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Nevanlinna theory [Ne] started as the theory of the value distribu-
tion of meromorphic functions. The so-called Second Main Theorem
is a theorem relating how often a function is equal to a given value
compared with how often, on average, it is close to that value. This
theorem takes the form of an inequality relating the counting function
and the mean proximity function by means of an error term. Histori-
cally, only the order of the error term was considered important, but
motivated by Vojta's [Vo] dictionary between Nevanlinna theory and
Diophantine approximations, Lang and others, see [La] and [L-C] for
instance, have started to look more closely at the form of this error
term.

Vojta has a number theoretic conjecture, analogous to the Second
Main Theorem, where the absolute height of an algebraic point is
bounded by an error term, which is independent of the degree of the
point. This caused Lang to raise the question, "how does the degree
of an analytic covering of C come into the error term in Nevanlinna
theory?" The second part of [L-C] looks at Nevanlinna theory on
coverings in order to answer this question. Noguchi [Nol], [No2], and
[No3] and Stoll [St] are among those who have previously looked at
the Nevanlinna theory of coverings.

As part of Vojta's dictionary, the Nevanlinna characteristic func-
tion corresponds to the height of a rational point in projective space.
For a number field F, there are two notions of height. There is a rel-
ative height and an absolute height. Given a point P = (XQ, . . . , xn)
in Pn(F), the relative height, hF(P) is defined by

where S is the set of absolute values on F, and [Fv : QJ is the lo-
cal degree. The absolute height h(P) is the relative height divided
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38 The Nevanlinna Error Term

by the global degree [F : Q] and is independent of the field F. The
Nevanlinna characteristic function Tf, as defined in Part n of [L-C],
corresponds to the relative height. As such, one wanted a second main
theorem where the degree enters into the error term only as a factor
multiplied by a universal expression independent of the degree. This
is more or less what was achieved when T/(r) was larger than the de-
gree, but when T/(r) was less than the degree, we could not get such
a result, and it appeared that the error term depended on the degree
in a more subtle way. However, this is to be expected because the
classical second main theorem only holds when Tf(r) is greater than
one, and the condition that the relative Tf be greater than the degree
is precisely the condition that the absolute Tf be greater than one.
The main objective of this note is to show that when the Nevanlinna
functions on coverings are normalized from the beginning by dividing
by the degree, then the error term is independent of the degree, com-
pletely in line with Vojta's conjecture in the number theoretic case,
and all the extraneous terms in [L-C] disappear.

Furthermore, by making two minor changes to the method in
[L-C], following Griffiths-King [G-K], we are able to work with non-
degenerate holomorphic maps from an analytic covering of Cm into
an n-complex dimensional manifold, where ra > n. This is more
general than the equidimensional case treated in [L-C] and shows that
the error term retains the same structure when the dimension of the
domain space is larger than that of the range.

The main result of this note is the following Second Main
Theorem:

Theorem. Let p: Y —> Cm be a finite normal analytic covering
of Cm which is unramified and non-singular above zero. Let X
be an n-complex dimensional manifold, and let f: Y —> X be
a non-degenerate holomorphic map such that the "ramification"
divisor Rf does not intersect Y<0>.
Let:

D = ]C?=i Dj be a divisor with simple normal crossings of
complexity k;

LJ = LDJ be the line bundle associated to DJ;
be a hermitian metric on L;
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fi be a volume form on X;
K be the metric on the canonical bundle associated to fi;
rj be a positive (1, 1) form on X such that rjn/n\ > fi and

r ) > c i ( p j } f o r a l l j ;
Assume that f(y) $ D for all y E Y<0>.
Let:

Tl

n and n =

where b is the constant of Lemma 11.7 A in [L-C], and depends
only on£l,D and 77. Then, one has

NRf(r) - Np

i 1
+ 'ry • cm1L " J

r > r*i outside of a set of measure <

Remarks. The symbols above, including the divisor Rf, which
is the Griffiths-King ramification term, will be precisely defined in the
sequel. Note that except for an additive term, which can be made to
disappear by normalizing /, the Jacobian of / and the Jacobian of p at
the points which are above zero, the error term is completely uniform
in the functions p and / as well as in the degree of the covering. Also,
the extraneous terms involving the degree which appear in [L-C] are
not present here. Furthermore, when the error term function is ex-
panded out, the constant which appears in front of the log T/j7? term is

which is better than the constant n(n + 1) appearing in Stoll [St].
The larger constants in Stoll result from his method of summing up
projections onto Grassmannians via the "associated maps." By com-
bining the equidimensional method used by Wong [Wo] and improved
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by Lang, with the ramification terms in Griffiths-King which depend
on the choice of Jacobian section, rather than the Wronskian determi-
nant which appears in Stoll, the error term obtained in the generically
surjective case is identical to that of the equidimensional case, and, in
particular, does not contain the unnecessary factors which arise from
projective linear algebra.

For the proof of the above theorem, we follow Chapter IV of
[L-C].

1. Preliminaries. Let p : Y — > Cm be a finite normal analytic
covering of Cm, and assume that Y is non-singular at the points above
zero and that p is also unramified above zero.
Let:

[y : Cm] = the degree of the covering;
z = (zi, . . . , zm) be the complex coordinates of (7m;

3=1

= {yeY:\\p(y)\\<r};

= {y£Y:\\p(y)\\<r};
= {yeY:\\p(y)\\ = r}.

Consider the following differential forms on C™

J=l
The pullback of these forms to Y via p will be denoted by a subscript
Y:
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Note that ay is closed and C°° away from Y<0> and that

ay = [Y : C™].

y<r>

The following form of the Green-Jensen integral formula will be
needed. For a proof, see [L-C] Theorem IV. 1.2.

Theorem 1 (Green-Jensen Formula). Let a be a C2 function
from Y —> C except on a negligible set of singularities Z such
that Zr\Y<0> = 0. Assume, in addition, that the following three
conditions are satisfied:

i) a<7y is absolutely integrable on Y<r> for all r > 0.
ii) da A cry is absolutely integrable on Y[r] for all r.

iii) lim / aery = Gfor all r,

S(Z,E)(r)

where for sufficiently small e, S(Z,e)(r] denotes the boundary
of the tubular neighborhood of radius e around the singularities
Z fl y [r], which is regular for all but a discrete set of values e.
Then

r
/ A\ f dt f ir A m_i i r i v—\ x N(A) I — / aaAc^v- =- / a e r y — - > ot(y),

I 4- I ^ O/ O ' -^J v i £1 j £*

and
T r

/

ii /• /» ij. r

— / ddca A UY~I + / — 1™ / dca A Uy~l

t J Y J t E~O J Y

a^K"« X) afo)'

Let / : Y" —> Jt be a non-degenerate (i.e. not contained in any
divisor on X) holomorphic map, where X is a compact n-complex
dimensional manifold and n is assumed less than or equal to ra.
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Remark. It is not necessary for the function / to be defined
on all of Y". Everything in the sequel remains true for a function
/ : Y(R) -» X provided that r < R.

We define the absolute Nevanlinna functions as follows:

Height

If 77 is a (1, 1) form on X, then define

0 Y(t)

and similarly, given a hermitian metric p on a holomorphic line bundle
L on X, define

r

o Y(t)

where ci (p) = ddc log /? is the Chern form of p.

Counting functions

Given a divisor D on Y, let

r1 and ND(r) =
D(t) 0

and given a divisor Z) on X, let N/^ = Ar/*^. The counting function
for the ramification divisor of p, defined locally by the zeros of the
Jacobian matrix, will be denoted

A volume form fi on X defines a metric K on the canonical line
bundle K of X. Since,
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the height associated to the volume form fi is defined as:

0

2. Ramification. Let $ be the Euclidean volume form on Cm

and let $y = p*($) be the pullback to a pseudo-volume form on Y.
Let fi be a volume form on X. Because / is non-degenerate, we can
assume that the coordinates on Cm were chosen so that

is not identically zero. Following Griffiths and King [G-K], let 7/ be
the non-negative function such that

Note that 7/ is singular along the ramification divisor of p and vanishes
along the divisor Rf given by the equation

/*nAp*[ FT ^r— dZj/\dZi =0.
V .ij; 2?T /
\j=n+l /

Remark. When n = m, the divisor /fy is the ramification
divisor associated to the map /. In general, the divisor Rf depends not
only on the ramification of /, but also on the choice of coordinates on
Cm. However, this dependence on the choice of coordinates is omitted
from the notation.

Note that because /*ci(tt) = ddclog7/, one has

r

7

0 Y(t)
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Theorem 2. Assume that p : Y —> C™ is unramified above zero,
and let f : Y —> X be a non-degenerate holomorphic map such
that the divisor Rf does not intersect Y<0>. Then

TfjK(r) + NRf(r) -

- With new notation, this is simply Theorem 1 (B) combined
with the fact that

lim / dclog-yf/\w™-l= t u™'\
S(Z,e)(t) Z(t)

where Z is the set of singularities for Iog7/, and then divided by the
degree.

3. Calculus Lemmas. Let ̂  be a positive increasing function,
such that

is finite. Such a function is called a type function. Given a positive
increasing function F, let ri(F) be the smallest number such that
F(r) > e for r > ri(F), and let 61 (F) be the smallest number greater
than or equal to one, such that

Define the error term function to be
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Given a function a on Y, define the height transform:

0 Y(t)

for r > 0.

Let a be a function on V such that the following conditions are
satisfied:

(a) a is continuous and > 0 except on a divisor of Y.
(b) For each r, the integral fY<r> acry *s absolutely convergent

and r i— > Jy<r> aoy is a piecewise continuous function of r.
(c) There is an n > 1 such that .Fa(ri) > e.

Afote: Fa has positive derivative, so is strictly increasing.

Lemma 3. If a satisfies (a), (b) and (c) above, then Fa is C2 and

)= _ 2 _ r ay
( m _ l ) j y "[FiC"1]'

- Use Fubini's Theorem and the fact that

as in Chapter IV §3, and then divide by the degree.

The standard Nevanlinna calculus lemma then gives

Lemma 4. If a. satisfies (a), (b) and (c) above, then

log j ap^}<S(FaMF«)^
Y<r>

for all r > ri(Fa) outside a set of measure < 2&o(VO-
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4. Trace and Determinant. Given a (1,1) form 77 on Y", define
the trace and determinant outside the ramification points of p as
follows:

(ra - 1)! tr(r/)$y = rj A ^T1.

Furthermore, define the n x n trace and determinant outside the
ramification points of p as follows:

(n - 1)! ttwfojSy = r? A ̂  A p* [ ^ A

In the case when Y is Cm and p is the identity, the n x n trace and
determinant are simply the trace and determinant of the n x n block
in the upper-left of the matrix corresponding to 77.

The following lemma is simply the pull-back to Y of some re-
lations on Cm, which follow immediately from the elementary linear
algebra of hermitian positive semi-definite matrices.

Lemma 5. Ifrj is a semi-positive (1, l)form on Y, then

(det^ry))1/" < itrBfa) and trnfa) < trft)
Tb

for the regular points in Y which are not ramification points of p.

Let 77 be a closed, positive (1, 1) form such that

Since

( '
I

one finds that 7/ =
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Proposition 6. Let 77 = trn(/*7?). Then

/: Let Ty- = tr(/*r/). All the symbols have been defined so
that the proof of Proposition II.6.2 in [L-C], after dividing through by
the degree, gives

But, since trn(/*Tj) < tr(/*rj), one has .Fr/ <

5. Second Main Theorem. Replacing the counterparts to the
statements above in the proof of Theorem IV.4.3 in [L-C] gives the
following Second Main Theorem.

Theorem 7. Assume that p : Y — > Cm is unramified above zero,
and let f : Y — > X be a non-degenerate holomorphic map such
that the divisor Rf does not intersect Y<0>. Let Tf^ be the
height associated to the volume form fZ = rjn/n\ on X. Then

+ NRf(r) -

^ y , ml

2/ey<o> *• ' J

for all r > ri(FTf] outside a set of measure < 2&o('0)-

Proof:

= 9 / (loS7/)]
^ •/

[Theorem 2]

n f= 2 y
-, i/nlog7/ [T : Cm]
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'/ [F : C
m]

y<r>
[concavity of the log]

oy
J[Y:Cm]

Y<r>

[Lemma 5]

&i(Fr/), ̂ , r) + — log(ra — 1)!

[Lemma 4]

[Proposition 6]

for all r > ri(FTf) outside a set of measure <

Remarks. The term on the right involving Iog7/ in the above
inequality depends only on the values of /, the Jacobian of /, arid
the Jacobian of p above zero, so if these functions are normalized
at the points above zero, then the right hand side is uniform in the
functions / and p and in the degree. In the case when ra = n, then
FTf = TfJ(n - 1)!, so n(FTf) = ri(r/|f|/(n - 1)!).

Similar changes give the more general Second Main Theorem.
Recall that a divisor is said to have simple normal crossings of com-
plexity k if k is the minimal number such that there exist local co-
ordinates wi,..., Wn around each point of D, such that D is defined
locally by w\... wi = 0, with I < fc.

For the rest of this section, let:

D = S1=i Dj be a divisor on X with simple normal crossings
of complexity k\

LJ = LDJ the holomorphic line bundle associated to Dj with
hennitian metric PJ\

rj be a closed, positive (1,1) form on X such that 17 > CI(PJ)
for all j, and rjn/n\ > ft;

Sj be a holomorphic section of LJ, such that (sj) = Dj\



William Cherry 49

Since X is compact, after possibly multiplying Sj by a constant, as-
sume without loss of generality that

For convenience, also assume that f(y) $ D for all y E Y<0>, and
that y<0> does not intersect the ramification divisor of /.

If A is a constant with 0 < A < 1, then define the Ahlfors-Wong
singular volume form

and define

Given A a positive decreasing function of r with 0 < A < 1, define

Note that because of the assumption \Sj\. < 1/e < 1, one has 7/ < 7A.

Using the fact that trn < tr and dividing through by the degree
in the proof of Lemma IV.5.1 in [L-C] gives the following lemma.

Lemma 8. Let b be the constant of Lemma IL7.4 in [L-C], which
depends only on£l^D and rj. Then for any decreasing function A
with 0 < A < 1, one has

qbl'n log 2
2n(ro-l)I

for all r.

Remark. Notice that the degree no longer appears in this esti-
mate, and this is why the error term is now uniform. Also note that
the n\ in the denominator has been replaced with n(m — 1)!.
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Let n = ri(F i/n) and let

= {<Ff»(r) -•'-•*
constant for r < r\.

Note that since r/n/n! > fi, one has F i/« < T/j7?/n!. Therefore

ri(F i/n) > ri(T/>7?/n!), and hence one has A < 1.

Applying Lemma 8 to the function A proves the next lemma.

Lemma 9. Let b be the constant of Lemma IL7.4 of [L-C] and
let

B = —((q + l)qk/n + ^2+fc/nlog2).
TL £i

Then

for r > n.

Lemma 10. One has

/ Ti/y
Y<r>

for all r > r\9 outside a set of measure < 26o(^)» where

TL
" log 2)

bi = bi(Fi/n) and n = ri(F i/«).
7/ 7/

- Because 7A > 77, one has

v n >Fi / n and Fn>F\n.

Hence 61 = 61 (F i/n) and ri = n(F i/«) are such that for r >
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*>(r)>e and bir
2n~lF'1/n(r) > e.

'A TA

From Lemma 4, one has

/

/ -i \ i

TA7" rFTT^T ^ ^(-^i *i. V', r) + log ̂ ——-^\JL m \^f I 'A Zi

for r > ri outside an exceptional set of measure < 26o(VO- Now from
Lemma 9, one has

S(F^t blt ̂  r} + log ̂ ^ < S(BT}+kl\ b^, r)

for r > ri.

Finally, we can prove the general Second Main Theorem.

Theorem 11. One has

n

for r >TI outside of a set of measure <
Proof: Let A be a constant with 0 < A < 1. Using Theorem

1 (B), and the fact that ddclog transforms products into sums, one
obtains:

T/>K(r) + (1 - A) J>/lft(r) - (1 - A)

1 v^ Iog7/(j/) , -i
~ ^ + ?
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i r dt
~ \Y : Cml / t

o y(t)

n f i/n c
= 2 / 10g7* W:

Because of the assumption that \8j\j < 1, one also has

~2

Also, since A is constant on Y<r>, the function A can replace A in
the above equality. Furthermore, Nf^. > 0 and — ! < — ( ! — A), so
the factor (1 — A) in front can be deleted. When r > ri, one has

3=1

from the definition of A, and from the fact that 77 was chosen so that

T /577>T / jp. for all j.

Finally, by moving the log out of the integral, one has

'A(r) ry . Cmi I •
Y<r> ~ ~ \Y<r> /

Applying the estimate in Lemma 10 for A to the term with the integral
on the right and collecting terms concludes the proof of the theorem.
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