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Abstract. We survey the role of non-commutative operator al-

gebras in statistical mechanics and the relation between the classi-

�cation of modular invariant partition functions in conformal �eld

theories and braided subfactors.

As exposed in the treatises of Bratteli and Robinson [21] non-commu-

tative operator algebras have a long tradition of providing a framework

for understanding quantum statistical mechanics. For example, the

one-dimensional XY -model is studied in the Pauli or Fermion algebraN
Z
M2 with the Hamiltonian

H = �
X
j2Z

f(1 + 
)�jx�
j+1
x + (1� 
)�jy�

j+1
y + 2��jzg:

Here �j�; � = x; y; z are the usual Pauli matrices placed at the jth

site of the tensor product. Typically one studies time evolution on

the Pauli algebra via the one-parameter group of *-automorphisms

�t = eiHt(�)e�iHt suitably de�ned. In such lattice models one is in-

terested in determining the set of equilibrium states, using the Gibbs

conditions, KMS condition or a variational principle, minimizing the

thermodynamic quantity (energy - temperature.entropy), as well as the

return to equilibrium of locally perturbed models. Robinson played a

seminal role in this theory, which is described in detail in [21]. Amongst

other things, this led to the development of the theory of derivations on

operator algebras, the in�nitesimal generators of time evolution, which

is still relevant today with the Powers-Sakai conjecture [58] a particu-

larly challenging open problem. This led Robinson to working on the

in�nitesimal generators of (completely) positive semigroups on operator

algebras and subsequently his most recent work on heat kernel methods.

The Powers-Sakai conjecture asks whether every one-parameter dynam-

ics on a UHF algebra (an in�nite tensor product of matrix algebras) or

more generally on a simple AF algebra (an inductive limit of �nite di-

mensional algebras) is approximately inner, obtained as a limit of inner
85
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one-parameter groups as in the above XY -example. Kishimoto [49] has

recently shown that a stronger form of the conjecture is false, namely

the core problem of whether the in�nitesimal generator has an AF-core

in a suitable sense. If � is a strongly continuous one-parameter group of

*-automorphisms of a simple AF algebra, where the domain of the gen-

erator is AF, then � is approximately inner. However, [49] constructs

on any non type I simple AF C�-algebra examples of approximately

inner one-parameter groups of *-automorphisms where the domain of

the generator is not AF. These can be regarded as one-parameter con-

tinuous analogues of the exotic examples of compact group actions on

AF algebras whose �xed points are not AF (�rst shown by Blackadar

[5] for Z=2 on the Pauli algebra, and latter by Bratteli et al [18] for

�nite groups and Evans and Kishimoto [33] for compact groups).

Returning to our original starting point of this paper, the XY -model,

notice that it degenerates at certain values of (�; 
), namely at (0;�1),
to the Ising nearest neighbour model. This is a classical Hamiltonian,

and it would therefore appear to be arti�cial to study it via a non-

commutative framework, the Pauli algebra. Nevertheless, there is a

natural role for non-commutative operator algebras in the study of

such classical statistical mechanical models which is the point of this

present survey.

This connection begins with the transfer matrix method. Let us take

a two dimensional nearest neighbour Ising model on a square lattice Z2

with Hamiltonian

H = �
X

�;� nn

J����

with the summation over the vertices or sites �; � on Z2 which are near-

est neighbours (nn). We switch from one to two dimensions because

the one dimensional version does not have a phase transition at a non

zero temperature. At each site � or vertex point of the lattice we have

a variable, a spin or magnetization �� with either a positive or negative

orientation or value represented by +1 or �1. Then a state � = (��) of

the Ising model is a distribution of pluses and minuses over the square

lattice L = Z
2, so any con�guration is represented by a point in con-

�guration space the compact Hausdor� space P = f�1gL. Thus the

natural home to study this Ising model is the space C(P ) =
N
Z2
C
2
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the commutative C�-algebra of all continuous functions on the com-

pact con�guration space. At each inverse temperature � we may be

interested in the simplex K� of equilibrium states, given say by solu-

tions to the equations of Dobrushin, Lanford and Ruelle [30][50] or the

variational principle: minimize(energy - temperature.entropy). In the

algebraic approach, one uses the transfer matrix formalism to transform

the setting to that of a one dimensional quantum model, represented

by a non commutative "one dimensional" C�-algebra and time evolu-

tion �t. The transfer matrix T is obtained for the partition function of

a strip of �nite length M and width length one. With boundary con-

ditions �; � along the two lengths the corresponding partition function

T�� de�nes us the transfer matrix T . The partition function Z of a

�nite rectangular lattice of length M and width N is then obtained by

multiplying the strip partition functions, namely transfer matrix entries

and summing over internal edges. For periodic boundary conditions we

obtain

Z =
X

exp(��H(�)) =
X

T �1�2T �2�3 : : : T�N �1 = trace TN :(1)

In this way we move from the commutative algebra C(P ) =
N
Z2
C
2

to the non-commutative Pauli algebra A =
N
Z
M2 where the local

transfer matrices T generate the even part A+. Time evolution can be

formally written as �t = T it(�)T�it, i.e. we consider T = e�H where

H is now a quantum Hamiltonian which is no longer a (one dimen-

sional) Ising Hamiltonian. Spatial translation by Z
2 in the classical

model
N
Z2
C
2 corresponds to spatial translation in AP =

N
Z
M2 to-

gether with an evolution fT n(�)T�n : n 2 Zg in the orthogonal transfer
direction.

For each inverse temperature � one looks for a map F ! F� from

(local) classical observables in C(P ) to the quantum algebra A, and a

map � ! '� from states on C(P ) (or measures on P ) to linear func-

tionals on the local observables in AP such that one can recover the

classical expectation values or correlation functions from a knowledge

of the quantum ones alone: �(F ) = '�(F�). Fixing some bound-

ary conditions, then for each inverse temperature �, let '� denote the

corresponding state on A. [In general positivity of '� is not auto-

matic but follows from re
ection positivity of �]. Then if �c denotes

the inverse critical temperature of Onsager, there exist automorphisms



88 DAVID E. EVANS

f�� : � 6= �cg of A [34] which do not depend on boundary conditions,

and real analytic in � 6= �c such that

'� =

(
'1 � �� � > �c

'0 � �� � < �c:

Here '0 =
N
Z
!
, where 
 =

�
1

1

�p
2 is the disordered state, and for

+ or - boundary conditions, '�1 =
N
Z
!
� where 
+ =

�
1

0

�
;
� =

�
0

1

�
respectively and '1 = ('+

1 + '�1) =2 for free or periodic boundary con-

ditions. Thus with free or periodic boundary conditions, we conclude

that '� is pure for 0 � � < �c (also for � = �c by di�erent methods

[2]) and is a mixture of two inequivalent pure states for '�� for � > �c.

If h i� denote the classical states corresponding to + and - boundary

conditions respectively, then we can deduce that hF i�� is real analytic

in � > �c when F is a local classical observable, as hF i�� = '�1��(F�)

using analyticity of ��. A dynamical system �t on AP is formally given

as �t = T it(�)T�it which has a unique ground state for � < �c and two

extremal ground states '�� for � > �c.

The Ising model can be generalized to the possibility of having more

than two values or spins possible at any lattice site, and moreover

some constraints or rules to determine allowable con�gurations. A

particular value at one site may force only restricted choices at nearest

neighbours. This would be achieved by distributing values of a �xed

graph G at sites of the lattice L in such a way that if � and � are

nearest neighbours in L, then the corresponding values �� and �� are

joined in the graph. The state space P can be de�ned for any graph,

but if G contains some multiple edges, we consider distributions of

edges of G on edges of L. For the Dynkin diagram A3 with vertices

labelled by f�;�g and square lattice L one obtains two copies of the

Ising model as in Fig. 1 by placing the frozen spin � on the even or odd

sublattices of L. This graph may be generalised to the Dynkin diagrams

of Fig. 1 for the models of Andrews, Baxter and Forrester [1]. These

in turn can be generalised by considering the Weyl alcove A(n;k) of the

level k integrable representations of the Ka�c-Moody algebra SU(n)^:

Boltzmann weights associated to a local con�guration around minimal

squares of the lattice can be chosen to satisfy the integrable Yang-

Baxter equation [25].
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Figure 1. Ising model: Dynkin diagram A3 and con�g-

uration space

The centre of SU(n), the abelian Z=n, acts on A(n;k), e.g. Z=2 on the

Dynkin diagram Ak+1 by a 
ip i! k� i which may or may not have a

�xed point depending on the parity of k. The interesting case is when

there is a �xed point. In any case, the Boltzmann weights are preserved

under the symmetry, and yield new Boltzmann weights on the orbifold

graphs A(n;k)=(Z=p), whenever p divides n, satisfying the integrable

Yang Baxter equation [28] [35]. For example, when n = 2; k = 2m

we blow up the �xed point m to a pair (a copy of Z=2) and replace

each distinct pair i; k � i (i 6= m) interchanged by the symmetry with

a singleton yielding the graph Dm+2. The case A3 is self dual in that

A3=(Z=2) = A3. Nevertheless, the situation here is not entirely trivial.

This is Kramers-Wannier high temperature{low temperature duality.

This duality replaces the Boltzmann weights at a temperature t with

ones at dual temperature t�. Again the �xed point of the symmetry

t ! t� is what provides the interesting structure | at the critical

temperature tc of Onsager.

We have mentioned the phenomena of AF algebras with non-AF �xed

point algebras under symmetries. Such examples were �rst found using

similar orbifold constructions. As a continuous version of the 
ip on

a Dynkin diagram which yields symmetries on AF algebras, consider

instead the 
ip on the interval around its midpoint or a 
ip on a circle

around an axis in its plane through its centre. The orbifold space is

best described by taking the cross product. For a pair of points inter-

changed by the symmetry, the local crossed product is simply a two

by two matrix algebra. The diagonal elements represent the contin-

uous functions on the pair, and the o�-diagonal elements come from

the transition between the two points. Each �xed point is replaced

by a pair arising from the transitions only generating a copy of C 2 as

the continuous functions on the group (dual). Thus gluing together, we
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represent the action of the 
ip on the interval [0; 1] by the C�-algebra of

continuous functions on a half-interval [0; 1=2], which on the half-open

half-interval [0; 1=2) (the part of the interval which has a non-trivial

orbit) are two by two matrix valued but at other end point 1=2 are

diagonal. So the spectrum of this algebra is a continuous version of

the D-Dynkin diagram. Topologically it is an interval with two non

Hausdor� points at one end. The analogous action of the 
ip on the

two torus which conjugates each variable has four �xed points, yielding

a sphere with four singular points. The corresponding cross product is

the space of two by two matrix valued functions on the sphere which

are diagonal at four distinguished points. Replacing the two torus by

a non-commutative torus generated by two unitaries U and V satis-

fying the commutation relation V U = qUV where q = exp2�i� we

obtain a non commutative toroidal orbifold when taking the symme-

try which inverts the generators U and V . It is Morita equivalent to

the algebra of a singular 
ow on a sphere obtained as the quotient

of the Kronecker 
ow on the torus as illustrated in [36], page 137 or

http://www.cf.ac.uk/maths/opalg/ncto/. Remarkably these algebras

are AF (when � is irrational)([20][19] or [32],[65]) although the corre-

sponding irrational rotation algebras and algebras of the Kronecker 
ow

are not. The non-commutative torus has a representation on L2(T2)

where U and V are represented as multiplication and translation oper-

ators. In this representation, or at least if one takes the Fourier trans-

form, the Hamiltonian H = U + U�1 + �(V + V �1) are the Mathieu

or discrete Schr�odinger operators with almost periodic potentials. The

natural home to study these operators is the �xed point algebra under

our 
ip because when � is irrational then U+U�1 and V +V �1 generate

the �xed point algebra. It is still a tantalizing mystery as to whether

there is a relation between the AF property of the �xed point algebras,

a strong form of non-commutative disconnectedness, and the Cantor

spectra of such almost Mathieu operators - which are at least known

to be Cantor for generic coupling constant � and rotation number �.

Symmetries on such algebras, where there are underlying �xed points

can produce algebras with totally di�erent properties. Similarly, sym-

metries on subfactors, statistical mechanical models, conformal �eld

theories can produce totally di�erent subfactors etc from what one

started with.
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From a lattice model one may obtain a �eld theory by taking a con-

tinuum or scaling limit, letting the lattice spacing go to zero whilst

simultaneously approaching the critical temperature. As the scale or

correlation length becomes in�nite, one obtains a scale invariant or con-

formal invariant theory. Belavin et al [4] suggested that the scale in-

variance at a critical point is enhanced to conformal invariance. One of

the invariants of the conformal �eld theory is the central charge a mul-

tiplier in projective representations Lm of the vector �elds �zm+1d=dz

on the circle, the Virasoro algebra. However the central charge can

already raise its head in the statistical mechanical model. Going back

to the partition function Z of Eq. (1) the free energy f = �logZ=NM

is independent of boundary conditions as N;M ! 1. However the

asymptotics depend on boundary conditions; if 1 << N << M , then

Z � exp(�NMf +M�c=N6), where c is the central charge. (See e.g.

[26] (or [36], Chapter 8) for explicit computation in the case of the Ising

model).

Let us however proceed to the conformal �eld theory at criticality.

It is argued on physical grounds that the partition function Z(�) in

a conformal �eld theory on the torus should be invariant under re-

parametrization of the torus by SL(2;Z): Z(�) = Z((a� + b)=(c� + d))

[23]. In the string theory formulation, modular invariance is essentially

built into the de�nition of the partition function (although Nahm [53]

has argued the case for modular invariance in terms of the chiral algebra

and its representations rather than a functional integral setting). In

the transfer matrix picture of the statistical mechanical picture, we

wrote the partition function as an average over e��H , where H is the

Hamiltonian. The Hamiltonian is now L0+ �L0� c=12 where L0; �L0 are

commuting generators of rotation groups, c the central charge and the

shift by c=24 comes from mapping the Virasoro algebra on the plane to

a cylinder. We also have a momentum P = L0� �L0 describing evolution

along the closed string, so taking both evolutions into account we �rst

compute

Z(�) = tr e��Hei�P = tr e2�i�(L0�c=24) e�2�i��(
�L0�c=24):

Here 2�i� = �� + i� parametrizes the metric of the torus, and we

then have to average over � . If we choose one � from each orbit under

the action of SL(2;Z) and integrate we implicitly assume that Z(�)
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is modular invariant. In our SU(n) setting the Hilbert space decom-

poses according to the associated loop group representations. The loop

group LG is the group of smooth maps from S1 into a compact Lie

group G under pointwise multiplication. We are interested in projec-

tive representations of LG o Rot(S1) where Rot(S1) is the rotation

group, which are highest weight representations in that the generator

L0 of the rotation group is bounded below. Such representations are

called positive energy representations and are classi�ed by irreducible

representations of G (by restriction to the constant loops) and a level k

describing the multiplier in the projective representation. For unitary

irreducible positive energy representations, the possibilities are severely

restricted. Indeed k must be integral and for a given value of the level,

there are only a �nite number of admissible (vacuum vector) irreducible

representations of G: For G = SU(n) the admissible ones are precisely

the vertices of A(n;k), the same labeling set as used to construct our

statistical mechanical model.

The partition function then decomposes as

Z(�) =
X
��

Z�;���(�)��(�)
�

where

Z�� = 0; 1; 2; :::; Z00 = 1(2)

and characters ��(�) = tr�e
2�i�(L0�c=24), Im � > 0.

Here the label 0 refers to the vacuum representation, and the condi-

tion Z00 = 1 refers to the physical concept of uniqueness of the vacuum

state. The matrix Z arising in this way is called a modular invari-

ant mass matrix. (More precisely, for current algebras the characters

depend also on variables other than � , corresponding to Cartan sub-

algebra generators which are omitted here for simplicity. These extra

variables mean we are dealing with SL(2;Z) rather than PSL(2;Z)).

From the canonical generators

S =

�
0 � 1

1 0

�
, and T =

�
1 1

0 1

�

of SL(2;Z) we obtain the unitary Ka�c-Petersen matrices S = [S��]; T =

[T��] transforming characters, where S is symmetric as well as S�0 �
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S00 > 0 and T is diagonal:

��(�1=�) =
X
�

S����(�); ��(� + 1) =
X
�

T����(�):

Then the classi�cation of modular invariant partition functions can

be reformulated as a matrix problem. Find all matrices Z subject to

Eq. (2) commuting with S and T . This is a rather concrete problem.

For SU(2) at level k, SU(2)k, the admissible weights are the spins

� = 0; 1; ::; k and the Ka�c-Peterson matrices are given explicitly as

S�� =

r
2

k + 2
sin

�(�+ 1)(�+ 1)

k + 2

T�� = ��� exp

�
�i
(�+ 1)2

2k + 4
� �

i

4

�

with �; � = 0; 1; :::; k, and the characters as

��(q) =
q(�+1)2=4(k+2)

�(q)3

X
n2Z

(2n(k + 2) + �+ 1)qn(n(k + 2) + �+ 1)

if q = e2�i� , and the Dedekind function �(q) = q1=24
Q

1

n=1(1� qn):

For the Ising model, the characters are (in the notation of Fig. 1),

�� = [#2=2�]
3=2; �� = ([#3=�]

3=2 � [#4=n]
3=2)=2

with the #-functions:

p
#3=� = q�1=48

1Y
n=0

�
1 + qn+1=2

�

p
#4=� = q�1=48

1Y
n=0

�
1� qn+1=2

�

p
#2=� = q1=24

1Y
n=1

(1 + qn):

Here the Ka�c-Petersen matrices are simply

S = 1
2

0
@ 1

p
2 1p

2 0 �
p
2

1 �
p
2 1

1
A ; T = ei�=24

0
@ 1 0 0

0 ei�3=8 0

0 0 ei�

1
A
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so that there is only one modular invariant the diagonal mass matrix

or:

Z =
�
j#2j3 + j#3j3 + j#4j3

�
=2j�j3:

Whilst the mass matrix is trivial, the partition function itself has

some structure. The following is also a modular invariant particular

function

Z = (j#2j+ j#3j+ j#4j)=2j�j
this time for the coset model su(2)1

L
su(2)1=su(2)2, which also ex-

hibits Ising fusion rules (as does (E8)1 � (E8)1=(E8)2) and so(5)1).

At �rst sight, it might appear that generally there may be an in�nite

number of solutions to this modular invariant problem. However, there

is a following estimate [12]: Z�� � d�d� which is a strengthening of the

inequality of Gannon [42]:
P

Z�� � 1=S2
00 if d� = S0�=S00: Thus since

Z�� is positive and integral there are at most �nitely many solutions,

for a �xed representation of SL(2;Z). In the case of SU(2), there are at

most three solutions for a �xed level k. This is the ADE classi�cation

of Capelli, Itzykson and Zuber [22]. A Dynkin diagram is associated

to each invariant through the identi�cation of diagonal terms of the

invariant f� : Z�� 6= 0g = I with eigenvalues fSf�=S00 : � 2 Ig of the
corresponding Dynkin diagram if f = 1 the fundamental representa-

tion of SU(2). The A refers to the diagonal invariant, D to orbifold

invariants and E to the three E6; E7; E8 exceptional invariants. For

SU(3) there is an anologous ADE classi�cation due to Gannon [43]; di

Francesco and Zuber [28] sought to show systematically the existence

of graphs with spectra matching the modular invariant, give a meaning

to these graphs themselves and compute them in a number of examples.

As we have said there are at most �nitely many solutions to the

modular invariant conditions. There is always one solution the trivial

diagonal invariant: X
�2A

j��j2

where the corresponding mass matrix is diagonal Z�� = ���. In some

sense, [52] [29] [11] 'every' modular invariant is diagonal if looked at

properly. If we can extend the A system to a B system so that the

characters decompose

�� =
X
�2A

b�� �� ; � 2 B
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according to some branching rules, then the diagonal B-modular in-
variant will give an A-modular invariantX

�2B

j�� j2 =
X
�2B

j
X
�2A

b����j2:

In some sense, every modular invariant should look like this or with a

possible twist �����
�
w(�); for a permutation w of the extended fusion

rules, preserving the vacuum. The problem in general is then to �nd

such extensions. When there is no twist present we have what are

sometimes called type I invariants:

Z�� =
X
�

b��;b��:

These are automatically symmetric: Z�� = Z��. In the presence of a

non-trivial twist, we have the type II invariants

Z�� =
X
�

b��bw(�)�:

These are not necessarily symmetric, but at least there is symmetric

vacuum coupling Z0� = Z�0. Not every modular invariant is even

symmetric in this sense, (e.g. for SO(16n)1) but every known SU(n)

modular invariant is even symmetric in the usual sense.

Our aim is to study or even construct modular invariants from sub-

factors. The framework can be summarised as follows. We have a

hyper�nite III1 factor N on which there is a system of endomorphisms

f� 2 Ag labelled by our positive energy representations or our original
states in the original statistical mechanical setting. We induce these

endomorphisms to endomorphisms ��� on a larger ambient factor M|

there will be two natural ways to do this labelled �.
The modular invariant will then be constructed or recovered as

Z�� = h�+
� ; �

�
� i

where the right hand side will be computed as dimensions of intertwiner

spaces or the number of common sectors when we decompose ��� into

irreducibles. The original endomorphism � 2 A will be irreducible but

��� may not be. The factor N will carry the modular data for S and T

matrices, varying the inclusion may change the modular invariant but

somehow the inclusion will have to be related to the original A-system.
The system A on the factor N can be constructed via the method

of Jones-Wassermann. First for any positive energy representation
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� 2 A, the objects �LISU(n) and �LI0SU(n), if LI ; LI0 denote loops

on SU(n) concentrated on complementary non-trivial intervals I and I0

in the circle. We can thus form the inclusion

�LISU(n)
00 � �LI0SU(n)

0:(3)

For � = 0, the vacuum representation, there is Haag duality and this in-

clusion is not proper but gives us a single hyper�nite III1 factorN (more

precisely a net N(I) of such factors). The inclusion Eq. (3) then deter-

mines a system of endomorphisms � 2 A, so that the inclusion Eq. (3)
is isomorphic to �N � N , with index [N , �N ] = d2�. Wassermann [66]

has shown that the fusion rules of such endomorphisms are precisely

the same as that of SU(n) at a root of unity
�
q = e2�i=(k+n)

�
. Moreover,

rotation through 1800 on the circle, interchanges the role of I and I0.

This has the e�ect that the system A is naturally braided, i.e. not only

is the system commutative �� = �� as sectors if �; � 2 A � End(N),

but there is a choice "(�; �) of unitaries taking �� to �� satisfying the

Yang Baxter equation, braiding fusion equation etc.

Thus we have commutative matrices N� = [N�
��]�;�; � 2 A, deter-

mining the fusion

�� =
X
�

N�
�� �

with composition of endomorphisms, or rather sectors, their unitary

equivalence classes and a natural notion of addition. Fusion by the

endomorphism of the conjugate �� of � is given by N�� = N tr
� , the trans-

pose. Thus fN� : � 2 Ag is a family of commuting normal matrices
and so simultaneously diagonalisable. By the Verlinde theory the uni-

tary matrix which performs this diagonalisation is the S matrix itself.

Inverting the consistency condition or the regular representation

N�N� =
X

N�
��N�(4)

we obtain

N�
�� =

X
�

S��

S0�

S�� �S��

or

N� =
X
�

S��

S0�

jS�ihS�j:

The modular invariants will provide representations other than the

regular representation Eq. (4), and pick out subsets fS��=S0� : � 2 Ig
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where I = f� : Z�� 6= 0g; the diagonal part of the modular invariant.
At the same time these representations will replace N� by other families

G� of graphs | to be associated with the modular invariant or at least

the subfactor N � M which yields that particular invariant.

As we have said the inclusion, which is meant to duplicate the mod-

ular invariant, should be related to the original A-system. This is

achieved as follows. There is a conjugation on endomorphisms of N ,

(extending for groups the notion of inverting automorphisms or conju-

gating a representation in the dual) compatible with the conjugation

on A. Similarly one can conjugate endomorphisms or sectors of M , or

those between N and M , M and N . In particular, we can take the

inclusion � = N ! M , its conjugate �� = M ! N and compose to get

endomorphisms 
 = ��� on M and � = 
jN = ��� on N called the canoni-

cal and dual canonical endomorphisms respectively. What we need is �

lies in the system generated by A, i.e. decomposes as a sum of sectors

from A. Note that we do not need to specify M when we ask whether

a particular endomorphism � of N is a dual canonical endomorphism.

It may not be particularly clear in a given situation whether a certain

endomorphism is a dual canonical endomorphism or what M may be.

When Z is a modular invariant typical candidates for dual canonical

endomorphisms will be
P

� Z0��;
P

� Z�0� on N and
P

Z���
N

�opp

on N
N

Nopp where Nopp is the opposite algebra, etc.

The �rst non trivial (i.e. exceptional) invariant for SU(2) occurs at

level 10:

ZE6
= j�0 + �6j2 + j�4 + �10j2 + j�3 + �7j2:(5)

The diagonal part of the invariant I = f� : Z�� 6= 0g matches the spec-
trum of the Dynkin diagram E6, namely fS1�=S0� = 2 cos�(�+1)=12 :

� = 0; 6; 4; 10; 3; 7g: For this reason Capelli, Itzykson and Zuber la-

belled the invariant by the graph E6. In the subfactor setting we can

derive this graph as follows. First, we turn to the conformal embedding

description of this invariant due to Bouwknegt and Nahm [17] which

provides the extended system B which diagonalises the invariant. The

embedding SU(2)10 � SO(5)1 means there is a mapping of SU(2) in

SO(5) such that the three level 1 representations B of SO(5) decom-

pose into level 10 representations of SU(2) with �nite multiplicity. The
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system SO(5)1 has three inequivalent representations, b,v,s basic, vec-

tor and spinor which reproduce the Ising fusion rules. They decompose

(cf Eq. (5)) as

�b = �0 + �6; �v = �4 + �10; �s = �3 + �7(6)

so that the E6 modular invariant for SU(2)10 arises from the diagonal

invariant for SO(5)1:

ZE6
= j�bj2 + j�vj2 + j�sj2:

Moving now to the loop group factors the conformal embedding gives

us an inclusion of factors:

L�SU(2) � L�SO(5)

using the vacuum representation on LSO(5), a net of subfactorsN(I) �
M(I): Fixing I, we have subfactor N � M on which there are systems

A = SU(2)10 and B = SO(5)1 of endomorphisms acting respectively.

These two systems can be related by a form of Mackey induction-

restriction which in the subfactor setting goes back to Longo-Rehren

[51]. Using the braiding "+ or its opposite braiding "�, we can lift en-

domorphisms � in A to those of M: ��� = 
�1Ad"�(�; �)�
. The maps

[�]! [��� ] preserve all the operations of conjugation, addition and mul-

tiplication of sectors [67][8][9][10]. However, they are not injective, and

��� may be reducible. We �nd that f�+
� : � 2 Ag decomposes into six

irreducible sectors such that the graph E6 is multiplication by �+
1 [67]

[9]. In fact [�+
1 ] = G; is part of a system of matrices with non-negative

entries fG� : � 2 Ag which represents the original A-fusion rules.

This had been noticed empirically in e.g. [28] [55] which now gets a

subfactor explanation.

To bring the B system into the game we use �-restriction, �� = ����

to take M -sectors to N -sectors. This map � is not multiplicative, but

in the type I situation there is a reciprocity: h��� ; �i = h�; ��i (with
inequality on the type II setting) as long as say � is a subsector of

the induced system E�
6 respectively. Since � restriction takes the E�

6

systems into the A-system by Eq. (6), namely

�b = � = �0 + �6; �v = �4 + �10; �s = �3 + �7

the reciprocity means that the B system, coming from the three level

1 representations of SO(5) must lie in the induced systems E�
6 , i.e.



FROM XY TO ADE 99

A3 = B � E+
6 \ E�

6 . In fact we can identify as sectors b = �0; v =

�10; s = �3 � �9; and E+
6 \ E�

6 = A3 precisely. The dual canonical

endomorphism � lies inA, but a priori we do not have much information
about its Fourier transform 
. In fact as sectors: 
 = idM + �+

1 �
�
1 so

that 
 2 E+
6 _ E�

6 , the full induced system. Indeed A� = E+
6 _ E�

6 ,

the system generated by E�
6 is precisely all subsectors of f���� : � 2 Ag

in fact the latter has global dimension w =
P

��A d
2
�, whilst if w� =P

�2A� d
2
� denotes the global dimension of the induced system then [10]:

w=w� =
X

Z0�d�

with the sum over only the degenerate sectors inA|which have trivial

monodromy with all other sectors. In this case the A-system, as far
SU(n)k is non-degenerate, the vacuum is the only degenerate sector.

Moreover we can recover the modular invariant as

Z�� = h�+
� ; �

�
� i; �; � 2 A:

In this case the E�
6 systems are commutative (but not braided) as is the

E+
6 _E�

6 system | but this is not always the case. The neutral system

A0 = A+ \ A�, if A� are the induced chiral systems, is braided, with

the braiding non-degenerate if that of A is. Complexifying the �nite

dimensional algebrasA� we can decompose them in the non-degenerate

case as [15]:

A� =
M
�2A0

M
�2A

Mat(b���):(7)

Here b��;� are the chiral branching coe�cients h�; ��� i; � 2 A�; � 2 A.
(In the case of chiral locality where the extended net M(I), is local,

i.e. observables associated with disjoint intervals commute, then b��;� =

h�; ��� i = h�� ; �i; � 2 A0; � 2 A:) In particular the extended systems
are commutative only when b��;� � 1; � 2 A0; � 2 A Thus the informal

inclusions SU(n)n � SU(n2�1)1 give non-commutative chiral systems
when n � 4; and it explains the computations of Feng Xu [67] who

found non-commutativity in case n = 4 by a direct computation.

Thus we can decompose the modular invariant as

Z�� = h�+
� ; �

�
� i =

X
�2A0

b��;�b
�
�;�
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and from Eq. (7) by counting dimension we see that

jA�j =
X

(b��;�)
2 = trb�tb�:

In the case of chiral locality where b+ = b�, so that the invariant is

type I, we see that jA�j = trZtZ, more generally jA�j only sees the

type I parent of a type II invariant. Thus with

ZD10
= j�0 + �16j2 + j�4 + �12j2 + j�6 + �10j2 + 2j�8j2 + j�2 + �14j2

ZE7
= j�0+�16j2+j�4+�12j2+j�6+�10j2+j�2j2+(�2+�14)�

�
8 +�8(�2+�14)

�

then in either case trb�b� = 10 so that multiplication by [��1 ] gives the

graph D10 in either case so we do not get the graph E7 for ZE7
(where

we can use the dual canonical endomorphisms �0 + �16, �0 + �16 + �8
respectively).

In general (and this will work when either chiral locality holds or

fails) we look at the action of A� on the M -N sectors MAN which are

the irreducible sectors of �� = ��� � (which can be identi�ed with A�

when chiral locality holds). This action decomposes as:
L

�Mat(Z��),

with

��� =
M
�

S��

S0�

1Z��:

Thus we get the desired representation with spectrum matching the

diagonal part of the modular invariant, and counting dimension then

jMAN j = trZ; e.g. trZE7
= 7 so that we do indeed now recover the

correct graph.

The subfactor framework is rich enough to produce a Moore-Seiberg

type decomposition of modular invariants as well as handle possibly

non-symmetric modular invariants. As we have already observed, in the

case of chiral locality, b+�;� = b��;�(= h�; �� i) for � 2 A; � 2 A0: So the

question arises as to how far we can identify b+ and b�, say b
�

�;� = b+
w(�);�

for a permutation w of the extended neutral system B or if we need

di�erent labellings B+ or B� to handle possibly non-symmetric modular

invariants. Now locality holds if and only if � =
P

Z�0� =
P

Z0��:

In general we de�ne �+ =
P

Z�0�; �� =
P

Z0��: Using the theory of

intermediate subfactors of [45], we can show [16] that both �� are dual

canonical endomorphisms for inclusions N � M� which satisfy chiral

locality and M� � M . This means we can use �-induction on both
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inclusions N � M�, to obtain type I modular invariants Z�, such

that

Z+
�0 = Z+

0� = Z�0; Z
�

�0 = Z�

0� = Z0�;

where we can identify both neutral systems M
�

A0
M
�

with MA0
M . If

M+ =M�; then we can write

Z�

�� =
X
�2A0

b��b��

in particular (Z+ = Z�) and using the identi�cations M
�

A0
M
�

with

MA0
M to produce an automorphism ! of the neutral elements MA0

M we

have:

Z�� =
X

b��bw(�)�:

In the case of E7 invariant we have N � M� � M where M+ =M�

and the dual canonical endomorphism for N � M�; N � M are

�0 + �16, �0 + �16 + �8 as we have said before.

It may happen that M+ 6= M� and this does occur for SO(16n)1
where there are non-symmetric modular invariants where we must use

di�erent labelling M+
A0

M+
;M

�

A0
M
�

on the left and right to decompose

Zext
�+;��

as ��
�
;#(�+), where # = #�#

�1
+ is the identi�cation. The situation

is summarised [10] using recent work of Rehren [62] on canonical tensor

product subfactors as a pair of inclusions:

N
O

Nopp �M+

O
M

opp
� � B

where the dual canonical endomorphisms for N
N

Nopp � B and

M+

N
M

opp
� � B as

P
Z�� �

N
�opp;

P
�2A0 #+(�)

N
#�(�)

opp respec-

tively.

There is a connection between the two chiral inductions and the pic-

ture of left- and right-chiral algebras in conformal �eld theory. Suppose

that our factor N is obtained as a local factor N = N(I�) of a quantum

�eld theoretical net of factors fN(I)g indexed by proper intervals I � R

on the real line, and that the system NXN is obtained as restrictions of

DHR-morphisms (cf. [44]) to N . This is in fact the case in our examples

arising from conformal �eld theory where the net is de�ned in terms of

local loop groups in the vacuum representation. Taking two copies of

such a net and placing the real axes on the light cone, then this de�nes

a local net fA(O)g, indexed by double cones O on two-dimensional

Minkowski space (cf. [61] for such constructions). Given a subfactor

N � M , determining in turn two subfactors N � M� obeying chiral
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locality, will provide two local nets of subfactors fN(I) �M�(I)g as a
local subfactor basically encodes the entire information about the net

of subfactors [51]. Arranging M+(I) and M�(J) on the two light cone

axes de�nes a local net of subfactors fA(O) � Aext(O)g in Minkowski

space. The embedding M+ 
M
opp
� � B gives rise to another net of

subfactors fAext(O) � B(O)g, where the net fB(O)g obeys local com-
mutation relations. The existence of the local net was already proven

in [62], and now the decomposition of [�ext] tells us that the chiral

extensions N(I) � M+(I) and N(I) � M�(I) for left and right chiral

nets are indeed maximal (in the sense of [61]), following from the fact

that the coupling matrix for fAext(O) � B(O)g is a bijection. This

shows that the inclusions N � M� should in fact be regarded as the

subfactor version of left- and right maximal extensions of the chiral

algebra.
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