§12. ITERABILITY

We now discharge our obligation to show that various of the structures we en-
countered in §11 are iterable. We shall concentrate on proving Lemma 11.1,
which states, in the language of §11, that A is reliable for all 5. The other
iterability lemmas from §11 are proved in almost the same way. A complete
proof of these lemmas will be given in the paper [S7a].

As we observed in §11, it is enough to show

Theorem 12.1. Let N, be the nth “N-model” of the construction of §11. Let
0 < k <w and suppose Cx(N;) ezists. Then Cx(N;) is k-iterable.

PRrROOF. The proof of theorem 12.1 will take up all of this final section of the

paper. Let
T = (T,deg, D,(E3, Pays | a +1<6))

be a k-bounded, k-maximal iteration tree on
Po = Ci(Ny) -

The assumption of k-maximality is not necessary, but it simplifies the notation
a bit, and we have never used non-maximal trees anyway. We let P, be the ath
model of 7. Suppose that 7 [ A is simple for all A < 6, and that 8 is a limit
ordinal. We shall show that 7 has a cofinal wellfounded branch.

For ¥ < 7 such that Case 1 applied in the definition of M4 from M,, that is,
such that A4, is equal to M, expanded by a new predicate for a last extender,
we let Fy be the background extender for the last extender of Ay4+1. Thus Fy

is v + w strong, where v = yNv+1. Set

C=((Ny |7v<n),(Fy |y <nand F; defined)).

Our strategy for the proof of theorem 12.1 is straightforward. We shall associate
to 7 a tree « which will be an iteration tree on V in the sense of [MS]. As
such the models of & will be well founded by results methods of [MS]. The
tree ordering of & will be the same tree ordering, T', as T, and we will define
embeddings 7, from the models of U to those of . Thus the models of the tree
T will also be well founded, which is what we need to show.

Since U is not a fine structure iteration tree it doesn’t make sense to ask that
# be a tree-embedding in the sense of section 5. However, if we let R, be the
ath model of & then the embeddings 7, will be embeddings from the ath model
Po of T into Qo = €;(S) € Ry where S is on the sequence of models of & (C)
and j = deg(a). If we modify the definition of a tree-embedding for this case
by asking that 7, be a (degT,Ya)-embedding into @ instead of into R, then
# will satisfy this definition.



FINE STRUCTURE AND ITERATION TREES 109

We must also maintain a certain amount of agreement between m, and the
mg’s for f < a. We now state some definitions which allow us to describe this
agreement.

DEFINITION 12.1.1.  Let M be a premouse, and wA < ORM. Then the
A-dropdown sequence of M is the sequence ((Bo, ko), - . ., (Bi, k;)) defined as fol-

lows:
(1) (Bo, ko) = (A,0).
(2) (Bit+1,kit1) is the lexicographically least pair (G, k) such that A < 8,
wB < ORM, and pi(TM) < pi, (T34).
If there is no such pair (4, k) then (B;41, ki+1) is undefined. Let i be the largest
integer such that (8;, k;) is defined.

Notice that if ({8, k.) | ¢ < i) is the A-dropdown sequence of M, then k, < w
for all e < 7 and

(ﬂc, ke) <lex (ﬂe+1; ke+1)

for all e < i. Moreover every ordinal of the form p = pk(JﬁM) for k € w,
Pw < ORM, and p < A < Bis in the set { pe, (TM) | e < i}

Now we prepare to define the (j,&)-resurrection sequence for an extender E,
where E is on the extender sequence of M = €;(N¢), the jth core of one of the
models of our construction C. We are allowing the possibility that E = M,
The idea is just to trace E back to its origin as the last extender of some N,
with vy < €.

Let A = 1h E, and suppose that {((Bo, ko) - - - (Bi, ki)) is the initial segment of the
A-dropdown sequence of M consisting of those pairs (3, k) on the sequence such
that (3, k) <iex (@, j), where wa = ORM. Our first goal is to show that there is
a unique v < £ such that J,;:" = €, (Ny). Fix a such that wa = ORM and let

K& = pr, (T

CrLAM 1. Let (7, e) <iex (£, ) and suppose Jp""' is an initial segment of €.(AN5).

Then for all (7, n) such that (v, €) <iex (,n) <iex (§,7), ‘7/_({:" is an initial segment
of €,(M,).

PROOF. Let k = pk..(J;',"), which is the minimum value of p,,(Jl;“) for pairs
(B, k) satisfying (X, 0) <iex (8, k) <iex (@, ). Notice that ._75‘_" is k;-sound, since
ki < jif fi = a. It will suffice then to show that p,(N;) > x whenever
(1,€) <iex (1,n) <iex (€,7). (We leave the details here to the reader.) So
suppose p < k and g = p,(N;) for some such (r,n). Let 4 be the minimal value
of such a p,(N;). Then €,(N;) is an initial segment of €;(N¢) = M by 8.1.
The minimality of & implies €,(N;) is a proper initial segment of JM. This
contradicts that there is a subset of 4 which is definable over €,(N-) but not a
member of JM. 8]

CLAM 2. If (y,e+1) <jez (€,7) and Jé}" is a proper initial segment of C.41(N5),
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then J3* is a proper initial segment of C.(A).

PROOF. By the 1st claim pe1(Ny) > k. But §; < (k+)%+15) gince T4 has
projectum k. By 8.1, .75:" is a proper initial segment of €.(AN,). O

CLaIM 3. There is a unique ¥ < € s.t. JM = €, (N,).
PROOF. Let (7,€) be <jex least such that J* is an initial segment of €.(N5).

Suppose first that J‘;‘f = €. (Ny). If e < k;, then since J,,f‘ is k; sound,
J ;{:‘ = C,(N,) as desired. To see that e < k;, suppose toward a contradiction
that k; < e. For t, u < e set

pr = pi(Tu(NY)) -

It will be enough to see that p:: = p¢, since this implies that €;,(N,) = €. (M) =
Jé‘:‘, contrary to the minimality of (v, e). So suppose we have t s.t. k; <t <e
and p:ﬂ < pt. We may assume t is the largest such. Now the reader can easily
check! that for any u, pi,, = pil}, and p¥,, < p% = pit] < pi*!. Thus
we have pit] < pit! < pitl. As €41 (N,) = €.(N;) by the maximality of ¢,
pS = pitl < pit! = pf,. But €.(N,) = JM, so this contradicts the fact that
(Bi, k;) is the last term of this restriction of the A-dropdown sequence of M, so
that pe(JgM) < pr,(TF1) is impossible if k; < e < j. If J{M = M then we must
verify that e < j in order to apply this fact. Now if ¥ = £, then e < j by the
choice of (v,€), and if ¥ < €, then €.(N,;) = €;(N¢) and it is easy to see that
this is impossible.

Next, suppose J‘;t" is a proper initial segment of €,(N;). From Claim 2, we see
that e = 0, so that .,7;;‘:' is a proper initial segment of A, .

If v is a limit, then the definition of A, guarantees that .75"" is a proper initial
segment of some &, (N;) for 7 < v. But then Claim 2 implies J‘;“A is a proper
initial segment of NV;, a contradiction. Thus 7 is a successor.

Let ¥ = 7+ 1. From the definition of M;4; (either we add an extender predicate
to M, or extend the J-hierarchy for one more step), Jf;‘:‘ is an initial segment
of M; = €,(N;). This contradicts the minimality of (v, €).

Thus Jg* = €, (N;) for some v < €. There is a unique such y by the following
easy fact, whose proof we omit: if v # § then €.(N,) # €c(Ns), V7,6,e,k. O

We can now define the (j,£) resurrection sequence for E.

Caski 1. i = 0. Notice that p;(JM) < A, since JM is active. Since (B, k1) =
(A, 1) is not defined we must have Vg = M = JM™ and j = 0. Then E is the

1By the way, it is also true, though not at all obvious, that p% < p%_, = pit! < put].
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last extender of MV, and the (j,£) resurrection sequence for E is defined to be
the empty sequence.

CaSE 2. i > 0. Let ¥ < £ be such that Jl;"‘ = €,(Ny). Notice that k; > 1
as pr;(NMy) < A and wA < ORMN>. Let 7 : €, (N,) — €k, —1(Ny) be the inverse
of the collapse. Then the (j,&) resurrection sequence for E is (B;, ki, v, 7)™ S,
where S is the (k; — 1,7) resurrection sequence for m(E). (Here if E is the last
extender of €, (N5 ), then by 7(E) we mean the last extender of €¢,_1(N5).)

This completes the recursive definition of the (j, ) resurrection sequence for E.

For any premouse P with wa = OR” and t < w, and wA < ORP, the (¢, A) drop-
down sequence of P is just that initial segment of the A-dropdown sequence of
P consisting of pairs (B, k) such that (8, k) <iex (a, ).

Now let us return to the situation of Case 2 of the definition of the (7, &) resur-
rection sequence for F, and adopt the notation there. Let us adopt our standard
notational device by taking 7(ORZ* (")) to be ORZ*-*(N»), One can easily see
from our results on preservation of projecta that the (k; — 1,7(A)) dropdown
sequence for €x,_1(N5), which is what we use to resurrect 7(E), has the form

({m(Bo), ko), - - -, (7(Bi-1), ki-1)) " u,
where
u=@ or u=(r(B) ki—1).

We do not know whether it is possible that u # @. In order for this to happen we
would need to have (81, ki—1) # (Bi, ki — 1), pk,-l(Jéf‘) = pk,_l(Jp.'*'il), and
Pr,-1(Ch,-1(N5)) < 7(pr,~1(TF")). We only know that p,_1(Ce,-1(Ny)) =
sup 7" py,1(Jg"). It seems plausible that  preserves the k; — 1st projectum,
so that in fact ¥ = @ must hold.

Notice that if u # @, then the last integer k; in the dropdown sequence gets
decreased by 1 at the next stage of resurrection. Thus there are cofinally many
stages in the resurrection at which the u associated to the stage is @. These
stages are important, so we now give a formal definition.

Let E be on the sequence of €;(Ng), A = 1h E, and let
((Bo, ko), - - -, (Bs, ki)
be the (j, A) dropdown sequence of €;(N¢), and let
({60, €0, 70, m0), - - -, (bt £t 7e, 74t))

be the (4, £) resurrection sequence for E. (We suppose the resurrection to be non-
empty. Thus (B, k1) = (A, 1) is defined.) We have at once from the definitions
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that

(60,(0) = (ﬁi;ki)a
J&eJ(M‘) = ¢lo(N‘Yo)’

To : Q:ln(A,‘Yo) - ¢lo—l(jv‘ro) )
and for 1 <e<t,
(be,€.) =last term in the (£.—; — 1,71 0---0mo(A))

dropdown sequence of €,_,_1(N,._,),

-1 N7¢—l
o) s e ah),

and

e : € (Ny,) = Co—1(Ny,) -

From our earlier remarks on the new dropdown sequences, we can find stages
1<e1<er<---<ei_1=1

such that

(beyr€e,) =mey—10---0mo((Bi-1,ki-1))
(6821e02) = Wez—19°°°0 wo((ﬂi—ﬁ: kl'-Z))

(ber_ysle,_y) = Te,_y—10---0mo((B1, k1)) .

Here if e; = 1, the notation “m.,_1 0---0 my” stands for mg. We also set eg = 0,
and interpret “m,,_j o---0my” to stand for the identity embedding. We then
havefor0 <n<i-1

(6e,.;ec..) = Mep,-10--+0 7l'0((ﬂi-—ny ki-n)) .

This enables us to define embeddings and models resurrecting the various be‘:',

where M = €;(Ng). Set
Oi—pn = Me, OMe,,-19°°-0M 0Ny

so that
Oi—n @ Jpl\:,, - ¢t.--1(N7.‘)

is an £,, — 1 embedding, for 0 < n < i — 1. In order to simplify the indexing a
bit set 7, = 7., for 0 < n <i— 1. Notice also that k;_, = £,,. Thus, setting
p=1i—n, we have that for 1 <p<i

op : .7;: — C,—1(N7,)
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is a k, — 1 embedding. Let us set
Resy = Q:k,_l(/vf,)

and call (op, Resp) the pth partial resurrection of E from stage (j,€). (Notice
that if p < ¢, then Res, represents “more resurrection” than Res, in the sense
that it goes back to an earlier model N, and hence nearer to the first appearance
of the prototype of E. On the other hand, Res, resurrects less of M in the sense
that the domain Jﬂ"”‘ of oy is smaller than that of o,.

The partial resurrections of E agree with one another in the following way: For
1<p<ilet

Kp = Pk;(Jf,‘) :

Then one can check without too much difficulty that k3 > x2 > .-+ > &,
and that if p < ¢ then o, [ k4_3 = 04 | K4-1 and the models Res, and Res,
agree below sup o'ky—1. For example, consider the case ¢ = i. Then o; = mg :
Tg — €, -1(Ny,), and moreover, the last term of the (k; — 1, 7o())) dropdown
sequence for €, _1(N,,) corresponds to a projectum which is greater than or
equal to sup(7y k;—1). This implies that x; | sup 7y k;—; is the identity, for all
7>0.So

op [ Ki-y=m,,_,0---0mom [ Ki—1 =m0 [ Ki—1 = 0; [ Ki-1.

See figure 1 for a diagram of some of the relationships above.

Finally, the complete resurrection of E from (j,£) is the pair (identity, Ng) if
the (j,€) resurrection sequence for E is @ (so that j = 0 and E is the last
extender of N¢), and the pair (o1, Res;) if the (j, £) resurrection sequence for E
is nonempty.

Notice that in any case, Res = N, for some ¥ < £ and o is a 0-embedding from
J &N jnto A,
A v

Of course, the notions associated to resurrection can be interpreted not just in
V = Ry, but in any model R, of the tree U (using the construction i ,(C)). We
shall do this in what follows.

Definition of U: Induction hypotheses. During the recursive definition of the
tree U and the embeddings 7, we will be maintaining a number of induction
hypotheses, which we have numbered H1 through H7. Recall that R, is the ath
model of the tree U.

H1. There is an ordinal £ such that the map =, is a weak n-embedding from
Pa into Q,, where n = deg” a and Qq = (€n(N¢))Re.

H2. (commutativity) If 5T« and (8,a]r N DT = @ then mq0if , =¥ , o 7p.
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FIGURE 1. To simplify matters, this diagram assumes that { = 3 and
P1 < B2 < P3. It also assumes that the new dropdown sequence is
just the image of the old minus its last term, that is, that “u = @&”
always holds. Thus t = 2, e =0, e; = 1, and e; = 2. Also, 03 =
Ty, 02 = W o0 my, and 63 = mp 0 m o my. Finally, we assume that
Te(pto-1(€e.(N.))) = pr-1(€e,-1(N5,)) for e = 1,2, which, together
with a similar assumption on 7, implies u = @.

Next, we have some agreement of models and embeddings to maintain. For
each ordinal B < 1h 7T, let vg be the natural length of Eg and let {o?, Res®) be

the complete resurrection of wg (Eg) from stage (j,7), where j = deg” (8) and
Qs = (G (N:))Re.

H3. For each 8 < a, if Res? is type I or III then Qq agrees with Res? below
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Res?

14 , Imoreover

Talvp=0Pomglvg and wa(vp) > yRe’

H4. Foreach 8 < a, if Res? is type II then Q, agrees with Res? below ORRe’ﬁ,
and moreover

7o [IhE] =0 omp [ IhE] and . (lhEJ) > ORR.

H5. For each B < a, R, agrees with Rz below yRes’ 4 w, that is V,YR°' = V‘yR’
where v = yRes + w.

In order to handle the limit case in the definition of &, we will require two final
induction hypotheses.

If @ = €(N,) and Q' = &;(Ng) where N, and N are two models of the
construction C, then we write Q@ <c Q' iff (v,k) <iex (§,4)-

H6. Let 8 =T-Pred(a+1)and C**! =& . (C). Then

() Qa+1 <ce+ % 141(Qp), and
(b) if a+1 € DT, then Qa41 <co+1 5 441(Qp)-

H7. If \is a limit ordinal then %, (Q4) = Q) for all sufficiently large aT'A.

We shall need to know that &/ is a tree in the “coarse structure” sense of [MS].
Set pl; = yRe*” Then it will be obvious from the construction that Eg is /f; 4w
strong in the model Rg. We shall show in the remark following claim 1 below
that plz,’ < 4 whenever B < §, and the agreement condition on the models Rg
follows at once from this. This guarantees that &/ is a normal iteration tree in
the sense of [MS], provided that no illfounded model appears in &. Thus we
need to know that we encounter no illfounded ultrapowers or direct limits in the
formation of «. This follows from the following theorem, which is proved by the
methods of [MS].

Theorem. If there is no ordinal ¥ < € such that L(V,) | “y is a Woodin
cardinal” then every iteration tree on L(V;) has a unique cofinal wellfounded
branch.

Note that if theorem 12.1 holds for all #' < 7, so that A, exists, then N is
constructed in Vg for some ordinal £ smaller than the least cardinal 6 such that
L[Vs] satisfies that § is a Woodin cardinal. Thus we can apply this theorem to
the trees derived from U.

We now begin the recursive definition of the tree &/ and the embeddings 7. For
a = 0 we take Qg = Pg, Ro = L(Vs) where 0 is the least ordinal v such that
L(V4) E “y is a Woodin cardinal”, and mp = identity.



116 W. J. MITCHELL AND J. R. STEEL

Definition of U: The Successor Step. We assume that the tree has been defined
through the ath model R,, and we have the embeddings 7, mapping P, into
Qa, where j = deg” (@) and Qo = (€;(N¢))R=, and we have (in R,)

(0%, Res®) = complete resurrection of 74 (E?) from (j,¢),

where 7, (EYT) is the last extender predicate of Qq in case EZ is the last extender
predicate of P,.

CLAmM 1. If v is strictly smaller than o then 6 | 74(lh Eg' ) = identity.

PROOF. Fix v < a. Then lh ET is a cardinal of P, so 74(lh ET) is a cardinal
of Qa. Thus pu(J5°*) 2 ma(lh ET) for all B such that ma(lhET) < wB <
ORP>. We claim that also p;(Qa) > 7a(lhET). (Recall that j = deg(a).)
Assume first that a is a successor ordinal. Then P, = Ult;(P%, EZ_,), and so
IhET_, < p;j(Pa). Thus IhET < pj(Pa), and as 7, is a weak j-embedding,
7a(lh ET) < p;j(Qa). Now our claim for the case a is a limit ordinal follows
from the successor case applied to sufficiently large o’Ta.

Thus no projectum associated to a term in the (j, 7o(lh ET)) dropdown se-
quence for Q4 lies below 4 (lh E.',T ), and it follows that o is the identity below
7o(lh ET).

REMARK. The claim enables us to show that /4 > p‘; for all # < a. For
M =P =% om,(va).

But now, for § < @, IhE] is a cardinal of Py and IhE] < IhEZ, so that
lhE’g < Vq. Thus vg < v, for B < a. So

M > 0% o malvp).

But Claim 1 tells us 0® o 74(vg) = 7a(vg), and our induction hypotheses on
agreement of embeddings say 74(vg) > R’ So

B
H > 0% oma(vp) = 7a(vp) > VB = plg

We can now define E¥ and Ry41. Set
F = 0 0 mo(ET) = last extender of Res® .

Now Res? is an “A model” in the universe R,, so its last extender has a “back-
ground extender”. Set E¥ = F*, the background extender for F in R,. Let
B = T-pred(a + 1) and set

Ray41 = Ult(Rg, F*).
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Notice that Ulty = Ult,, since Rg | ZFC.

Let us note that R, and Rg are in sufficient agreement that this ultrapower
makes sense. This is clear if § = a, so we may suppose that # < a. By our
induction hypotheses, R, agrees with Rs to yRes’ + w. Now crit ET < v
because 8 = T-pred(a + 1). As o® is the identity on w4(lh Ep) crit F* =

crit F = crit o%(wo(ET)) < sup 7 vg = sup o o 7 vp < vRe" Thus the
ultrapower makes sense.

We now define 7441 and Qq41. Let n = degT(ﬂ) and A=1h E;, let

{(no, ko), - - -, (ne, ke)) be the (n,A) dropdown sequence of Pg,

and set k; = pk'(J,;’:") for0<i<e.

The following claim relates these to the (n,73())) dropdown sequence of Qpg.
The claim is slightly complicated by the fact that x5 is not a full n-embedding.
Notice that k. < pn(Ppg).

CLamM 2.  The (n,7g(A))-dropdown sequence of Qg is the sequence given by
the appropriate clause below:

(a) If k. < pn(Ps) then the dropdown sequence is
((“ﬂ('IO)» kO), (RN (”ﬁ('k)y kc))

(b) If k. = pn(Ps) but (wne, k.) # (ORP4, n) then the dropdown sequence is

((7"/3(710), ko), L) (7"/3(776)’ ke))A“x

where u = @ or u = (5, n) for wn = OR92,
(¢) If (wn., k) = (ORP2, n) then the dropdown sequence is

((Wﬂ('lo)’ ko): ceey (7"5(’70-1)) ke-l))Am

where u = @ or u = (75(n.), k.) = (wn, n), for wn = ORV».

REMARK. Note that k. = p,(Pp) in case (c). If e = 0, then n = 0 = ko
and ng = A = wA = ORP%. The (n, 75())) dropdown sequence for Qg is then
((OR®#,0)), which falls under case (c).

REMARK. The u = @ case in (c) would not be necessary if 75 were a full
n-embedding.

The claim follows easily from the fact that =g is a weak n-embedding. For
(a), notice that mg(k.) < sup 75pn(Ps) < pn(Qp). Recall that =g preserves
cardinals, so that if for example wn, < OR®? then Py = Vy > n,(pw(J ) >
£2.(T2)), and thus Qs k= Vy > ma(ne)(pu (TE) > ma(.)). O
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Let p = crit(E7), and let

. {e+l if p < K,
1=
least js.t. x; < p if k. < p.

Notice that ¢ > 0 since kg = A > pu. Because 7 is maximal

a4l —

) {:/’?‘ ifi<e,

Ps ifi=i+1,
and b1 "
i — ifi<e
deg” 1) = ! =7
g’ (a+1) {n ifi=ze+1.

Let (07, Res?) be the ith partial resurrection of 75(E] ) from stage (n, 7), where
Qp = €. (N;)R#, if this resurrection is defined. The resurrection is undefined if
i = e+ 1 and defined if i < e by claim 2. If i = e then (67, Res?) is undefined
just in case (wne, ke) = (ORP?,n) and the conclusion of (c) of claim 2 holds with
u=g9d.

Now let
Q. = { Res? if Res? is defined
et Qs otherwise,
{ o? if Res? is defined,
o=
identity otherwise.

Then o o (w5 [ P;4y) is, in any case, a weak deg” (a + 1) embedding from
Pyy1 into Q54 ;. To see this, assume first that R&f’ is defined, so that i <,
deg’(a +1) = ki — 1, and o = o? is a full (k; — 1) embedding. Looking at

claim 2, we see that in all cases the domain of ¢ is Jzﬂ(n-) since we cannot have

the situation in (c) with i = e and u = @. But P}, = J,,’?’, and 75 | Py
is a weak (k; — 1) embedding. In fact, if wp < OR?? then w5 | PL,, is
fully elementary, and if wy; = ORP? then k; < n,s0 mg [ Py, is a weak k;-
embedding. It follows that oo(7s [ Py,,) is a weak k; —1-embedding from P,
into @5 ;. Assume next that st? is undefined. Then either i = e+1 or we have
the situation in (c) of claim 2 with u = &. In either case, deg” (a4 1) < n. Also
Pas1 = Pp, Qoy1 = @p, and o is the identity. Since 74 is a weak n-embedding,
oo g is a weak deg” (a + 1)-embedding from Pas1 into Q5.

Let Qp = €, (N5)R?, so that (of, Res®) is the complete resurrection of rp(EpT)
from stage (n, 7). Let ¢ be the complete resurrection embedding for o o ms(E7 )
from the appropriate stage, which is (n, 7) if R;esf’ is undefined and (k; — 1,17),
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where Res? = €,_1(N;), otherwise. Then ¥: Jﬁ‘:‘;t,\) — Res’ and o? =
bo (o1 Teiny)-

CLAIM 3. 9 | (sup(o o mg"”K;—1)) = identity.

PRrOOF. Suppose first that R;esﬁ9 exists, so that : < e and o = a{-’ . From claim 2
and the fact that 7 is a weak n-embedding we see that 75(«;_1) is the projectum

associated to the (i — 1)st element of the (n, 75()))-dropdown sequence of Q.

As we remarked earlier, 9 is therefore the identity on sup(c?”7s(x;1)), and

this implies the claim.

Suppose next that R/esf’ is undefined, so that either i = e+1 or else ¢ = e and (c)
of claim 2 holds with u = &. In either case the projectum associated to the last
term of the (n,73())) dropdown sequence of Qp is at least sup(7g”x;—1). Thus
of | sup(mp”ki—1) is the identity, but ¥ = o® and o is the identity, so this
implies the claim. a

We can now define Qq41 = ig’ at+1(Q@a41)- Before we define 7441 and verify the
induction hypotheses, however, we must describe the agreement between Q.
and Res”. Set

M if Poyy = pt exists
1= ORPa+ otherwise.

CLaM 4. 7 < A=1Ih(ET), and if y = ORP*=+* then PL,; = Jy” and Pl
is type II.

PROOF. If 8 = a, then (ut)7 X* exists and P41 is the shortest initial segment
of P, over which a subset of u not in J, * is definable. Thus (ut)Patr =
()7 < X < ORPa+1, 50 v < A < ORPa+1,

If B < a then the subsets of u in P, are just those in ._7;, ? and Py, is the
shortest initial segment of P over which a subset of 4 not in J,\P ? is definable,
so if (ut)7: X* exists then (ut)Patr = (p+)'7xp ® < . Otherwise p is the largest
cardinal of JAP #,80 Piyy = J, ° since X is definably collapsed over the active
ppm J;P ?. In this case we see also that P% +1 18 type II, since otherwise p <
vg < A and v is a cardinal of J; °. a

Claim 4 implies ¥ < x;_1. If k;_1 = X then this is obvious. Otherwise x;_; is a
cardinal of J;P # since it is a projectum of some J,,P # with n > A. Since y < K-
by the choice of i, we have v < &;_;.

The next claim shows that Res” and Qj,, have the agreement required for the
use of the shift lemma.

CLAIM 5. (a) Res™ agrees with Q7,,, below sup(c o 75"7).
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(b) o%omg [y=0o0mg [ 7.

ProoF. The proof of claim 5 is divided up into three subclaims.

Subclaim A. Q4. and Res” agree below sup(c o 75"y), and coms | ¥ =
Yooows [ 7.

This follows at once from claim 3 and the fact that v < &;_;.

Subclaim B. If # < a then Res? and Q, agree below sup(oomg”y), and Yooong |
Y=mal7.

Recall that ¢ 0 0 o 73 = 0 o m5. This subclaim is therefore just our induction
hypotheses on agreement. If Res? is type I or type III then claim 4 yields y < vg
and we can apply H3. If Res? is type II then v < lh Eg by claim 4 so we can
apply H4.

Subclaim C. If f < a then Q4 and Res® agree below sup(o o 75”y) and 7, |
Y=o0%0ma [ 7.

We have ¥ < A, and 0 o mg = 74 [ 7, so sup(o 0 73”7y) < 74(A). By claim 1, Qq
and Res® agree below m4()) and o is the identity there.

Together, subclaims A, B and C yield claim 5. O

Now define, for a € [v,]<“ and appropriate f

7as1 ([0, f15") =[0% 0 ma(a), 0 0 m(NIF2 -

If f = frq then by “o o ms(f)” we mean f; 5ox,(q), the later function being
defined over the ppm Q5 ;. In order to see that 741 has the desired properties,
it is useful to factor it. Let k = deg” (a + 1) and Qby1 = Ult(Q4 41, F). Let
i: Q441 — Qb4 be the canonical embedding and let 7,4, : Pay1 — Q441 be
the weak k-embedding given by the shift lemma. Finally,let 7: Q¢ ; — Qq41 be
the natural map given by 7 ([a, f]aq:::,(EZ)) = [a, f]?'.’. Then Ta41 = TOo Moy
and we have the commutative diagram

1
ra+l T
Pa+1 I QL-H EE— Qa+1

(";+1)TT "I /;.o+l
- ooxXg -
at+l — a+1

In order to verify H1 we need to show that 7,41 is a weak k-embedding, where
k = deg(a + 1), which means that we have to find a witness set X on which
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Ta41 18 rXk4 elementary. If k£ = deg(a + 1) = n and P;,H = Ps then we can
take the witnessing set to be X = i, ;" Xp, where Xj is a set witnessing that
7g is a weak k-embedding. Otherwise take X = i3 ,," I’Pa+1| In either case
the shift lemma implies that #,,, is rX;; elementary on parameters from X.
On the other hand the Los theorem 4.1 implies that 7 is 7X;41 elementary on
parameters from i |Q%1|, and since 74" X C i |Q%1]| it follows that wa4s
is rX;4+1 elementary on parameters from X. Thus X witnesses that mq4 is
a weak k-embedding and we have verified H1. Induction hypothesis H2 comes
from the commutativity of the diagram above.

We now verify H3 and H4. Let n < a + 1. If Res” is type I or III then we must
show that Qq4+1 agrees with Res” below vRes” and moreover that 7oy | Vg =
0" 0wy | vy and maq1(vy) > VR, If Res” is of type II, on the other hand, then
we must show that Qq4+1 agrees with Res” below ORR**” and moreover that
Tag1 [ IWET = ¢" om, | Ih ET and 7a41(lh ET) > ORR".

We consider first the case 7 = a. Set y’ = wg(u). By claim 3, J"?;*‘ = J‘E“"

so that

JQHJ NN Ult(Ju?;“’ F*) = Ult(yﬁesu’F‘)’

where the ultrapowers are computed using all functions which are members of

Rpg, or equivalently of R,, and which map [u')’ into I 9at1 for some integer 1.

Now the canonical embedding
¥ : Ulto(Res®, F) — Ult(Res*, F*)

(where the first ultrapower uses all functions belonging to Res®, and the second
uses all functions in R,) has critical point > vR*” if Res® is type I or III, and
> ORRe*® = |h F if Res® is type II. Moreover, Ulto(Res®, F') agrees with Res®
below Ih F = ORRe*®. Aséf . (') >IhF,Qq41 agrees with Res” below 1/Ree

in the type I or III case, and below ORR®*" in the type II case.

Next we consider the agreement of embeddings. Suppose first Res® is type I or
III, and £ < v,. Then € = [{£},id] E"“ where id = identity function, so

Tas1(n) = [{0% 0 7a(€)},id] 2 = 0% 0 7a(€)

as desired. Also, let f € |Pa| N [P}, ;| and @ € [Va]<“ be such that v, =
[a, 155 = la, ﬂE"“ Then

Tat1(va) = [0% 0 Tala), 7a(f)]R2
= [0% o ma(a), 0% o wa(f)]g;‘
> [0% o ma(a), 0% o ma(f)]Re.
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But for (ET)auv.} a-e. (,v), f(@) = v. Also 0% o ma(va) = vF**", 50 0% 0
Ta(f)(8) = v for (F)oeon, (a)u{vres=} a-. (4,v). Thus

VR = [0% 0 ma(a), 0% 0 ma(f)IF™"

and To41(Va) > VR, as desired.

These calculations carry over easily to the case Res” is type II to give the
agreement of embeddings facts in part (b) of the claim. We omit further detail.

We must now consider the case 7 < a. Let’s just prove (a), the proof of (b)
being similar. So assume Res” is type I or III.

From the 7 = a case we know that Q41 agrees with Res® below vRe® But we
showed in the proof of claim 5 that Res* agrees with Q, below 74 (lh E,’{ ). Also,
mo(lh E',T ) is a cardinal of Res®, hence 74(lh E,T ) < ¥R, Thus Q.41 agrees
with Q4 below 74 (lh E;f ). But by induction hypothesis, Q, agrees with Res”
below ¥R and wa(vy) > vR*". Thus Qqu41 agrees with Res” below vRe®"
as desired. For agreement of embeddings, we argue similarly that mo41 [ Vo =
0% o Ty | Vq. Furthermore since 1h E,T is a cardinal of P, and lh E,',r <lh EZ,
we know that lh E','{ < V4, and since g is the identity on 7, (lh E,',r ) we get
that mo41 [ 1h E,',r =17 [ 1h E;{ But then since 7, [ vy = 6" o 7, [ v, by the
induction hypothesis, mo41 [ ¥y = "7 o m, [ vy, as desired. Notice also that we
get Tay1(vy) = malvy) > vF**” by induction.

This verifies H3 and H4. A much simpler coarse structural argument along the
same lines gives H5. Finally, H6 is easy to check and H7 is vacuous in the
successor case.

Now let A be a limit ordinal with A < § = 1h7. We are given sequences U | A,
(Qa | @ < A), and (7o | @ < A) satisfying our inductive hypothesis, and must
define 4 [ A+ 1, @), and 7,.

Let ¢ = [0,A)r = {a | aTA}. We claim that lim,e. R, is wellfounded, where
the limit is taken along the maps i’j:p for a, B € c.

For this it suffices, using results of [MS) asserting that 7 has at least one well
founded branch, to show that if b is a branch of T' [ A which is cofinal in A, and
b # ¢, then limgyep Ry is illfounded. So let b be such a branch.

We may assume zﬁp(Qa) = Qp for all sufficiently large o and fin b, a < 3, as
otherwise our last induction hypothesis 6(a) implies that &, (<c) is illfounded,
80 limgep R, is illfounded. (Here igb is the canonical embedding from R,, o € b,
into limgep Ry.) This in turn implies DT N b is finite via 6(b).

Let Py = limgep Pa, and Qp = limgep Qo, which is the common value of iﬁ,,(Q,,)
for a € b sufficiently large. Then P} exists as DT Nb is finite, and P; is illfounded
as T | ) is simple and b # c. There is a natural v : P, — Q4 given by our
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commutativity hypothesis: #(iZ,(z)) = i’;"b(ra(z)), for a € b sufficiently large.
Thus @, is illfounded, and hence R; is illfounded since Ry = limaes Ra = “Qs
is wellfounded”.

We set Ry = limaec Ra, and this gives us & | A + 1. Notice that i%,(Q,) is
constant on all sufficiently large T\, as otherwise i, (<c) is illfounded. Set Q)
equal to the eventual value of %, (Q,) for sufficiently large aTA. Set

(152 (2)) = % (7a(2))
for a < A sufficiently large, oTA.

Let n = deg?()) = deg”(a) for aT) sufficiently large. It is easy to check
that ) is a weak n-embedding which is rX,4; elementary on the appropriate
set, and that x, commutes properly. Our last induction hypothesis is just the
definition of @, so we need only check that @, and ) agree properly with Res?
and o o g for B < A.

Let 3 < A\. We have already shown that if ¥ > 3, then vRe®” > vRe’  But
yRes” < Ih EY, and thus 8 < v = yRe® < L a (crit EY) where n = T-pred (v+
1). As R, is wellfounded, we must have vRe?® < crit E'.,‘ , for all sufficiently large
7+ 1T . We can then find v + 1 T A sufficiently large that vRe” < crit 11_71 12
and i’:" +1(Qv+1) = Qx. By induction, Q41 agrees with Res” below v
Q> agrees with Q41 below crit &, ,. So Qx agrees with Res® below v’
For the embeddings, notice that # < v = vp < vy < i1, (crit ET), where

n =T pred(y + 1). So we can assume the ordinal ¥ + 1 of the last paragraph is
such that if{ +1,» is defined and vg < crit if 12

But then, for o < v,
m(a) = "'A("-Ty—q-x,,\(a)) = il:y(+1,,\ (Ty+1(@)) = 7y41(a).

Since my41 [ vg = 0f o mg | v by induction, 7 [ v = 0f o w5 [ vg, as desired.
This proves the agreement hypothesis in the case Res? is type I or III. The type
II case is almost the same.

We have completed the definition of & | § = U. Assuming that 8 is a limit
ordinal, methods of [MS] yield a cofinal, wellfounded branch b of . It is easy
to see (cf. the limit case above) that b is a wellfounded branch of 7. This was
what we needed.

In the case 0 is a successor, the fact that & can be extended freely one more step
guarantees the same for 7, as desired.

The remaining clauses of k-iterability can be proved similarly, using that the
corresponding operations on L(Vp) yield wellfoundedness.

This completes the proof of 12.1. a
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The 0-iterability of the bicephali and psuedo-premice arising in the construction
of §11 can be proved similarly.





