§8. SoLIDITY AND CONDENSATION

In this section we prove the central fine structural result of the theory we are
developing, namely that every 1-small mouse is k-solid for all k. We also derive,
by the same method, some condensation results we shall need later. Our proofs
of these facts trace back to Dodd’s proof that the models of [D] satisfy the GCH.

For mice M up to a strong cardinal (that is, for mice M such that 7™ |= “There
are no strong cardinals” whenever k£ = crit E for some extender E on the M
sequence), our proof actually shows that €;(M) is an iterate of Cx41(M), with
the iteration map having critical point > pg4+1(M). That is, every “very small”
mouse is an iterate of its core. We suspect that this is not true for arbitrary
1-small mice.

Recall that ug(M) = @, and that uz(M) = (pe(M), bo, - - - ,bs, pp,) for k > 1,
where b - - -bg are the solidity witnesses for p;(M) and the last coordinate pf!
occurs only if it is defined and is smaller than ORM. Thus py41(M) is the
appropriate collapse of (r, ux(M)), where r is the k + 1st standard parameter of

(€ (M), ur(M)).
Recall that if 7 : M — N is a k-embedding, then 7(ux(M)) = ux(N).
Theorem 8.1. Let M be a k-sound, 1-small, k-iterable premouse, where k < w.

Let r be the k + 1st standard parameter of (M, ur(M)). Then r is k + 1-solid
and k + 1 universal over (M, ux(M)).

PROOF. Let u = ug(M) and r = (ao, - - - , as), with the ordinals a, in decreasing
order. Let asyy = ppt,. Let s < S+ 1 be least such that

Thﬂ.l(al U {a()) crtyQg1, u}) ¢ 'MI .
Such an s certainly exists, since S + 1 will do. Let
H= %ﬂl(al U {a()) MR ¢ 72 B u}) ’
let m : H — M be the inverse of the collapse (so that = is a k-embedding), and
let @ = 7~'(u) and &; = 7~ 1(a;) for j < s.

Our strategy is to compare H with M, using k-maximal trees. Suppose that P
is the model produced at the end on the H side, and Q the model produced on
the M side. Suppose the branches H to P and M to Q involve no dropping of
any kind, so that we have generalized rX;4; mapsi: H — P and j: M — Q.
Suppose criti > a, and crit j > pf1;. Then

Th?+l(a: U{ao, " ,8-1,8}) =
Thf+1(a. U {i(t_!o), e )i(&a—l)) 1(ﬁ)}) ¢ Q



FINE STRUCTURE AND ITERATION TREES 75

and
Thyty(pth, U {r,u}) = Th, (o84, U {i(r), i(u)}) ¢ P

so that neither of P and Q is a proper initial segment of the other, and hence
P=Q.

Now if M is not k + 1-solid then s < S+ 1 and hence p}; < p},; because we
didn’t throw o, as a member into the hull collapsing to . But we can show
p:‘“ < pf+1, so p?H < pﬂl < p',’f+1 < pf_‘_l contradicting the fact that P = Q.
Thus M is k + 1-solid. It follows that s = S+ 1, and crit j > pﬂl so we have
PM(p{4,) C [H|. Thus M is k + 1-universal.

There are many problems in completing this sketch, but the main one is arrang-
ing that criti > a,. Our strategy will be to modify the comparison. Instead of
comparing the models M and H by iteration trees & on M and 7 on H, we will
use a iteration tree i on the model M and a pseudo-iteration tree T on the pair
of models (M, H). The situation can be represented by the following diagram:

M=7P, T Py

'."ﬂd/' T"_ F ]"
M=P_, — H="P, Po
M=Qo u Qs

The horizontal lines in this diagram indicate that the corresponding models are
in the same tree, so that there is an embedding between them just in case they are
on the same branch of the tree and there is no dropping on the branch between
them. The comparison takes place between U, which is a genuine iteration tree,
and the pseudo-iteration tree 7. The thing which makes 7 a pseudo- iteration
tree, rather than a real one, is that its underlying tree T has two separate
roots, —1 and 0, corresponding to the models P_; = M and Py = H. We
take p_1 = a,, and then we continue the comparison exactly as if T were a
real iteration tree. This means that whenever an extender E, appears in the
pseudo-tree 7 such that crit(E,) < a, then T-Pred(v + 1) = —1, so that the
v + 1st model P, of T is equal to Ult(P}, E,) for some initial segment P} of

M.

Since 7 is not a genuine iteration tree, we don’t know directly that it has well
founded branches. For this we use the iteration tree 7 and embeddings 7,
which are defined by setting w_; = id, letting mo be the inverse of the collapse
map, and then using the shift lemma to copy 7. Since T is a genuine iteration
tree, theorem 6.2 implies that it is simple. Thus it has well founded branches
at every stage, and the embeddings 7, : P, — P, ensure that the corresponding
branches of 7 are also well founded.

We will show that 070 and that there is no dropping along the main branch of
either tree. Thus the maps 34: H — P? and z%‘, ¢: M — Qg are defined. In
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addition we show that Py = Q4 and finally that 0,0 = ilo‘, ¢ © To.

We now begin the actual proof of theorem 8.1. Notice first that if pﬂl >1hE
for all extenders E from the M-sequence, then H is already an initial segment
of M (since a, > p£3,). In this case, no iteration is necessary, and we have that
H = M, which easily gives the desired results. Thus we may and do assume
that pﬂl < lh E for some extender E on the M-sequence. According to the
strong uniqueness theorem then, every k-maximal iteration tree on M is simple.
This fact will make the Dodd-Jensen lemma applicable in what follows.

We now define by induction on length: (1) a “psuedo iteration tree” 7 on the
pair (H, M), (2) a tree T on M “enlarging” 7, and (3) a tree & on M. We use
Pa, Pa, and Q, for the ath models of 7, T, and U respectively. We use T for
the tree ordering of 7, T for that of 7, and U for the tree ordering of &. The
rest we indicate with superscripts; e.g., pT, pa, and g4 or il5, Tap, and i%5.

The systems 7 and U will literally be a padded iteration trees on M; they will
be k-maximal and non-overlapping. T will not literally be a tree ordering in our
sense, as it will have two roots, but will agree with T on OR — {0, —1}.

Simultaneously with 7, T, and U we define 7, : Py — P, such that the map
7o is a weak deg(a)-embedding.

We begin by setting
Pi=M,Po=H,Po=M, Q=M

and
w1 = identity, mo = inverse of collapse.

Notice that 7_; and 7y are k-embeddings.

Now suppose that we have defined 7 [ 6, T 16,and U | 8. (This means we have
defined the models Py, Pa, and Q, for a < 8, together with the extenders Eq,
ET and E¥%, for a +1 < 0, etc.) Suppose we have also defined 74 : Py — Pa
for a < 0 with the following commutativity and agreement properties.

(i) If aTB and D N (a, By = @ then i?;p 0Ty = TP O1ag.

(ii) If 0 < a < B < 0, then P, agrees with Pg below Ih E,; moreover letting

y=lhEyand N = JP= = J7? we have 7o [ N =75 [ N.

Remark. Some simple observations about H.

(1) We may assume a, € |H|. For otherwise H is an initial segment of M (if
M and hence H is active, then the initial segment condition on good extender
sequences implies F" = FM | OR" is on the M-sequence) but then H = M,
and we are done.

(2) H E a, is a cardinal, since &, = crit o if s < S+ 1 and, a, = 7(a,) = pi},
ifs=S+1.
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(3) For B > 0 and & < a,, P(k)N|Ps| = P(x) N |H| = P(x) N |T|. However,
it seems possible at this point that P(x)N|M| might be larger than P(x) N |H|.
We now define 7 [0+ 1,7 [0+ 1and U [ 6+ 1.
CasE 1. 0 is a limit ordinal.

In this case, we have only to pick cofinal wellfounded branches in each of our
trees.

As 7 | 0 is k-maximal and pﬂl < lh E for some extender E from the M
sequence, 7 [ @ is simple. As M is k-iterable, there is a cofinal wellfounded
branch b of T. Similarly, there is a cofinal wellfounded branch ¢ of «. Finally,
let b= b or b = (b — {0}) U {—1}, whichever is a branch of 7. Set

Py =direct limit of P,, a € b — sup DT

Py =direct limit of Py, a € b—sup D
Qo =direct limit of Qo, a € ¢ —sup D¥#

and extend T, T and U to 8+ 1 correspondingly. For a € b—sup D and z € |P,|

we can set
79(%0,6()) = i% 4(7a(2))

(where of course 74,5 = 7, 5, etc.), and by induction hypotheses (i) and (ii) this
gives a well-defined m : Py — Py. Clearly =y is a deg (6)-embedding and (i) and
(i) continue to hold.

CASE 2. 0 = 1+ 1. In this case we “iterate the least disagreement” between P,
and @y, as in the proof of the comparison lemma.

Let v be least < ORP» A OR9» such that
Jf' # J‘YQ' ;

if no such v exists then we stop the construction of 7, 7, and U. Set

n =

.. P
E FI+" , if J.;P " is active
7] otherwise

=79 . . .
Y = { FI57 , if .7.,Q" is active
W=

7] otherwise .

On the U side the rest is determined by the demands of a k-maximal iteration
tree. So U-pred(n + 1) = €, where

£ = least a such that crit E‘,f <H.
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(Assuming now Eff # o; ifEf,‘ = & we just pad for one step.) Let k = crit Eff,
let Qy 41 be the longest initial segment N of Q¢ such that P(k)N|N| = P(x)N
|Qy| and let

Qn+1 = Ultn(Q5 41, Eff)
where

n = largest s such t.ha,tn:(p?:’+l ands<kif N[0, n+ 1y =2.

On the 7 side we proceed similarly. We assume E, # @; otherwise we pad for
one step. Set k = crit(E,) and let let T-pred(n + 1) = £, where

€ = least o such that x < p,

so that in particular § = —1if kK < a; = p_;. Now set 15;+1 equal to the longest
initial segment A of P¢ such that P(x) N |N|= P(x)N|P,| and

7_’"+1 = Ult, (7_’;“, Eﬂ)

where n is the largest integer s such that x < p,Q "+ and such that s < k if

Dn{a|aT(n+1)Va=n+1}=2.

That P41 agrees with P, below Ih E,, is proved as usual. Notice that if £ = —1,
then as P(x) N |JM| = P(k) N|py|, there is an A as called for in the definition
of Py

Finally, we extend 7 by “copying” what we just did with 7. Let v be least such
that Jf " # Jy°". Assume that Jf " is active; otherwise we just pad 7 for one

step. Let

T _ N _ 7qP
E] = F¥, where N—],"'E_Y),

where as usual we let 7,(ORP") = ORP».
SuBCASE A. T-pred(n+ 1) = —1.
Let T-pred(n+1) =0,

1 = 7_’3+1
Pp+1 = Ultn(Phy1s E,,T) , where n =deg (n+1).

We get w41 : Ppp1 — Py by the shift lemma, lemma 5.2 which implies that
Tp+1 is a deg (n+1)-embedding with the required commutativity and agreement
properties (i) and (ii).

SUBCASE B. T-pred(n+1) = £ > 0. Let T-pred(n+ 1) = £. Let ’f’,’;H = f‘;
then

*« _ 7P¢
141 = Tx0)
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where wi(ORﬁ‘) = ORP%. Let n = deg(n+ 1), then
Put1 = Ulta(Ppyy, ET).

Finally, we get the desired 7,41 by the shift lemma.

This completes the construction of 7, 7, and &. We leave it to the reader to
check the many details we ought to have verified in the course of the construction.
(In particular, that 7 is a k-maximal iteration tree, and that the =,’s have the
required commutativity and agreement properties.)

Now because 7 and U are simple we must reach an ordinal 8 such that P is an
initial segment of Qg or vice-versa. The proof is exactly the same as the proof
in §7 that the comparison process stops.

We shall say that a branch b of U drops if either D¥Nb# @or3a €b(deg (a) #
k), and similarly for branches of 7 or 7.

We need to verify that, just as with the comparison in section 7, at most one
side of the comparison drops, and that the side which drops is the longer. That
is, if the main branch {8 : 8T8} of T drops then the main branch [0, 8]y of U
does not drop and Py is not a proper initial segment of Qy, while if the main
branch of & drops then the main branch of 7 does not drop and Qs is not a
proper initial segment of Ps.

It is immediate that if either branch drops then its final model is not w-sound,
and hence cannot be a proper initial segment of the final model of the other
branch. If follows that if both branches dropped then we would have Po = Qo.
This implies that if the last drop on {8 : 8T8} occurs at a+1 and the last drop
on [0,6], at B+ 1, then

deg” (B + 1) =the least n such that Qg is not n + 1 sound
= the least n such that Py is not n + 1 sound
=deg(a+1).

Moreover, if n = deg¥(8 + 1),

Q/‘3+1 = Q‘,,,.,.l((-);_,_l) = Q:ﬂ+f(Q0) )
=C41(Po) = Ca41(Pat1) = Payi -

Also

U el Q41 _ Qo _ P
crit t5+1,0 © 'E+1 2 Pny1 = pn;-l = Pn-.n ’

and
P

o

- " _ P
crit 2641, 97541 2 Puil = Pni1-
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Also

crit Ef,‘ =least « such that k # 79°[@, pn41(Qs)] for any
T €Skn41 and @ € (p,?_:_1 <w

=least x such that x # P [@, Pn41(Ps)] for any
T €Sk,41 and @ € (p,?;l <w

=crit E, .
Finally, if A € Q3,, and A C [crit E)']", then letting
A=19%+(a,pay1(Qhy1)]
where & € (p351")<,

..u -
110 00541(4) = 79[@, pns1(Qs)]
= 7[a, pn11(Ps)]
= Ta41,0 0 T 41(4) .

It follows that one of EY and E, is an initial segment of the other, and this is
a contradiction as in the proof of the comparison lemma. Thus at most one of
the trees 7 and U can have a drop along its main branch.

CLAIM 1. 0T, that is, Py lies above Py = H in the 7 system.

PROOF. Assume not; that is, assume that —17°6, so that Pg lies above P_; = M.
We know that at least one of the branches [—1, 8]5 and [0, 6]y does not drop.

Cask 1. [-1,6]p drops.

Then Py is not w-sound, so is not a proper initial segment of Q¢. Suppose first
Qg is a proper initial segment of Py; say Qg = Jf * Leto=mg | Jf ¢ s0 that
o:Q¢— J: ’(_’) is fully elementary. Then the map aoi’(,‘,, is a weak k-embedding
from M to a proper initial segment of Py. As T is k-bounded and simple, this
contradicts the Dodd-Jensen lemma.

Suppose next that Qg = Ps. Then as Qg is k-sound, deg () > k, so that my is
a weak k-embedding. Thus 7y o izol, ¢ 18 a weak k-embedding from M to Py. But
by case hypothesis, [0, )7 drops. This contradicts the Dodd-Jensen lemma. (As
deg? (8) > k, we must have D7 N [0,6]r # ©.)

CASE 2. [0,6]y drops.

In this case, [-1, 0] doesn’t drop and P is an initial segment of Qq. If proper,
then i_, ¢ is a k-embedding of M to a proper initial segment of @, which lies
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on a k-bounded, simple iteration tree with base model M. This contradicts
Dodd-Jensen. If Py = Qq, then as Py is k-sound, deg?(#) > k. But then the
fact that [0, 8]y drops contradicts Dodd-Jensen.

CasE 3. Neither [—-1, 0] nor [0,6]y drops.

If Py is a proper initial segment of Qy, then 7_; 4 contradicts Dodd-Jensen. If
Qg is proper initial segment of Py, then 74 o i’ol' ¢ contradicts Dodd-Jensen. So
we must have Py = Q4. We now use the minimality of the iteration maps izo" o

z'g:, given by the Dodd-Jensen lemma. Let <, be the order of construction in
premice.

Fix any z € |[M|. By Dodd-Jensen,
#4(2) <, 1-10(2)
since iff, ¢ is @ “k-bounded” iteration map, and i_; ¢ a k-embedding. But also
iT5(2) <. mo(#,(2))

since i] ; is a k-bounded iteration map and i y o7y is a weak k-embedding. Then

7o (i-1,6(2)) = ig o(2) <. mo(iG ()
i—l,o(z) SL ig,o(”)

-1,0(z) = iG4(2).
But ifi_; 9 = 17{," ¢» then the first extender used on [—-1,6]p is compatible with
the first extender used on [0, 6]y, which is impossible. O

This proves Claim 1, and it follows that [0, 6]p is the main branch of 7. Again,
we know that at most one of the branches [0, 6] and [0, 6]y drops.

CLAIM 2. [0,6]p doesn’t drop.

PROOF. Suppose it did drop. Then [0, 8]y does not drop and Py is not a proper
initial segment of Qy. Suppose Qj is a proper initial segment of Py. Then oig’ 0
is a weak k-embedding from M to a proper initial segment of Py, contrary to
Dodd-Jensen. Suppose Qy = Py. Then as Qy is k-sound, deg(d) > k, so that

Tgoiy o is a weak k-embedding from M to Py. As [0,6]7 drops and &ET(G) >k,
we have DT N [0,6]r # @. This contradicts Dodd-Jensen. O

CLAIM 3. Qp is an initial segment of Py.
PRrooF. Claims 1 and 2 together imply that
Th:i+1(al U {(&Ov Ty Q) "_‘)}) =

ThP? (e U {fo0((Go, - » Gem1))}) & [Pl .
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Moreover, as Th:‘“(a. U {(a@o, - ,a,-1,u)}) is essentially a subset of a,, and
is not in M, it is not in Q4. (Note here that P(a,)?* C |Qo|, and that if ¢ > 1
and EY # @, then lh EY > a,, so that P(a,)N |Qe+1] © P(as) N |Q¢], with
equality holding after the least such £.) It follows that Py, over which the subset
of o, in question is definable, is not a proper initial segment of Qy. 0O

CLamM 4. [0, 0]y doesn’t drop.

Suppose otherwise. Then Q is not w-sound, so Qs = Py. But then Qy is
k-sound, so that deg¥(6) > k.

Let v + 1 be the largest member of D¥ N [0,6]y. Thus deg(¢) > k for all
¢ > v+ 1 such that £ € [0,60]y.

For any X C |N|, any j, let
N ) N .
Th; (X) = {(p,a) € Thy"' (X) | ¢ is pure rE;}.

Then set 5

A= —ﬁkil(a' U {70,0((&01 cey @, ﬁ))}) .
Thus A is r£L% , and by Lemma 2.10, A ¢ |P,|.
Cask 1. crit(#,, 50 i;il) > a,.

As in the proof of Lemma 4.5, we can show by mductlon onfBEly + 1 ,0lu that

any set X C a, which is "Ek+1 is in fact rEk;f'. Thus A is rE;] ""“. Thus
A € Q¢, where § = U-pred(y+1). But then A € | M| = |Qol, since A C a,. But
then the proof of 2.10 shows that

Th? (@, U {i0,6((G0, -+ &1, 8))}) € IM],

a contradiction.

CASE 2. Otherwise. Let
s U U
K = crit(iy4q,9 0 h41) < @ -
Since k = crit(i.‘,il) = crit Efy‘, and 7+ 1 € D¥, we have
P() N [Q}41] ¢ P(x) M)

Let £ be least such that E"E‘ # @; thus £ < v and Q¢ = Qo = M. Now M agrees
with Q4 below lh Eé‘ , and lhE? > a,; thus there must be a subset of x in M
but not in J,f_". So

M E card(a,) < K.
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Thus a, # pﬂl and 5 < S+ 1 and a, = crit 7y where mp : H — M is the
inverse of the collapse. But then

HEa, =«"*.

Thus P(k) N [H| = P(k) N JX = P(k) N |Py|, all n > 0. Now since Q¢ agrees
with P¢ below 1h EY, and lh EY is a cardinal of Q, for 1 > £, we have

P(e)N|Qyl=P(k)NJZ»  (alln>¢),

and
Qn Ea,=xt (allp >¢).

It follows, since v + 1 € D¥, that U-pred(y + 1) = €. Also,

79
crit (¥11,6) > A 2 (k7)™ 2 a, .

We can then show by an induction using the proof of 4.5 that

A€ rEkQ_;'l“‘ .
Say A is rE,,Q,Z'l"‘ in the parameter p, where p = [a, f]g{;“. It will be enough to
b

show that Efy‘ [ @, Ua is a member of M, for then, since Q},, € Q¢ = M, we
get that A € | M|, a contradiction.

Suppose first ¥ = €. Since vy +1 € D¥, Eff # F9¢ and thus E'g € Q¢, as
desired.

Now let ¥ > €. Since ¢Un for all n > €, EUy. If EY # F@, then E¥ € |Q,],
and since Eg [ @, Ua is a subset of a,, E¥ | a, Ua € |Q¢|, as desired. So we
may assume that Eg = FQn.

Now D¥ N [€,7lu # @, as otherwise since crit F9v = k, crit i, > « and
P(r) N Q4| = P(x) N |Qel-

So let 7 + 1 be largest in D¥ N [¢,7]u. So FQ:41 has critical point x, and
Hi0 ip 41 has critical point > , hence > a,. But now F97 [ (a, Ua) is an

rEIQ" subset of a,, and hence (as in the proof of 4.5) F9 [ a,Uais r)"..?:"“.
Since n+1 € DX, we get F97 | (o, Ua) € Q, as desired. a

CLAIM 5. Py = Q.

PROOF. Otherwise Qy is a proper initial segment of Py. But then 7y o if," M
is a weak k-embedding from M to a proper initial segment of Py, which is on
a k-bounded simple iteration tree based on M. This contradicts Dodd-Jensen.
0
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CLAIM 6. 70’0(‘!-1) = io,a(’u), and for j <s-—1, 70,9(65) = 1%1,0((11').

PROOF. 7g4(1) = up(Ps) = ur(Qe) = i‘O",(u), since %9 and ige(u) are k-
embeddings.

We show the second assertion by induction on j. Assume it for p < j. As ¥ 918
a k-embedding, the proofs of 4.6 and 4.7 show that

Thy, (& e(ej) U {# (a0, -+, @j—1,u))}) € |Qs].
On the other hand
ThE}, (0,0(G5 + 1) U {f0,6((Go, -+, Gj-1,8)} & Ps

So our induction hypothesis implies that # ;(a;) < %,¢(@;). On the other hand,
since the iteration map ig:, is minimal and 7 0 iy is a k-embedding of M into
Py, we have

ig,0(a) < (i e(e5))

7a(30,0(@;)) < ma (i 9(cx;))

so that 79 ¢(a;) < i’ol’, (aj), and thus 3 ¢(a;) = if,"o(a,-), as desired. O
Cramm 7. crit & 5 > pf,.

PROOF. Assume not, and let k = crit i‘ol,g = crit Eg, where B+ 1 € [0,0]y is
such that U-pred(8 + 1) = 0. Then

Thii (kU {(a0, -+, 01, u)}) € M.
It follows as in the proof of 4.6 that
ThI?4 (io,p41(k) U {io,p41({a0, -+, 21, u))}) € 1Qp41]-

But now o, < lth,f < 19,8+1(K), so

The?t (a0 U{# 541 (@0, -+, au1,u)}) € [Qpaal -

So, again using the proof of 4.6 if crit #&,, , < a, (which seems possible; we
may have ff < a,),

hq'l(a, U {10 o({@o, -, as—1,u))}) € Qo] .

This contradicts the conjunction of our previous claims. O

CLAIM 8. s = S + 1; that is, (ao, -, as) is k + 1-solid over (M, u).
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PRrROOF. Let A C pf}; be rEf}, but not a member of |M|. Then A is rE?;_I,

hence rEf_;l, hence r£7,,. But if s < S+ 1, this means 4 is rf}, ina
parameter from (a, U {ag, -+ ,a,-1,u})<¥, hence in u and a parameter <jex
(ag,-- - ,as). This contradicts the minimality of (ag,- - -, as). O

CramM 9. P(pfd )M = P(pl,)%; that is, r is k + 1-universal over (M, u).

PROOF. This follows easily from the facts that Py = Qy and crit %,¢ > pﬂl,
crit 8 5 > pr41. o
This completes the proof of Theorem 8.1. a

The method by which 8.1 was proved gives some condensation results for 1-small
coremice. One which will be of use to us is the following.

Theorem 8.2. Let H and M be 1-small coremice, and suppose there is a non-
trivial fully elementary m : H — M such that crit (1) = p!*. Then either

(a) M is a proper initial segment of M
or

(b) There is an extender E on the M sequence such that lh E = p!* and H is a
proper initial segment of Ulto(M, E).

Remark. In case (b), H is not an initial segment of M. The following example
shows that case (b) can occur. Suppose P is an active 1-small coremouse, x =
crit P, and F? [ a is on the P sequence for some a > (k*)P. (We shall later
construct such a P.) Let

o : Ulto(P, FP | a) = Ulto(P, FP)

be the natural embedding. It is easy to see a = crit (o). Let
H=(JE 1" €, EP | o)

and
M=co(H), 7=0c|H.

Clearly a = crit(7) = plt, = is fully elementary, and 7 is not an initial segment

of M.

PROOF OF 8.2. Suppose first that lh E < p¥ for all extenders E from the H

sequence. Then either H is an initial segment of M, so that (a) holds, or we
have a first E' from the M sequence such that p* < IhE < OR¥. As M is
internally iterable, Ih E is a cardinal of L[EM | p¥]. But card(OR¥) < p¥ in
LIEM | p¥], so hE = pl*. Moreover, H is an initial segment of Ultg(M, E)
as otherwise again we have a cardinal of L[E'M I pX¥] strictly between p2* and
OR™. So we have alternative (b).
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So we may assume pY < IhE for some E from the H sequence, and hence
pM < 1h E for some E from the M sequence.

The next section of the the proof will be almost the same as the start of the
proof of theorem 8.1. We will compare H with M as in in theorem 8.1, with p’*
in the place of a, and w in the place of k, noticing that the proof of the strong
uniqueness theorem gives easily that every w-maximal iteration tree on X or M
is simple. Everything will go through almost exactly as before until the point
where we used the fact that there was a subset A of a, which is definable in H
and not in M. Thus we will conclude that 07, that there is no dropping along
[0,6]7, and that Py < Qy. It will follow immediately that % ¢ is the identity,
since the use of any extender with critical point greater than or equal to p’
would cause a drop.

We now continue with the detailed proof. As before, we define three w-maximal
trees by induction on length:

(1) a“psuedo iteration tree” 7 on the pair (*, M), with models P,; (2) an
iteration tree 7 on M enlarging 7, with models P,, and (3) an iteration tree &/
on M with models Q,. We also have embeddings

o : Pa — Pa

such that 7, is a deg (a) embedding. The 7,’s have the natural commutativity
and agreement properties they had in 8.1.

Set
ﬁ0=H) ﬁ—1=M) P0=QO=M

and
mo = 7, m—1 = identity.

The remainder of 7, T, and U is defined by induction just as in 8.1: we get
Pos1 and Qa1 by “iterating the least disagreement” between P, and Q,, as in
the comparison process. We get mo41 and Po41 by copying. The role of a, in
the proof of 8.1 is played here by p¢; that is, if crit Eq < p’¥, then —1T(a + 1).

As before, we get 8 such that Py is an initial segment of Qg or vice-versa.

We say a branch b of & drops if either D¥ Nb # @ or deg(a) < w for some
a € b. Similarly for branches of 7 and 7. Since we are dealing with w-maximal
trees on fully sound mice, we have that
(a) if {8 | BT} drops, then Qy is a proper initial segment of Pp and [0, 0]y
doesn’t drop and _
(b) if [0, 8] drops, then Py is a proper initial segment of Qs and {8 | BT6}
doesn’t drop.

CLaM 1. {8 | T8} doesn’t drop.
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ProOF. By (a) above, if {8 | 8T8} drops then g o ilo‘, ¢ is a fully elementary
embedding from M to a proper initial segment of Py, which lies on a simple
iteration tree based on M. This contradicts the Dodd-Jensen lemma.

CLAIM 2. 0T9.
PROOF. Suppose —1T4.

CasE 1. [0,0]y drops. Then i_, 4 is a fully elementary embedding from M to a
proper initial segment of Qg. This contradicts the Dodd-Jensen lemma.

CasE 2. [0,0]y doesn’t drop. If one of Py and Qy is a proper initial segment of
the other, then we have a contradiction to the Dodd-Jensen lemma. So suppose
Ps = Qp. Then as in Case 3 of the proof of Claim 1 of 8.1, 7_19 = if,‘,,. This
means that the first extender used along [—1,8]r is compatible with the first
extender used along [0, 8]/, which is impossible. O

CLAIM 3. 754 = identity.

PROOF. Otherwise, since p5° < crit 5.9, [0, 6] drops. This contradicts Claim 1.
O

CLAIM 4. Py = H is a proper initial segment of Q.

ProoF. If [0,6]y drops, then in fact Py must be a_proper initial segment of
Qq, as Py is w-sound. If [0,06]y doesn’t drop, then Py is an initial segment of
Qg as otherwise 7y o il.f, o contradicts the Dodd-Jensen lemma. But p¥ < pM <

if)l,o(/’r) = pQ*, so Py = H = Qg is impossible. a

Our proof now deviates from that of theorem 8.1. In order to show that i is the
desired tree we must verify that either (a) or (b) of the statement of 8.2 holds.
Suppose (a) fails, that is, & is nontrivial. So EY # @. Now pl* < lh E¥ since
crit(w) = pXt, and 1h E¥ < OR™, since otherwise H would be an initial segment
of M. But now lh E¥ is a cardinal of Qy, and  is a proper initial segment of
Qu, so that card(OR™) < p¥ in Q. So we must have 1h E¥ = p’*. Similarly, if
E¥ exists, then ORY < lh E¥. So in fact EY doesn’t exist, that is, § = 1 and H
is a proper initial segment of @, = Ulty(M, EY), where k = deg”(1). We can
take k = 0 because Ulto(M, E¥) and Ultx(M, E¥) agree to their common value
for (p¥*)* and beyond. a

Remark. The hypothesis that crit(r) = p?* is necessary in 8.2. For notice that
crit(r) > pM is impossible since 7 is fully elementary. (That is, this case is
vacuous.) On the other hand, crit(r) < p¥* can occur while conclusions (a) and
(b) of 8.2 fail: e.g., let M = Ult,(H, E) where E is on the H sequence and
crit(E) < pX, and let 7 be the canonical embedding.

One can also derive a version of 8.2 with pf_H replacing p*. Namely, suppose
‘H and M are 1-small, n + 1 sound mice, and = : ¥ — M is rL,4; elementary
with crit(7) > p¥, ;. Then either
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(a) M is a proper initial segment of M, or
(b) p¥,, =1h E for some E from the M sequence, and H is a proper initial
segment of Ulto(M, E).

The example following the statement of 8.2 shows alternative (b) is necessary.

The proof of this version is almost the same as that of 8.2. We use n-maximal
trees in the comparison and modify the uses of Dodd-Jensen slightly to accom-
modate this change. Note that in this case we don’t know that if e.g. [0, 8]y
drops then Pj is a proper initial segment of Qg. Also notice that we can assume
that there is an extender E from M sequence with In(M) > p™, since the result
is trivial otherwise.

Notice that alternative (b) of 8.2 (or its “n + 1 version”) cannot arise when p’*
(respectively pl¥, ) is a cardinal of M, simply because lh E is never a cardinal

of M when E is on the M sequence and lh E < ORM.

As a sample application of the n+ 1-version: let M be a 1-small, 1-sound mouse,
and let a < pM, « a cardinal of M. Let p = p;(M), and H = HM(a U {p}).
Let 7 :  — M be the inverse of the collapse. Clearly a = p}* < crit(x), and
7 is rX; elementary. Suppose a is large enough that the solidity witnesses for
p are all of the form (3, p] for some B € a<“ and 7 € Sk;. This guarantees
that w—1(p) is the first standard parameter of H, and that  is 1-sound. We
can then conclude that H is a proper initial segment of M.

We don’t know whether the assumption that 7 is n + 1 sound can be reduced
to n soundness. If this can be done, then in the application just mentioned we
needn’t assume p = p; (M) or make the largeness assumption about a.





