1-l;}-, 

equipped with the inner product (F,G) :~ -. F(jw)*G(jw) dw, and corre-1 100 

2ny _ 00 

sponding norm. For F E 1i, G E 1i.L it is well known [24] that (F, G) = 0, and thus 
!IF+ Gil~ = IIFII~ + IIGII~- This result will be exploited in some of the proofs below. 

In addition [24], the symbol £ 00 denotes the Banach space of matrix-valued func­
tions on C, that are (essentially) bounded on the imaginary axis. The symbol 1i00 , 

denotes the (closed) subspace of L 00 of functions which are analytic and bounded in 
the open right hand plane (ORHP). The symbol1-l~, denotes the (closed) subspace of 
£ 00 of functions that are analytic and bounded in the open left hand plane (OLHP). 
When the symbols for various transfer matrix vectorspaces are superscripted as in 
1-{~xb, 1{~ axb, vaxb or £':;/;b they refer specifically to the corresponding space of 
transfer matrices with dimensions ax b. Coprime factorisations [19], [18] are over the 
ring of proper and stable transfer matrices. 

2.2. MIMO Decoupling ControL Consider a linear time invariant (LTI) sys­
tem which is multiple-input multiple-ouput (MIMO) (p x m) open loop system, and 
the problem of finding a set of control signal vectors ui(t), each of which has dimension 
mxl, which cause the p output signal vectors yi(t), each of which has dimension pxl, 
to asymptotically track nr given reference signal vectors ri(t), with dimension px 1. 
We consider an output feedback (single degree of freedom) controller structure as in 
Figure 2.1 where the controller has access only to the reference error. The control 
must stabilise the closed loop and is allowed to depend only on past observations, that 
is, the output error. We assume also that the controller is linear and time-invariant. 

du do 
r + + y + K(s) 

+ u 

+n 

FIG. 2.1. Single Degree of Freedom Controller Structure 

Associated with this controller structure are several important transfer functions 
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[8]. The output open loop transfer function is Lo(s) :~f Pyu(s)JCuy(s) and the 
(closed loop) output sensitivity and complementary sensitivity functions are respec-

tively, So(s) :~(I+ Lo(s))-1 and To(s) :~f Lo(s)(I + Lo(s))-1 . 

A decoupled closed loop system is one in which there is no interaction between 
various references, so that a reference change for one output results in a change in only 
that output. Provided that we restrict our attention to reference signals ri(t) such that 
they have a non-zero component in the ith entry r!{t) and is zero for r;, i "1- j elsewhere, 
then we may be led to a meaningful definition of the decoupling requirement. 

A control is "output decoupling" if the control vector ui(t) generated by the con­
troller in response to a particular reference signal ri(t) for the ith output is such 
that y;(t) = 0 for all i "1- j. This is equivalent to requiring that the transfer func­
tion from the reference to the output (the output complementary sensitivity function 
To(s)) is diagonal. Since the output sensitivity and complementary sensitivity satisfy 
So ( s) +To ( s) = I, then this is also equivalent to requiring that the output sensitivity 
function, So ( s), the transfer function from the reference to the error, is diagonal. For 
a single degree of freedom controller structure as in Figure 2.I, we also have that a 
decoupling constraint implies that an output disturbance d0 (t) on one channel affects 
(via the control loop) only that output. It is also equivalent to requiring that the 
open loop transfer function Lo ( s) is diagonal. ' 

2.3. G6mez-Goodwin Parametrisation of All Decoupling Controllers. 
A necessary requirement for the existence of a decoupling controller is that the open 
loop plant be (right) invertible, that is, it must have no more outputs than inputs 
(p::::; m) and have full normal-rank. Results in [II] give sufficient and (other) necessary 
algebraic conditions for the existence of a decoupling controller, in terms of unstable 
zeros and poles and their directions. This leads to a Youla-type parametrisation 
[24] of all decoupling controllers and all achievable corresponding decoupled transfer 
functions. The main results are reiterated here briefly for completeness. 

We assume that the open loop plant P yu is single degree of freedom output de­
couplable and has coprime factorisation N(s)D(s)- 1 = D(s)-1 N(s). Note that right­
invertible plants are generically decouplable with a single degree of freedom. Then, 
as before, there exists [11] a double coprime factorisation of a decoupling controller 
Kuy = P(s)L(s)-1 = L(s)-1 F(s) which both satisfies the double Bezout identity 
D(s)L(s) + N(s)P(s) = L(s)D(s) + P(s)N(s) = I and for which the output sensi­
tivity and complementary sensitivity functions, respectively, So(s) = N(s)F(s) and 
To(s) = L(s)D(s), are both diagonal. 

All stabilising (but not necessarily decoupling) output feedback controllers are 

Kuy(s) = [.D(s)- Q(s)N(s)] - 1 [P(s) + Q(s)L(s)], 

= [P(s) + D(s)Q(s)] [L(s)- N(s)Q(s)]- 1 , 

with Q(s) E 1i00 • 

(2.I) 

Furthermore, all achievable sensitivity functions So(s) from output disturbance to 
error are given by 

So(s) = L(s)D(s)- N(s)Q(s)D(s). (2.2) 

Since L(s)D(s) is already diagonal, a diagonal restriction on the closed loop So(s) is 
equivalent to requiring N(s)Q(s)D(s) to be diagonal. 
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The results in [11] show that all stabilising and decoupling controllers can be 
written as (2.1) above but with the additional restrictions that 

Q(s) = RN(s)Qd(s)Rjj(s) + Z(s), 
where Qd(s) E V, and RN,Rjj are such that 

N(s)RN(s) SN(s) 
and Rjj(s)D(s) = Sjj(s). 

(2.3) 

In the above SN(s), Sjj(s) are respectively, the right and left diagonal structures 
[6] of respectively, N(s) and D(s). Also, Z(s) E 1£00 is such that N(s)Z(s) = 0. 
It i~ straightforward to find a P(s), L(s) satisfying the Bezout identity and the de­
coupling constraint once any stabilising decoupling controller ICyu ( s) has been found. 

Proof See [11], theorem 5.3 and remark 5.5. 0 

2.3.1. Decoupling Control: Spreading of Poles and Zeros. It is well 
known [5], [12], [10] that a decoupling requirement may result in the spreading of 
poles and zeroes in the closed loop system. Specifically, for each non-minimum 
phase zero Zk in the plant, with output direction vA;, there is a non-minimum phase 
zero in the decoupled complementary sensitivity function at each (output) channel 
corresponding to each non-zero element in vA;. Also for each unstable pole Pi in the 
plant with (output) direction Wj, there is a non-minimum phase zero in the decoupled 
sensitivity function at each (output) channel corresponding to each non-zero element 
in Wj· 

Hence, for decoupled stabilising control there is spreading of unstable poles and 
nonminimum phase zeros into each channel where there is non-zero component in the 
(output) zero or pole direction. It is also well known [4], [7], [9] that the existence of 
unstable poles and non-minimum phase zeros makes control difficult in terms of the 
minimum acheivable disturbance sensitivity peak. It also places limitations on the 
minimum 1£2 norm of the sensitivity function [4], [21], [2]. 

2.3.2. Existence of Output Decoupling Controllers: Necessary Condi­
tions. If there are coincident unstable poles and zeroes for which the corresonding 
direction has a non-zero component in the same output channel, then decoupling is 
impossible. This can be seen as an extreme cost of decoupling. Restated, a necessary 
condition for decoupling is that no coincident unstable pole and zeroe for which the 
corresonding direction have a non-zero component in the same output. 

This necessary condition is also sufficient if a certain technical condition, namely 
that the geometric and algebraic multiplicity of the poles and zeros is the same, is true 
[11]. If the multiplicity condition holds, then if (and only if) there are no coincident 
unstable poles and zeroes for which the corresponding directions have a non-zero 
component in the same output channel, decoupling is possible. 

2.4. Costs of Decoupling. It is clear that the restriction of the set of controllers 
from a free parameter Q(s) E 1£00 to one which is diagonal Qd(s) E V will affect 
achievable performance. The previous section revealed that decoupling may be costly 
in terms of stability when there are coincident right hand plane (RHP) poles and 
zeroes. In addition it is shown in [2], [9] that even non-coincident open loop RHP poles 
and zeroes result in performance costs in terms of achievable 1£2 performance or peak 
sensitivity minimisation. Are there still other 1£2 performance costs of decoupling­
even in the absence of RHP poles or zeroes? How would we go about quantifying 
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them to and thus find out whether these costs are severe? Equation (2.1) gives 
a parametrisation of all decoupling controllers in terms of an unknown parameters 
Qd(s) and Z(s). This suggests the question "What would be a sensible way to choose 
particular values for those parameters?" 

2.4.1. Quadratic Tracking Error Cost. The average quadratic tracking error 
[4] is a particular example of a (quadratic) cost function defined in terms of a set of 
nr reference signals ri(t) and the corresponding controls ui(t) as follows. 

(2.4) 

Here ei(t) = ri(t) - yi(t) is the error of the system output when the output vector, 
yi(t), is required to track the ith reference signal vector ri(t). One design approach 
might be to seek the minimum quadratic tracking error cost over all allowable controls. 
This is the minimum achievable error for a given set of reference signals, with no 
penalty for, or restriction on, the size of the control effort u(t) required [2]. 

z- regulated OP w-disturbances 

y- observations u-control 

FIG. 2.2. Generic Controller Structure 

This particular cost function may be expressed via the generic linear controller 
structure [24] of Figure 2.2. The generic plant Q(s) is given as 

[ z ] = [ p zw ( s) 
Y Pyw(s) ] [ : ] (2.5) 

= Q(s) [ ~ ] 

The exogenous signals are w (qxl) and the control input is u (mxl). The regulated 
output is z (r x 1), and the measured and diagonalised output by y (p x 1). The 
parametrization of all output decoupling controllers depends only on Pyu(s). 
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We define the regulated output to be the tracking error z(t) :~f e(t) = y(t)- r(t) 
and allow the exogenous disturbance w(t) to be the reference signaL The quadratic 

tracking error is then J :~f llz(t) 11; = liz( s) 11; = IITzw(s )w(s) 11; where the first norm is 
in the time domain and the latter two are in the frequency domain. The second equal­
ity follows from Parseval's theorem, and Tzw(s) is the dosed loop transfer function 
from the reference w(s) to the error z(s). 

We are interested in J* :~f inf!Cuy(s) IITzw(s)w(s)Jl; where lCuy(s) is a (LTI) 
stabilising controller. The infimal cost may be calculated for both where Kuy(s) is 
restricted to be diagonalising, as well as the unrestricted case. The latter may act as 
a benchmark against which the decoupled performance may be compared. 

3o The Optimization Problem Definition: More General Cost Fu.nc­
tim'lo In light of the previous motivating discussion we propose the following more 
general, problem definition. Note that the quadratic tracking error results in only one 
particular choice of input disturbance to regulated output transfer function Tzw ( s). In 
general, any set of disturbances to any regulated output as in Figure 2.2 is possible. In 
the generic controller structure, exogenous disturbance signals w(s) can be expressed 
as a filtered impulse with this filter absorbed into the transfer matrix Tzw(s). The 
choice of cost transfer function can be based upon design specifications or upon which 
disturbances it is important to reject from which outputs. 

A physical interpretation of the 1i2 norm ll·ll2 is of relative energy in the output 
due to an impulse or white noise input. Minimising this functional has the effect of 
making the impact of disturbances on the regulated output smalL 

The general problem enables us to answer the two motivating questions. Because 
we minimise the effect of an arbitrary disturbance on an arbitrary output in an 1i2 
norm sense. Thus, in terms of disturbance rejection, the choice of decoupling con­
troller is a "good" one. Furthermore we can solve the without a decoupling 
constraint, and hence quantify the additional costs of the decoupling requirement. 

The problem may now be stated formally as follows. We would like to design an 
observer-based controller u = -lCuy which observes the state via the measure­
ment variable y and minimises the overall 1i2 norm of Tzw(s) from w to z subject 
to the closed loop being stable and the off-diagonal elements of the sensitivity and 
complementary sensitivity transfer functions are each zero. 

Note that the feedthrough term Dzw of Pzw must be such that Dzw = 0 for the 
1i2 problem to be well-posed. Furthermore the feedthrough term ofPyu given by Dyu 
may as well be 0, since the control variable u is known. 

3.1, AU Achievable Thansfe:r Functions. We next determine a parametrisa­
tion of all achievable Tzw(s) from disturbance w to regulated output z. 

Lemma 3.1. Consider a generalised p-output, m-input (p<m) plant Q(s) as in 
equation (2.5), with Pyu(s) of rank p, having coprime factorisation N(s)D(s)- 1 . The 
set of all acheivable transfer functions Tzw (s) from a q-input disturbance vector to an 
r-output cost vector, such that the controller is stabilising and results in output dis­
turbance decoupling (that is, T0 (s), So(s) E DPXP) is given by an affine combination 
of transfer function matrices of the form 

Tzw(s) = F(s)- Gd(s)Qd(s)Hd(s)- G(s)Q(s)H(s) 
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Proof. Using a controller Kuy(s) gives u = -Kuy(s) [I+ Pyu(s)Kuy(s)]- 1 Pyw(s )w 
and hence Tzw(s) = Pzw(s)- Pzu(s)Kuy(s) [I+ Pyu(s)Kuy(s)r1 Pyw(s) 

For Kuy(s) as in (2.1) we have Kuy(s) [I+ Pyu(s)Kuy(s)r 1 = [P(s)- D(s)Q(s)] D(s), 
where Q(s) satisfies the constraints of equations (2.3) resulting in 

Tzw(s) = Pzw(s)- Pzu(s) [P(s)- D(s)Q(s)] D(s)Pyw(s), (3.2) 

subject to Q(s) = RN(s)Qd(s)R.D(s) + Z(s), 

Z(s) E 1-t:;:/v, 

0 = N(s)Z(s). 

Recall [11], that in general, for a non-square plant Pyu(s) with right coprime 
factorisation N(s)D(s)-1 there exists a unimodular tranformation Um(s) such that 
Pvu(s)Um(s) = [ Pvu(s) 0 ] and N(s)Um(s) = [ N(s) ovxn ] with Pvu(s), N(s) 
non-singular for almost all s. 

Furthermore, Um(s) can be decomposed into Um(s) = [ Up(s) Un(s) J with 
Up(s) E t-c:;:,xp being composed of the p leftmost columns of Um(s) and Un(s) E t-c:;:,xn 
being composed of then rightmost columns of Um(s). 

A necessary and sufficient condition for N(s)Z(s) = 0 is that 

for some Q(s) where Ov is apxp square zero matrix. Now the requirement that Z(s) 
be stable is equivalent to Z(s) being stable, so all stable Z(s) satisfying N(s)Z(s) = 0 
can be parametrised as Z(s) = Un(s)Z(s), with Q(s) E 1-l~xv. 

Substitituting the above into equation (3.2) gives 

This can be seen to be equal to the first expression (3.1) provided 

F(s) = Pzw(s)- Pzu(s)P(s)D(s)Pyw(s), 

Gd(s) = Pzu(s)D(s)RN(s), 

Hd(s) = Sb(s)Pyw(s), 

G(s) = Pzu(s)D(s)Un(s), 

and ff(s) = L(s)Pyw(s). 

This completes the proof. D 

We then seek the Qd(s) and Q(s) to minimise the 1-l2 norm of the MIMO transfer 
function Tzw ( s), that is 

J* = inf IIF(s) + Gd(s)Qd(s)Hd(s) + G(s)Q(s)H(s)ll2 (3.3) 
QdED,QE1-l= 

This has a known solution [12], [1), (24], [15] when there is no diagonal restric­
tion. A standard method is via (Wiener-Hopf) spectral factorization [13], (22]. If the 
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regulated output is the also the output error, then the problem reduces to a set of 
uncoupled single-input single-output Hz optimisation problems- the solution of which 
is trivial. However, the interpretation of the results is more interesting [2]. 

3.2. Solution With Diagonal Restriction. The solution to the optimisation 
problem (3.3) when there is a diagonal restriction relies on three key facts. Firstly, 
we note that the }{2 norm of an arbitrary pxm matrix is the same as that of another 
pm x 1 vector formed from the matrix by stacking columns. Secondly, we can expand 
G(s )Qd(s)H(s) as the sum of products of fixed transfer matrices and free scalar trans­
fer functions. We can then convert the problem into an H 2 transfer matrix matching 
problem where the parameter vector may have a lower rank than the target function. 
Thirdly we also use the fact that for every tall matrix there exists a (stable) uni­
~>ary matrix, some of the columns of which are orthogonal to the tall matrix, so that 
premultiplication yields a square matrix of entries above a matrix of null entries. 

3.2.1. Main Results: Isometric Isomorphism. We formalise these key facts 
with three following lemmas. The first lemma is about the relationship between a 
matrix and a vector formed from that matrix by stacking columns. 

Lemma 3.2. Consider the map given by M : 1i~xb--+ H~bxl as [M (G(s))Jai+j,l = 
[G(s)L,j· The map M is an isometric isomorphism, so that liM (G(s)) liz= IIG(s)lh· 

Proof. The proof follows easily from the definition of M and the H 2 norm. See 

~· D 

3.2.2L Diadic Expansion. The next lemma exploits the previous result and 
allows us to re-express the problem as an (extended) H 2 model matching problem 
with a target function with more elements than the free parameter. 

Lemma 3.3. The H2 norm of Tzw(s) of equation 
expressed in the following form: 

IITzuJ ll2 = !lf(s) + R(s)q(s)l!2 

1) in theorem 3.1 may be 

where f(s) is a qrxl vector transfer function matrices R(s) is in H~x(n+l)p and 
q(s) is an arbitrary matrix in H~+l)pxl. 

Proof. Follows readily from the application of lemmas 3.1 and 3.2. See [3]. D 

The above result implies that we can translate the problem to an equivalent one 
of 

= min llf(s)- R(s)q(s)ll2 
qEH2 

(3.4) 

where f ( s) is a fixed transfer vector, R( s) is a tall matrix and q( s) is a free vector of 
stable transfer functions. 
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3.2.3. Unitary Premultiplier. This next lemma is required in order to solve 
the extended model matching problem (3.4). 

Lemma 3.4. For every tall matrix E(s) E £~b, with a> b there exists a unitary 
U(s) E 1i~xa such that U(s)*U(s) =I and 

[ E(s) ] U(s)E(s) = Q(a-b)xb , 

where E(s) E C~b and 0 E 1i~-b)xb is an identically zero matrix. 

Proof. See [3] for a constructive proof. D 

REMARK 3.1. The statement of this lemma is reminiscent of theorem 2 of [6], 
but with bicausal (unimodular) strengthened to unitary. 

3.2.4. Conversion to Standard Problem. The above results allow us to de­
scribe a procedure for determining the optimal 1i2 cost subject to the decoupling 
constraint as well as finding a controller which acheives that optimal cost. This prob­
lem is solvable by an extension of, for example, the "tall matrix filtering problem" in 
[19]. The necessary algorithm extension follows. 

Note that R(s) has rank at most (n + 1)p. Since R(s) is a tall matrix then by 
lemma 3.4, there exists a unitary qrxqr matrix, V(s) E 1i00 , such that V(s)R(s) has 
its last qr-(n + 1)p rows identically zero and first (n + 1)p rows equal to some R(s). 
Multiplication by a unitary matrix V(s) preserves the 1i2 norm, so that 

J* = inf llv(s)f(s)- [ oqf-~sJ_l)p ] q(s)ll 
q~E~ 2 

Now let jV(s) :1~,£ V(s)f(s) be decomposed compatibly as jV(s) = [ J;:,(s)* Jt(s)* ]*. 
Here J;:, ( s) is composed of the upper (.n + 1 )p elements of jV ( s) and ft ( s) is composed 
of the lower elements. It is then obvious that 

J* - . f II [ J::. ( s) ] [ R( s) ] ( ) II - q(;)!:1l2 Jt(s) - oqr-(n-l)p q s 2' 

= llft(s)ll2 + inf IIJ~(s)- R(s)q(s)ii 2. 
q(s)E1l2 

The first term in the above is independent of q( s) so we now seek the solution to a 
- def -

new problem, namely J*: = inf llf~(s)- R(s)q(s)ll2· We have thus converted a 
q(s)E1l2 

problem where the number of parameter elements was less than the number of target 
function elements, into a more standard problem [19] where this is no longer true. 

3.2.5. Solution of the Standard Problem. This problem is now soluble by 
the techniques in (19] as follows. We perform an inner-outer factorisation on R(s) 
leading to R(s) = Ri(s)Ra(s), where Ri(s),Ra(s) E 1i00 , Ri(s)Ri(s) =I and Ra(s) 
is outer. Premultiply the normed quantity in the previous expression by the norm-

preserving Ri(s) E 1ii" to give ]* :~f inf IIRi(s)f~(s)- R(s)q(s)ll2· We decom-
q(s)E1l2 
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pose r(s) :~r Ri(s)f~(s) into jU(s) = l:}(s) + J:(s) where J;-;(s) E 1-l:}-. 

- def 
It follows that J*: = inf IIJ:(s) + r:(s)- Ro(s)q(s)ll2 

q(s)E1-I.oo 

= IIJ:(s)ll2 + inf ll!;'(s)- Ro(s)q(s)!lz· 
q(s)E1-I.oo 

Since R0 (s) is outer, it has aright inverse in 1-loo and inf IIJ;'(s)- R 0 (s)q(s)ll2 = 0; 
q(s)E1-I.oo 

the latter is established in [4]. One q(s) which acheives the infimum is given by 
q*(s) = R~nv(s)f:(s) where R~nv(s) is any right inverse of R 0 (s). This q*(s) may be 
improper, however similarly to [4], it possible to approach q*(s) arbitrarily closely in 
thP . norm by a sequence of proper qk(s) = q*(s)(Eks + 1)-doo for some integer d00 

and a sequence of positive Ek -+ 0. 
The optimal Qd(s)*,Q*(s) for problem (3.3) corresponds to q*(s) according to 

the inverse of the (isometric) map Mq : 1-l~xp ffi vpxp-+ 1l~+l)pxl, given by 

Mq (Q(s), Qd(s)) = q(s), 

( [Q(s)] .. 
where [q(s)]p(i-l)+j,l = l [Qa(s)]~j 

This means that { Q(s), Qa(s)} = M 01 (q(s)) 

qp+l 
is gi.ven by Q(s) = [ 

q1 (s) 

q(n-1)~+1 

for 
for 

1.::; i.::; n, l_::;j_::;p 

i = n + 1, l_::;j_::;p 

q2(s) qp(s) 
qp+2(s) q2p(s) 

We can now substitute an optimal Qd(s), Q(s) into the expression for Kuy(s) to 
give us an optimal controller. This enables us to calculate the cost of requiring a 
controller to be decoupling in terms of achievable 11.2 performance. We have thus 
developed a solution to the "Optimal 1-l2 Decoupling Problem". 

4. Example. Consider the following open plant Pyu(s ). 

[ 
1-s 

SJ-3 l 
Pyu(s) = \s+l)(s-2) (s-1-l)(s-2) 

1-s 2(s+4) 
(s+l)(s+2) (s+2)(s-2) 

[ 
1-s 1 l [ s-2 rl (s+3)(s+l) s+l s+3 s~2 -(s-2)(s-1) 2(s+4) 0 

( s+l)(s+2)(s+3) (s+2)(s+3) s+3 

= [ 

s-2 J -1 [ (-s+l) 1 

l s+3 0 (s+3)(s+l) s+l 
0 s-2 -(s-2)(s-1) 2(s+4) 

s+3 (s+l)(s+2)(s+3) (s+2)(s+3) 

The system has a non-minimum phase (NMP) zero at s = 1 with direction 
[ 5 -3 ] . It also has an unstable pole with geometric multiplicity two at s = 2 

with directions [ 1 0 J * and [ 0 1 ] * Decoupling does not result in spreading of 
poles because the associated directions are canonical, but it does result in zero spread­
ing. 
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FIG. 4.1. Optimum Decoupled Step Response 

4.1. A decoupling controller. We next find a particular (decoupling) con­
troller lCuy ( s). We let 

(-s+3) l (s-2) 

~· lB=2J 

which gives Pyu(s)lCuy(s) diagonal and (I +PyulCuy)-1 stable. This was found using 
the model reference dynamic decoupling MIMO design methods presented in [12] and 
enables us to find a parametrisation of all stabilizing and decoupling controllers in 
terms of a coprime factorisation of lCuy ( s) and a free parameter Q ( s). 

2 roo 
The cost function is given by J = L lo yi(t)T yi(t) + a·ui(t)T ui(t) dt, where 

i=1 ° 
yi(t) is the response to to a step disturbance on output channel i . Here ui(t) is the 
difference between the control at each point in time and the steady state u~8 required 
to reject each disturbance and a is a weight on the control transient relative to the 
output transient. This can be expressed in the generic state space format as 

In the above, the s-1 terms arise due to the step disturbances. 

4.2. Optimal Responses. For a = 1 and a decoupling constraint the optimal 
step response with reference steps at t = 5 and t = 20 appears as Figure 4.1. Notice 
that the responses are, in fact, decoupled from each other- so that a reference change 
for one output does not affect the other output. The minimum decoupled cost is 
calculated as J* = 19.1. For comparison, without a decoupling constraint, the optimal 
step response is as Figure 4.2 and the minimum cost is calculated a J* = 17.0. 

Note that in both the diagonally constrained and unconstrained cases, the large 
undershoot and overshoot are due to the interactions of the unstable pole at s = 2 
and the non-minimum-phase zero at s = 1. For this example, the cost is increased by 
2.1, a percentage increase of a little more than 10%, by the decoupling requirement. 
In this case, we might say non-rigourously, that the predominant 1i2 cost is due to 
the pole-zero interaction, with little due to the decoupling requirement. 
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FIG. 4.2. Unconstrained Optimum Step Response 

4.3. Further Research. 

4.3.1. General Decoupling Problem. In the problem presented in this paper, 
the decoupling requirement was for the observed outputs. A more general problem 
would be to require the transfer function from a fixed but arbitrary set of input distur­
bances or references to a fixed but arbitrary set of decoupled outputs to be decoupled 
or partially decoupled and allow the set of observed available to the controller to be 
different from the decoupled outputs. 

It is true that if one such decoupling controller exists then it is possible, in an 
algebraic framework, to parametrise all general decoupling controllers in terms of 
that controller and a diagonal parameter Qd(s) (again with a free Q(s) for a non­
square plant). Again, all acheivable transfer functions from the cost disturbance set 
to the cost regulated output set, can be expressed as F(s) + Gd(s)Qa(s)Hd(s) + 
G(s)Q(s)H(s), so the same techniques for solving the optimal output decoupling 
problem can be applied to the general optimal decoupling problem. Research into the 
algebraic conditions for the existence and solution of a decoupling controller, may be 
beneficial. 

4.3.2. Optimal Decoupling Problem: A Geometric framework. In addi­
tion to an algebraic approach to the optimal decoupling problem, another may be to 
use a state space (geometric) framework in which to solve the problem. 

as 
The open loop plant Q(s), for the general decoupling problem, may be expressed 

X = Ax+ Bdwd + BcWc + Buu, 

Zd = Cdx + DddWd + Dduu, 

Zc = Ccx + DccWc + DcuU, 

y = Cyx + DydWd + DycWc, 

where y is the observed output and Zc is the (cost) regulated output and We is the (cost) 
disturbance input and the transfer function from Wd to Zd is diagonally constrained. 

The concepts of controllability and observability subspaces [20], [17] have the 
potential to be used to solve the (general) decoupling problem. It is certainly possi­
ble to find the optimal decoupling controller with full state-feedback in a geometric 
framework: results which will appear in a later publication. The optimal decoupling 
problem with output feedback problem, however, remains to be solved. 
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4.3.3. Other related problems. The "almost decoupling" optimal control 
problem is that of finding the 1l2 optimal controller subject to a finite (non-zero) 
constraint on the off diagonal elements. One way of tackling this problem might be 
to use Lagrange multipliers in conjuction with the transformation from the Hilbert 
space of matrix transfer functions to the Hilbert space of transfer vectors. It is also 
possible to investigate minimising the 1l00 norm of Tzw(s) subject to a decoupling 
constraint on a particular set of inputs to a set of outputs, in an "Optimal 1l00 De­
coupling Problem". 

5. Conclusion. We have defined an 1£2 optimal control problem with an output 
decoupling constraint and demonstrated how to reduce the problem into a standard 
1l2 frequency domain optimisation for which there are known solutions. It is now 
possible to quantify the costs of the output decoupling constraint in terms of the 1l2 

norm criterion. The results presented in this paper may provide a useful starting 
point for research into other related issues. 
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