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Abstract. Let T be a countable superstable theory with < 2N° count-
able models. We solve the algebraic problem from [Ne4, §4]. In partic-
ular, in some cases we complete the countable classification of skeletal
p of [7-rank 2 (cf. [Bu4]).

§0. Introduction. Throughout the paper we assume that T is a complete
countable superstable theory with < 2*° countable models. For the background
from stability theory see [Sh], [Ba], [Bui], or [P]. The results in [Bu2] suggest
that if T has infinite [/-rank then every countable model M of T is determined
by a subset A of M, called its skeleton (cf. [Bu4]). Hence in the course of
proving Vaught's conjecture we have to determine possible isomorphism types
of skeletons. The easiest non-trivial case we faced in [Bu4] and [Ne4] was as
follows. Assume p £ S(0) is stationary, non-isolated, has Z7-rank 2, and if b
realizes p then for some α £ acl(δ), U(a) = 1 and tp(6/α) is non-isolated. Let
/(p,«) be the number of isomorphism types of sets p(M) of power AC, where M
is a model of T. We wanted to prove that I(T, N0) < 2N° implies J(p, N0) < NO-
Anyway, considering /(p, N0) seems to be a necessary step on a way to prove
Vaught's conjecture for superstable T. Let us recall the main path of reasoning
from [Bu4] and [Ne4] thus far.

For α, 6 as above let q = tp(α/0) and pa = tp(fe/α). We want to count,
up to isomorphism of the monster model (£, the number of sets p(M), where
M is countable. p(M) is the union of sets pα/(M), where α' £ M realizes q.
q has finite multiplicity hence by adding an element of acl(0) to the signature
we can assume that q is stationary. Throughout we assume T = Teq. Further
on in determining the structure of p(M) we can easily dispose with the cases
when pa is strongly minimal or trivial. Hence we can assume that pa is properly
minimal and non-trivial. Then [Nel] implies that pa has finite multiplicity, and
[Bui] gives that every stationarization of pa is locally modular. Similarly we can
assume that for 6 realizing pα, stp(6/α) is not modular, non-orthogonal to 0 and
almost orthogonal to 0. In particular, pa is weakly orthogonal to q \ a. Also, we
can assume that all stationarizations of types pα, a £ <?(£), are non-orthogonal. If
q(M) has finite acl-dimension then p(M) can be characterized up to isomorphism
just as in [Bu2]. Hence we can assume that for every countable M we consider,
q(M) has dimension NO, and Q = q(M) is fixed. As p(M) = \J{pa(M) : a £ Q},
classifying the structure of p(M) amounts to describing how the weakly minimal
sets pα(M), α £ Q, can be arranged together to form p(M). The types pα, a £ Q,
are non-orthogonal, so the main difficulty lies in that we are not free in deciding
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whether pa is realized in M or not: if paι,... ,pfln are realized in M and a G Q
then possibly pa is realized in acl(pαι (M)U Upfln (M)). This determines a kind
of dependence relation on types pa, a G Q. For various reasons it is easier to work
with stationary types rather than with types of finite multiplicity. Thus instead
of dependence on {pa : a G Q} we define a dependence relation on the set of
stationarizations of types pα,'α € Q. Also, to make this dependence modular we
have to consider some other weakly minimal types as well. The formal definition
follows the idea from [Ne2]. Let P* be the set of strong weakly minimal non-
modular types r over Q (in Teq) such that r is non-orthogonal to some (every)
pα, α € Q, and for some finite set A C Q, r does not fork over A and has finitely
many conjugates over A. Hence all types in P* are non-orthogonal.

For r G P* and R C P*, a G ACL(β) iff whenever A contains a realization of
every type in R then r is realized in acl(Λ U Q). ACL is a modular dependence
relation on P* ([Bu4, 1.14] or [Ne3, 1.2]). For A C Q let PJ = {r G P* : r
is based on A}, P^ = {stp(6/α) | Q : a G acl(A) Π Q and 6 realizes pα), and
PA = ACL(P^)ΠPJJ. By [Ne4, 1.1], PJJ is essentially ACL-closed in P*, meaning
that every r G ACL(P^) is ACL-interdependent with some r1 G PJJ. Let P = PQ.
Let us say that ACL-closed X, F C P are isomorphic if there is an automorphism
/ of C with f[Q] = Q and /[Jf] = F. To compute I(p, N0) it suffices to determine
the isomorphism types of ACL-closed subsets of P.

For X, Y C P*, ΌΊM(X/Y) denotes the ACL-dimension of X over F,
and DIM(jr) denotes the ACL-dimension of X. We say that X, Y C P* are
independent over Z C P* (Jf J^ F(Z)) iff any ACL basis of X over Z remains
an ACL-basis of X over Y U Z. We have that for finite A C Q, DIM(PJJ) is
finite as well ([Ne4, 1.7], [Bu2, 5.2(a)J, or [Bu4, 1.14]). [Bu4, §2] proves that for
A, B CQ, PJJUB C ACL(P£ U P£) (we call this a "local character of ACL"),
and that q is locally modular. As a consequence we prove in [Ne4, 1.3] that if
C C A Π B, A, B C Q, and A^ B(C) then PA ̂  PB(PC) (and P%^ P£(P£)
as well, also the assumption that C ^ 0 is redundant there). We can assume
that q is non-trivial. Also, by the local character of ACL, we can assume that
n0 = DIM(Pα)>l.

Now applying [H] we can assume that q is the generic type of some connected
weakly minimal type-definable (in £eq) group ((?, +), in particular that q is
modular. By modularity we can associate with q a division ring K such that Q
with acl may be regarded as a projective space over K. In fact [H] gives more,
acl on Q U {0} is just a ΛΓ-vector space dependence (0 is the neutral element of
G). Similarly we can associate with any stationarization r of pa a division ring L.
As indicated in [Ne4], P* with ACL-dependence may be regarded as a projective
space over the same L (after identifying ACL-interdependent types). We fix the
meaning of K and L for the rest of the paper, unless indicated otherwise. We
say that an A C Q is closed if acl(A) Π Q = A. As in [Ne4], for r G P* we define
A(r) as the minimal closed A C Q such that for some r0 G P£, r G ACL(r0).
By local character of ACL, if for some closed A, A1 C Q and r0 G P ,̂ n G PjJ,,
r G ACL(ro) Π ACL(rι), then for some r2 G PlnA" r G ACL(r2), hence the
above definition is correct. Let n(r) = dim(A(r)). In [Ne4, 1.13] and [Bu4] we
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prove that ra* = max{n(r) : r G P} is finite (in [Ne4, 1.13] n* is denoted by n&).
In [Ne4] we reduce the problem of counting isomorphism types of ACL-closed
subsets of P to a problem from algebra in the following way. Suppose FQ is a
countable division ring, n < ω, and FI C MnXn(Fo) is a division subring of the
ring of matrices Mnxn(F0), meaning that addition and multiplication in FI are
addition and multiplication of matrices, and l/^ is the identity matrix /. Let
3C(Fo, FI) be the class of pairs (V, W) where V is an F0-vector space and W C Vn

is an Fi-vector subspace of Vn. Vn is an FI-space: regard elements of Vn as
columns, and FI acts on them by matrix multiplication on the left. We say that
(V, W), (V, W) G 3C(F0, FI ) are isomorphic if there is an Fo-linear isomorphism
f:V->V such that f[W] = W for the induced mapping / : Vn -> (V')n. The
elements of 3C(F0,Fι) we call (F0,Fι)-structures.

Assume C is a finite subset of Q, R is a basis of PC? and F is a selector
from {r(<£) : r £ R}. In our reduction we need to add CUE for some C and
F to the signature. Then we replace p and q by p | C U F and ς | (7 U F,
and make other changes accordingly. Notice that in doing so we do not need to
change K and L. ACL on the new P corresponds to the old ACL on the old
P, localized modulo R. Also, the new n* equals the old one. Now we prove in
[Ne4] that after adding this C U F to the set of constants, there is an embedding
of L into Mn*Xn*(K) (so we can assume that L C Mn*xn*(K) is a division
subring of Mn*Xn*(K)). Let us work in T(C U F). We can regard Q U {0} as
a X-vector space V, acl-dependence in Q corresponding to -fiΓ-linear dependence
in V. We find a correspondence a between types in P and elements of Vn

such that a is onto and translates ACL-dependence into L-linear dependence.
We show that all stationarizations of a single pa are ACL-interdependent, and if
r G P is a stationarization of pa then a(r) = (α, 0,0,...) € Fn*. This gives a full
description of ACL on P. In particular, pa G ACL(pα ι,... pan) iff (α, 0,0,...) G
L-span((αι, 0,0, . . .) , . . . , (αn, 0,0,...)) and we get a 1-1 correspondence between
ACL-closed subsets of P and L-closed W C Vn* such that non-isomorphic ACL-
closed subsets of P correspond to non-isomorphic pairs (F, W) in 9C(K,L). Of
course this is a translation of a localized version of the original problem. In
many cases if there are 2K°-many non-isomorphic (V,W) G X(K,L), then this
still gives /(T, N 0) = 2K° for the original T. In this paper we exhibit a solution
of the problem of counting countable (K, L)-structures, and in some cases show
how to apply this to compute 7(p, N0) for the original p.

Many conjectures in stability theory (like these of Zil'ber or Cherlin) indicate
that "classifiable" stable structures correspond to a few general patterns, often
appearing already in classical mathematics. One of the results in this direction
was the work of Hrushovski [H] showing how group structures occur in the stable
context. In particular he proved that any modular, stationary regular non-trivial
type may be regarded as the generic type of some type-definable group, and
forking dependence on it is just a linear dependence over some division ring. We
used this result above. But to obtain this he needed some parameters. We may
think of these parameters as needed to recover the original pattern in the regular
type, which may be distorted due to some special features of the theory.
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For example we can construct a stable structure in the following way. We
may start with a stable group G, and then forget about a part of its structure, so
that G will be stable, but will not be a group anymore. So the original pattern
of G is distorted. Hrushovski's theorem says that sometimes we can recover a
group structure, possibly in an imaginary extension Geq of G. Returning to our
context we think that this may be the role of the added parameters C\JE. The
question remains how much distorted the structure of the original p may be with
respect to its regularized version.

An example. Now suppose K is any countable division ring, n < ω, and
L C MnXn(K) is a division subring of MnXn(K). We do not know too many
complicated types of ϊ7-rank 2. This example is intended to fill this gap. We
shall show that K and L give rise to a stationary type p of U-τank 2 so that ACL
on P corresponds to L-dependence. That is, ACL-closed subsets of P correspond
to (K, L)-structures.

Let V be a Jf-space, and V\ be a subspace of V with dim(Vί) = dim(VyVi) =
No- Vn and (V/Vι)n are (left) L-spaces. (V/Vι)n contains (VyVi,0,0, . . . ) =
V2 = V/Vι as a #-subspace. Define Q = V2. For α G Q let Pa = a + Vf. So Pa

is an affine L-space (a translation of V").
If a = (αi, . . . , aκ) C L, α α , . . . , ak G Q, and 6t G α, + V? then £\ α. δj G

Fn. If £V α,αj = α for some α G F2 then £t α,J5, G A + F^. Let /5 be a fc-ary
partial function acting on (Jα€g Pα defined as follows. f$(b\,..., δ*) is defined if

hi G Pα, and ̂  α,α, = α G T^, and then /<s(6ι,..., 6*) = ]Γ)t αi&ι. Notice that
whether fa is defined on (6χ, . . . , 6jk), with 6, G Pα, > depends only on the linear

type of α ι , . . , , α j b -

Let M = (QuUα 6g P.; Q(«),P(*,y),/β)βCL, where Q(M) = Q, P(M2) =
{(α, 6) : α G Q,6 G Pα}> equipped with the following additional structure: the
structure of ίf-space on Q, the structure of L-space on PO, and for every α G
Q the structure of affine L-space on Pα, i.e., the binary subtraction function

mapping Pα x Pα into P0.
T = Th(M) is ω-stable; Q and every Pα is strongly minimal. Let pα be the

strongly minimal type isolated by Pα(x) over α. Then pα is locally modular, and
ACL-dependence on {pα : α G Q} is described by functions /s, i.e., is just an
L-dependence. If b G Pα for α ̂  0 then p = tp(δ/0) is stationary, has [7-rank 2

and is not almost orthogonal to q = tp(α/0).
Now we shall modify the construction to get properly weakly minimal pα

and a small superstable T. Then we need of course to assume that L is locally
finite. For simplicity we assume that L is finite.

Let WQ = W° > Wl > -" > Wί..., i < ω, be a sequence of L-spaces such

that [PF1 : W*+l] is finite and f|. W* is No-dimensional. We identify V? with
f]i W

i. Add an independent copy Wα of WQ over every Pα, α φ 0, i.e., form a

formal affine space α + Wo so that α + Vin = Pα For α ̂  0 extend subtraction
from Pα onto Wα so that for x, y €\Vα, x - y e WQ (it α +x,α+ y e Wα then

(α + z)-(α + y) = z - t / G W0).
We have to extend also the functions /δ, S C L, onto the larger sets Wα,

α G Q. For fs and α = (αi,..., α*) C Q of suitable length with £• α^α,- = α G Q
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let us define fs(bι,..., &*) for 6, € Wai as follows: Take some 6J € α; + Vin.
Let /α(δι,..., 6fc) = £V αj&'j + J^ α«(feί ~ &'»)• The first sum in this definition
is taken in Vn, the second one in WQ. ]Γ)»α*M + Σί α«(^« ~~ Ό *s ^e on^
element y of Wα such that y — Σ, α»^ί = Σ, α»(&* ~~ Ό- ^ *s easy to check
that this definition does not depend on the choice of b(. Now let M = (Q U
\JaeQWa;Q(x),W(x9y),W*(x,y) (0 < t < ω),/β (5 C L), the structure of
X-space on Q, the structure of L-space on Wo, and the affine ^-structure on
each Wα given by subtraction), where Q(M) = Q, W(M2) = {(α,δ) : & € Wα},
ty»(M2) = {(α, 6) : δ € α+W'}. Then T = Th(M) is small and superstable, pa =
the type over a generated by W l(α, x), 0 < i < ω, is properly weakly minimal,
locally modular, non-isolated. ACL on {pa : α € Q} is the L-dependence given
by /cf's. For 0 φ a 6 Q and 6 realizing pα, p = tp(6/0) is stationary, of {/-rank
2, not almost orthogonal to q = tp(α/0).

One could wonder what description of ACL we obtain here if we apply the
analysis from [Ne4] to this case. Notice that the set of first columns of elements of
L is a right Tf-space, a subspace of Kn. It turns out that if ΛΓ-span(first columns
of L) = Kn (equivalently: £-span(tf,0,...,0)* = Kn, or there are QI, ..., αn €
L with first columns .ftT-independent), then through the construction from [Ne4]
we recover the original embedding L C Mnχn(K) (compare [Ne4, 3.11]).

This example shows that the general pattern of a skeletal p of {/-rank 2
obtained in [Ne4] occurs in reality.

§1. Counting (if, L)-structures. In this section we prove that there are
either 2N° or countably many countable (K, L)-structures. Also, we show that
if AT, L are finite (and by [Ne4], K being finite is equivalent to L being finite)
and n* > 1 then there are 2K°-many (V,W) G X(K,L) with dim(F) = N0- In
case when n* = 1 and K is a field, the number of countable (A", L)-structures
depends on [L : K}. The proofs consist in applying in our context results and
methods from algebra and from the "grey zone" between algebra and logic. The
detailed analysis of 3C(X, L) was carried out in [DR]. Here we adapt their results.

Notice that there is a natural notion of direct sum in X(K, L): (V, W) =
(Vo, Wo) ® (Vι,Wι) iff V = VQ Θ Vι (which determines Vn*, and embeddings
Vf,Vf C Vn\ hence W0, TVΊ C Fn*) and W = WQ + Wl (in Vn*). It turns
out that we can regard every (K, L) structure as a left ίϊ-module for some
matrix ring R. For any ring Λ, let M(Λ) denote the class of left jR-modules. Let

(K Λ<Λ
RQ = M*Xn(ίΓ), and let JfZ = I . For an ideal (possibly one-sided) J

V ° L J
of R and an Λ-module M let KerM(^) denote {α € M : Ja = 0}. KCΓM(J) is a
subgroup of M, which is an .R-module if J is a right-ideal. Let

Then (!RO +/L) and (Iκ+lRQ) are two-sided ideals of Λ, 7̂ - and IRO are left ideals
and IL is a right ideal of R. Now, with any S = (V, W) € ίK(X, L) we associate
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fv\ f v
the ^-module and call it 5. Notice that (Iκ + IRn) [

\WJ °'\W
Hence we get

) - 0
REMARK 1.1. 5 = (V, W) G X(K, L) is decomposable in K(K, L) iff S is

decomposable in M(R). Also, for S, S1 G K(K,L), S and S1 are isomorphic iff
5 and S! are isomorphic as R-modules.

The model theory of modules is well developed. Unfortunately the mapping
X(K, L) 9 5 h-> 5 G JΛ(R) is not onto. We shall rely on the following results.

THEOREM 1.2. ([PR, 2.1]). The following conditions on a ring are equiv-
alent.

(i) Every R-module is a direct sum of indecomposable modules,
(ii) Every R-module is totally transcendental.

If R satisfies these conditions then every indecomposable R-module is finitely
generated, and there are at most \R\ + N0 indecomposable R-modules.

THEOREM 1.3. ([BK, 8.7] or [Pr, 2.10]). Tie following conditions are
equivalent.

(i) Up to isomorphism, there are count ably many countable R-modules.
(ii) There are < 2K° countable R-modules.

(Hi) R is of finite representation type (i.e., every R-module is a direct sum of in-
decomposable modules and there are finitely many indecomposable R-modules).

Let Λt'(Λ) = {S : S G X(K,L)}. We say that X(K,L) is of finite rep-
resentation type if every (Jf, L)-structure is a direct sum of indecomposables,
and there are finitely many indecomposable (if, L)-structures. Otherwise we say
that 9C(K,L) is of infinite representation type. Theorems 1.2 and 1.3 deal with
M(Λ). However, their proofs work as well for the smaller class M'(R) (this may
be checked directly). Hence, modulo Remark 1.1 we get a proof of Theorem 1.4
below. We shall give also another, more direct proof of this theorem based on

Theorems 1.2 and 1.3.

THEOREM 1.4. The following conditions on K,L are equivalent.
(i) Up to isomorphism, there are countably many countable (K, L)-structures.

(ii) There are < 2**° countable (K, L)-structures.
(Hi) %(K,L] is of finite representation type.
If K, L satisfy these equivalent conditions, then every indecomposable (K, L)-

structure is finitely generated.

Proof. We will show that every Tϊ-module TV is a direct sum of MO and MI ,

where M0 G 3VC'(Λ), MI G M(Λ), and MI C KeτN(Iκ + JΛO) Hence R acts
on MI as IL and MI is essentially an L-space. Modulo Theorems 1.2, 1.3, and

Remark 1.1 this will prove Theorem 1.4.

We have R + Iκ + IRO + h, /L/AΓ/X/L = W*o = ftίRβ = ° Let

Nι = KeτN(Iκ + /RO), ^2 = KerN(/Λo + JL), N3 = ILN, N± = (/Λo-span)JV3,
where (/Λo-sρan)7V3 is the subgroup of N generated by /Λ0-/V3. Notice that 7V3 is

a subgroup of N. NI, N2, N$ + N4, and N4 are submodules of N. NιΓ\N2 = 0.
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The action of R on N% is that of IK, hence JV2 is essentially a K -space. As

(IRo + IL}(Iκ + IRo) = 0, (IK + IRo)N C N2, hence N = RN = IiN + (Iκ +
IRo)N = 7V3 + N2 = (ΛΓ3 + 7V4) + JV2. Let JVJ = (ΛΓ3 4- N4) Π ΛΓ2. As ΛΓ2

is essentially a .if -space, we can find Ntf such that JV2 = 7V2 Θ ΛΓ^'. Hence
TV = (7V3 + ΛΓ4) Θ Ny. N! Π (N% + N4) = 0, because N!/ + N4 C N2. Let
7V{ = ffi Π 7V3. 7V{ is a submodule of JV3 + JV4, and (7* + IRo)N{ = 0, Also, ΛΓ{
is an /L-space. Choose a subgroup N% < JV3 so that 7V3 = JV{ + JVg, /L^3 ^ N3

and 7V{ Π JV^ = 0. Then still 7V4 = (/Λo-sPan)JV^, and N^ + N4 is an Λ-module.
We show that N3 + N4 = N[ Θ (N^ + N4).

Indeed, if α 6 N£, b 6 JV4, and α + b G JV{, then as ILN± = 0, JL« =
IL(α + δ) C AΓ{, Also, JLα C JV^, hence JLα = 7L(α + 6) = 0. But N{ is an
/L-space, so α + 6 = 0. As IKIL = 0, J^TV^ =0. JV4 C Ker(/Λo + /L), hence
N^Γ\N4= 0. This implies α = 6 = 0. Hence we get

® (N^ 4- W4) and N^ Π N4 = 0.

Now let MI = N{, MO = Λ^' φ (N^ + 7V4). It suffices to show M0 G M'(Λ).

/V\
Obviously, N% G M'(J?) (Λ^' ^ I I for some 7), so it suffices to show N^ +

N± G M'(.R). Consider the mapping

φ : N^ + N4 -
\(W J

(x\ ( 0 \
defined by φ(x) = 1 J for x G AΓ4, and φ(x) = 1 1 for x G ΛΓ^,

where Ak = (α^ ) G Λ is defined by α^ = 1 if i = 0, j = k + 1 and αf^ = 0

otherwise. If x G ΛΓ3, y G 7V4, let φ(x + y) = φ(x) + φ(y) We check that φ is 1-1.
It suffices to see that φ \ N% is 1-1. If x G N$ and (/?(x) = 0, then 7#0x = 0. Also,
Iκx = 0 as x G 7ι,̂ V and 7 -̂7^ = 0, hence Jί G AΓ l 5 contradicting the choice of

7V3. Let I I be the image of φ. V is a -ftΓ-space, and by direct checking we

\WJ
/ 0 \

see that φ translates the action of IL on N% into the action of L = IL on I I ,
\WJ

ίv\
hence W is an L-subspace of Fn*, and I I G 3Vt'(/Z). It is easy to see that φ

\W /
is an isomorphism of Λ-modules.

In Theorem 1.4 we reduced the problem of counting countable (K,L)-
structures to determining representation type of JC(AΓ, L). If this representa-
tion type is infinite then there are 2N° countable (ΛΓ, L)- structures, and we get

7(Γ, NO) = 2*° as well (at least when K, L are finite). If 3C(ίΓ, L) has finite repre-
sentation type then there are countably many countable (K, L)-structures, also
there are finitely many finite dimensional indecomposable (K, L)-structures and
every (K, L)-structure can be presented as a direct sum of indecomposables. As
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in the proof of [Pr, 2.10], this decomposition is unique up to isomorphism, that is
if Θie/(AΓι,Li) = ® j ς . j ( K j , L j } and (/£",-,£,-), ( K j , L j ) are indecomposable then
there is a bijection / : / — > J such that (Ki,Li) is isomorphic to (Kf^^Lf^).
Still in the case of finite representation type of K(K, L) we can not determine
/(p, NO) We need a more detailed information, furnished in [DR]. %(K, L) is a
special case of the structures considered in [DR]. Unfortunately, Dlab and Ringel
assume throughout that there is a central field F contained in K Γ( L such that
[K : F] and [L : F] are finite. In our case, in general probably we can not hope
for that much. However, this assumption is obviously true if both K and L are
finite, and as we indicate below, is true also when n* = 1 and K is a field.

Our (K, L)-structures correspond to representations of "F-species" S =
(£,ίΓ, fMz,), where M = RQ is a K, L-bimodule: K acts on M in the natu-
ral way, L acts on M by matrix multiplication on the right. Representation of S
is a tuple (ιW, κV > φ), where φ : κ(M φ L W) — » jζV. Let ίtt be the category of
representations of S. Let 9tm be those representations of S for which the adjoint
mapping φ* : ιW — > Eomκ(κMι^κV) of φ is monomorphism. Elements of

fv\
ϋKm correspond precisely to Λ-modules of the form 1 I . As mentioned be-

fore Proposition 5.2 in [DR], ίK is of finite representation type iff ίHm is of finite
representation type. Our feeling is that n* > 1 should imply /(T, NO) = 2**°. We
were only able to prove this for finite A", L. In fact by [Ne4, 3.11], K is finite iff
L is finite (in [Ne4, §3], Fq,Fp stand for K, L respectively).

PROPOSITION 1.5. If n* > 1 and K, L are finite then %(K, L) has infinite
representation type. In particular, in this case J(T, NO) = 2K°.

Proof. Let ιM' = M*xl(AΓ), L acts on M1 by matrix multiplication on the
left. By [Ne4, 3.11], dim(z,M') > 2. Now, K,L being finite implies that also
dim(Mι/) > 2. Thus άim(κM) x dim(Mι,) > 4, hence the assumptions of [DR,
5.2] are satisfied. This proposition (particularly part (ii) of its proof) gives that

, hence also *K(K, L), has infinite representation type.

Now let us discuss the case n* = 1. Then the situation is much simpler; we
have just L C K. [Ne4] gives us in this case that (in T(C U £)) every r G R
is ACL-interdependent with a stationarization of some pα and all stationariza-
tions of a single pα are ACL-interdependent (hence we can consider ACL as a
dependence on Q: α G ACL(J5) iff pα € ACL({ph : b G B}). Q U {0} is a K-
vector space, hence also an L-space, and ACL- dependence on Q is just L-linear
dependence.

By [Nel] or [Bu3] we know that £ is a locally finite field. By [Ne4, 0.3],
) is finite. By [Bu4], K is also a locally finite field. The elements of

, L) are what Dlab and Ringel call in [DR] representations of L-structures.
From [DR, Theorem A] we get the following.

COROLLARY 1.6. If n* = 1, A" is a field, and [K : L] > 4 then X(K, L) has
infinite representation type. If[K : L] < 3 then K(K, L) has finite representation
type. Hence if n* = l,K is a field, and [K : L] > 4 then /(T, N0) = 2N°.
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In case n* = 1, that [K : L] > 4 implies I(T, N0) = 2K° was proved also in
[Bu4, §4]. In case n* = 1, and [K : L] < 3 we get that there are countably many
countable (if, L)-structures. This still does not automatically yield the value of
/(P.NO), as we have added parameters C U E to the signature. In case when
[K : L] = 2 or 1, we proved in [Ne4] that I(T,N0) < 2*° implies /(p,N0) = N0

In case when n* = 1 and [K : L] = 3 we shall prove this in the next section.
We shall rely on the special form of decomposition of a (K, Zr)-structure into
indecomposables, implied by the proof of Proposition 4.2 in [DR]. From now on
in this section we assume that n* = 1, K is a field, and [K : L] = 3. Let {1, e, /}
be a basis of K as an L-vector space. In [DR, 4.2] it is proved that there are
exactly five indecomposable (if, L)-structures: α° = (if, if), α1 = (if, L + e£),
α2 = (K x K, (LxL) + (e, /)£), α3 = (K, L), and α4 = (K, 0).

For (if, L)-structures (V, W),(V, W) we say that (V,W) is a strong
substructure of (V,W) ((V',W) < (V,W)) if V is a if-subspace of V and
W" = WnV (that is we regard W in (V, W) as a predicate). For a G X(K, L) we
stipulate α = (Va, Wa). Let 5 = (V, W) be a (if, I)-structure. We will indicate
an algorithm of decomposing 5. We define by induction sets XQ , X\, X2, X3, X4.

Let Xi = {a G 3C(if,I) : α < 5,α £ α'* and V^ IΊ if-span(X<t) = 0}. Here

if-span(Jf<j) is the if-subspace of V generated by \J{Va ' & G Xj,j < i}. If
a,β G X(K,L), a,β < 5, then let a + β = (Vβ + V>, Wα + Wβ\ if X C
is a family of α < 5, then let ΣJf = (Σ{Vα : α G X}, Σ{W0 : α G JC}).

CLAIM 1.7.
Ci; For α < 5, α G X, iff α S αέ and Vα £ if-span(X<j).
(2j EJf<i < 5.

(3) Assume βQ,...,βn G Xif Vβo Π if-span(X<i U {A,...,/9n}) ^ °
^CX.span^^U {A,...,/3n}).

(4) Assume /?ι,...,/?n G -Y,-. The* Σ(Jf<, U {ft,... ,/3n}) < 5.

Proo/. The proof is a modification of [DR, 4.2]. {1, e, /} is a basis of if over
L. We proceed by induction on i. For i = 0 the claim is easy. Also, (2) follows
always from the induction hypothesis, and except for i = 2, dim(VΛi) = 1,
hence for i φ 2, (1) and (3) are trivial. Let i = 1. We need to prove (4).
We proceed by induction on n. Without loss of generality (wlog) ϋf-span(Jf<j)

has dimension k < ω. Let ΣX<t = (Vb,Vb), βj = (Vj,Wj). By (3) and the
inductive hypothesis we can assume that Vb, V Ί , . . . ,Vn are independent. Let
W = WΓ\V'vrheτeV' = VQ + + Vn. Suppose W ± VQ + Wl + - - + Wn. We

know that dimL(y0 + Wl + • + Wn) = 3fc+2n, hence dimL(W) > 3fc+2n, Thus
e-1 '̂ Π f-lW Π W properly extends VQ. Let u G W Π e"1 PΓ1 Π f~lW \ V0

Then M, ew, /u G W, hence (Ku,Ku) G -X"o, contradicting u £ VQ.
Now let i = 2.

(1) <-. Suppose ΣAΌ = (Vί), Vb). Wlog if-span(A"<2) has finite dimension.
Assume βl = (Vι, Wλ),..., βn = (Vn, Wn) G Xι are independent (i.e., Vt Π (Vb +

••• + Vi-i) = 0), α G X2, VβΠίVb + + Vn) ^ 0. Let W = WΠV' where F; =
Vb + + Vn + Vα, dim^(y0) = k. SodimL(W) > 3fc + 2(n + l), and dίmL(V) =
3fc + 3(n + 1). VoCW'Π e~lW and dimLί^' Π e^1^') > 3t + n + 1. Let
ut G Wtne-lW, t = 1,... ,n, and ua G Wne^ϊΓ'VίVo +L-span(tiι,.. , un)).
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If ua G V o H hVn, we get a contradiction as in case 1. Hence ua £ V b H \-Vn.
Also, ua, eua G W, hence (Kua,LuQ + Leua) G X\, a contradiction.

We prove (3) and (4) simultaneously, by induction on n. As above, wlog
-ftT-span(-X"<j) has finite dimension. For n = 0 we are done by (1). So we
can assume that ίί-span(X<j), V i , . . . , Vn are independent, where βt = (Vt, Wt).
Now if Vb Π (tf-span(jr<i) + Vι + - - + Vn) £ 0 or Σ(X« U {A,..., /?„}) ^ 5
then as in the proof of (1) we get a u G (K-span(X<t ) + + Vn) \ K-span(X<l )
such that (Ku, Lu -f Leu) G -XΊ, a contradiction.

Let i = 3. We need to prove (4). We can assume X-span(-Y<t) has finite
dimension. Let βn = (Vn,Wn),ΣX« = (Vb,W 0),V = Vb + - - + Vn, W =
WΓ\V. LetX = W0+Wι+...Wn. We have X + eX + fX = V. Suppose
-X" 7^ W. Then we can choose v G W' \ -X", and v = v0 + eυ\ + /v2 for some
Vθί vi, t>2 € A". Replacing υ by υ — υ0 we can assume v0 = 0, and v + eυ\ + fυ2. If
vi, V2 G Wo, we get a contradiction with the inductive hypothesis (Claim 1.7(4)).
If vι,υ2 ί W0, then v,ϋι,t;2 give rise to an a < 5 with V α Π V b =0 and α G X<i,
a contradiction. If, say, vι G W0 and υ2 ^ Wo then (A'ι;ι-i-A'υ2,I'υι-hLυ2-hLv) G
X<ι, a contradiction.

The case when i — 4 is trivial.

REMARK. The above claim is true as well when K, L are only division rings,
and there is a central subfield F of both K and L such that [K : F] and [L : F]
are finite.

Claim 1.7 justifies the following algorithm for decomposing 5 = (V, W) G
K(K, L) into a direct sum of (K, L)-structures of type α°,..., α4. Suppose Yί =

(β{ ' j < rii} ζ Xi, i < 5, satisfy the condition: Vβi $t tf-span(X« U {# :

* < j}). Then (V, W) = 0{/J/ : i < 5,j < nj. This algorithm enables us in
the next section to get rid of the parameters C U E added to the signature and

ίκ M .
determine /(p, HO). More generally, if K, L are arbitrary, R = I I is

\ 0 L J
of finite representation type, c*o,..., c*n are the indecomposable R-modules, and
the counterpart of 1.7 holds then we can also get rid of the parameters C U E
and determine J(p, NO). The reason for that is that the algorithm shown above
is "cumulative." It is not clear to us if such an algorithm may be found for any
ring R of finite type.

§2. Getting rid of the parameters. In this section we show how to
prove that /(p, NO) is countable in the case when K,L are fields, n* = 1, and
[K : L] = 3. So from now on as far as Theorem 2.5 we assume that n* = 1,
K is a field, and [K : L] = 3. By the discussion in the previous section we
know that for some finite CUE,I(p \ C U E, N0) is countable, and isomorphism
types of sets of realizations of p \ C U E in countable models of T correspond to
isomorphism types of (K, £)-structures. The algorithm of decomposition of any
(K, L)-structure into indecomposables from §1 enables us to find a decomposi-
tion of p(M). More precisely we find essentially finitely many indiscernible sets
/i,..., Ik such that p(M) is prime over /i U U /*. The proof we give here is
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a variant of the reasoning from [Ne4, §4] (see Fact 4.8, Lemmas 4.9, 4.11, and
Theorem 4.13 there).

We return now to the original meaning of Q, i.e., Q = q(M) for some M,
dim(Q) = NO, q is a stationary, modular type over 0, generic of a connected,
type-definable over 0 weakly minimal (w.m.) group G = (G?, +). K is the
division ring of pseudo-endomorphisms of G, so that Q U {0} is a vector space
over K.

Let {En : n <ω] be an enumeration of FE(0). Let acln(0) = {a/Ek : a G
£? k < n}. Notice that acln(0) is finite. Assume A is a finite subset of Q, R C PA
is finite, ACL-independent and such that R J^ P\> for some (any) b £ Q \ acl(A)
(by the local character of ACL it implies that R J^ PB for any B C Q with
B X A). Let B be a selector from (s(£) : s € R} and r = tp(B/A). By the
transitivity of finite multiplicity ([PS] or [Sa, 1.5]), Mlt(£A/0) is finite. We say
that r and (JfZ, A) are n-determined if tp(#A/ acln(0)) is stationary. Also, we
say that (R,A) corresponds to tp(BA/acln(0)). This definition tacitly assumes
an enumeration of A and R.

FACT 2.1. (1) n-determined implies ^-determined for k > n.
(2) Every r is n-determined for some n.
(3) If C J^ BA then every completion ofr over AU acln(0) is weakly orthogonal
to tp(C/A\Jadn(0)).

Proof. Easy.

Fix a finite E C Q large enough, so that if R is a basis of PE and C
is a selector from {s(£) : s G ίϊ}, then over C U E the translation Φ of ACL-
dependence on PQ into L-dependence on Q works. Assume A is a finite subset of
Q independent from E, R C PAE\PE is finite, ACL-independent, with R^ PE,
and B is a selector from (θ((t) : s G}. We say that (Λ, A) and (#, A) are of type
αl if the (if, L)-structure (V, W) corresponding to ACL(fl U PS) (through Φ) is
isomorphic to αl (α1, i < 5, are defined before Claim 1.7). This implies of course
dim(A/E) < 2. Let M be a countable model of T with Q = q(M). For A C Q
let PjJ* = {r G PA '• r is realized in M}. Notice that P% is ACL-closed in PA.
We define by induction sets -X/*, i < 5, corresponding to sets X, defined before
Claim 1.7. Let X& = {A C Q : for some R C P™E, (R,A) is of type α1 and
A^ X%(E)}, where X™ = UK|- -ϊf Applying Claim 1.7 we get

CLAIM 2.2.
(1) For A C Q, A G Jf ̂  iff for some R C P^E, (JZ, A) is of type α' and

(2J Choose for any j and A G Xf an RA C PjJ^ witnessing A G -Yj11. Then
PEX^ = ACL(PM U (J{RA :AeX%})n PEX* .

(3) Assume A0, . . . , An G X&, A0 X (X%. u AI U - U An)(E). Then A0 C

acl(X^ U AI U - - U An U £?).

(4J Assume Al , . . . , An G Jf^. Then P&Ar.ϋΛlU...uΛn C ACL(P^. U RAl U

• - U /?Λn )? where RA are chosen as in (2).
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The next lemma corresponds to Lemmas 4.9 and 4.11 in [Ne4].

LEMMA 2.3. Let Rn = ACL(P^ U \J{R : for some A, (R,A) witnesses
A E Xi for some i < 5, and (R,AE) is n-determined}. Then for some n < ω,

Proof. Suppose not. Then we can choose n t, i < u;, so that n, is the minimal
k such that for j = i - 1, Rk ^ Rj. Of course, P% C (Jn Λn. For / < ω choose

Ai G Xf1 for some j < 5 and RA{ witnessing At 6 Xj* so that (ΛΛ. , AjJE) is

^-determined, and RA{ £ ΛΠ, _I
For X C ω let Rx = ACL(P|f U (J{̂ , : i € JΓ}). By the omitting types

theorem we can find a model M1 with Q — q(M') and P^' = RX and (modulo
Claims 1.7 and 2.2) as in the proof of [Ne4, 4.9], we can recover X from (M',E).
This contradicts /(Γ,N0) < 2N°.

Fix n° < ω with P^ C Rno. Let {r* : k < ω} be an enumeration of

(Jn<ω 5r

n(aclno(0)). The proof of the next lemma is similar to that of Lemma
2.3.

LEMMA 2.4. Let Rk

n0 = ACL(P^ U (J{R : for some A, (R,A) witnesses

A € X^1 (for some i < 5), (R,AE) is n° -determined and corresponds to some
r. , i < k}). Then for some k <ω, P^ c£0.

Fix k° <ω with P CRk°0n0.

THEOREM 2.5. If n* = 1, if, L are iieids, and [A' : L] = 3 then /(p, N0) is
countable.

Proof. We can absorb £7 and aclno(0) into the signature. We need to
find a finite set of invariants determining p(M) up to isomorphism. In order to
characterize P ,̂ we shall decompose it into indecomposables according to the

algorithm from §1. We define by induction on j < k° sets Xff = {A 6 X** :

for some R witnessing A £ -X",^, (R , AE) is n°-determined, corresponds to r^,
and (*) A X X^UX^E)}, where X^ = \Jt<jXff. By Claim 1.7, (*) in

the definition of Xjf is equivalent to A <£ ^d(X^ U X^ U E). Now define by

induction sets A]j <E X,f , t < n0 < ω, so that Λ^ ̂  X^ U X^ U Λ^ U - - U

Ajj^B), and Xtf C acl(X^ U X^ U (J{A0 : ί < ny} U B).

Let Λf ; witness A\j 6 -Y^ , and let B^ be a selector from {s(t) : s € R^}.
Then by Fact 2.1 and Claims 1.7 and 2.2 we have:

(1) Pg = ACL(P™ U |J{Λ|> : » < 5, j < *V < n0 }),
(2) {Bj A^ ί? : t < njj} is a Morley sequence in r,,

(3) {BljAljE : i < 5, j <k°,t < r i i j } is independent.

It follows that the isomorphism type of p(M) is determined by n°, fc°, n^(J <
5,j < fc°), the isomorphism type of P ,̂ and the dimension of r(M) for any
r G P f . We see that that there are only countably many possibilities.

At the beginning we assumed that pα is non-isolated. Now we will show
how to omit this assumption, at least in some cases. So we assume now that
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p is a stationary, non-isolated complete type over 0 of ?7-rank 2 and p is not
almost orthogonal to some q G 5(0) of [7-rank 1. For b satisfying p choose a
realizing q with a G acl(δ), and let pa = tp(6/α). Now we admit that pa is
possibly isolated. Again, we can dispose easily with some trivial cases, and after
some manipulation we can assume that q is stationary, and pa is non-trivial,
properly weakly minimal. Again we may restrict ourselves to the case when
Q = q(M) has dimension NO, and now we focus our attention on P* (defined in
the introduction). If pa -L p& for α, 6 G Q with a J^ 6, then a standard argument

(using ideas from [Bu2]) shows that either /(T,N0) = 2*° or /(p,N0) < NO-
Indeed, for α G Q consider the set 5α(M) = {pb(M} : b G acl(α) Π Q}. This set
is a countable union of w.m. sets and we can apply [Bu2] to show that there are
(in Teq) properly w.m. types q0l..., gn_ι over α, of finite multiplicity, such that
for any M with Q = #(M), 5α(M) is prime over {α} U /o U U Inι, where Ij
is a Morley sequence in qj. As for a J^ 6, pα _L p&, the structures of 5α(M) and
Sb(M) may be chosen independently, hence unless n = 0 and every Sα(M) is
prime just over α, we get /(T, NO) = 2N°.

But in case when 5α(M) is prime over α, 5α(M) is unique up to isomorphism,
hence we get /(p, N0) < NO-

So we can assume that pa / p& for α, b G Q with α J^ 6. As for c realizing
P6, 6 G acl(c) and tp(c/0) is stationary, we get easily that for all α, 6 G Q, all
stationarizations of pα, pi, are non-orthogonal. Hence P* is a family on non-
orthogonal types.

FACT 2.6. if n(r) = 0 for every r G P* then for some finite C C acl(0)
there are stationary 90,... ,?n € 5(C) such that for every M with Q = <?(M),
Pg(M) C ad(/0 U U In U C) C M for some Moriey sequences J0 , . . . , 7n in
^o, . . ,^n respectively.

Proo/. ACL-dimension of P^ is finite (see [Ne4, 0.3] or [Bu2, 5.2(a)]).

Later we shall see how to conclude the computation of /(p, NO) in case when
n(r) = 0 for any r G P*. Now assume n(r) > 0 for some r G P*. Then
by the proofs in [Bu4, §2], Q is locally modular. Of course we can assume
that Q is non-trivial, hence again we can assume that q is modular and generic
of a weakly minimal type-definable over 0 group G = (G, +). Let K be the
division ring corresponding to g, and L be the division ring corresponding to any
stationarization of pa. We shall prove the following theorem.

THEOREM 2.7. If K, L are finite and DίM(Pα*) > 1 then /(p, N0) < N0.

Proof. In [Ne4] we worked with PQ, translating the ACL-dependence on
PQ into a linear dependence. But the same proofs work for Pg as well, hence
we get an n* = max{n(r) : r G P*}, and an embedding of L into the ring
of matrices Mn*xn*(ίΓ) so that the ACL-dependence on P* translates into In-
dependence on (Q U {0})n*. Now by [DR], unless n* = 1 and [K : L] < 3,
/(T, NO) = 2N° (because *K,(K, L) is of infinite representation type then). If
n* = 1 and [K : L] < 3 then [Ne4, 4.13] and the proof of Theorem 2.5 show that
there is a finite set C C acl(0), and finitely many stationary types qo,..., qn such
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that for every M with Q = q(M) there are Morley sequences /0,... In C M in
go, ,qn respectively such that P*(Af) U Q C acl(/0 U U /„). Notice that this
is also the conclusion of Fact 2.6. As in [Bu2, §5] we prove the following claim
which concludes the proof of the theorem and shows that when the assumptions
of Claim 2.6 hold then I(p, N0) < NO as well.

CLAIM 2.8. Assume Q = q(M), Io,...,Im C M are Morley sequences in
qo,...,qn respectively, and P*(M)(JQ C ad(/0U U/n). Then QV\Jα€QPα(M)
is prime (i.e., atomic) over IQ U U In.

Proof. Let TV C M be a prime model over I0 U U/n such that \Jα€Q pα(M)
is maximal. We have to show Q U \Jα£Qpα(M) ^ N. Suppose not. Take
6 G pα(M)\N. As in the proof of [Bu2, 5.1], there is afinite B C \Jα€Qpα(N)\jQ
such that tp(b/B) is non-isolated. We can assume also that α G #, and for every
c G B\Q there is d G B such that c realizes p<£. Let D = B Π Q. Applying
[Bu2, 4.1] to T(D), we get an r 6 P£ such that r f B /α stp(b/B). So
there is c realizing r with c J^ &(#). Thus c 6 M\N. On the other hand,
c G P*(Af) C acl(/0 U U /„) C N, a contradiction.

If T is superstable then in general there are no prime models over infi-
nite sets. However, if in addition T is small then there are prime models over
indiscernible sets. The first author conjectures that in case of a model M of a su-
perstable T of finite {/-rank, if A C M is a skeleton of M, then, although M may
not be prime over A, there are finitely many Morley sequences IQ, ,-Γn Q M
with A C acl(/o U U In) such that M is prime over IQ U U /„. This seems
to work in case of classification of types of [/-rank 2.

REFERENCES

[Ba] J. T. BALDWIN, Fundamentals of stability theory, Springer 1987.

[BK] J. T. BALDWIN, R. N. McKENZIE, Counting models in universal
Horn classes, Algebra universalis, vol. 15 (1982), pp. 359-384.

[Bui] S. BUECHLER, The geometry of weakly minimal types, The journal
of symbolic logic, vol. 50 (1985), pp. 1044-1054.

[Bu2] S. BUECHLER, The classification of small weakly minimal sets /, Clas-
sification theory, Chicago 1985, ed. J. Baldwin, Springer 1987, pp. 32-71.

[Bu3] S. BUECHLER, Classification of small weakly minimal sets III |, man-

uscript.

[Bu4] S. BUECHLER, Rank 2 types vis-a-vis Vaught's conjecture, preprint

1989.

[DR] V. DLAB, C. M. RINGEL, On algebras of finite representation type,
Journal of algebra, vol. 33 (1975), pp. 306-394.

[H] E. HRUSHOVSKI, Locally modular regular types, Classification theory9

Chicago 1985, ed. J. Baldwin, Springer 1987, pp. 132-164.

[Nel] L. NEWELSKI, A proof of Saffe's conjecture, Fundamenta Mathe-
maticae, to appear.



24 S. BUECHLER AND L. NEWELSKI

[Ne2] L. NEWELSKI, Weakly minimal unidimensional formulas: a global
approach, Annals of pure and applied logic, vol. 46 (1990), pp. 65-94.

[Ne3] L. NEWELSKI, Classifying U-rank 2 types, manuscript, February 1989.

[Ne4] L. NEWELSKI, On U-rank 2 types, Transactions of the American
Mathematical Society, submitted.

[P] A. PlLLAY, Geometrical stability theory, Oxford University Press,
in preparation.

[PS] A. PlLLAY, C. SXEINHORN, A note on non-multidimensional super-
stable theories, The journal of symbolic logic, vol. 50 (1985), pp. 1020-1024.

[PR] M. PREST, Rings of finite representation type and modules of finite
Morley rank, Journal of algebra, vol. 88 (1984), pp. 502-533.

[Sa] J. SAFFE, On Vaught's conjecture for superstable theories, preprint
1982.

[Sh] S. SHELAH, Classification theory, North Holland 1978.

Steven Buechler
Department of Mathematics

University of Notre Dame
Notre Dame, IN 46556, USA

Ludomir Newelski
IMPAN

Kopernika 18
51-617 Wroclaw

Poland




