§6. UNIQUENESS OF WELLFOUNDED BRANCHES

We shall show that, roughly speaking, all iteration trees which are important for
the comparison of 1-small mice are simple.

Let 7 = (T,deg, D,(Eq, My, | @+ 1 < 6)) be an iteration tree of length 6.
We set

E(T)= |J(EM= I hEd)
a<lt

§(T)= |J IhEa
a<é

By 5.1, EM« | IhE, = EM# | IhE, for all 8 > a, so that E(T) is a good
extender sequence with domain included in 6(7). Notice that if b is a cofinal
wellfounded branch of 7, then E(T) = EM» | §(T).

Theorem 6.1 (Uniqueness Theorem). Let T be an iteration tree of limit
length 0, and b and ¢ be distinct cofinal wellfounded branches of T. Let a =
ORM» N ORM-, so that a > §(T), and suppose that a > §(T). Then

Jf(T) E 6(T) is Woodin.
PROOF. Just as in [MS). Here is a slightly cleaner presentation of that argument,
adapted to our context.

Let 6 = §(T), E = E(T), and let f : 6 — 6 with f € J2. Let B < 0 be large
enough that
Dn(uc)Cp

and

bnB#cnp

and

vye€b—pB=f,E,6€raniy,
7€c—ﬁ=>frﬁy‘$€l'a-ni7c’

and « € ran i if @ # ORM®, and o € ran ij. if @ # ORMe.

CLamM 1. If y € b— B and n € ¢ — B, then

(ran iy Nran iy N Jf) <z, Jf.

PROOF. Straightforward. The restriction to X is due to the limited elementarity
of the maps i3, iye.
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CLAIM 2. Let ¥ + 1 € b with T-pred(y + 1) = € > f, and let 7 be a member of
c such that 8 < ¢ < 7 + 1 such that if ¢ < £ then 7 is the largest member of ¢
such that n <y + 1. Then

ran igp Nran i,. N & = inf{crit i¢y, crit iy} .

PROOF. D is obvious. Let us define

Yo=7+1
7)n = least ordinal in ¢ — ¥,
In+1 = least ordinal in b — 7,
for all n < w. The 9,’s and 75,’s are all successor ordinals. Also we have
SUPn<wYn = SUPn<win, SO the common sup is 6. Notice also that T-pred(n,) <

¥n and T-pred(¥n+1) < 7n by the minimality of our choices. Also T-pred(no) = n
(unless n > € in which case this may fail), and T-pred(yo) = §.

Now suppose p € ran igy Nran i,c N 6. As u < §, we have an n < w such that
p<lhE, 1.
Since p € ran ig and €T yn 41,
p<ecrit E, ., .
By clauses (3) and (4) on iteration trees,
p<lhEr pred(ynsn) SThEp, 1.
Since p € ran i, and 5Ty,
p<crit By _;.
By clauses (3) and (4) on iteration trees
p<lhEr predn,) SIhEy 1.
So we may repeat the cycle until we get 4 < lhE, _;. Then applying the

argument again we get
p<critE,_y <lhE;.

Soifv+1€b—(§+1)orv+1€ c—(n+1) then v > £ (under either hypothesis
on 1) so that u <lh E,, so u < crit E,. Thus g < crit i,. and u < crit i¢p.

CLamM 3. Claim 2 holds with the roles of b and ¢ reversed.

PRrOOF. The proof is the same as that of claim 2.
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Now fix 8’ > 8 such that bN (8 — B) # @ and cN (B’ — B) # @. Let
k = least v such that v = crit £, forsome y+1€ (bUc)—f .

Let v be largest such that x = crit E, and v+ 1 € (bUc) — #, and suppose
without loss of generality that 4+ 1 € b. Let n be the largest element of ¢ which
is < 7 + 1. Notice crit i,. = crit E, for some v+ 1 € csuch that y+1 < v +1;
thus crit ¢, > k. So

4 K =ran iyc Nran i NS

where { = T-pred(y + 1), and it follows by Claim 1 that x is closed under f.
Now let v = inf{crit i,., crit iy4+1,} Claim 3 implies that

Vv =ran igcNran iy41 3 N6

so that v is closed under f. Note also that « < v.

We claim that v < p,. (Recall that p, is the sup of the generators for E..) Let
7 € ¢ and T-pred(r) = 7. Then v < crit i, < crit E,_y < py. Soif n =«
we’re done. Otherwise 7 < v, so lh E, is a cardinal of M., andaslh E, < lh E,,
IhE, <py. Asv<p,, v<p,.

Our initial segment condition on good extender sequences implies that E, | v
is an initial segment of some extender F' which is on the sequence of M., before

E.,. By coherence we see that F is one of the extenders on E = E(T). So
E,lveJE.

We leave it to the reader to check that v is an inaccessible cardinal of J f By
strong acceptability and the fact that F' coheres with E,

JE £V, e UV, E, [ V).
Finally, suppose igy(f) = f. Then f [ k = f | , and

igy1(f)Tv=f1lv
SO
ieye1(f 1K) (K) <v.

But
igri1(F I R)[v=ip,n(f 1K)V
as computed in JOE,. Thus E, | v witnesses that é is Woodin with respect to f
i 1B
in Jg'. O

For the purpose of comparison we are only interested in iteration trees in which
each E, is applied to the earliest model to which it can be.
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DEFINITION 6.1.1. T = (T, deg, D, (Eq, M4y, | @+ 1 < 6)) is non-overlapping
iff whenever T-pred(y + 1) = B, then p, < crit E, for all n < .

Here p, is the sup of the generators for E,, so that crit E, < pg. Clearly,
generators are not moved along the branches of a nonoverlapping tree, and in
fact not moving generators is equivalent to being non-overlapping.

We want also to restrict ourselves to trees in which M3, and deg(y +1) are as
large as possible, subject perhaps to an n-boundedness requirement.

DEFINITION 6.1.2. Let T = (T, deg, D, (Ea, M3y, | @ +1 < 6)) be an iteration
tree, and n < w. We say 7 is n-mazimaliff T is non-overlapping, and whenever
T-pred(y + 1) = B, Ey = FN where N is an initial segment of M., and k =
crit E,, then
(a) M4, is the longest initial segment P of My such that P(x) N [P| =
P(k)N|N]|, and
(b) if DN |0, 7 + 1]r = @ then deg(y + 1) is the largest integer k¥ < n such
that k < p, Mats , and
(c) if DN[0,y + l]T # @, then deg(y + 1) is the largest k¥ € w such that
K< pt"vﬂ .
Notice that in (a) of the definition P is the longest initial segment Q of Mg such
that

P(x)NJyE = P(£)NQ.

Since Jlh Ep = th E, it follows that if § # v then P is the longest initial segment
Q of My such that P(k)NQ = P(k)N|M,].

The iteration trees for which we have any practical use are all n-maximal for
some n < w. One important elementary property of such trees is the following.

Lemma 6.1.5. Let 7 = (T,deg, D,(Eq, My, | @+ 1 < 8)) be an n-mazimal
iteration tree, where n < w; then for any a+ 1< 0, E, is close to My ;.

PRroOOF. By induction on a. Let § = T-pred(a + 1). We may assume § < a;
otherwise E, is on the Mg sequence, and so by the restrictions on how far M}, ,;
can drop in Mg, on the My, sequence. Thus E, is close indeed to M ;.

Let a C 1h E, be finite. We wish to verify the two conditions in closeness to
M,y for (Eq)a. We begin with the second.

Let Kk = crit Eq and 7 = lhEg. As f = T-pred(a+ 1), K < 7, and as 7 is
a cardinal of Ma, (k*)M= < 7. Let A C P([x]*42), A € [M%,|, be such
that M., | card(4) < k. We want to see that (E,)a N A € [M%,,|. Now
P(k) N |[Mq| = P(k) N |Mj,4], so A has cardinality < k in M,. But then
(Ea)a N A is in M, and has cardinality < & there, by weak amenability. But
then (Eq)s N A € M}, as desired.
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It remains to show (Eq), is X1 over My, ;. The following claim is useful; notice
that 7# is an initial segment of My

Cramm 1. If AC 7 and A € |M,| for some ¥ > f3, then A is ¥; over TJMe.

PROOF. By 5.1, A € [Mp41|. Let A = [a, f]g’, where @ = M7, ,,. Since AC 7,
we can take f to map [u]°®"¢ into Jf, where p = crit Eg. We can therefore
assume f € |Q|, as p < p§ where Mgy1 = Ult,,(Q, Ep). But also, Mp agrees
with @ below 7, and f € JMe = p. Moreover, A = [a,f]g‘ = [a,f]gp. It is
easy, then, to define A in a £; way over P from the parameters a and f. a

It follows that if (Ey)s € |[Mg], then since (Eq)q is coded by a subset of 7,
(Ea)q is T; over gMe , hence X over M{, ., as required. Thus we may assume
that (}.‘}’a)a ¢ |Ma|, and hence E, is on the M, sequence, M, is active and
E, = FMa,

CLAIM 2. Let ¥ € [0,a]r be such that ¥ > 8 and DN (y,a]r = @. Then
crit(iya) > K, and (Eq)a is By over M,. If, in addition, ¥ > f and v is a
successor ordinal, then crit(iy,q 0 i) > & and (Eq)q is £1 over M3.

PROOF. Since k = crit F, and F, = FM°, K € ran iyo. On the other hand,
every extender used in 7, has length at least lh Eg, since v > . It follows that
Kk < crit(iyq)-

By our induction hypothesis, E, is close to M;,; for all n < a. Thus the
preservation facts recorded in 4.5, 4.6, and 4.7 hold for the embeddings of T |
(@ +1). Now pM= < 7 = (k+)M= since (Ea)a ¢ |Mql, and 7 < crit iyq, S0
deg(n) = 0 for all n € (v, a]r. The proofs of 4.5 and 4.7 (see especially 4.5) show
that every 1= subset of crit(iya) is }3'1“". Thus (Ey), is E{M’, as desired.

Suppose finally that ¥ > 3 and « is a successor ordinal. The extenders used in
iya 01} are just those used in i, together with E,_;. Since y—1 > f, all these
have length at least 1h Ejg, hence > k. The argument of the previous paragraph
now shows crit(iyo ©i3) > & and (Eq), is ;1 over MJ. o

Now let 7 € [0, a]7 be least such that 8 < 7. Suppose first that DN (n, alr # 2.
Let v be largest in DN (7, a]r, and £ = T-pred(y). Since v > B, Claim 2 implies
that (Eq)a is I over M3. Since v € D, M3 € |M¢|, so (Eq)a € |Mg|. Since
€ > B, Claim 1 implies that (Eq4)s is ) over My, as desired.

So we may assume D N (1, a]r = @. We claim that = 8. For if » > §, then
the leastness of 7 implies that 7 is not a limit, so let § = T-pred(n). Since
n is least, § < 8. By Claim 2 with v = 7, crit(i;) = crit(E;-1) > . But
crit(Ey—1) < ps, so k < ps. But the rules for non-overlapping trees then require
that T-pred(a + 1) < 6, a contradiction.

So n = B. Also, by Claim 2, crit igy > &, and (Eq), is X; over Mp. But then
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P(k) N |Mg| = P(k) N | M|, and since T is n-maximal, Mg = My ;. Thus
(Ea)a is Xy over M3, as desired. O

Lemma 6.1.5 has the important consequence that the preservation facts listed in
4.5, 4.6, and 4.7 apply to the embeddings along the branches of an n-maximal
tree. We shall use this repeatedly and without explicit mention in the future.

The following is a crucial strengthening of the uniqueness theorem (6.1). It will
imply that only simple iteration trees arise in our proof that 1-small, k-iterable
premice are k-solid for all k. This is important because our proof of that fact
uses heavily the Dodd-Jensen lemma, which requires a simplicity hypothesis.

If M is a ppm, an “extender from the M-sequence” is an extender E such that
E = FM or E is on the sequence EM.

Theorem 6.2 (Strong uniqueness). Let M be an n-sound, 1-small n-iterable
premouse and p,,""_._1 <I1h E for some extender E from the M-sequence and some
integer n. Let T be an n-mazimal iteration tree on M. Then T is simple.

PrOOF. Assume toward a contradiction that b and ¢ are distinct cofinal well-
founded branches of 7 with ORM* < ORM¢. Let § = §(7T).
CLAM 1. lh F < § for all extenders F' from the Mj sequence.

ProoF. Let F be the first extender on the M; sequence such that lh F > §.
Notice § is a limit of M} cardinals, as crit i, is an My cardinal whenever i4p
is defined. Thus IhF > §, as v < hFVy < IhF (M, | cardy < v). Let
v =1h F. By Theorem 6.1,

JET) = § is Woodin
SO -
IMs = (JED) ¢, B(T), F) = 6 is Woodin.

Now let N = Ulto(J.yM‘, F). As F is a pre-extender over J,;"'“, v € wip(N). By
coherence and strong acceptability and the fact that + is a cardinal of NV,

N Eé is Woodin.

But then A is not 1-small, so that M, is not 1-small and hence M is not 1-small,
which is a contradiction. O

CLAIM 2. M, is an initial segment of M..

PRrOOF. Otherwise M, is not 1-small. For let F' be the first extender from the

M. sequence with 1h F' > §; if none exists Claim 2 is obvious from Lemma 5.1.
Solh F > § as in Claim 1. If M, is not an initial segment of M, lh F < ORM:,
But now we can show M, is not 1-small as in Claim 1. O
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CrLaM 3. If ORM* < ORM¢, then there is no dropping of any kind along b;
that is, DT Nb = @ and deg” (a + 1) =n foralla+ 1 € b.

Proor. If ORM* < ORMe, then M, is a proper initial segment of M., and
hence M, is w-sound since M, is a premouse. But now suppose the last drop of
any kind along b occurs at a + 1. Then a +1 € b, and k = deg(a + 1) = deg(y)
for all ¥y € b — (a +1). Also, Mj,; is k + 1 sound and crit(ia41, © $h41) =
crit(ig4) > pﬂ‘;“. From Lemma 4.7 it follows that M, is not k + 1-sound, a
contradiction. a

CLAIM 4. If ORM» = ORM¢, then on one of b and ¢ there’s no dropping of any
kind.

PRrOOF. Suppose the last drop along b occurs at 5 + 1, and the last drop along
c at v+ 1. Since My = M, deg(n+ 1) = deg(y + 1) = k, where k < w is least
such that M, = M, is not k + 1-sound. But then

M:p+l = Q:’=+1(-A"5) = cl=+1(-A’((:) = ;-H .

This implies that T-pred(n + 1) = T-pred(y + 1). For let g = T-pred(n + 1);
then Ep is on the Mj ., sequence, so Ep is on the M, sequence, so Ep is on
the M¢-sequence where £ = T-pred(y + 1). Thus £ < B by remark (a) following
5.1. That B < £ is proved symmetrically.

Now then
. . "
41,6 © g1 = Yy+1,c O tyq1

since by lemma 4.7 each side is the natural embedding from €x41(M;) to
Cx(M3) = My inverting the collapse.

Since T is non-overlapping, crit iy41,5 > p, and crit i,415 > py. So letting
v = inf(py, py), we have crit E, = crit Ey < v and Ey, | v = E, | v. By remark
(a) following 5.1 we see that n = 7.

Now let 8 be largest in b N c; from the above we know that there’s no dropping
after Bonbore,thatis,n+1=v+1€bNec. Let

p=sup{lhE¢ |E+1€bNnc};

then “
M =M (pU{es})

where for any £ € bUc such that § > n+1
g¢ = in41,€© i:,+1(pk+1(M;+1))~

But then
g =1p.c,
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as igp [ p = ige | p = id, and ig3(gs) = i,c(gs) = (r,u), where r is the
k + 1st standard parameter of (Mj,u) and u is as in the definition of p41(M3)
(cf. Lemma4.7). Let 0+1 € b, 7+1 € ¢, and T-pred(o+1) = T-pred(r+1) =

As ig. = igp, we see that crit F, = crit Er, and E, [ v = E; [ v, where
v = inf(p,, pr). This implies ¢ = 7, a contradiction. 0

In view of Claims 3 and 4, we may assume there’s no dropping of any kind along
b (perhaps by exchanging b for ¢). The proof of the following claim will take
several pages and will nearly finish the proof of theorem 6.2.

CLAIM 5. p,,+1 <$.

PRrooF. We show by induction on 5 € b, that if aT'n, or if n = b and « € b, then

My _ i Ma
(%) Pns1 < ‘a.n(l’n+1)a

and

() If g% = dan(pis) and Th%S (oM U {g} € Ma)
then Th)}% (it U {ian(2)}) € My,

By (*) for n = b and a = 0 we have p,H,1 < ng(pn,H) < lh E for some extender
E from the M, sequence, so that p% 1 < 6, as desired.

Consider first the case n is a limit or 7 = b. Let aT'n be the least ordinal such
that igy (o} Vi) = Pa +"1 whenever aTyT7. Such an ordinal o exists by (*). It

will be enough to show that whenever v € [a, )7 and Th; +1(pn +1U{q}) is not
a member of M., then

Thi % (iyn (A1) U {inn (@))) # 1My

For this, suppose Th,,M+"1(i.,,,(pnM+’1) U {iyy(¢)}) = #¢n(z), where we may assume

7T€T"' As ig, is generalized ¥,y elementary, we see z = ThnM-Q-‘l (e (Pﬁ’l U
{i1¢(9)}). This contradicts (**) at £.

Now let n = £ + 1 and set B = T-pred(7n). If (*) or (**) fails at 7 we must have
q € |Mpg| such that
Thyi (Pt U {a)) € [My]
but
That (ign (P231) U {ign (@) = [0, 15" € [Mal.
Fix such a ¢q. Let p = pﬁ”l, i=1igy, E=Eg.

We may assume f(it) C p for all @ € dom f. Also p < pﬁ.“‘ by (*) and the fact
that p)i4 < pMeo. If we let A = {(@,v) | v € f(@)}, then A is (generalized) rE,,
so A € [Mp|. Thus f € | Mg|.
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Now
) z € ThAY,(pU {a}) & i(z) € [a, 15"

since i is generalized rX,;; elementary. This gives an rA;M’ definition of

Th,,M,,_”1 p U {q}) since E, is rEf" . This is a contradiction if n > 0, so we
now assume n = 0.

Let k = crit E. We have k < p by Lemma 4.5. On the other hand, E, ¢ |Mg|,
as otherwise () would imply Thi*#(pU{q}) € |Mp|. Thus p = pe = (k+)Ms.

We will now complete the proof of claim 5 by showing that there is a rEfA‘
function ¢ : kK — p such that ran(¢) is cofinal in p. To see that this proves
claim 5, we let S be the set of triples (a,7, V) such that v <) v, where <(a)
is the first well ordering of x in the natural order of Mg which has order type

t(a). Then S C & and S is B2, so that S € |Mg| and hence p < (k+)Me,
contradiction.

For any N and X C |N], let
Y N .
Th; (X) = Thy' (X) N {(p,a) | ¢ is pure rZ;}.

Using the proof of Lemma 2.10 we see that Thf"’ (pU{q}) ¢ | Mp| implies that
-T_h;“’(pu{q}) & |Mp|, so we can use ﬁf’(pu{q}) instead of Th**(pU {g}).

Let f be the function representing ﬁ‘lM"(i(p) U {i(g¢)}). We need to consider
two cases:

Case 1. There is a total, continuous, order-preserving, rEf" function g : kK —
ORM?# such that ¢g”k is cofinal in ORM5.

In this case, we set for 4 € dom(f)

K@) = T (U (a),
so that h is rE7*?. Notice that if A € E,, then 3i € Ah(ii) # f(@), as otherwise
h | A€ |Mpg]|, so that -'-I‘—Hr’(p U {q}) € |Mp], a contradiction.
Now set, for all 4 € dom(f)
(@) = { least @ such that (f(@2)Ah(2))N (wx (aU{g})<¥) # @

0 if no such a exists.

So t is total and rE;M’ . It is enough to see ran(t) is unbounded in p. Fix any
ordinal § < p. We will complete the proof of case 1 by finding a 4 such that
t(a) > 6. Define a function k by

k(5) = h(5) N (w x (0U {g})<¥).
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Then k € |Mp| since it can be computed from Th’lu’ (0 U {q,r}), where r is a
parameter chosen so that the function g is 2{“‘ ({r}). Moreover

() [a, K]&"* = Ty " (i(6) U {i(2)}) -

One direction, D, of equation (}t) is easy. To prove C, let [b,I]gl’ € [a, k]g" ,
where we may assume a C b. We may assume that for all ¥ € dom 7

1(5) € k(3*) = Th; ** (0 U {q))

where #* is the appropriate subsequence of . For ¥ € dom T such that vg is a
limit, let

Mg

s(9) = least a < vg such that Z(v) € ﬁ:"") u{e}).

Then s is a rE;“" map from " to k, so s € |Mp|. By normality, fix ag such
that s(¥) = ao for Ej a.e. ¥, and let £ = g(ag). Then

[a, ZIX € i(TRX * (0U {g}))

I . =M, . .
= Th,"® (i(6) U {i(¢)}) € Th; "(i(6) U {i(9)}),
as desired. This completes the proof of equation (}f).
It follows that there is an A € E, such that for all 4 € A,

F@ N (wx@uU{gh<) =h@)N(wx (BU{g})<).

Let u € A be such that h(a) # f(@); then t(@) > 0. This completes the proof of
case 1 of claim 5.

Case 2. There is no function ¢ as in case 1.

In this case, define the function ¢(4), where @ € dom(f), by
t(#) = least o such that (f(&) AT_h';M’(pU {a)) N(wx (aU{g})¥) # 2.
Thus ¢ is total rEf" . To see that rant is unbounded in p, note that for 6 < p

Thy " (i(6) U {i(g)}) = i(Th ™" (6 U {q}))

Th;"* (0 U {q}) = ﬂf‘m(ﬂ u{¢})
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for some £ < ORM# by case hypothesis.
This completes the proof of case 2, and hence of Claim 5. a

Fix now p € |Mp| and p < é such that ThnM+"1(pU {r}) ¢ |IMs|. We obtain a
contradiction via an easy generalization of the proof of 6.1.

Fix B < length of T so large that
(1) bN B # ¢N B, and there’s no dropping on b U ¢ above 3.
(2) vy €b— B =>crit i,y > p and p € ran i,y and (6 < ORM® = § € ran iy).

(3) ¥ € c— B = crit iy > p and p € ran iy and (6 < ORM* = § € ran i,.) and
(ORM* < ORM< = ORM* € ran iy.).

As in Claim 2 of the proof of 6.1, we can find ¥ € b— 8 and 5 € ¢ — 8 such that
ran i,y Nran iy,c N6 =K

where p < K < 6. Let
7 N =X C M|

where X = ran i, Nran i, and 7 is the inverse of the collapse. Then 7
is generalized rX,4; elementary. This follows from the fact that both i,, and
iyc are generalized rZ,;; elementary. To see that ¢,. is generalized r¥,4,
elementary, note that if M, = M, then deg(§ + 1) > n for all sufficiently large
£+ 1 € c, so0 iy is generalized rX,4; elementary. If M; is a proper initial
segment of M., then i,. | i;cl (M) is in fact fully elementary.

Notice that critw = k, and N = Jo’?(’r)'“ for some a > «. Also Th"M+°1(p u{r})
is definable over NV, and hence is a member of L[E(T) | ]. As E(T) | k € |My|
and Mj has an internally iterable extender on its sequence with critical point
greater than k, we get Thﬁ"l(p U {p}) € |Ms], a contradiction. This completes
the proof of theorem 6.2. O





