§7. THE COMPARISON PROCESS

We prove in this section a comparison lemma for 1-small mice. Our interest is
not so much in the lemma itself, but in the method by which it is proved. We
shall use that method in a much more important way in the next section.

For bookkeeping purposes we shall use “padded iteration trees”. These are just
like ordinary iteration trees except that we modify the successor clause in the
definition of “iteration tree” so as to allow aT'(a+1), Ma = Ma41, and ta,a41 =
identity, and then require that a78 = 8 = a+ 1 or (a + 1) TB. So a padded
tree is essentially an ordinary tree with the indexing of the models slowed down
by repetition. We shall no doubt often fail to distinguish between iteration trees
and their padded counterparts.

Theorem 7.1 (The comparison lemma). Let M and N be n-sound, 1-small,
n-iterable premice, where n < w. Then there are n-mazimal padded iteration
trees T on M and U on N such that either

(1) T and U have successor length 0 + 1, and either

(a) My is an initial segment of Ny and DT N[0,0]7 = @ and deg(a+1) =n
foralla+1€][0,0]r, or

(b) Np is an initial segment of My and DX N[0,0)y = @ and deg(a+1) =n
foralla+1€[0,0)v,

or

(2) T and U have limit length, one of the two is not simple, and in some V=)
there are wellfounded cofinal branches b of T and ¢ of U such that either

(a) My is an initial segment of N, DT Nb = @, and deg(a + 1) = n for all
a+1€b, or

(b) M. is an initial segment of My, D¥ Nc = @, and deg(a+ 1) = n for all
at+leec.

ProoF. We define by induction on +

Tly=(TN(yx7),D7 Ny,deg” [ 7,(E], Miy1 |a+1<7))
and

UTy=Un(yx7), D0y, deg! 7, (B4, Nayr |a+1< 7))

together with the associated My, Ny for a < v, pT and g% for a + 1 < 7, and

embeddings igp, z"a,“a (for (a, B) as appropriate). The method for defining 7 and

U is the standard one of “iterating the least disagreement”.
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We begin with ¥ = 1. In this case we need only define My and Ny, which we
do by setting

Now consider the case v is a limit ordinal. Then

Tiy=<U 718
B<y

ury=<\Jruisp
By

where the union is taken along each of the 4 coordinates.

Now suppose v = A + 1, where A is a limit ordinal. If 7 [ A or &/ [ ) is not
simple, we stop our induction. Suppose 7 | A and U | A are simple. As M and
N are n-iterable we have wellfounded branches b of 7 | A and c of &« | A which
are cofinal in A. Set

My =M,

N)\ = Nc )

TNy xy)=(TnAxA)U{(a,r)|a€b}
Un(yxy)=UnAxA)U{(a,A) | a€c},

iZ, =47, for a € b—sup(DT Nb),
zﬁ,\ = iﬁc fora€c— sup(DN Ne).

The rest of 7 [ ¥ and U | v is determined by this.

Finally, we have the case vy = 7+2. Here we must define E,T, Mo, DTn{n+1},
deg” (n+1), T-pred(n+1), and similarly for the & side. We are given the models
M, and N;.

If M,, is an initial segment of N, or vice-versa, then we stop our inductive
definition. Otherwise we have a least ordinal v such that J{“ " # J-:v . Set

BT { 7] if J-{M " is passive,

- s N . .
! FI¥" if J.;M' is active,

Ny

7] if J-ff " is passive,
" BT it 7 is active.
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The rest is determined by the rules for forming non-overlapping, n-maximal,
padded iteration trees. So, on the 7 side:

If Eg' = @, then T-pred(n+1) = n, M;,; = My = M,, i{nﬂ = identity.
In this case, we also set p,,T =0.

Now suppose E,,T # @. Let k = crit E;,r , and let B < 71 be least such that
K< pg. Then we set T-pred(n + 1) = §. Let
M; 1 =longest initial segment P of Mg such that
P(k)N[P| = P(x)N T3
= longest initial segment P of Mg such that
M
P(k)N|P| = P(k)N |~71h15,| .
We let
n+1eDT & M, # Mg.
Let

1

k =largest m < w such that x < px"" and

DTN0,n+1lr=2=>m<n.
We let deg? (n+ 1) =k, and
Mq+1 = Ultb(M;_._l, E;zl—) y

and let i, T Mo — Mgy be tht; canonical emb;dding, and for oT'(n + 1)
such that D" N(e,n+1]r = @, let ig o1y = i41 045 5.

This completes the definition of 7 [ n + 2. We obtain & | n + 2 from E,,” in a
similar fashion.

This completes the definitions of 7 and U. It is easy to see they are iteration
trees.

CramM. If & < B, then max(p], p¥) < min(p], ).

ProOF. 7 = IhE7 is a cardinal of Mpg, and hence a cardinal of Jlj}ﬁz}”‘ As
f-]

v is a cardinal of J(:'I;T, vy < pg. As v is a cardinal of J]j}:r‘;g,—, v < p% So
» p

Pl <y < min(p;, pg ). Symmetrically, % < min(pg, pg )-

Lemma 7.2. Leta+1, f+1<1h7. Suppose ET # @ and E‘g # &. Suppose

crit ET = crit EY = k. Then there is a parameter a € [p% N A31<¢, and a set
A C [s]**9¢ such that

A€(ET)s and A¢(EY)..
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PROOF. We may as well assume a < 3. Notice then p? < pg , and

P(k)N Jisr = P(s)N J,ﬁg,, = P(k)N Jl’;’;;u

by 5.1 and the fact that Mg and Np agree below lhE’lp‘ So ET and Eu are
defined on the same subsets of «, and it will suffice to show

ET I pT # E4 1 p%.

Suppose ET | pT = Eg I pZ. Now ET is the trivial completion of ET | pT, and
so the initial segment condition on N3 gives us two possibilities. We may have
ET on the sequence of Np at or before the position of EY. But E7 is not on the
Na sequence because it is part of the least dlsagreement at «a, and by coherence
then ET is not on the N5 sequence for all # > a. Thus the second possibility
from the initial segment condition is realized: pT € dom EV? and ET is on the
sequence of Ulty(P, F), where F = (EN? )or and P = J;? . In this case, F is on
the sequence of N, and hence of Mg as pI < lhEg . Thus F is on the sequence
of My as pI <1hEZ. Also P = J:‘g". By coherence, F is on the sequence of
Ulto(P, ET) and F is not on the sequence of Ulty (Ulto(P, F), ET). This is a
contradiction, as these ultrapowers agree past lh ET. 0

CLAIM. The inductive definitions of 7 and U halt at some ordinal v such that
v < max(card M, card N)*.

PROOF. Let § = max(card M, card N)*. If the claim is false, then My and
Ny are defined. Let b = [0,0)r and ¢ = [0,8)y. So b and c are club in 6. By the
standard closure argument we can find a club d C b U ¢ such that

() DTnd=DVnd=w.

(i) @ € d = a = crit i7, = crit &,.

(iii) @, B € dA e < B = (iT5(c) = BAEy(c) = f).

(iv) (@ € dA A C [a]* A A € [ Mo| N[ Na]) = iT,(4) = #,(A).

Now let d satisfy (i)-(iv) and take o € d. Let B+ 1 and v + 1 be the successor
of a in b and ¢ respectively, so that T-Pred(ﬂ +1)=U -Pred(‘y + 1) = a. Since
T and U are non-overlapping, crit ig“', > pp and crit # e 2 pu By (iv) we
see that for all A C [a]*, A € |Mq|N | N,

iZ g (AN =& (A"

where p = pg N p{‘,‘ . It follows that Eg [p= Ef‘y‘ | p, contradicting the lemma.
This proves our claim. a

There are two ways the construction of 7 and ¥ can halt. Suppose first we reach
0 + 1 such that My is an initial segment of Ny or vice-versa. If My is a proper
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initial segment of N, then there’s no dropping along [0,6]r because Nj is a
premouse so that My is w-sound. So we have (1) (a) of our desired conclusion.
If Ny is a proper initial segment of My we have (1) (b) of our desired conclusion.
Finally, if My = N then on one of [0,08]r and [0, 6]y there’s no dropping; the
proof is just like that of Claim 4 in the proof of 6.2, so we omit it.

Suppose next the construction halts because we reach a limit ordinal 6 such that
one of 7 [ @ and U | @ is not simple. Say 7 | @ is not simple, so there are
distinct wellfounded cofinal branches of 7 = 7 | #. Just as in the proof of the
first 4 claims of 6.2, we can find a cofinal wellfounded branch b of 7 such that
DT Nb= o and deg(a+ 1) = n for all @ + 1 € b, and M, has no extenders with
length > § = 6(T). Let ¢ be any cofinal, wellfounded branch of . If M, is an
initial segment of N, we are done. If NV, is a proper initial segment of M, then
N, is w-sound, so there’s no dropping along ¢ and we’re done. The remaining
possibility (since M; and N, agree below §) is that A, has an extender F such
that § < l1h F < ORM*. But this contradicts the 1-smallness of NV,. m]

Remark. We haven’t ruled out the possibility that (1) of our Theorem 7.1 holds,
that Mgy = Nj, and that one (but not both!) of [0,8]r and [0,6]y has a drop.
Nor have we ruled out the analogous situation in case (2) of 7.1. One can show
that this cannot happen in the case n = w, but for n < w we don’t know.





