
§6. UNIQUENESS OF WELLFOUNDED BRANCHES

We shall show that, roughly speaking, all iteration trees which are important for
the comparison of 1-small mice are simple.

Let T = (T,deg,D, (Ea.M^ \ a + 1 < 0}} be an iteration tree of length θ.
We set

£(T)= \J(EM~ \lhEa)
a<θ

δ(T) = \JlhEa

a<θ

By 5.1, EM* \ lh£α = EM> \ lh£α for all β > α, so that E(T) is a good
extender sequence with domain included in ί(T). Notice that if b is a cofinal
wellfounded branch of T, then E(T) = EM* \ 6(T).

Theorem 6.1 (Uniqueness Theorem). Let T be an iteration tree of limit
length θ, and b and c be distinct cofinal wellfounded branches of T. Let a =
ORMb Π ORMc, so that a > 6(T), and suppose that a > δ(T). Then

i« Woodin .

PROOF. Just as in [MS]. Here is a slightly cleaner presentation of that argument,
adapted to our context.

Let δ = ί(T), E = £?(T), and let / : 6 -> δ with / G jf . Let β < θ be large
enough that

D Π (6 U c) C β

and
bΠβ^cΠβ

and

τ € 6 - β => /, ̂ , ί E ran i7» ,

τ G c - )3 => /, E, δ G ran t7C ,

and α G ran t'7& if α ̂  OR^6, and a E ran i;-c if α ,έ ORMc.

CLAIM 1. If 7 e 6 - /? and η e c - )9, then

(ran iγi Π ran iηc Π jf ) XΣl f̂

PROOF. Straightforward. The restriction to ΣI is due to the limited elementarity
of the maps iΊb,iηc
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CLAIM 2. Let 7 + 1 6 6 with Γ-pred(γ + 1) = ξ > β, and let η be a member of
c such that β < c < 7 -f 1 such that if c < ξ then η is the largest member of c
such that η < 7 + 1. Then

ran iξi flran iηc Π δ = inf{crit i£&, crit i^c} .

PROOF. D is obvious. Let us define

To = 7 + 1
τ/n = least ordinal in c — γn

7n_l_1 = least ordinal in 6 — τ/n

for all n < ω. The 7n's and rjn's are all successor ordinals. Also we have
supn<u,7n = supn<α,r/n, so the common sup is θ. Notice also that T-pred(τyn) <
7n and T-pred(7n+ι) < ηn by the minimality of our choices. Also T-pred( 770) = f]
(unless η > ξ in which case this may fail), and T-pred(7o) = ξ.

Now suppose μ G ran i^ Π ran iηc Π δ. As μ < δ, we have an n < ω such that

Since μ € ran z^ and ξTjn+ι,

μ < crit £'7Λ^1 .

By clauses (3) and (4) on iteration trees,

μ < lh£?

τ.pred(7n+1)

Since μ 6 ran iηc and ηTηn,

μ < crit Eη

By clauses (3) and (4) on iteration trees

So we may repeat the cycle until we get μ < lh£"7o-ι. Then applying the
argument again we get

μ < crit£7o_ι <lhEξ.

So if i/ + 1 6 b — (ξ -f 1) or v + 1 £ c — (77+ 1) then v > ξ (under either hypothesis
on 77) so that μ < Ih Ev , so μ < crit Ev. Thus μ < crit ι ĉ and μ < crit ίξδ.

CLAIM 3. Claim 2 holds with the roles of 6 and c reversed.

PROOF. The proof is the same as that of claim 2.
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Now fix /?' > β such that 6 Π (β1 - β) ̂  0 and c Π (/?' - β) φ 0. Let

/c = least i/ such that v = crit #7 for some 7 + 1 £ (6 U c) — /?' .

Let 7 be largest such that /c = crit EΊ and 7 + 1 £ (6 U c) — /?', and suppose
without loss of generality that 7 -f 1 G 6. Let r; be the largest element of c which
is < 7 -f 1. Notice crit iηc = crit £"„ for some i/ 4- 1 € c such that 7 + 1 < v + 1;
thus crit iηc> K. So

/c = ran iηc Π ran iξi Π 6

where £ = T-pred(7 -f 1), and it follows by Claim 1 that /c is closed under /.
Now let v = inf{crit iηc, crit i7+ι,δ} Claim 3 implies that

z/ = ran iηc Π ran i y+ι,& Π 8

so that i/ is closed under /. Note also that K < v.

We claim that i/ < p7. (Recall that pΊ is the sup of the generators for EΊ.) Let
T € c and T-pred(r) = η. Then ι/ < crit iηc < crit #τ_ι < pη. So if 77 = 7
we're done. Otherwise 77 < 7, so IhE^ is a cardinal of Λ<7, and as lhEη < lhEΊ,
lhEη < ρΊ. As v < ρη, ι/ < ρΊ.

Our initial segment condition on good extender sequences implies that EΊ \ v
is an initial segment of some extender F which is on the sequence of Λ<7 before

EΊ. By coherence we see that F is one of the extenders on E = E(T). So

EΊ \ v G Jf .

We leave it to the reader to check that v is an inaccessible cardinal of J f . By
strong acceptability and the fact that F coheres with E,

Finally, suppose i^(/) = /. Then / f K, = / \ /c, and

so

But

«'e,7+ι(/ Γ «) t ^ = •Xr 'ί/ t «) Γ "

as computed in jj^. Thus EΊ \ v witnesses that δ is Woodin with respect to /

in

For the purpose of comparison we are only interested in iteration trees in which
each Ea is applied to the earliest model to which it can be.
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DEFINITION 6.1.1. Ί = (T,deg,D, (EaίMa+1 \a+l < θ)) is non-overlapping
iff whenever Γ-pred(7 + 1) = β, then ρη < crit EΊ for all 77 < β.

Here />,, is the sup of the generators for Eη, so that crit EΊ < pβ. Clearly,
generators are not moved along the branches of a nonoverlapping tree, and in
fact not moving generators is equivalent to being non-overlapping.

We want also to restrict ourselves to trees in which Λ4 *+1 and deg(7 + 1) are as
large as possible, subject perhaps to an n-boundedness requirement.

DEFINITION 6.1.2. Let T = (T,deg, D, (Ea,M*a+ι \ α + 1 < θ)) be an iteration
tree, and n < ω. We say T is n- maximal iff T is non-overlapping, and whenever
T-pred(7 + 1) = β, EΊ = F^ where λί is an initial segment of Λ<7, and K =
crit EΊ, then

(a) ΛΊ^+i is the longest initial segment T> of Mβ such that P(«) Π \P\ =
P(/c) Π μ/1, and

(b) if D Π [0, 7 + l]τ = 0 then deg(γ + 1) is the largest integer k < n such
AΊ*

that K < ρk

 Ύ+1 , and
(c) if D Π [0,7 + l]τ τ£ 0, then deg(γ + 1) is the largest k G ω such that

Notice that in (a) of the definition P is the longest initial segment Q of Mβ such
that

Since Jlh ί = Jlh j, it follows that if β φ 7 then P is the longest initial segment

Q of Λ40 such that P(/c) Π Q = P(/c) Π |Λί7|.

The iteration trees for which we have any practical use are all n-maximal for
some n < ω. One important elementary property of such trees is the following.

Lemma 6.1.5. Let Ί = (T,deg, D, (Ea,M*a+ι \ a + 1 < θ)) be an n-maximal
iteration tree, where n < ω; then for any a + 1 < θ, Ea is close to ΛΊ £+1-

PROOF. By induction on α. Let β = T-pred(α + 1). We may assume β < α;
otherwise Ea is on the Mβ sequence, and so by the restrictions on how far Λf £
can drop in Mβ> on the Λ<*+1 sequence. Thus Ea is close indeed to

Let α C lhEa be finite. We wish to verify the two conditions in closeness to
jVi*+1 for (Ea)a. We begin with the second.

Let /c = crit Ea and T = IhEβ. As β = T-pred(α + 1), K < τ, and as τ is
a cardinal of Ma, (κ+)M* < τ. Let A C P([/c]cardα), A e |Λίi+1|, be such
that M*Q+! (= card(Λ) < K. We want to see that (Ea)a Π A e |X«+1|. Now
P(/c) Π |Λία| = P(«) Π |Λi*+1|, so A has cardinality < K in Λiα. But then
(^α)α Π A is in Ma and has cardinality < /c there, by weak amenability. But
then (Ea)a Π A G |Λ<*+1|, as desired.
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It remains to show (Ea)a is ΣI over M«+I. The following claim is useful; notice

that Jτ

 β is an initial segment

CLAIM 1. If A C r and A G \MΊ\ for some 7 > β, then A is ΣI over jf*β.

PROOF. By 5.1, A G |Λί/j+ι| Let A = [α,/]^, where Q = Λί£+1. Since A C r,

we can take / to map [μ]cardα into J^, where μ = crit Eβ. We can therefore

assume / G |Q|, as μ < ρ% where Mβ+i = UItm(Q,^). But also, Mβ agrees

with Q below r, and / G J^* = P. Moreover, A = [α,/]^ = [α,/]^ . It is
easy, then, to define A in a ΣI way over P from the parameters α and /. D

It follows that if (Ea)a G |ΛΊβ|, then since (Ea)a is coded by a subset of r,

(Ea)a is ΣI over r̂ *, hence ΣI over Λί^i, as required. Thus we may assume
that (Ea)a & l Mαl, and hence Ea is on the Ma sequence, Ma is active and
Ea= '

CLAIM 2. Let 7 G [0,α]τ be such that 7 > /? and L> Π (τ,α]τ = 0- Then
crit(i7α) > /c, and (#<,)<, is ΣI over MΊ. If, in addition, j > β and 7 is a
successor ordinal, then crit(z'7>a o i* ) > « and (Ea)a is ΣI over Λ47

PROOF. Since K = crit Ea and £"α = F^0, K G ran t"7α. On the other hand,
every extender used in i7β has length at least IhEβ, since 7 > β. It follows that
K < crit(i7βr).

By our induction hypothesis, #,, is close to Mη+ι for all r; < a. Thus the
preservation facts recorded in 4.5, 4.6, and 4.7 hold for the embeddings of T \
(a + 1). Now pf1" < T = (κ+)Λ*0' since (^α)α ^ |Λίβ|, and r < crit ίτα, so
deg(ry) = 0 for all η G (7, α]τ The proofs of 4.5 and 4.7 (see especially 4.5) show

that every Σ^* subset of crit(i7α) is Σ^Ύ. Thus (Ea)a is Σ^Ύ, as desired.

Suppose finally that 7 > β and 7 is a successor ordinal. The extenders used in
ι*7α o i* are just those used in i7α together with EΊ-\. Since 7 — 1 > /?, all these
have length at least lh£"^, hence > K. The argument of the previous paragraph
now shows crit(t'7α o *'7) > « and (Ea)a is ΣI over Λ47. D

Now let η G [0, α]τ be least such that β < η. Suppose first that DΓ\ (r/, α]τ ^ 0.
Let 7 be largest in £) Π (TJ, α]τ, and ^ = T-pred(7). Since 7 > β, Claim 2 implies
that (Ea)a is ΣI over >ί*. Since 7 G D, Λί} G |Λίf|, so (J^αjα G \Mξ\. Since
ί > /?, Claim 1 implies that (£α)α is ΣI over Λί£+n ω desired.

So we may assume D Π (TJ, α]τ = 0. We claim that η = β. For if η > /?, then
the least ness of 77 implies that η is not a limit, so let ί = T-pred(τ ). Since
η is least, 6 < β. By Claim 2 with 7 = η, crit(i*) = crit (£?,,. i) > /c. But
crit(^«ι) < ps, so K < pt. But the rules for non-overlapping trees then require
that T-pred(α + 1) < δ, a contradiction.

So η = β. Also, by Claim 2, crit i/jα > /c, and (£"α)α is ΣI over Λί/j. But then
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P(/c) Π \Mβ\ = P(κ) Π |ΛΊα|, and since Ί is n-maximal, Mβ = Λί*+1. Thus
(Ea)a is ΣI over M^+ι, as desired. D

Lemma 6.1.5 has the important consequence that the preservation facts listed in
4.5, 4.6, and 4.7 apply to the embeddings along the branches of an n-maximal
tree. We shall use this repeatedly and without explicit mention in the future.

The following is a crucial strengthening of the uniqueness theorem (6.1). It will
imply that only simple iteration trees arise in our proof that 1-small, fc-iterable
premice are fc-solid for all k. This is important because our proof of that fact
uses heavily the Dodd-Jensen lemma, which requires a simplicity hypothesis.

If M is a ppm, an "extender from the Λ4-sequence" is an extender E such that
E = FM or E is on the sequence EM .

Theorem 6.2 (Strong uniqueness). Lei M be an n-sound, l-small n-iterable
premouse and p£+ι < lh E for some extender E from the M-sequence and some
integer n. Let T be an n-maximal iteration tree on M. Then T is simple.

PROOF. Assume toward a contradiction that 6 and c are distinct cofinal well-
founded branches of T with OR^6 < ORMc. Let 6 = δ(T).

CLAIM 1. IhF < 6 for all extenders F from the Mb sequence.

PROOF. Let F be the first extender on the Mb sequence such that IhF > δ.
Notice δ is a limit of Mb cardinals, as crit iab is an Mb cardinal whenever iab
is defined. Thus IhF > ί, as 3i/ < IhFVγ < IhF (Mb \= card 7 < i/). Let
7 = IhF. By Theorem 6.1,

7

SO

j (r) δ is Woodin

G, E(T), F) \= δ is Woodin .

Now let λί = Ult0( J**\ F). As F is a pre-extender over J**\ 7 E wfp(jV). By
coherence and strong acceptability and the fact that 7 is a cardinal of Afy

Af \= δ is Woodin.

But then tf is not 1-small, so that Mb is not 1-small and hence M is not 1-small,
which is a contradiction. D

CLAIM 2. Mb is an initial segment of Mc.

PROOF. Otherwise Mc is not 1-small. For let F be the first extender from the
Me sequence with IhF > ί; if none exists Claim 2 is obvious from Lemma 5.1.
So IhF > δ as in Claim 1. If Mb is not an initial segment of MC1 IhF < OR^6.
But now we can show Mc is not 1-small as in Claim 1. D
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CLAIM 3. If ORMb < ORMc, then there is no dropping of any kind along 6;
that is, Dr Π 6 = 0 and degr (α + 1) = n for all α + 1 € 6.

PROOF. If ORMb < ORMc, then Mb is a proper initial segment of Λic, and
hence Mb is ω-sound since Mc is a premouse. But now suppose the last drop of
any kind along 6 occurs at α + 1. Then α + 1 £ 6, and k = deg(α + 1) = deg(γ)
for all 7 G 6 — (a + 1). Also, Λi*+1 is Jb + 1 sound and crit(iα+ιt& o t'^+i) =

crit(ί*+1) > p^i*1 From Lemma 4.7 it follows that Mb is not k + 1-sound, a
contradiction. D

CLAIM 4. If ORΛ** = ORMc, then on one of b and c there's no dropping of any
kind.

PROOF. Suppose the last drop along 6 occurs at η -f 1, and the last drop along
c at γ + 1. Since Mb = ΛΊC, deg(τj -f 1) = deg(γ -f 1) = fc, where k < ω is least
such that Mb — Me is not k -f 1-sound. But then

This implies that T-pred(ry + 1) = T-pred(γ -f 1). For let β = T-pred(r/ + 1);
then E1^ is on the ΛΊJJ+x sequence, so Eβ is on the Aί^+1 sequence, so ̂  is on
the Λίξ-sequence where ξ = Γ-pred(7 + 1). Thus ζ < β by remark (a) following
5.1. That β < ζ is proved symmetrically.

Now then

«Vn.» o ij+i = «7+ι,c o «7+ι ,

since by lemma 4.7 each side is the natural embedding from &k+ι(Mb) to
&k(Mb) = Λ4δ inverting the collapse.

Since T is non-overlapping, crit ifj+ι,6 > Pr; and crit i7+i,6 > />7 So letting
ί/ = inf(/?^,/?7), we have crit Eη = crit EΊ <v and JJ,, f i/ = -Ey Γ IΛ By remark
(a) following 5.1 we see that 17 = 7.

Now let /? be largest in 6 Π c; from the above we know that there's no dropping
after β on 6 or c, that is, η + 1 = 7 + 1 G 6 Π c. Let

then

where for any ζ G b U c such that f > 17 -f 1

«

But then
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as iβtb \ p = iβtC \ p = id, and iβ,b(qβ) = iβtc(Vβ) = ( r»w)» where Γ is the

Jb -f 1st standard parameter of (ΛΊδ, u) and u is as in the definition of pk+ι(Mb)
(cf. Lemma 4.7). Let σ+1 e 6, r+ 1 G c, and T-pred(σ+l) = Γ-pred(r+l) = /?.
As iβte = i^j, we see that crit J5?σ = crit Eτ, and E^ f ι/ = Eτ f i/, where
i/ = inf(pσ,pr). This implies σ = r, a contradiction. D

In view of Claims 3 and 4, we may assume there's no dropping of any kind along
6 (perhaps by exchanging 6 for c). The proof of the following claim will take
several pages and will nearly finish the proof of theorem 6.2.

CLAIM 5. p^ < δ.

PROOF. We show by induction on η £ 6, that if αTr;, or if η = b and a £ 6, then

and

(**) If /#! = *«!(/#.!) and Th£ϊ(/#ϊ U {?} * Ma)

then Th^p^ U {«„,(«)}) * ΛV

By (*) for TJ = 6 and α = 0 we have ρ£J.\ < iQb(p'%+ι) <lhE for some extender

E from the Λiδ sequence, so that p^1 < ί, as desired.

Consider first the case 77 is a limit or η = b. Let αTiy be the least ordinal such

that iα7(p£+ϊ) = pίϊ+i whenever aTjTη. Such an ordinal α exists by (*). It

will be enough to show that whenever 7 £ [α, r/)χ and Thn+'y1(pn+']ι U {q}) is not
a member of ΛΊ-y , then

u ί
For this, suppose Th^^ίp '̂i) U {iΊη(q)}) = »e»?(x)' where we may assume

^TξTη. As iξ^ is generalized rΣn^i elementary, we see x = Thn+\(i7^(pn+

r

1 U
{iΊξ(q)}). This contradicts (**) at £.

Now let ?; = ζ + 1 and set β = T-pred(^). If (*) or (**) fails at η we must have
q G \Mβ I such that

but

Fix such a q. Let p = p^ , i = iβη , E =

We may assume f ( ΰ ) C p for all ΰ E dom /. Also p < p^* by (*) and the fact
that p^J0! < p^°. If we let .4 = {(ΰ, ι/) | i/ € /(δ)}, then A is (generalized) rΣn,

!. Thus/€|Λί/j | .
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Now

(t) * € TO, U {?}) O i(x) € [α, f}%>

since t is generalized rΣn+ι elementary. This gives an rΔft definition of

Th^^U {q}) since Ea is rΣ^. This is a contradiction if n > 0, so we
now assume n = 0.

Let /c = crit E. We have /c < p by Lemma 4.5. On the other hand, Ea £ \Mβ\,

as otherwise (f) would imply Ίl^β(pU{q}) G |Λ<0|. Thus p = /> '̂ = (/C

We will now complete the proof of claim 5 by showing that there is a rΣx

 β

function t : /c — > p such that ran(t) is cofinal in p. To see that this proves
claim 5, we let S be the set of triples (α,7, z/) such that 7 -<<(<*) *Λ where -<t(a)
is the first well ordering of /c in the natural order of Mβ which has order type

t(a). Then 5 C K and 5 is rΣ^β , so that 5 G |ΛΊ0| and hence p < (κ+)Mft,
contradiction.

For any tf and X C |Λ/], let

Thf (X) = Thf (X) Π {(y>, ά) I φ is pure rΣi} .

Using the proof of Lemma 2.10 we see that Thx

 ft(p(J {q}) $. \Mβ\ implies that

TΪh^(/>Ll{?}) ^ \Mp\, so we can use Th?ft(p(j{q}) instead ofTh?"(pU{q}).

Let / be the function representing Thx

 n(i(p) U {i(q)})> We need to consider
two cases:

Case 1. There is a total, continuous, order-preserving, rΣx

 β function g : K —+
ORMfi such that g"κ is cofinal in

In this case, we set for ΰ G dom(/)

so that Λ is rΣβ . Notice that if A G Ea, then Ξϋ G Ah(ΰ) ± /(ϋ), as otherwise

h\ At \Mβ\, so that Th^^^U {q}) G |Λί0|, a contradiction.

Now set, for all ΰ G dom(/)

Γ least α such that (/(fi)Δ A(δ)) Π (w x (α U {ί})<α;) Φ 0

\ 0 if no such α exists .

So t is total and rΣx ". It is enough to see ran(t) is unbounded in /?. Fix any
ordinal θ < p. We will complete the proof of case 1 by finding a ΰ such that
t(ΰ) > θ. Define a function k by
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Then k G \Mβ\ since it can be computed from Thf "(0 U {g,r}), where r is a

parameter chosen so that the function g is Σl

 fl({r}). Moreover

(tt) [a,fc]£> = ™"'(;(0)u {%)}).

One direction, D, of equation (ff) is easy. To prove C, let [6,̂ ]̂  β G [<*,&]#*,
where we may assume α C 6. We may assume that for all t; G dom J

where v* is the appropriate subsequence of v. For v G dom I such that v0 is a
limit, let

_ j"β
s(ϋ) = least α < VQ such that I(v) G Thx

 g(θf)(0 U {q}) .

Then 5 is a rΣx * map from /cn to K, so 5 G |Λi^|. By normality, fix c*o such
that s(v) = c*o for EI a.e. v, and let ^ = </(c*o). Then

= τhίί«'(i(ί) u {»(,)}) c τEf'(i(β) u {»(?)}) ,

as desired. This completes the proof of equation (ft)

It follows that there is an A G Ea such that for all ΰ G A,

f(ΰ) Π (ω x (0 U {g})<«) = ft(δ) Π (ω X (0 U {,})<«) .

Let ΰ G A be such that Λ(ϋ) ̂  /(ϋ); then t(ϋ) > 0. This completes the proof of
case 1 of claim 5.

2. There is no function g as in case 1.

In this case, define the function ί(ϋ), where ΰ G dom(/), by

t(ΰ) = least α such that (/(ΰ) Δ Th?β(p U {g})) Π (ω x (α U {?})<ω) φ 0 .

Thus t is total rΣx *. To see that rant is unbounded in /?, note that for θ < p

Thf'W) U {%)}) = i(Thf ^(fl U {q}))

as
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for some ζ < OR^* by case hypothesis.

This completes the proof of case 2, and hence of Claim 5. D

Fix now p G \Mβ\ and p < δ such that Th^(p(J {p}) <£ \Mb\. We obtain a
contradiction via an easy generalization of the proof of 6.1.

Fix β < length of T so large that

(1) 6 Π β φ c Π β, and there's no dropping on 6 U c above β.

(2) 7 G b - β => crit iΊb > p and p G ran i7& and (δ < ORMb => δ G ran a'7&).

(3) 7 G c — β => crit ι'7C > p and p G ran ι'7C and (δ < OR^6 => δ G ran t'7C) and
G ran ι7C).

As in Claim 2 of the proof of 6.1, we can find 7 G b — /? and η £ c — β such that

ran ι"7j Π ran i^c Π δ = /c

where p < K < δ. Let

where X = ran i'7& Π ran ι,,c and π is the inverse of the collapse. Then π
is generalized rΣn+ι elementary. This follows from the fact that both i7& and
ιΊC are generalized rΣn+ι elementary. To see that iΊC is generalized rΣn^ι
elementary, note that if Mb = Mc, then deg(f -f 1) > n for all sufficiently large
( + 1 6 c, so ί»;c is generalized rΣn+ι elementary. If Mb is a proper initial

segment of Mc, then inc f «7c1( ̂ *) *s ^n ̂ act ̂ u^v elementary.

Notice that crit π = /c, and tf = J*(r)riί for some α > «. Also Th£j!ί(p U {p})

is definable over Λ/', and hence is a member of L[E(T) \ /c]. As J?(T) Γ « ̂  1-̂ 6 1
and Mb has an internally iterable extender on its sequence with critical point
greater than /c, we get Th£J.\(pU {p}) G \Mb\, a contradiction. This completes
the proof of theorem 6.2. Π




