§5. ITERATION TREES

We generalize the key tool of Martin-Steel [MS] to the fine structure context.

DEFINITION 5.0.1. A tree order on a (for o € OR) is a strict partial order T
of a such that

(1) B # 0= 0T,

(2) BTy => B <,

(3) {B| BT~} is wellordered by T,

(4) v limit = {8 | BT} is cofinal in v (i.e. € cofinal) and
(5) « successor < v is a T-successor.

DEFINITION 5.0.2. If T is a tree order then
BAr={n|ln=8VBETTyVn=1}

and similarly for (8,77, [8,7)r, and (8,7)r.

DEFINITION 5.0.3. T-Pred(y+1) is the unique ordinal 7Ty such that (,7)r =
.

DEFINITION 5.0.4. Let M = Jf be a ppm. Then for y < 8, TM = .7.,’;. For
7> B, J.YM is undefined.

DEFINITION 5.0.5. Let M and N be ppm’s. Then M is an initial segment
of N iff Iy(M = J,ff) M is a proper initial segment of N iff M is an initial
segment of A’ and N is not an initial segment of M.

Notice that if 8 € dom E, then (Jg, €,E | B) is not an initial segment of Jf
according to our definition, although we might reasonably have regarded it as
such.

DEFINITION 5.0.6. Let M and N be ppm’s. Then M and N agree below v iff
Jlg“ = J,_t,” for all § < 4. (In particular, JﬂM is defined iff ._7/,” is defined, for all

B<7)
If M is a ppm then a iteration tree of length  on M is a 4-tuple

T = (T,deg, D,(Ea, My, | a+1<6)),

where T is a tree order, which satisfies conditions (1-8) below. We write pq
for the natural length of E,. We will also define ppm M, for a < # and
embeddings ia,5: Mo — Mgy for ordinals a and S less than @ such that T8
and DN (af)r = 2.

(1) Mo = M, and each M, is a ppm.

(2) Eq is the extender coded by F¥, for some active ppm A which is an initial
segment of M,.
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(3) a < B = 1h(E,) < h(Ep).
(4) If T-Pred(a + 1) = B then & = crit E4 < pg, and M}, is an initial segment
T, ms of Mg such that P(k) N Mg, = P(x) N N. Moreover

a+1€ D& M is a proper initial segment of Mg

If we take n = deg(a + 1) then k < p,.M‘.”+1 and

Ma+l = Ultn(M;H’Ea)
and if a+ 1 ¢ D, then
ig,a+1 = canonical embedding of My into Ult,(Mg, Es),

and iy o41 = 18,041 © iy, for all T8 such that (y,8lr N D = @.

(5) If A < 6 is a limit, then D N[0, A)7 is finite, and letting 4 be the largest
element of DN [0, A)r,

M, = direct limit of My, a € [y, A)r, under the iyp’s
iy = canonical embedding of M, into M, for 5 € [y,A)r.

(6) M3, is deg(a + 1)-sound.
(MNIfy+1Ta+1and DN (y+ 1,a+ 1]y = &, then deg(y + 1) > deg(a + 1).
(8) For A < 0 a limit, deg(A) = deg(a + 1), for all sufficiently large a + 1TA.

Notice that 7 determines the ordinals po’s, the embeddings i,g’s, and the ppm
M,.

Conditions (6-8) can be dropped in some contexts. Condition (6) guarantees
that 3, is a deg(a + 1)-embedding. Condition (7) says that the ultrapowers
taken along branches of 7 are of decreasing elementarity; it allows us to “copy
T” via certain embeddings.

Lemma 5.1. Let T = (T,deg, D,(Eq, M4y, | @+ 1< 6)) be an iteration trec.
Then ifa< f <6
(1) My, and Mg agree below h E,, and
(2) 1h(E,) is a cardinal of Mg, and in particular M, and Mg do not agree
below Ih(Es) + 1.

PRoOOF. By induction on 8. Let 8 = + 1. Since « <y = lhE, < 1hE,, it: is
enough for (1) to show that M, and M, agree below lh E,. Let E, = N
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where A is an initial segment of M,. Now M, agrees with Ulto(N, E,) below
lh E, by coherence. But M,y = Ulta(M},,, E,), where M7, is an initial
segment of M, some § < v, with crit E, < min(ORM;wLl ,1h E5). By induction,
M agrees with M, below lh E;, hence below crit E,. Thus J\fi.‘H_1 agrees with
M., below crit E,. So M1 agrees with Ulto(N, E,) below lh E,, hence with
M, below lh E,,. (Notice here that if n < lh E,, then the function representing
IM+ is in both M3, and V. In fact, P(crit Ey) N M3, = P(crit Ey)NN.
For C is true by fiat and D by our induction hypotheses.)

For the second assertion it is enough to show lh E, is a cardinal in M4, (us-
ing (1) and strong acceptability). Let us adopt the notation of the last para-
graph. The definition of good extender sequence guarantees lh E, is a cardinal in
Ulto(N E,). Butif AClhE, and A € M4, then A = [a, f] for some function

£ i [erit(E))) — CJ;(E yin M3.,. But then f € N,s0 A € Ulto(N, Ey),s0 A
doesn’t collapse lh E.,.

We leave the case § is a limit to the reader. O

Let H) be the set of sets hereditarily of cardinality < A. From 5.1 we get, using
the notation there, that if « < 8 and A = lh E,, then HM’ |TM=.

A few miscellaneous remarks on the definition of an iteration tree:

(a) It is easy to see from the above that if 7 is an iteration tree of length 6,
a < f < 0, and F is an extender from the Mg sequence (i.e. F on EMs or
F—FM’) then Eq | po # F | pa- For suppose Eo [ po = F | po. If
F is on EM# this implies Eq | Pa € Mg, and therefore that lhE, is not a
cardinal of Mp, contrary to 5.1. If F = FMs then ¥™# = v > lh E, since
lh E, is a cardinal of Mg, and p, < v. By the initial segment condition on good
extender sequences, F' [ po € Mp. Since Eq [ po collapses 1h E,, we again have
a contradiction.

(b) The demand in (4) that crit E, < pg, rather than just crit £, < lh Ep,
makes a difference only when Eg = F® for some P of type III, so that pg = vP,
and crit Eq = pg = vP. In this case our official definition won’t allow us to

apply Eq4 to an initial segment of Mg to form Mqq;.
(c) Suppose we have an iteration tree
T = (T,deg, D, (Ey, M3, |7 +1<a+1)),

so that the last model M, of 7 is determined. Suppose F = FP for some
initial segment P of M,. How may we extend 7 one step further so that
F = E,? Let us assume all ultrapowers to follow are wellfounded. Assume also
that Ih F > lh E, for all ¥ < a. Let k = crit F.

(i) We may set aTa + 1 and take M}, to be any initial segment of My such
that P is an initial segment of M}, and P(x) N |P| = P(x) N | M} |- Notice
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that if Q is a type III initial segment of M,, P an initial segment of Q, and
P(k)? = P(x)9, then k < v9 since (k+)P = (k*+)9, whereas v9 is the largest
cardinal of Q. Thus we can form Ult(Q*9, F).

(ii) Suppose B < @ and k < pg. Then we may set § = T-pred(a + 1). The
candidates for M}, are precisely those structures J.;M # such that ¥ > lh Eg
and P(x)N|J7"*| = P(x)N| T, |- Any of these candidates will do for M3,

Notice again that if Q = .7-;“ # for such a 7, then k < v9 as (k+)? is a cardinal
of Q. So we can squash @ if necessary and still apply F.

In almost all of the iteration trees used in this paper, the extension of 7 to
a+ 1 will be determined by the choice of E,. We take T-Pred(a + 1) to be the
least ordinal a*, if there is one, such that pse > crit(Ey) and a* = T-Pred(a +
1) = a otherwise. Then we take M}, to be the largest initial segment of
M- which does not contain any subset of crit(E,) other than those measured
by E,. Finally we take deg(a + 1) to be the the largest ordinal such that

crit(Eqy) < p,.M:'“. See the definition of n-maximal, definition 6.1.2, for details.

Iterability. If T is a tree order on 6, then a branch of T is a set b C 0 such
that b is wellordered by 7 with limit order type, and Va € bYB(8Ta = f € b).
We call b cofinal iff sup b = 8. We call b mazimaliff b # [0,\)r for all A < 0. If
T = (T,deg, D,(Eqa, My, | @+ 1 < 6)) is an iteration tree, then a (maximal,
cofinal) branch of T is a (maximal, cofinal) branch of 7. If b is a branch of T
such that DN b is finite, with largest element 7, then we set

My = direct limit of My, a € b—7, under the i4,’s.
We say a branch b of T is wellfounded iff D N b is finite and My is wellfounded.

We now state the iterability property which qualifies premice having no more
than one Woodin cardinal as mice. We shall eventually show that all levels of
the model we construct have this property by quoting results of Martin-Steel
[MS].

DEFINITION 5.1.1. If T = (T, deg, D, (Eqa, M4 | a + 1 < 6)) then for < 6
TIA=(TN(BxP)deg [ B, DNP,(Ea; Mgyy |a+1<f)).

DEFINITION 5.1.2. Let 7 be an iteration tree of length 6. 7T is simple if and
only if every maximal wellfounded branch of 7 is cofinal in 8, and 7 has at most
one cofinal in 8 wellfounded branch.

Notice that by definition 5.0.1(4) it follows that 7 is simple iff for every limit
A <0, T | X has at most one cofinal wellfounded branch.

We shall deal almost exclusively with simple iteration trees. The fact that it
suffices to do so is one of the key things we must prove. (c.f. Theorem 6.2.)



FINE STRUCTURE AND ITERATION TREES 51

DEFINITION 5.1.3. Let £« < w. Then an iteration tree 7 is k-bounded iff
deg? (@ + 1) < k whenever « is such that [0,a+ 1]y N D7 = @.

Notice that by clause (7) in the definition of “iteration tree”, if deg(a+1) < k
whenever o + 1 ¢ D and T-pred(a + 1) = 0, then 7 is k-bounded.

DEFINITION 5.1.4. Let M be a ppm, and let k¥ < w. (1) M is singly k-iterable
if any k-bounded iteration tree

T = (T,deg, D, (Ea, M}, | a+ 1< 0))

such that 7 [ A is simple for all A < 8 satisfies conditions (a) and (b) below:
(a) If @ is a limit ordinal, then 7 has a cofinal wellfounded branch.
(b) Suppose a < 8§ = B+ 1 and N is an active initial segment of Mg, such
that crit(I;’N ) < pa, and suppose that P = J_;“" for some vy > lh E,,
with k = crit(F¥) < p? and P(x) N |[P| C N. Then

Ult, (P, V) is wellfounded

(provided also n < k when [0,a]r N D # @ and P = M,).

(2)We say M is k-iterable if it is singly k-iterable and satisfies conditions (a)
and (b) below:

(a) f n < w, and (7; : i < n) is a sequence of iteration trees such that T

is a k-bounded simple iteration tree on M, and for i > 0 7; is a simple

iteration tree on the last model M;r::: of T;_1, and T; is k-bounded

whenever DT N [0,6;]r, = @ for all j < i, then the last model M,T: of
T, is singly k-iterable.

(b) Suppose that (7; : i < w) is as in (a). Then [0,6;]7, N D; = @ for all
but finitely many %, so that we have a canonical embedding 7; : M} —
Mitt = My, defined for sufficiently large i < w. Moreover, the direct
limit of the M¥’s under the 7;’s is wellfounded.

It is easy to see that if M is k-iterable, T is a k-bounded simple tree on M, and
P is a model on 7, then P is k-iterable.

It may seem that we can derive (2) and (3) from (1). Given 7;’s as in (2) or
(3), we can lay the T;’s “end-to-end” and produce a tree S to which we can then
apply (1). The problem is that S may not be, formally speaking, an iteration
tree: we may have o < 3 such that hES £ 1h E'g This can definitely occur
in the proof of the Dodd-Jensen lemma on the minimality of iteration maps,
which is our application of (2) and (3). Rather than generalize the definition of
“iteration tree” we prefer to complicate the definition of iterability.

The k-iterability of M allows us to build k-bounded iteration trees on M freely
as long as the tree built so far is simple. For then (1b) guarantees we can proceed
at successor steps without fear of illfoundedness. Clause (1a) guarantees that at
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a limit ordinal A we have a cofinal in A wellfounded branch. Thus we can choose
this branch to be [0, A)r.

It should be remarked that a theorem of Woodin asserts that the model L[E]
which we are constructing is not fully iterable, in the sense that there is a tree
which is a member of L[E] but which has no well founded branch which is a
member of L(E]. If we make the additional assumption that every set has a
sharp then we can prove that V |= L[E‘] is iterable: that is, every tree on L[E']
has a well founded branch, with both the tree and the branch being in V. It
is a theorem of ZFC that every iteration tree which involves only extenders
from a proper initial segment of the sequence E has a well founded branch,
so that this much iterablity is true in both V and L[E] The proof that our
construction works will depend on this iterability in V' of initial segments of E.
It is important for this that L[E] has no more than the one Woodin cardinal,
which is the supremum of dom(E).

DEFINITION 5.1.5. Let M be a ppm. Then M is 1-small iff whenever x =
crit FV for some initial segment N of M, then J,;“ = “There are no Woodin
cardinals”.

It is possible for a 1-small ppm M to satisfy “there is a Woodin cardinal”;
however, such an M cannot satisfy “there is a sharp for an inner model with a
Woodin cardinal”.

DEFINITION 5.1.6. A 1-small mouse is a 1-small, w-iterable premouse.

DEFINITION 5.1.7. A 1-small coremouse is a 1-small mouse which is completely
sound.

In general (for models with more than a Woodin cardinal) w-iterability will not
convert a premouse into a mouse.

Since all the mice we shall deal with in the moderately near future will be 1-small,
we make the temporary convention:

mouse = 1- small mouse

coremouse = 1- small coremouse

Embeddings of Iteration Trees. We now head toward the Dodd-Jensen
lemma on the minimality of iteration maps. For that we must show, given
an embedding 7: M — A and a iteration tree 7 on M, how to extend = to an
embedding from 7 into an iteration tree & on V. Since not all of the embeddings
involved will be full n-embeddings we need a new definition:

DEFINITION. We say 7: M — N is a weak n-embedding if M and N are
premice of types I or II or sppm’s, and there is a set X C M such that the
following four conditions hold:

(i) The models M and N are n-sound, and X is a subset of M such that
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{pM,pM} C X, and X is cofinal in pM.
(ii) = is rX, (respectively ¢X,) elementary, and 7 is rX,41 (respectively
¢ Xn+1) elementary on parameters from X.
(iti) #(pi(M)) =pi(N) fori<n
(iv) 7(pi(M)) = pi(N) for i < n, and sup 7" pa(M) < pn(N).
If M and N are type III, a weak n-embedding from M to N is a weak n-
embedding from M®? to N*1.)

Note that this definition is obtained from the definition of a n-embedding by
weakening clause (ii) from rX,;; to rX, except for parameters from X, and
weakening clause (iv) by eliminating the requirement that x”/p,(M) be cofinal
in p,(N). Normally it is the existence of a set X which is important, rather
than the choice of the set X.

The following is a useful fact about (n, X)-embeddings:

Proposition. Suppose that =: P — Q is a weak n-embedding and k is an
ordinal in OR®. Then P |= « is a cardinal if and only if Q |= x(x) is a cardinal.

PRrooF. This a is obvious if n > 1, so let n = 0. Recall po(P) = OR”, so that
the set X on which 7 is rZ; elementary is cofinal in OR”. Fix k s.t. P |= « is
a cardinal, and let gy € X be such that k < y. Let § € X, u < £, be such that

card” (i) = card® ¢ (#),

where “Sg’ ” refers to the £th level of the Jensen S-hierarchy. Then

PE cardSt (p) is a cardinal

andasé, u € X
Q
Q k= card®~ (x(p)) is a cardinal.

So, setting ¥ = cardS¢ (#), we know that k < v and n(v) is a cardinal of
Q. If kK = v we’re done. If &k < v, then JP | & is a cardinal, so since the
relation R(z,z) < “z is a cardinal relative to z” is o-in-L \ {F'} we know that
.7,%,) = 7(x) is a cardinal, and hence Q |= 7(x) is a cardinal. ]

Lemma 5.2 (Shift lemma). Let M and N’ be ppm’s, let & = crit(F¥), and
let

T: M — M be an weak n-embedding (n < w) and
Y :N = N be a weak 0-embedding

such that M and N agree below (&+)™ < (&*)¥, while M and N agree be-
Iow (k)M < (k*)V, and 7 [ (RY)M = ¢ | (kR+)™. Suppose & < pM, so
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that Ult,(M, F¥) makes sense, as does Ult,(M, F¥), and that both of these
ultrapowers are wellfounded. Then there is an embedding o: Ult,(M, FN) —
Ult, (M, FN) satisfying the following four conditions:
(a) The map o is an weak n-embedding, and if r is an n-embedding then so
iso.
(b) Ult,(M, FN) agrees with N' below Ih(FX), while Ult, (M, FN) agrees
with N below Ih(F¥).
() o TTh(F¥)+1 =9 [ Ih(F¥)+1.
(d) The diagram

li lj
Ulta (M, FF) —2— Ult, (M, FV)

commutes, where i and j are the canonical n-embeddings.

Remark. We want to allow the possibility (&*)M = ORM. In this case, we
make our standard convention: 7(OR*) = ORM. We allow Ih(F¥) = OR¥ as
well, and make a similar convention in (c) of the conclusion.

ProoF. The map o is defined by

o (o, fIf%) = (@), 7Nl ifn=0,and
4 ([a’ fﬂﬂ]?ﬁ) = [¢(a), fr,r(q)]ﬁMN ifn>0.

If X is the set used to show that = is a weak n-embedding then the set i’X
will show that o is a weak n-embedding. It is straightforward to verify that this
works. a

DEFINITION. If 7 and U are iteration trees then we say that ¥ = (7, : @ <
Ih(7T)) is a weak n-embedding from T to U if the following 6 conditions are
satisfied.

(1) TT = T4, deg” = deg” and D7 = D¥.

(2) mo: Mo — N is a weak n-embedding.

(3) For each ordinal o with 0 < a < lhT there is a set Y such that
Ta: Mg — Ng is a (degT(a),Y)-embedding, where M, and N, are
the ath models of 7 and U respectively.

(4) 7o [IhEyg+1=m5 [ InEq + 1 whenever a < 6 < ¢'.

(5) myoil, =i, omy whenever aTv and (a,7lr N D = @.

DEFINITION. We say that 7 is a tree embedding if it is a weak n-embedding
for some n < w such that 7 is n-bounded if n < w.

Lemma. Suppose that

T= (T’ deg» D, (EmM:..H | a+l< 0))
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is a n-maximal, n-bounded iteration tree on M, where n < w, and that v: M —
N is an weak n-embedding, where N is a n-iterable premouse. Then there is a
tree 7T on N and a tree embedding #: T — =T such that my = 0.

Proor. We define 77 | a + 1 and 7, by recursion on a < 8. For # = 0 we have
No = N and mp = 7. Now suppose we have defined #7 | 3, together with sets
Ya such that 7, is a (deg” (a), Ya)-embedding for each ordinal a < S.

If 8 > 0 is a limit ordinal then we set
N =ditim{ N, : aTp and DN [e,Blr =2 },

where the direct limit is taken along the maps j,, and we define 73 by setting
78(1ap(2)) = ja,p(7a(z)) for aTP such that [a,f)r N D = @. Finally we set
Yo = i},—, o"'Yp for any fTa large enough that ig: o 18 defined.

For successor ordinals 8 = §+1, let E; = FP, where P = .7,,“‘. Set Q = Jﬁfn)’
(with the usual convention if § = dom 7;) and F5 = F'9. Let T-Pred(6+1) = a,
let Mj,, = JM=, and set N}, = Jr.(v)» 88ain with the usual convention if
¥ = dom 7,.

We will use the shift lemma, to define 754;. Let o be the natural embedding
of M}, into N},,. Let & = crit E,. Then (&*)Mé+: < IhE, (possibly with
(Rt)Mé+1 = ORMé+1), s0 o and ., agree up to and at (&+)Mé+:1. Thus we
can apply the shift lemma to get 7541 : Msy1 — Nsqy satisfying our inductive
hypotheses on commutativity and agreement. If Mj,, = M, and deg1(6+l) =
deg” (a) then set Y54, = 3',,7,5+1"Ya- Otherwise take Y5y, = i;T”M,‘,. To
see w541 18 a deg(é + 1,Ys41)-embedding when T-Pred(6 + 1) = 0 , use n-
boundedness, and for T-Pred(6 + 1) > 0. Note that o is fully elementary if
Mj,, # Ma, and that deg” (6 + 1) < deg” (a) if the degrees are not equal.

This finishes the recursive definition of #7, and it only remains to verify that
each N3 is well founded. Suppose that it is not. Since N is n-iterable, it follows
that there is another branch b in T, cofinal in 8, such that if A} is the limit
along the branch b in & then A} is well founded. This is impossible since there
is an embedding 7y : My — N}, where M, is the limit in 7 along the branch b,
and My is ill founded since 7 is simple and Mp is well founded. O

The Dodd-Jensen Lemma. We are now ready to prove the Dodd-Jensen
lemma on the minimality of iteration maps. This is a powerful tool which will be
crucial in what follows. We shall call it simply the Dodd-Jensen lemma, though
without meaning to suggest that this is the most important of the lemmas which
they have proved. Our proof is just the obvious generalization of the original
proof of Dodd and Jensen.

Lemma 5.3 (Dodd-Jensen Lemma). Let T = (T, deg, D,(Ea, My, |a+1<
0 + 1)) be an n-bounded, simple iteration tree of length 6 + 1 on a n-iterable
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premouse Mg. Suppose
o: Mo—Q
is an weak n-embedding, where n < w and Q is an initial segment of Mg. Then
(1) Q = M,.
Moreover, if there is an ordinal v € [0,0]r such that deg(y’) > n whenever
v € [v,0)r then the following two clauses hold in addition:
(2) DN[0,8]7 = @, so that deg(y) = n for all y € [0,6)r,
(3) i0,6(n) < a(n), for alln € ORN M,.

Remark. Notice that the additional precondition for clauses (2) and (3) is equiv-
alent to the condition that My is n-sound. This equivalence will be used in many
of our applications: We will know from the construction of o that Q is n-sound,
so that clause (1) implies that My = Q and hence My is n-sound so that that
clauses (2) and (3) of the lemma must are valid as well.

ProOF. We will define a sequence (7; : i < w) of iteration trees as in clause (b)
of the definition of k-iterable, together with maps o; : M) — M} where M!,
is the yth model of 7;. For each integer i the pair (7;, 0;) will satisfy the same
conditions as the pair (7o, 00) = (7, ¢), and it will follow that any failure of the
lemma will imply that (7; : i < w) violates condition (b) of the definition of
k-iterable.

We first give the definition under the assumption Q@ = My. We will then modify
the definition slightly to prove that Q = M,.

We have 7y = 7 and 09 = 0. Now suppose we are given a simple, n-bounded tree
T; on the n-iterable model M§, together with a (n, X;)-embedding o;: M{ —
M. Let

Tiy1 = 0iT;.
Since M} is n-iterable and 7; is simple, M} = M{*! is n-iterable. Thus ;4
has length  + 1 and is simple and n-bounded. Let BT - 0T, = Ti4+1 be the
tree embedding given by the copying procedure, and set

oip1 =T Mb — Mf,"'l.
Since deg(y + 1) > n for all sufficiently large ¥ + 1 € [0,8]r, 0i41 is a (n, Xiy1)-

embedding, where X;4; is given by the copying procedure. Thus we are ready
for the next stage of the construction.

This completes the definition of the 7;’s and 0;’s. We must have DN[0,6] # 2,
since otherwise D; N [0,6]7; # @ for all i < w, contradicting clause (b) of the
definition of k-iterable. Thus there are canonical n-embeddings

i My — M

given by composing the embeddings along the branch [0, f]7 of T;. We have the
commutative diagram
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T T T
M D MOI=MY s Mi=M2 s

aoT a,I

My T oMy D

Suppose toward a contradiction that ig¢(m0) = 7o(m0) > o(m0). Set niy1 =
oi(n;). It is routine to check that (1) > oi(n) = 9i4+1 for all i and it follows
that dirlim(M; :i <w) is not well founded, contradicting clause (b) in the
definition of n-iterability of M§.

To show Q = My we proceed essentially as above. If Q # Mjy we will have
0i: M{ — Q;, with Qo = Q and Q; a proper initial segment of M{. In this case
0;7T; is a tree on Q); rather than Mf,, but it can be modified slightly to make it a
tree on My which immediately drops to Q; at all Tp successors of 0. That is, 7;4;
is the same as 0;7; except that we put ¥+1 into D, whenever T-pred(y+1) = 0,
and we set (M),,)* = Q; or the appropriate initial segment thereof. With
this modification the construction works as before, giving a sequence of trees
(Ti : i < w) such that D; N [0,0]r; # @ for every i > 0 and thus contradicting
clause (b) of the definition of n-iterability. Notice that in this case we don’t need
the hypothesis that deg(y + 1) > n for all sufficiently large v + 1 € [0, 6], since
for example it is not o; but o; [ Q; which will be used to produce T;41, and
o; | Q; is fully elementary. a





