Contents Preface | | Preface | vii | |---|---|--| | | Contents | viii | | 1. | Introductory expositions on projective representation o | f | | | groups, T. Hirai, A. Hora and E | | | 0. | Introduction | 1 | | 1. | How projective representations appear naturally | 2 | | 2. | Pauli's spin quantum number and Dirac's equation | 9 | | 3. | Sources where projective representations occur (1) | 18 | | | Sources where projective representations occur (2) | 23 | | | Weil representations of symplectic groups | 26 | | 6. | Hidden symmetries in the algebra $M(2^k, \mathbb{C})$ | 35 | | | References | 45 | | 2. | Projective representations and spin characters of complereflection groups $G(m, p, n)$ and $G(m, p, \infty)$, I, | | | | T. Hirai, E. Hirai and A | . Hora | | Λ | T. Hirai, E. Hirai and A. Introduction | | | _ | Introduction | 49 | | Pa | Introduction art I General theory for complex reflection groups | 49
54 | | Pa
1. | Introduction art I General theory for complex reflection groups Projective representations and representation groups | 49 54 | | Pa
1.
2. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups | 49 54 54 57 | | Pa
1.
2.
3. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups | 49
54
54
57
58 | | Pa
1.
2.
3.
4. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m, 1, n))$ corresponding to $G(m, p, n)$ | 49
54
54
57
58
63 | | Pa
1.
2.
3.
4.
5. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ | 49
54
54
57
58
63
65 | | Pa
1.
2.
3.
4.
5.
6. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups | 49
54
57
58
63
65
66 | | Pa
1.
2.
3.
4.
5.
6.
7. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z | 49
54
54
57
58
63
65 | | Pa
1.
2.
3.
4.
5.
6.
7.
8. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups | 49
54
57
58
63
65
66
71 | | Pa
1.
2.
3.
4.
5.
6.
7.
8.
9. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z Supports of spin characters of $G(m,1,n)$ (m odd) | 49
54
57
58
63
65
66
71
77 | | Pa 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z Supports of spin characters of $G(m,1,n)$ (m odd) Supports of spin characters of $G(m,1,n)$ (m even) Supports of spin characters of infinite generalized symmetric groups $G(m,1,\infty)$ | 49
54
57
58
63
65
66
71
77 | | Pa
1.
2.
3.
4.
5.
6.
7.
8.
9.
10. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z Supports of spin characters of $G(m,1,n)$ (m odd) Supports of spin characters of $G(m,1,n)$ (m even) Supports of spin characters of infinite generalized symmetric groups $G(m,1,\infty)$ Factorisability for spin characters of $G(m,1,\infty)$ | 49 54 54 57 58 63 65 66 71 77 79 82 85 | | Pa
1.
2.
3.
4.
5.
6.
7.
8.
9.
10. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z Supports of spin characters of $G(m,1,n)$ (m odd) Supports of spin characters of $G(m,1,n)$ (m even) Supports of spin characters of infinite generalized symmetric groups $G(m,1,\infty)$ Factorisability for spin characters of $G(m,1,\infty)$ Finite-dimensional spin representations of $G(m,1,\infty)$ | 49
54
54
57
58
63
65
66
71
77
79
82
85
86 | | Pa
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | Introduction art I General theory for complex reflection groups Projective representations and representation groups Wreath product groups and complex reflection groups Representation groups of complex reflection groups Normal subgroups of $R(G(m,1,n))$ corresponding to $G(m,p,n)$ Infinite version $R(G(m,1,\infty))$ and $R(G(m,p,\infty))$ General aspects about characters of groups Conjugation in $R(G(m,p,n))$ modulo Z Supports of spin characters of $G(m,1,n)$ (m odd) Supports of spin characters of $G(m,1,n)$ (m even) Supports of spin characters of infinite generalized symmetric groups $G(m,1,\infty)$ Factorisability for spin characters of $G(m,1,\infty)$ | 49 54 54 57 58 63 65 66 71 77 79 82 85 | | Pa | rt II Detailed study in Case VII | 97 | |-----|--|------------| | 15. | Explicit formula for characters of $G(m, p, \infty)$ in Case VIII | 97 | | | Formula for spin characters of $G(m, 1, \infty)$ in Case VII | 98 | | 17. | Projective IRs of $G(m, 1, n)$ in Case VII | 102 | | 18. | Irreducible spin characters of $G(m, 1, n), m$ even, Case VII, | | | 10 | Type $(1, 1, -1)$ | 114 | | 19. | Limits of irreducible spin characters of $G(m, 1, n)$ as $n \to \infty$, | 110 | | 20 | in Case VII
Appendix. Proof of Lemma 18.2 | 118
120 | | 20. | List of Definitions and Symbols | 120
122 | | 0 | | | | 3. | Projective representations and spin characters of complex
reflection groups $G(m, p, n)$ and $G(m, p, \infty)$, II, | X | | | Case of generalized symmetric groups, T. Hirai, A. Hora and E. I | Hirai | | 0. | Introduction | 123 | | Pa | art I Preparatory results | 126 | | 1. | Generality for projective representations | 126 | | | G(m, p, n) and their representation groups | 132 | | 3. | Method of our study in this paper | 138 | | 4. | Spin characters of $G(m, 1, n)$ and $G(m, 1, \infty)$ | 140 | | Pa | art II Spin irreducible representations of $R(G(m, 1, n))$, | | | | $n < \infty$, of Types $(-1, -1, -1)$ and $(-1, -1, 1)$ | 143 | | 5. | Covering group $\widetilde{D}(m,n)$ and Clifford algebra | 143 | | 6. | Spin IRs of $\widetilde{D}_n := \widetilde{D}(m,n)$ | 150 | | 7. | Actions of $\widetilde{\mathfrak{S}}_n$ on \widetilde{D}_n and stationary subgroups for equivalence classes | | | | of IRs | 155 | | 8. | Intertwining operators for IRs of \widetilde{D}_n , related spin representations of | 150 | | 0 | \mathfrak{S}_n and \mathfrak{A}_n Intertwining relations among P 's under $\widetilde{\mathfrak{S}}_n$ in CASE I | 158 | | | Intertwining relations among P_{γ} 's under $\widetilde{\mathfrak{S}}_n$ in CASE I | 164 | | | Intertwining relations among P_{γ} 's under \mathfrak{S}_n in CASE II
Classification of spin IRs of $G(m, 1, n)$, CASE I, Type $(-1, -1, -1)$ | 166
169 | | | Classification of spin IRs of $G(m, 1, n)$, CASE II, Type $(-1, -1, 1)$ | 174 | | | | 111 | | Pa | art III Spin irreducible characters of $R(G(m, 1, n))$ of | | | | Type $(-1, -1, \pm 1)$ | 181 | | 13. | Conjugacies in \mathfrak{S}_n and \mathfrak{A}_n , and in $\widetilde{\mathfrak{S}}_n$ and $\widetilde{\mathfrak{A}}_n$ | 181 | | | Characters of spin representations of \mathfrak{S}_n and \mathfrak{A}_n | 184 | | 15. | Relations to Hauptdarstellung of Schur | 189 | Contents | 16. Characters of IRs of $\widetilde{D}_n \stackrel{\mathrm{I}}{\rtimes} \mathcal{S}(P_\gamma), \ \widetilde{D}_n \stackrel{\mathrm{I}}{\rtimes} \mathcal{S}(P_\gamma^{\pm})$ | 192 | | | |---|-----|--|--| | ' | 192 | | | | 17. Characters of IRs of $\widetilde{D}_n \stackrel{\text{II}}{\rtimes} \mathcal{S}(P_\gamma), \ \widetilde{D}_n \stackrel{\text{II}}{\rtimes} \mathcal{S}(P_\gamma^{\pm})$ | 209 | | | | 18. Factorisability of characters and covariance of trace functions | 223 | | | | 19. Characters of spin IRs of $\widetilde{G}_n^{\mathrm{I}}$ (CASE I) | 228 | | | | 20. Characters of spin IRs of $\widetilde{G}_n^{\rm II}$ (CASE II) | 235 | | | | Part IV Spin characters of infinite group $R(G(m, 1, \infty))$ | | | | | of Types $(-1, -1, \pm 1)$ | 246 | | | | 21. Towards limits of spin irreducible characters | 246 | | | | 22. Limits of special spin irreducible characters | 249 | | | | 23. Limits of spin irreducible characters | 253 | | | | 24. Determination of spin characters of $G(m, 1, \infty)$ | 259 | | | | 25. Structure of the space of spin characters of $G(m, 1, \infty)$ | 264 | | | | Acknowledgements for papers [E], [I] and [II] | 267 | | | | References for papers [I] and [II] | 268 | | | | List of Definitions and Symbols for [II] | 272 | | |