§4. ULTRAPOWERS

Let M be either a ppm or an sppm, and k < pM. Let E be a (k, A) pre-extender
over M. (We are interested in the case that for some ppm or sppm A such that
P(k)N = P(k)M we have E = FN or 3y(E = E,’Yv) It is easy to check that E
is a pre-extender over M in this case.) We wish to define Ult,(M, E).

We begin with the universe of Ult, (M, E) and the € relation on it.

If n = 0, then the elements of Ulto(M, E) are equivalence classes [a, f]4!, where
a C ) is finite and f € | M| has domain [K.]C’”d" The equivalence relation is as
usual: (a, f) ~ (b, 9) iff for Eaus a.e. Z, f(&) = §(Z) where f and § come from f
and g by adding the appropriate dummy variables. E measures enough sets that
the definition makes sense. The € relation on equivalence classes is as usual.

If n > 0, then let 7 = 7(vo - - -v;) be a term in Sk, if M is a ppm or in SK,, if
M is an sppm. Let ¢ € |M|. Then for & € [«]*

fro(@) = ™a,q].
The elements of Ult, (M, E) are equivalence classes [a, f]&! where a C X is finite
and f = f; 4 for some ¢ € |M| and 7 € Sk, (resp. SKn). The equivalence
relation is as usual E measures enough sets that the definition makes sense
because k < pM. Again, the € relation is as usual.

Ult, (M, E) may be illfounded; however, if it is wellfounded we shall identify it
with the transitive set to which it is isomorphic.

We must define EUta(M\E) and FU(M.E) o complete the definition of the
structure Ult,(M, E). Let

[(a, )IF' € EV~ME) iff {& | f(a) € EM} € Eq.

It is easy to see that E, measures the set in question, using the amenability of
M with resp. to EM in case n = 0.

In case M is squashed or n > 0 we can set
[(a, 5" € FU P iff {a | f(a) € FM} € B,

using amenability in the squashed n = 0 case. We are left with the case M is
active and n = 0. Let p = crit FM. Let also n = [(b, f)]&' € ORN Ulty(M, E),
and h = [(b, g)]4!, where h is a function with domain ig(u).

We want to put (a,h,n) into FUMM.E) for exactly one a. We may assume
without loss of generality that ranh C |J,, P([ie(p)]™).

Case 1. p < k. So g is constant a.e.; in fact g(Z) = h for almost every z. Let
7 = sup(ran f N ORM), and let ¢ be such that FM(c,h,v). Using ¢ we can
compute k inside of M:

k(Z) = the unique d such that FM(d, h, f()).
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Thus k € |M|. We then put

([(6, )&, b, ) € FUIME),

Case 2. k£ < p. Let £ be a function in [ M| with domain = u and

ran £ = U (rang(z) N U P([u]™).

55[" card b n<w

(We may assume domg(Z) = p all Z.) Let v = sup (ran f N ORM). Let ¢ be
such that FM(c,¢,7). Using ¢ we can compute in M

k(Z) = the unique d such that f‘M(d, 9(%), f(z)).
So k € |M|. We then put

([(d, E)I3", b, n) € FUIMME)

This completes the definition of Ult,(M, E). Notice the definition guarantees
Los’ Theorem holds for atomic formulae of £ — {v,4} (resp. L£*).

Theorem 4.1. (Los’ Theorem). Let n > 0, let M be a ppm or sppm, and let
E be a (k,)) pre-eztender over M, where k < pM. Let [a;, fi]&' be an element
of Ulta(M, E) for each i < k, and let b= |J;; a;. Then

Ulta (M, E) = ¢[[ao, fol &', - - -, [ak, fil 5]
iff 3B € EyVia € BM = o[fo(d), ..., fi(@)]

for any generalized r £, (resp. ¢X,) formula p. Here f, comes from f; by adding
the appropriate dummy variables..

Remark. Assume M, etc., are as in the hypotheses. If n > 0, then
A={ae s | ME¢lfo(@)---fi(@)]}

isin M as k < pM.

If n = 0, then A ¢ | M| is possible. However, our proof will show there is a
B € Ey (so B€|M|)suchthat BC Aor BNA=2.

PROOF. We consider only the case that M is a ppm (passive or active type I or
II) as sppm behave exactly like passive ppm here.

Suppose first that ¢ is rEg. If n > 0 we get the desired conclusion easily as
there are enough functions defined by terms in Sk,,. So suppose n = 0.
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For any rX, formula ¢ = (v ---vi) and functions fo--- fi € | M| such that
dom f; = [k]°®™4? for all i < k (where b C ) is finite), we let

Ge A, it ME plfo(@) (@),
We show by induction on ¢ that there is a set B € E} (so B € |[M|) such that
BCA,jorBNA,;=2

and

BCA,; iff Ulto(M,E) k o[[(b, o)l ---[(b, fi)]E"] -

For formulas ¢ which are X in £, a subinduction on X in £ formulas (using
amenability) gives the result as usual. For ¢ = F(vo,v;,v2), the construction of
FUlto(M,E) guarantees the desired result. If ¢ is built from simpler rX, formulae
by A, V, or — the inductive step is easy. Suppose p(vg---vE) = “vp is finite A
(3vk+1 € vo) O(vo - - -vk4+1)”. We may assume fo(@) is finite E} a.e. as otherwise
B = {@ | fo(u) infinite} does the job. But then we can fix £ € w such that
card fo(@) = £ for Ej a.e. @, and functions g; - - - g, with dom = [k]**? such
that fo(d) = {g1(u)---ge(@)} for Ey a.e. i, say for 4 € C where C € Ej. Let
B; satisfy the induction hypothesis for A, 7~ , and let B =C N[Vice Bi. Then
B works for A% I

This completes the proof of 4.1 in the case that ¢ is rX,.

We now show by induction on i < n that 4.1 holds when ¢ is rE;. We have done
the case i = 0. The case ¢ is r¥; and does not involve j, v, or ¥ now follows by
the usual argument as there are enough functions defined by terms in Sk,,. But
then 2.6 (b) implies that P = Ult,, (M, E) is a ppm of the same type as M, and
that ig(uM) = u®, ig(WM) = vP, ig(y™) = 4P. This gives 4.1 for arbitrary
rY; formulae ¢.

So now let i > 1. Notice first that as the relation Th{¥ ;(a) = b is [1; over
rX;-1 definable over Q, uniformly over all ppm Q, and as we have 4.1 for ],
over rX;_; formulae by induction hypothesis and the fact that there are enough
functions given by terms in Sk,, we have (for Ult = Ult,(M, E).),

* Th™ ([a, f]) = [b, g] iff for Eay a.e. £, Thi,(f()) = §(z).

Let 7 : M — Ult,(M, E) be the canonical embedding. It follows that
ORM if pM, = ORY"

**) = { :

x(p4)) otherwise.
We prove the case pP% = m(pM,). Suppose p, < ORM™. We show first that
w(p)) < pP. Forlet a = [a, fIM < 7(p,), and let ¢ = [a, g]A!. We may
assume f(Z) < pM, for all z. Define
h(z) = Th{2,(f(2) U {9(2)})
= least b such that T™, ((f(2), 9(Z)),b).
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Then h is one of the functions used in forming Ult,,(M, E), and as we observed

above in (¥)
hi (e U {g}) = [a, A%
Thus & < pP!,. Thus 7r(p,_ ) < pP.
On the other hand, pick ¢ € | M| such that Th*,(p, U {q}) ¢ |M|. Then by
(*) ThiZ3(w(p?41) U {(q)}) ¢ Ult. Thus p < m(p4,).
Putting (*) and (**) together, we have

T2 ((a, £, [b, 9) iff for Eaus  a.e. 2, T (F(2),§(2)) -

Now suppose .
() = 3aIb(Ti-1(a, b) A ¥(a, b, 7))

where 9 is r¥;. We check one direction of the conclusion of 4.1. Suppose that for
Ey ae. 4, M | p[fo(@)--- fe(B)). Let f; = fr,y, where 7; € Sk, and ¢; € [M|.
We can translate “y(a, b, 9) AT;-1(a, b)” into an rX, formula; this gives us terms
oo and o; in Sk, which Skolemize the result, i.e., such that for E; a.e. @

M '= ¢(00(ﬁ: q-)a Ul(ﬁ) 6)7 To(ﬁx qO) t 'Tk(ﬁ’ QE)) A j}—l(ao(ﬁ: ‘i);al(ﬁ) q—)) ’

where § = (g1 - - -q&). But then, letting go = f5,,7 and g1 = fo, 4,
Ultn(M; E) h T'l'—l([b) 90]’ [b) gl]) A d)([b) gO], [b; gl][b, fO] et [b) fk])

as desired.

Finally, we prove 4.1 in the case ¢ is generalized rX,, with n > 0. Notice first
that if 7(vg - - - vx) € Sky, then
%, fo, .-, [0, fill = [a, 2@ - TM[fo(T) - - - S (@)1

for any [a, fo] - - - [a, fx] € Ult = Ult,(M, E). To see this, it is enough to consider
the basic terms 79 € Sk,,. But the graph of such a term is definable by a Boolean
combination of rX,, formulae, uniformly over all ppm, so we can use the term-free
case of 4.1 just proved.

But now if ¢(v) is rZ, and 7(v) € Sk, then
Ult = o(r(v))lla, FI5'] iff Ult | o[r"[[a, /1]
iff Ult = p[[a, Au - TM[F(@)]]14]
iff for E; a.e. 4, M | o[r™[f()]]
iff for Eq a.e. 4, M = o(7(v))[f(1))]

as desired. Of course, the case ¢ or 7 having more variables involves only more
notation. a

In the course of proving 4.1 we have shown
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Corollary 4.2. Let M, elc., be as in the hypotheses of 4.1, and let 7 : M —
Ult,,(M, E) be the canonical embedding. Then fori <n

M < ORM iff o™ < ORY"

and
P < ORM = () = g

(where Ult = Ult,(M, E)).

We would like to show that under the hypotheses of 4.1, the canonical 7 :
M — Ulty (M, E) is generalized rX,4; elementary. For this we seem to need
(essentially) that M be n-sound. Fortunately, we shall never want to form
Ult, (M, E) unless M is n-sound.

Corollary 4.3. Let M, etc., be as in the hypotheses of 4.1, and let 71: M —
Ult,,(M, E) be the canonical embedding. Suppose that for some p € |IM|, M =
HM(pM U {p}). Then = is generalized rE,41 (resp. ¢En41) elementary; more-
over pmt(M ) = sup 7 pM.

PROOF. Let Ult = Ult,(M, E). We show first that sup 7/pM > pU"; for this it
is enough to show that if M (pM U {p}) = M, then

Hy"(sup 7 pp* U {n(p)}) = Ult.

(For then ThY*(sup #”pM U {x(p)}) ¢ Ult by a diagonal argument.) So let
HM(pM U {p}) =M, and let [a, f] € Ult. Then there is a term 7 € Sky, (resp.
SK,.) and parameters b € [pM U {p}]<¥ such that for all 4, f(&) = 7™ [&,}]. Let
id(@) = 4, cj(@) = b. By the Los Theorem, [a, f]5' = ‘rU“[[a idy, [a, ]3] =

7Ut[a, x(b)]. Since a € [7(k)]<¥ and & < pM, and since 7(b) € [sup ' pM U
{=(p)}]<¥, we’re done.

We claim next that pU'* > sup 7”/pM. For by the Los Theorem we have easily
that for a,b € | M|

Th}'(a) =b iff ThY*(x(a)) = x(b)

[For the “only if” direction, let ¢ € 7(a)<“ and ¢ be generalized rZ,. Let
¢ = [d, f1§'. Then (p,¢) € ThY"(x(a)) iff (for E; a.e. @ (¢, f(@)) € ThM(a)) iff
(¢,2) € w(b).]

It follows that Vy < sup 7’pM, Vp € |M|, ThU“(‘y U {=(p)}) € Ult. Now fix p
such that MM (pM U {p}) = M. Let a < sup 7”pM and r € Ult; we must see
that Thy"(a U {r}) € Ult. Fix v < sup #"pM such that a < v and for some
B € 7<¥, and some 7 € Sky, r = V%[5, x(p)]. Then ThY*(yU {x(p)}) is in Ul,
and from it we can compute ThY"(a U {r}) inside Ult.
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Ult — " M
Thus p,"* = sup =" p7”.

Now let [a, f]5' = (a, ¢), where a < sup 7”pM. We claim that for any g
TV (o, fl.la,g]) iff for Eq ae. @, TM(f(3), 9(8).

< is easy since Th” (a) = b is uniformly II; over rZ%, and we have the Los
Theorem for rE, formulae. So suppose TV%([a, f], [a, g]) Let ¢ = 7U[8, 7(p))
where 8 € [sup 7/pM]<“ and pick v < pM such that §,a < 7(y). Let b =
ThM(y U {p}), so that

7(8) = Thy“(x(7) U {(p)}) .
Then we have

(1) (#,0) € o, 9] iff
¢ is generalized rX, and ¢ € [ U {¢}]<“ and (p*,¢*) € x(b),

where ¢*(¢*) is the obvious way of rewriting () so that the parameters ¢*
come from w(y) U {x(p)}. Thus the map ((p, ¢) — (¢*,¢%) is rA; over Ult in
the parameters a, ¢, and 3. Let B = [a, h]}!, where we assume for notational
convenience that the support is a (otherwise enlarge all supports). Then the
fact that (1) holds in Ult is a rII, fact about [a, f], [a, g], and [a, h]. It follows
that for F; a.e. 4,

(¢,2) € g(a) iff
 is generalized r¥, and ¢ € [ag U {ga}]<* and (p*,c*) €,

where f(@) = (aa,qa) and (p*,¢*) comes from rewriting (p, ) by substituting
7(h(@), p) for occurrences of ¢g. But now

ga = T [h(3), p]
for E, a.e. @, by the Los Theorem. As b= Th(y U {p}), we see
9(a) = Thy"(aa U {ga})
for E, a.e. 4. As ag < pM a.e., we get
T (f(a), 9(a))

for E,; a.e. 1, as desired.

Finally, let )
¢(?) = 3a3b(Tn(a,d) A ¥(a,b, 7))
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be an rE,41 formulae. If M = ¢[Z], then we have a, b such that TM(a,b) A
YM(a,b, ), so TV"(x(a), 7(b)) and yYV*(x(a),n(b), Z), so Ult = ¢[x(Z)]. On
the other hand if Ult |= ¢[x(Z)], then we have a, f, g such that [a, f] = (a,¢)
for some a < sup 7"/pM, and
Ult |= Ta([a, £1, [a, 9)) A ¥([a, £), [a, 9], 7(2)) -
By our claim, for E, a.e. 1
M | T (f(@), 9()) A ¢(f(8), 9(@), Z).

Thus M | ¢[Z], as desired.

We can now show 7(7™(z)) = 7U%(x(z)) for all 7 € Skny1, since the graphs of

basic terms in Sk, 4, are definable by boolean combinations of rX, +; formulae.
It follows that = is generalized rX,+; elementary.

Relations to Dodd-Jensen.

It is easy to see that if M is n-sound, Ult,(M, E) is exactly what is obtained
by the Dodd-Jensen procedure of coding M onto pM, taking a Xy ultrapower
of the coded structure, and then decoding.
For let M be a ppm or sppm, n > 1, and M = HM(pM U {¢}). Let
M= Ult,(M,E)=N
be the canonical embedding. Now let
AM = ThM(pM U {q}), coded as a subset of pM,
AN = Th¥ (o U {=(q)}), similarly coded .
Let
P=(JES € EM [ o}, aM)
Q=(E e BV 1), AY)
be the master code structures associated to M and N. Then
P =
cofinally; this is contained in 4.3. Note also that if [a, f]&' € |Q|, then 35 < pM

such that f(#) < B E, a.e., so since f is given by a term in Sk, in fact f € | M|
and hence f € |P|. So in fact

Q = Ulty(P, E)
and =« [ |P] is the canonical embedding for this Xy ultrapower. Notice finally
that all of ' can be decoded from Q, since N = HY (p¥ U {n(¢)}).

Although we can make sense of Ult,(M, E) in the case M is not n-sound, in
practice we shall never need to form such an ultrapower. Thus our construction
of Ult, (M, E) does not go beyond Dodd-Jensen in any important way.

We describe now the preservation of the core parameters p;(M), for i < n, in
the case that M is n-sound.
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Lemma 4.4. Let M be n-sound, let E be an eztender over M with crit(E) <
pM, and let # : M — Ult,(M, E) be the canonical embedding. Then

(a) Ult,(M, E) is n-sound, and

(b) m is an n-embedding.
PROOF. Let N = Ult,(M, E). It is enough to show that for alli < n
GWN) =N,

and

pi(N) = m(pi(M)).

For then by soundness p;(N) = pV for all i < n, and similarly for M, so that =
maps the core projecta properly by 4.2 and 4.3.

We proceed by induction on ¢ < n. For i = 0 there is nothing to prove. Now let
i =1 and Let r be the first standard parameter of M. Thus as M is 1-sound,
p1(M) = (r,@) and r is 1-solid and 1-universal over M.

Let r = (ag - - -ay), and
bj = Th{*(aj U{ao---aj_1}), 0<j<e

so that b; € |M| by solidity. By 4.3, = is at least rX; elementary, so
w(b;) = Thi/ (x(a;) U {m(c0) - - m(atj-1)}).

It follows that no s <jex 7(r) can serve as the 1st standard parameter of A'. On
the other hand, ThY (o U {n(r)}) ¢ |N| and in fact H¥ (o} U {x(r)}) = |NV].
[If n = 1 this is implicit in the proof of 4.3. Suppose n > 1. Let [a, f] by an
arbitrary element of |N|. Notice that if we let, for z € | M|,

h(z) =1st (in order of construction) (7, 3) such that
T €Sky ABE (pM)YATM[B, 7] ==z
then h(z) = oM [z, r] for some term o € Sk;. So if we let
9(a) = h(f(w)),

then g is one of the functions used to form A, and if [a, g] = (, §), then T € Sk;
and 8 € (p})<“ and ™V[B, x(r)] = [a, f], as desired.]

So m(r) is the 1st standard parameter of N, is 1-solid and 1-universal and N is
l1-sound. As N is 1-sound, py(N) = (n(r), @) = n(p1(M)), as desired.

The case 7 > 1 of the induction involves a bit more notation but no new ideas,
so we omit it. a
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The next question, clearly, is how 7 moves p’,:‘,',_l and the n+ 1st standard param-
eter of (M, p,(M)). We answer this under a solidity hypothesis. Our proof is in
essence drawn from Mitchell [M?]; it was recently re-discovered by S. Friedman.

We must also, it seems, impose an additional condition on FE.
DEFINITION 4.4.1. Let M be a ppm or an sppm, and E a (x, ) extender over
M. Then E is close to M iff for every a € [A\]<¥

(1) E, is rZ* (resp. ¢TM) and

(2) if A € |M| and M |= card A < k, then E, N A € |[M|.

The purpose of this restriction on E is explained by the following lemma.

Lemma 4.5. Suppose E is a (k,)) extender which is close to M, and k < pM.
Then
P(k)N|M|= P()N|Ult,(M, E)|.

If, in addition, M = HM(p U {¢}) for some ¢ and pM, < &, then

M _ Ulty(M,E)
pn+l - pn-{—l .

PRrOOF. The nontrivial part of the first sentence is the assertion that P(x) N
| Ult, (M, E)| C |M|. So let [a, fI&* C &, where f : []' — P(k). Since x < pA*
and f is defined from a parameter by a term in Sk, in fact f € |M|. For a < &,
let Ay = { € [k)' | @ € f(@)}. From E; N {Aqa | @ < &} we can compute
[a, f14*. Since E is close to M, we get [a, f]& € IM].

For the second assertion it is convenient to use the master code structures. Let
N = Ult, (M, E) and fix ¢ such that M = HM(pM U {q}). Set
AM = ThM(pM U {¢}), coded as a subset of p*,
AV = Th¥ (o¥ (oY U{x(q)}),coded as a subset of p ,
P=(JE €, EM | o}, aM),

Q=5 e BV 1 o), AY),
so that @ = Ulto(P, E) with canonical embedding =, which is cofinal and I, el-
ementary. If n = 0 then we take P = M and Q = N.

By Lemmas 2.10 and 2.11, pM, is the least o such that some E; over P set
B C a is such that B ¢ |P|, and similarly for p¥,, and Q.

To see that p;Y,,_l < pMy, let B C ph4y be I over P and B ¢ |P|. Since
pM, < & and 7 is T; elementary, B is X, over Q. But P(x) = P(r)M =
P(k)N = P(k)9 using the first assertion of 4.5 and strong acceptability. Thus

B¢1Ql.
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To see that p,,M+1 < pf,V_H, let a < pA4, and B C a be E; over Q. It is enough
to show that B is X; over P. Let

n€ B+ QFEYns ]
where 9 is T; in the language of Q. For § < OR? let
Qs = (JE", €, BV [ ws, AV nwé)
and similarly define P; for § < OR”. So

ne B& 35< ORQ Qs i=¢['1,[“,f]]

17 € B & 36 < OR? Qq(s)  ¥[n, [a, f]]
< 36 < ORP3X € E, Vi € XPs | ¢[n, f(1)).

Now as E is close to M, the E, is an r£} subset of |P|. By Lemma 2.11, E,
is X; over P. Thus B is X; over P, as desired. (]

We now consider preservation of the n + 1st standard parameter.

Lemma 4.6. Let M be a ppm or sppm, n > 0, and M = HM(pM U {q}) if
n> 1. Let E be an extender close to M such that pii; < crit E < pM. Let

M- U, (M, E)=N

be the canonical embedding. Suppose that r is the n+ 1st standard parameter of
(M, q) and that r is n + 1-solid over (M, q).

Then n(r) is the n+ 1st standard parameter of (N, 7(q)), and w(r) is n+1-solid
over (N, n(q)).

Proor. We will give the proof for the case n = 0 with a passive premouse of
limit length. The general proof is the same as this, using the fact that rX, 4, is
equivalent to X; over the appropriate master code structure. See lemma 2.11 for
the case of n > 0 and the remark following corollary 2.2 for the case of n = 0 with
an active premouse. For successor ordinals A = v + 1 write My = U,¢, S;:'.',i,,,
where (SM* : v < w)) is Jensen’s S sequence, and use the same proof as below.

Let us consider first the case n = 0, M is passive, and
M =(JEY € EM) (A limit).
Now by 4.5, pM = p and

ThyY (p U {n(0), 7(q)}) = Th{M* (s} U {r,q}) ¢ V],
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so it is enough to show that x(r) is 1-solid over (N, (g)). Let
r=(ag---ay)

bi = Th{'(a; U {ao - @i-1,4}) N {(,&) | ¢ is pure rT;}
¢ = Th{v(ﬂ'(a;) U {m(ao) - - m(ai-1), 7(q)}) N {(y,¢) | ¢ is pure rZ;}

for 0 < i < ¢ By 2.10, it will be enough to show ¢; € [N] for 0 <i < £. So fix i
such that 0 < i < £

For v < Alet
Ry =bn{(p,0) | My E plc]}
so that b; = |, <, Ry. Similarly, let

Sy =ciN{(¢,0) | Ny E [}

so that ¢; = U,,<orm Sy- It is easy to see that 7(R,) = S(y), and thus

a=J (Ry).

<A

Case 1. 3y < A(b; = R,); i.e. R, is eventually constant as y — A.

ProoF. Let b; = Ry = U, <) Ry. Then ¢; = U, () 7(Ry) = 7(Ry) = m(bs).
Thus ¢; € |n].

Case 2. Otherwise.

ProoF. For z € b;, let 7, = least ¥ such that z € R, andif y € b;, z < y
iff 9z < vy. Thus < is a prewellorder of b; of limit order type. Notice <
is computable within M from b;, so that our solidity hypothesis on r means
b; € |/M| and < € |M|. Now clearly, for z € b;

R, ={yeb|y<z}

m(Ry.) ={y € n(b) |y <* n(2)}
where <* = 7(<). By case hypothesis

ci ={y € n(b;) ]3Iz € bi(y <* n(z))},

so that ¢; is an <* initial segment of x(b;).

Subcase 2A. cofM(<) # crit(E). In this case, ran 7 is <* cofinal in =(b;), so
that ¢; = m(b;), and ¢; € |N].
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Subcase 2B. cofM (<) = crit(E). Let k = crit(E), f € |IM|, f : & — b; such that
ran f is <-cofinal. Then

Y € ¢; & Ja < k(y <* 7(f(a)))
& Ja < k(y <" 7(f)(a))
so that ¢; € |V, as desired.
a

Of course, we shall need to know that fine structure “up to level n” is preserved
not just under passage to Ult,, but under iteration of this process. The following
lemma summarizes the important facts.

Lemma 4.7. Let M = Mj be n-sound, where n < w. Suppose that for a < 6,
Ma+l = Ultﬂ(Ma) Eo:) ]
where E, is close to My, and
M, = dir lim M
> S

for A< 0 a limit. (We assume each M is wellfounded.) Let wog : M — My be
the canonical embedding. Then

(a) mos is an n-embedding.
If, in addition, M is n + 1-sound (so n < w) and pﬂl < crit mpg, then
(b) P¥t1 = Paya-

(¢) mos(Pn41(M)) = Pny1(Ms.
(d) My is n + 1-solid, and in fact €,41(My) = M, and letting

0: Crp1(Mp) = €u( M) = My

be the inverse of the collapse, o = 7gy.

Proor. This is a fairly routine induction on 8, using Lemmas 4.4, 4.5, and 4.6.
The successor case is immediate from these lemmas, so let 6 be a limit. Then
(a), (b) are obvious, and (d) follows easily from (c). We sketch a proof of (c):
let pny1(M) = (7, u), where 7 = (ag---a;). For v < 0 let

8] = Th Y (moy(as) U {moy(@1), - - -, Toy(etin1), Toy(8)}) -

Part of our induction hypothesis should be that b} € |M,| for 0 < i < ¢. This
follows from 4.6 for successor 6, and for limit 8, our current case, from the proof
of 4.6. For that proof shows that for each fixed i there are most finitely many
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7 < 8 such that m,41(b]) # b*!, since this can occur only when the ordering <7
of that proof has M,-cofinality equal to crit E,,, but when that happens 5}“'1
also has M, 41-cofinality crit E., < crit E,4;. Thus we can find 4 < 6 such that
for all 4, and all 7 such that y < 7 < 8, 7,(4]) = b].

One can now easily check that b = m,(b]) for all i. This in turn implies that
7os(7) is the n + 1st standard parameter of (Mg, mos(2)). The rest of (c) is easy.
a

REMARK. Under the hypotheses of 4.7 (including that M is n + 1-sound
and pM, < crit(mos)), we see that My is not n + 1-sound. If crit(ios) #

TMo[&, m09(Pn+1(M)))] then Va € [pM,]<¥ and 7 € Skn41.





