
§12. ITERABILITY

We now discharge our obligation to show that various of the structures we en-
countered in §11 are iterable. We shall concentrate on proving Lemma 11.1,
which states, in the language of §11, that Nη is reliable for all η. The other
iterability lemmas from §11 are proved in almost the same way. A complete
proof of these lemmas will be given in the paper [S?a].

As we observed in §11, it is enough to show

Theorem 12.1. Let λfη be the ηth W-model" of the construction of §11. Let
0 < k < ω and suppose &k(Nη) exists. Then ^(M'η) »'* k-iterable.

PROOF. The proof of theorem 12.1 will take up all of this final section of the
paper. Let

Ί = (T, deg, D, (El, P +I I « + K *»

be a fc-bounded, Ar-maximal iteration tree on

The assumption of Jk-maximality is not necessary, but it simplifies the notation
a bit, and we have never used non-maximal trees anyway. We let Pa be the αth
model of T. Suppose that T \ λ is simple for all λ < 0, and that θ is a limit
ordinal. We shall show that T has a cofinal wellfounded branch.

For 7 < η such that Case 1 applied in the definition of MΊ+\ from Λ47, that is,
such that Λ/^y+i is equal to MΊ expanded by a new predicate for a last extender,
we let F* be the background extender for the last extender of λfy+ι Thus F*

is ι/ + ω strong, where v = ι/^+l . Set

C = ((XΊ I 7 < ι/>, (F; I 7 < η and F; defined}) .

Our strategy for the proof of theorem 12.1 is straightforward. We shall associate
to T a tree U which will be an iteration tree on V in the sense of [MS]. As
such the models of U will be well founded by results methods of [MS]. The
tree ordering of U will be the same tree ordering, T, as T, and we will define
embeddings πα from the models of U to those of U. Thus the models of the tree
T will also be well founded, which is what we need to show.

Since U is not a fine structure iteration tree it doesn't make sense to ask that
π be a tree-embedding in the sense of section 5. However, if we let RQ be the
αth model of U then the embeddings πa will be embeddings from the αth model
Pa of T into Qa = <tj(S) £ Ra where S is on the sequence of models of ί</(C)
and j = deg(α). If we modify the definition of a tree-embedding for this case
by asking that πa be a (degr,yα)-embedding into Qa instead of into Ra then
π will satisfy this definition.
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We must also maintain a certain amount of agreement between πα and the
τr0's for β < a. We now state some definitions which allow us to describe this
agreement.

DEFINITION 12.1.1. Let M be a premouse, and ω\ < ORΛ*. Then the
\-dropdown sequence of M is the sequence ((/?o, &o)> , (A, *«)) defined as fol-
lows:

(1) (&,to) = {λ,0).
(2) {/?,-+!, fct +ι) is the lexicographically least pair (β, k) such that A < /?,

ωβ < OR", and pk(jf) < Pk.(jtf)

If there is no such pair (β, k) then {/?, +ι , fci+i) is undefined. Let i be the largest
integer such that {/?,-, Jb, ) is defined.

Notice that if ((/?e,fce) I ̂  < i) is the λ-dropdown sequence of Λί, then kt < ω
for all e < i and

for all e < i. Moreover every ordinal of the form p = Pk(Jβ*) for k € u>,

/?w < OR^, and p < λ < /? is in the set { Pke(j£} \ e < i }.

Now we prepare to define the (j,ξ)-resurrection sequence for an extender E,
where E is on the extender sequence of M = <£j (wVξ), the jth core of one of the
models of our construction C. We are allowing the possibility that E = FM .
The idea is just to trace E back to its origin as the last extender of some NΊ

with 7 < ξ.

Let λ = Ih J£, and suppose that {{/?o, fco) {/%>*<)) is the initial segment of the
λ-dropdown sequence of M consisting of those pairs {/?, Jb} on the sequence such
that (/?, k) <ieχ (α, j ) y where ωa = OR^. Our first goal is to show that there is
a unique 7 < ξ such that J = Cfc t(Λ/^). Fix a such that ωa = ORM and let

CLAIM 1. Let (γ, e) <ιex {ί,.;} and suppose jί£ is an initial segment of

Then for all (r, n) such that (7, e) <ιex (r, n) <ιex { ,̂ j), J^ is an initial segment

PROOF. Let /c = pki(Jβ*), which is the minimum value of pk(Jβ*) for pairs

{/?, k) satisfying (λ,0) <ιex (β,k) <\ex (α, j). Notice that jj£ is Jfe,-sound, since

*ΐ < J ^ ft = <*• It will suffice then to show that pn(Afτ) > * whenever
(τ»e) ^lex (r)n) <iex (ί)j) (We leave the details here to the reader.) So
suppose μ < K and μ = ρn(Afτ) for some such (r, n). Let μ be the minimal value
of such a pn(M-). Then ίn(M ) is an initial segment of ίj(Λ/5f) = M by 8.1.
The minimality of /c implies ίn(^r) is a proper initial segment of Jχ*. This
contradicts that there is a subset of μ which is definable over (Cn (Afτ) but not a
member of j£*. D

CLAIM 2. If (7, e-f 1) <\ex {£, j) and JQ£ is a proper initial segment o1
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then Jβ* is a proper initial segment of ίc( A/^)

PROOF. By the 1st claim pe+ι(-V7) > K. But # < (/C+^-H^) since j£ has

projectum K. By 8.1, J^ is a proper initial segment of <te(λfΊ). D

CLAIM 3. There is a unique 7 < ζ s.t. j£ = ίjb,(^y).

PROOF. Let (7, e) be <ιex least such that J^ is an initial segment of <£e(.Λ£y).

Suppose first that jj£ = <te(λfΊ). If e < fc, , then since J^ is Jb, sound,

J^1 = Cjb.ίΛCy) as desired. To see that e < Jtt , suppose toward a contradiction
that ki < e. For t, u < e set

It will be enough to see that p*' = p*, since this implies that (C^ (Λ^) =

J^ , contrary to the minimality of (7, e}. So suppose we have t s.t. Jfe» < t < e

and ρ\^\ < p\. We may assume t is the largest such. Now the reader can easily

check1 that for any u, pJJ+1 = pJJ+J, and p«+1 < p« =» pftj < p^1. Thus

we have p\\\ < p]*1 < p**1 . As Ct+i(^7) = Ce^) by the maximality o f / ,

Pe = Pill < Pit1 = Pfc. **ut ^(-^7) = * '̂ so thίs contradicts the fact that
{/?,-, ki) is the last term of this restriction of the λ-dropdown sequence of Λi, so
that ρe(Jβ?) < pk^Jβ*} is impossible if Jfc. <e<j. If jg = Λί then we must
verify that e < j in order to apply this fact. Now if 7 = £, then β < j by the
choice of {7, e), and if 7 < ξ, then ίβ(Λ^) = ίj( Λ/ξ) and it is easy to see that
this is impossible.

Next, suppose J^ is a proper initial segment of (CeCΛ/^)- From Claim 2, we see

that e = 0, so that J^1 is a proper initial segment of

If 7 is a limit, then the definition of NΊ guarantees that j£f is a proper initial

segment of some (^(Λ/V) for τ < 7. But then Claim 2 implies J^ is a proper
initial segment of λ f T j a contradiction. Thus 7 is a successor.

Let 7 = r + 1. From the definition of λfτ+ι (either we add an extender predicate
to Mr or extend the J-hierarchy for one more step), J^ is an initial segment

of Mτ = £ω( Λ/V) This contradicts the minimality of (7,e).

Thus J^ •=- ίjbiί^y) for some 7 < ζ. There is a unique such 7 by the following

easy fact, whose proof we omit: if 7 / δ then CeCΛ/'-y) ^ ίjb(M), v*7, δ, e, fc. D

We can now define the (j, ξ) resurrection sequence for E.

CASE 1. i = 0. Notice that pι(Jχ*) < λ, since Jj^ is active. Since (/?ι,*ι) =
(λ, 1} is not defined we must have Λ^ = M = j£* and j = 0. Then E is the

the way, it is also true, though not at all obvious, that pJJ < pJJ_j => pίί < PU-,*+! S /.«+!
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last extender of λfξ, and the (j,ξ) resurrection sequence for E is defined to be
the empty sequence.

CASE 2. i > 0. Let 7 < ξ be such that j£ = C^ί-A/V). Notice that ikt > 1

as pki(Ni) < ^ and ω\ < OR^. Let π : &ki(Mj) -» tfc.-iί-Λ/γ) be the inverse
of the collapse. Then the (j,ξ) resurrection sequence for E is {/?,-, fc, , 7, π)~S,
where 5 is the (fc, — 1,7) resurrection sequence for π(E). (Here if E is the last
extender of <£jb,( Λ/^), then by π(E) we mean the last extender of (tkt-ι(λfy).)

This completes the recursive definition of the (j,ξ) resurrection sequence for E.

For any premouse P with ωa = ORP and t <ω, and α λ < OR^, the (/, λ) </ro/>-
down sequence of ̂  is just that initial segment of the λ-dropdown sequence of
P consisting of pairs (/?, k) such that (/?, k) <\ex (α,t).

Now let us return to the situation of Case 2 of the definition of the (j, ζ) resur-
rection sequence for E, and adopt the notation there. Let us adopt our standard
notational device by taking π(ORc* ^^) to be OR*"*-1^. One can easily see
from our results on preservation of projecta that the (k{ — l,τr(λ)) dropdown
sequence for 1tkt-ι(λfy), which is what we use to resurrect π(E), has the form

where

tι = 0 or ti = {*(/%), t, -l).

We do not know whether it is possible that u φ 0. In order for this to happen we
would need to have (#-i,fc,--i) φ (ft, t< - 1), Pk.-itffr) = Λ-iί^Ji and

Λ.-ι(ί*.-ι(-V7)) < '(P*.-ι W)) We only know that Pfci-iίίfc.-iί-Λ/V)) =
sup π" Pki-ι(jβ*) It seems plausible that π preserves the Jfe, — 1st projectum,
so that in fact u — 0 must hold.

Notice that if u φ 0, then the last integer Jfc, in the dropdown sequence gets
decreased by 1 at the next stage of resurrection. Thus there are cofinally many
stages in the resurrection at which the u associated to the stage is 0. These
stages are important, so we now give a formal definition.

Let E be on the sequence of £>(.Λ/ξ), A = lh£", and let

be the (j, λ) dropdown sequence of €j(Λ/"^), and let

be the (j, ξ) resurrection sequence for E. (We suppose the resurrection to be non-
empty. Thus (βι,kι) = (λ, 1) is defined.) We have at once from the definitions
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that

(«0,40 = (/%.*<),

and for 1 < e < ί,

(ίβ,^e) =last term in the ((e-ι — 1, Ke-ι o o ττo(λ))

dropdown sequence of ί/β_ l-ι(ΛΛyβ_ I),

and

From our earlier remarks on the new dropdown sequences, we can find stages

1 <eι < e2 < ••• < e, _ι =t

such that

o 7Γ0((#_2, ti-a

(<**,_! Λ.-J = »e,-i-l O

Here if ei = 1, the notation "πβl_ι o . o TΓQ" stands for π0. We also set eo = 0,
and interpret απβo-ι o o TΓQ" to stand for the identity embedding. We then
have for 0 < n < i — 1

This enables us to define embeddings and models resurrecting the various jί£ ,

where Λί = (C, (-Λ/e). Set

σt _n = πβn o πβm-ι o . o πi o τr0

so that

*<-n:4£.->et..-i(JVT.j
is an ^βn — 1 embedding, for 0 < n < i — 1. In order to simplify the indexing a
bit set r, _n = 7βw for 0 < n < i — 1. Notice also that fcj_n = ίeΛ Thus, setting
p = f — n, we have that for 1 < p < i
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is a kp — 1 embedding. Let us set

Resp = ί*F_ι(Λ/;F)

and call (σp,Resp) the pih partial resurrection of E from stage ( j , ζ ) . (Notice
that if p < q, then Resp represents "more resurrection" than Res^ in the sense
that it goes back to an earlier model Afη and hence nearer to the first appearance
of the prototype of E. On the other hand, Resp resurrects less of Λi in the sense
that the domain Jβ* of σp is smaller than that of σq .

The partial resurrections of E agree with one another in the following way: For
1 < p < f , let

Then one can check without too much difficulty that ΛI > KI > > /c, ,
and that if p < q then σp \ κ,q-\ = σq \ /cg_ι and the models Resp and Res^
agree below supσ^K^-i. For example, consider the case q = i. Then σ, = TΓQ :

Jβf — > ίjb.-iίΛ/'-yo), and moreover, the last term of the (Jb, — 1, fl*o(λ)) dropdown
sequence for (£t1-ι(^y0) corresponds to a projectum which is greater than or
equal to sup(πό//c, _ι). This implies that πy \ supπό' /c, _ι is the identity, for all
j > 0. So

σp \ /c, _ι = πe,_p o - o πi o π0 f /c, _ι = π0 \ /c -i = σ, f /c, «ι.

See figure 1 for a diagram of some of the relationships above.

Finally, the complete resurrection of E from (j*,f) is the pair (identity, λfς) if
the (jyξ) resurrection sequence for E is 0 (so that j = 0 and E is the last
extender of .Λ/^), and the pair (σι,Resι) if the (.;,£) resurrection sequence for E
is nonempty.

Notice that in any case, Res = <V7 for some 7 < £ and σ is a 0-embedding from

Of course, the notions associated to resurrection can be interpreted not just in
V = ΛO, but in any model Ra of the tree U (using the construction «'(fα(C)). We
shall do this in what follows.

Definition ofll: Induction hypotheses. During the recursive definition of the
tree U and the embeddings πα we will be maintaining a number of induction
hypotheses, which we have numbered HI through H7. Recall that Ra is the αth
model of the tree U.

HI. There is an ordinal ξ such that the map πα is a weak n-embedding from
PQ into Qα, where n = degr α and Qa = ((tn(M'ξ))Ro' -

H2. (commutativity) If βTa and (/?, a]τ Π Dr = 0 then πα o ίjα = t^
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Res3 Res2
Resi

FIGURE 1. To simplify matters, this diagram assumes that i = 3 and
βι < βi < β3 ft also assumes that the new dropdown sequence is
just the image of the old minus its last term, that is, that "u = 0"
always holds. Thus t = 2, CQ = 0, e\ = 1, and 62 = 2. Also, σ$ =
τr0, σ2 = πi o π0, and σ\ = π2 o π\ o KQ. Finally, we assume that
*β(Λ.-ι(€e.(-Λf7.))) = p/β-ι(ί/β_ι(jVV.)) for e = 1,2, which, together
with a similar assumption on TTQ, implies u = 0.

Next, we have some agreement of models and embeddings to maintain. For
each ordinal β < IhT, let Vβ be the natural length of Ej and let l(σ^, Res^) be

the complete resurrection of πβ(Ej) from stage (j, r), where j" = degr(/?) and

H3. For each β < α, if Res^ is type I or III then Qa agrees with Res^ below
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yRes ^ moreover

ττα \ Vβ = cr o Kβ \ i/β and ίΓαv^) !̂ ^

H4. For each /? < α, if Res^ is type II then Qa agrees with Res^ below
and moreover

Λ T
= <τ o τr/3 t Ih Ea and 7

H5. For each β < α, Ra agrees with Λ/? below z/Res/9 + ω, that is V** = V7

Λ'

where 7 = i'1*68 4- ω

In order to handle the limit case in the definition of W, we will require two final
induction hypotheses.

If Q = <£jb(.Λ£y) and Q' = &j(λfξ) where NΊ and Λ^ are two models of the
construction C, then we write Q <c Q1 iff (7, k) <\ex (£,j).

H6. Let β = T-Pred(α + 1) and C**1 = #,α+ι(C) Then

(a) Qα+i <c«+ι *β,a+ι(Qβ)> and

(b) if a + I G Dτ , then

H7. If λ is a limit ordinal then i^λ(Q0) = Qλ for all sufficiently large αΓλ.

We shall need to know that U is a tree in the "coarse structure" sense of [MS].

Set ffi = v***β . Then it will be obvious from the construction that Efβ is ff£ + ω
strong in the model Rβ. We shall show in the remark following claim 1 below
that f/β < $ whenever β < 6, and the agreement condition on the models Rβ
follows at once from this. This guarantees that U is a normal iteration tree in
the sense of [MS], provided that no illfounded model appears in U. Thus we
need to know that we encounter no illfounded ultrapowers or direct limits in the
formation of If. This follows from the following theorem, which is proved by the
methods of [MS].

Theorem. If there is no ordinal 7 < ξ such that L(VΊ) ^ "7 is a Woodin
cardinal" then every iteration tree on L(Vζ) has a unique coβnal wellfounded
branch.

Note that if theorem 12.1 holds for all η' < η, so that Mη exists, then Afη is
constructed in Vξ for some ordinal ζ smaller than the least cardinal δ such that
L[Vt] satisfies that δ is a Woodin cardinal. Thus we can apply this theorem to
the trees derived from If.

We now begin the recursive definition of the tree U and the embeddings πα. For
α = 0 we take Q0 = PQ, RO = L(V$) where θ is the least ordinal 7 such that

\= "7 is a Woodin cardinal", and π0 = identity.
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Definition oflί: The Successor Step. We assume that the tree has been defined
through the αth model Λα, and we have the embeddings πα mapping Pa into
Qα, where j = degr(α) and QQ = (ίj(-A^))Λβr, and we have (in Ra)

(<7a, Resα) = complete resurrection of πa(E%) from (j,ξ) ,

where πQ(E%) is the last extender predicate of QQ in case E% is the last extender
predicate ofPa.

CLAIM 1. If 7 is strictly smaller than a then σα f πα(lh£!^) = identity.

PROOF. Fix 7 < α. Then lh£^ is a cardinal of Pa, so πα(lhί?^) is a cardinal

of Qa. Thus ρω(J^a) > πα(lh£^) for all β such that πα(lh££) < ωβ <

ORQ<*. We claim that also pj(Qa) > πα(lh£^). (Recall that j = deg(α).)
Assume first that α is a successor ordinal. Then Pa = Ultj^^li^j), and so

!!!££_! < pj(Pa) Thus lh£^ < pj(PQ), and as πα is a weak ./-embedding,
πQ(lhE^) < pj(Qa) Now our claim for the case α is a limit ordinal follows
from the successor case applied to sufficiently large α'Tα.

Thus no projectum associated to a term in the (j, πa(lhE^)) dropdown se-
quence for Qct lies below πα(lh E^)y and it follows that σa is the identity below

REMARK. The claim enables us to show that ̂  > for all β < α. For

But now, for β < α, lh#J is a cardinal of Pa and IhEj < lhi£, so that

< va. Thus vβ < ι/α for β < a. So

But Claim 1 tells us σα o πα(ί//j) = πα(ϊ/^), and our induction hypotheses on

agreement of embeddings say τra(vβ) > v1168 . So

We can now define £ f̂ and Λα^ι. Set

F = σa o πα(i;J) = last extender of Resα .

Now Resα is an "W model" in the universe Ra, so its last extender has a "back-
ground extender". Set £^ = F*9 the background extender for F in Ra. Let
β = Γ-pred(α + 1) and set
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Notice that Ult0 = Ultα, since Rβ \= ZFC.

Let us note that Ra and Rβ are in sufficient agreement that this ultrapower
makes sense. This is clear if β = α, so we may suppose that β < a. By our

induction hypotheses, Ra agrees with Rβ to v***β + ω. Now crit f% < ι/β
because β = Γ-pred(α + 1). As σa is the identity on πa(lhEj), crit F* =

crit F = crit σa(πa(E^)) < sup < vβ = sup σ^ o π£ vβ < v***' . Thus the
ultrapower makes sense.

We now define πα+ι and (?β+ι Let n = degr(β), and λ = lh£"J, let

{(*7o, fco)> - i ("e, *e)) be the (n, λ) dropdown sequence of Pβt

and set /c, = pkt(j£β) for 0 < i < e.

The following claim relates these to the (n,π^(λ)) dropdown sequence of Qβ.
The claim is slightly complicated by the fact that πβ is not a full n-embedding.
Notice that κe < pn(Pβ)

CLAIM 2. The (n,π^(λ))-dropdown sequence of Qβ is the sequence given by
the appropriate clause below:

(a) If κe < pn(Pβ) then the dropdown sequence is

(b) If κe = pn(Pβ) but (ωηe, ke) φ (ORP^, n) then the dropdown sequence is

where u = 0 or w = (17, n) for ωr; =

(c) If (ωηe, ke) = (ORT* , n) then the dropdown sequence is

where u = 0 or u = (π^Tje), ie) = (ωry, n), for ωη =

REMARK. Note that κe = ρn(Pβ) in case (c). If e = 0, then n = 0 = fc0

and 170 = λ = α λ = ORp/>. The (n,^(A)) dropdown sequence for Qβ is then
((ORS',0)), which falls under case (c).

REMARK. The u = 0 case in (c) would not be necessary if π^ were a full
n-embedding.

The claim follows easily from the fact that πβ is a weak n-embedding. For
(a), notice that *β(κe) < sup *%pn(Pβ) < ρn(Qβ) Recall that πβ preserves

cardinals, so that if for example ωηe < OR*' then Pβ (= Vγ > ηe(pω(J$) >

thus Q^ f= VT > *β(η.)(fr(j) > *β(*J). D
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Let μ = crit(E£), and let

j= f β + 1

\ least .; s.t. KJ < μ if κe < μ.

Notice that i > 0 since KQ = λ > μ. Because T is maximal

" «-\r, »,.,+ !,

and

deg τ (α+l)=f f c < ~ 1 ίί~β' ,( n if i = e + 1.

Let (σf , Resf ) be the ith partial resurrection of πβ(E^) from stage (n, r), where

Qβ = CnCΛ/τ)Λ*> if this resurrection is defined. The resurrection is undefined if

i = e + 1 and defined if i < e by claim 2. If t = e then (σf , Resf ) is undefined
just in case (ωηe , ke) = (OR^ , n) and the conclusion of (c) of claim 2 holds with
u = 0.

Now let
φ _ f Resf if Resf is defined

+1 I Q/? otherwise,

ί σf if Resf is defined,
.
identity otherwise.

Then σ o (πβ \ T^+i) is» in any case» a wea^ degr(α -f 1) embedding from

^α+i into Φα+i To see this, assume first that Resf is defined, so that t < e,

degr(α -hi) = ki — 1, and σ = σf is a full (Jbt — 1) embedding. Looking at

claim 2, we see that in all cases the domain of σ is J^* \ since we cannot have

the situation in (c) with i = e and u = 0. But P^i = Λ?/> an(i

is a weak (Jb, — 1) embedding. In fact, if ωηi < ORPβ then πβ \

fully elementary, and if ωηi = OΈίf>β then Jfc, < n, so π^ f Pa+i ιs a wea^
embedding. It follows that σo(π/u f ί^β+i) is a wea^ &t — 1-embedding from P^

into (?£+!• Assume next that Resf is undefined. Then either i = e+l or we have

the situation in (c) of claim 2 with u = 0. In either case, degr(α + 1) < n. Also
Pa+i = Pβ, Qa+i = Q/?) an(l σ i8 ^ne identity. Since πβ is a weak n-embedding,

σ o 7Γ0 is a weak degr(α -H l)-embedding from Pa+ι into (JJ+1.

Let Qβ = ίπί-A/i-)*' , so that (σ^, Re/) is the complete resurrection of πβ(Ej)

from stage (n, r). Let V> be the complete resurrection embedding for σ o πβ(Ej)

from the appropriate stage, which is (n, τ) if Resf is undefined and (fc, — 1, 77),
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where Resf = itj-i(X,), otherwise. Then ψ: J%°?f\χ) -" Res" and σ* =

CLAIM 3. φ \ (sup(σ o π/?" /ct -.ι)) = identity.

PROOF. Suppose first that Resf exists, so that i < e and σ = σf . From claim 2
and the fact that πp is a weak n-embedding we see that π^(/c, «ι) is the projectum
associated to the (i - l)st element of the (n,π0(λ))-dropdown sequence of Qβ.

As we remarked earlier, ψ is therefore the identity on sup(σf "πβ(κi-ι)), and
this implies the claim.

Suppose next that Resf is undefined, so that either i = e + 1 or else i = e and (c)
of claim 2 holds with u = 0. In either case the projectum associated to the last
term of the (n,π^(λ)) dropdown sequence of Qβ is at least sup(π0"/ct _ι). Thus
σ& \ sup(π^///c, _ι) is the identity, but ψ = σ@ and σ is the identity, so this
implies the claim. D

We can now define Qα+ι = *J9,α+ι(Oα+ι) Before we define πα+ι and verify the
induction hypotheses, however, we must describe the agreement between
and Resα. Set

exists

~~" otherwise.

CLAIM 4. 7 < λ = Ih(JSj), and if 7 = OR7""*1 then 7>£+1 = jf' and
is type II.

PROOF. If β = α, then (μ+)^λ Λ exists and ̂ +1 is the shortest initial segment

of Pa over which a subset of μ not in Jχ* is definable. Thus (μ+^+i =

(μ+)J?~ < λ < ORP +S so T < λ < OR7'--".

If β < a then the subsets of μ in Pa are just those in Jχ

 β and

shortest initial segment of Pβ over which a subset of μ not in Jχ

 fi is definable,
"P Λ "P Λ

so if (μ*)^* exists then (μ+)p<*+1 = (μ+)^λ < λ. Otherwise /i is the largest

cardinal of Jχ

 ft , so P^+i ^ Jχ* since λ is definably collapsed over the active

ppm Jχ ft . In this case we see also that 7^+1 ls ^yPe H» since otherwise /i <

1/̂ 3 < λ and ι//j is a cardinal of Jχ

 ft . D

Claim 4 implies 7 < /ct _ι. If /c, _ι = λ then this is obvious. Otherwise /c, _ι is a

cardinal of Jχ

 fi , since it is a projectum of some Jη

 β with 77 > λ. Since μ < /c, _ι
by the choice of i, we have 7 < /c, _ι.

The next claim shows that Resα and Q^+i have the agreement required for the
use of the shift lemma.

CLAIM 5. (a) Res" agrees with Q*+1 below sup(σoπ^;/7).
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(b) σa o πa ί 7 = σ o πβ \ 7.

PROOF. The proof of claim 5 is divided up into three subclaims.

Subclaim A. Qa+ι and Res^ agree below sup(σ o π^^γ), and σ o πβ \ 7 =
V> o σ o πβ \ 7.

This follows at once from claim 3 and the fact that 7 < κ, _ι.

Subclaim B. If β < a then Res^ and Qa agree below sup(σoτr^;/7), and ψoσoπβ \

Ί = *a \ 7

Recall that ψ o σ o πβ = σ& oπβ. This subclaim is therefore just our induction

hypotheses on agreement. If Res^ is type I or type III then claim 4 yields 7 < vp

and we can apply H3. If Res^ is type II then 7 < IhE'J by claim 4 so we can
apply H4.

Subclaim C. If β < a then Qa and Resα agree below sup(σ o πβ'Ί) and πα f
7 = σ« o πa \ 7.

We have 7 < λ, and σ o πβ = πα f 7, so sup(σ o πβ"j) < πQ(\). By claim 1, Qα

and Resα agree below τrα(λ) and σa is the identity there.

Together, subclaims A, B and C yield claim 5. Π

Now define, for α G [i/α]<α; and appropriate /

([α, /]g+1) = [σα o πα(α), σ o

If / = fτ|f then by "σ o π^(/)" we mean fτtσo*ft(q)> the later function being
defined over the ppm Qα+i I*1 order to see that πα+ι has the desired properties,

it is useful to factor it. Let * = degr(α + 1) and Q'a+1 = Ult(Qi+1,F). Let
ι: Φα+i "̂  Qa+ι ^e the canonical embedding and let πj,+1: Pα+i —^ Qα+i ^e

the weak i-embedding given by the shift lemma. Finally, let r: Q'α+1 —* Qα+i be

the natural map given by r ί [α, 1\0Z** (πτ\\ = [°) ΛF* Then πα^ι = r o π^+1

and we have the commutative diagram

/

**1 } Qα+l r~* β«+l

•ί

In order to verify HI we need to show that πα+ι is a weak fc-embedding, where
k = deg(α -hi), which means that we have to find a witness set X on which
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πα+ι is rΣfc+i elementary. If k = deg(α + 1) = n and P^+i = *Pβ then we can
take the witnessing set to be X = i*a+\"Xβy where Xβ is a set witnessing that

7Γ0 is a weak Jb-embedding. Otherwise take X = C+i" |^α+ι| *n e^her case
the shift lemma implies that π^+1 is rΣt+i elementary on parameters from X.
On the other hand the Los theorem 4.1 implies that r is rΣ*+ι elementary on
parameters from i" |Q£+ι|, and since ic'a+^X C i" |φα+ι| ^ follows that πα+ι
is rΣfc+i elementary on parameters from X. Thus X witnesses that πa+ι is
a weak Jb-embedding and we have verified HI. Induction hypothesis H2 comes
from the commutativity of the diagram above.

We now verify H3 and H4. Let η < a -f 1. If Res'7 is type I or III then we must
show that Qa+i agrees with Res'7 below i/1168* and moreover that πα+ι \ ι/η =
ση o πη \ vη and πa+ι(vη) > i/***8 . If Res17 is of type II, on the other hand, then

we must show that Qa+ι agrees with Res'7 below OR1168 and moreover that

f Ά£ = σ" o », f &£ and

We consider first the case η = α. Set '̂ = *Ί(/J). By claim 3,
so that

where the ultrapowers are computed using all functions which are members of
o*

Rβ> or equivalently of Λα, and which map [μ']1 into J^**1 for some integer i.

Now the canonical embedding

ψ : Ult0(Resα, F) -+ Ult(Resα, F*)

(where the first ultrapower uses all functions belonging to Resα, and the second
uses all functions in Ra) has critical point > j/11*8* if Resα is type I or III, and
> ORResOΓ = IhF if Resα is type II. Moreover, UltoίRes*, F) agrees with Resα

below IhF = OR11680'. As i^a+1(^) > IhF, QQ+l agrees with Res0 below v***"

in the type I or III case, and below OR1168* in the type II case.

Next we consider the agreement of embeddings. Suppose first Resα is type I or

III, and ξ < va. Then ζ = [{£}»id]^τ*1, where id = identity function, so

= σ o

as desired. Also, let / E \Pa\ Π \PZ+ι\ and α € [v<*]<ω be such that z/α =

= [σαoπα(α), σα o

>[σαoπα(α), σΛ o
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But for (££)βu{*Όr} a e (ΰ,t>)> /(ΰ) = t>. Also σa o πα(ι/α) = ι/Resa , so σα o
= v for (F)σttoTtt(α)u{l/Re.«} a.e. (ϋ, v). Thus

and πα+i(ί/α) > i/1168*, as desired.

These calculations carry over easily to the case Res" is type II to give the
agreement of embeddings facts in part (b) of the claim. We omit further detail.

We must now consider the case η < a. Let's just prove (a), the proof of (b)
being similar. So assume Res'7 is type I or III.

From the η = α case we know that Qα+ι agrees with Resα below ι/Reβ°' . But we
showed in the proof of claim 5 that Resα agrees with Qa below πa(lbE%). Also,

πa(lhE%) is a cardinal of Res", hence πα(lh£^) < i/**8*. Thus <?α+ι agrees

with Qa below πα(lhE^). But by induction hypothesis, Qa agrees with Res'7

below i/1168', and πa(ι/η) > v****. Thus Qa+ι agrees with Res'7 below v***\
as desired. For agreement of embeddings, we argue similarly that πα+ι f va =
σα o πα f 2/α. Furthermore since IhE^ is a cardinal of Pa and lhE% < lh£"J,

we know that lhE% < ι/α, and since σa is the identity on πα(lhJ?^) we get

that πα+ι f lhE% = τrα f lh£^. But then since πα f ϊ/^ = σ*7 o πη \ vη by the
induction hypothesis, πα+ι ί ι/η = σ17 o π^ \ ι/η, as desired. Notice also that we
get πα+ι(i/^) = πa(vη) > v1168" by induction.

This verifies H3 and H4. A much simpler coarse structural argument along the
same lines gives H5. Finally, H6 is easy to check and H7 is vacuous in the
successor case.

Now let λ be a limit ordinal with λ < θ = IhT. We are given sequences U \ λ,
(Qa \ Λ < λ), and (πa \ a < λ) satisfying our inductive hypothesis, and must
define U f A + 1, Q\> and π\.

Let c = [0,λ)τ = {α | αTλ}. We claim that limα€cΛα is wellfounded, where
the limit is taken along the maps f£β for α, β G c.

For this it suffices, using results of [MS] asserting that T has at least one well
founded branch, to show that if 6 is a branch of T \ A which is cofinal in A, and
b φ c, then lim^ Ra is illfounded. So let b be such a branch.

We may assume t^(Qα) = Qβ f°r &U sufficiently large α and β in 6, α < /?, as

otherwise our last induction hypothesis 6(a) implies that i^(<c) is illfounded,
so limαeδ Ra is illfounded. (Here i*£b is the canonical embedding from Λα, a £ 6,
into lirriαeδ Λα.) This in turn implies Dτ Π 6 is finite via 6(b).

Let l>k = liπiα€& Pα, and Qι = limα€6 Qα, which is the common value of iJk(Qe)
for α 6 6 sufficiently large. Then P& exists as DTΠ6 is finite, and Pi is illfounded
as T f A is simple and 6 φ c. There is a natural π : P\> — > Qi given by our
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commutativity hypothesis: π(i^b(x)) = ^(iΓαOO), for α 6 6 sufficiently large.
Thus Qb is illfounded, and hence Tib is illfounded since Tib = limα€δ RQ ^ "Qb
is wellfounded" .

We set R\ = limα€cΛα, and this gives us U \ λ + 1. Notice that i^λ(Qα) is
constant on all sufficiently large αTλ, as otherwise *</λ(<c) is illfounded. Set Q\
equal to the eventual value of i*£\(Qa) for sufficiently large αTλ. Set

»λ(£λ(*)) = &(»«(*))
for α < λ sufficiently large, αTλ.

Let n = degr(λ) = degr(α) for αTλ sufficiently large. It is easy to check
that π\ is a weak n-embedding which is rΣn+ι elementary on the appropriate
set, and that π\ commutes properly. Our last induction hypothesis is just the
definition of Q\ so we need only check that Q\ and π\ agree properly with
and σ^ o π^ for β < λ.

Let β < λ. We have already shown that if 7 > /?, then ι/ReβΎ > ί/**8*. But

v**y < Ihfiζf, and thus β < Ί =» v**** < #ι7+ι(crit JEξf) where 17 = T-pred (7+

1). As R\ is wellfounded, we must have i/11®8 < crit £ ,̂ for all sufficiently large

7 + 1 Tλ. We can then find 7 + 1 Tλ sufficiently large that v***ft < crit î +1 λ

and i^+i.λίΦy+i) = Qλ By induction, Q7+ι agrees with Res^ below

Qλ agrees with Q7+ι below crit &f+ιt\ So Q\ agrees with Res^ below v

For the embeddings, notice that β < 7 =Φ- ι/β < ι/Ί < t^7+1(crit E%)9 where
η = T pred(7 + 1). So we can assume the ordinal 7 + 1 of the last paragraph is
such that iJf+ι \ is defined and ι/β < crit i^i \

But then, for α <

Since τr-y+ι f i/^ = σ^ o πβ \ ι/β by induction, ?TA \ vp = σ^ o π^ ί ι/^, as desired.
This proves the agreement hypothesis in the case Res^ is type I or HI. The type
II case is almost the same.

We have completed the definition of U \ θ = U. Assuming that θ is a limit
ordinal, methods of [MS] yield a cofinal, wellfounded branch 6 of U. It is easy
to see (cf. the limit case above) that 6 is a wellfounded branch of T. This was
what we needed.

In the case θ is a successor, the fact that U can be extended freely one more step
guarantees the same for T, as desired.

The remaining clauses of fc-iterability can be proved similarly, using that the
corresponding operations on L(Ve) yield wellfoundedness.

This completes the proof of 12.1. D



124 W. J. MITCHELL AND J. R. STEEL

The 0-iterability of the bicephali and psuedo-premice arising in the construction
of § 11 can be proved similarly.




