
§4. ULTRAPOWERS

Let M be either a ppm or an sppm, and K < ρ%*. Let E be a («, λ) pre-extender
over M. (We are interested in the case that for some ppm or sppm tf such that
P(κ)* = P(κ)M we have E = F* or Ξγ^ = JK^). It is easy to check that E
is a pre-extender over M in this case.) We wish to define Ultn(Λf , E).

We begin with the universe of Ultn(Λΐ, E) and the G relation on it.

If n = 0, then the elements of Ult0(Λ4, E) are equivalence classes [α, /]£*, where
α C λ is finite and / G |Λί| has domain [/c]cardα. The equivalence relation is as
usual: (α, /) ~ (6, g) iff for Ea^ a.e. x, /(x) = ί/(x) where / and g come from /
and g by adding the appropriate dummy variables. E measures enough sets that
the definition makes sense. The G relation on equivalence classes is as usual.

If n > 0, then let r = T(VQ vf ) be a term in Skn if M is a ppm or in SKn if
M is an sppm. Let q G |Λί|. Then for a G [/c]*

The elements of Ultn(Λ< , E) are equivalence classes [α, f]^ where α C λ is finite
and / = fT)q for some q G \M\ and r G Skn (resp. SKΠ). The equivalence
relation is as usual. E measures enough sets that the definition makes sense
because K < p**. Again, the G relation is as usual.

Ultn(Λΐ, E) may be illfounded; however, if it is wellfounded we shall identify it
with the transitive set to which it is isomorphic.

We must define £UM*<.£) and JJ UMΛΊ.E) to complete the definition of the
structure Ultn(Λf ,£). Let

M^ iff { ά I f(a)

It is easy to see that Ea measures the set in question, using the amenability of
M with resp. to EM in case n = 0.

In case M is squashed or n > 0 we can set

[{α, />]£* € F™*M& iff { β I /(α) € FM } £ EΛ ,

using amenability in the squashed n = 0 case. We are left with the case M is
active and n = 0. Let μ = crit FM. Let also η = [{6, /}]£* G OR Π Ult0(Λί, £"),
and Λ = [{6, </)]j^, where Λ is a function with domain iβίμ).

We want to put (a,h,η) into jί'Uitί.M.E) for exactly one α. We may assume
without loss of generality that ranΛ C (Jn P([*E(l*)]n)

Case 1. μ < /c. So g is constant a.e.; in fact g(x) = Λ for almost every x. Let
7 = sup(ran/ Π ORM), and let c be such that FM(c,h,γ). Using c we can
compute A: inside of M:

k(x) = the unique d such that FM(d, ft, /(x)) .
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Thus k G \M\. We then put

Case 2. /c < μ. Let t be a function in \M\ with domain = μ and

= (J

(We may assume dom0(z) = μ all x.) Let 7 = sup (ran/ Π OR/'1). Let c be
such that FM(cyt,i}. Using c we can compute in M

k(x) = the unique d such that FM(d, g(x), f(x)) .

So ke \M\. We then put

This completes the definition of Ultn(Λί,^). Notice the definition guarantees
Los' Theorem holds for atomic formulae of C — {t), 7} (resp. £*).

Theorem 4.1. (Los' Theorem). Let n > 0, lei M be a ppm or sppm, and lei
E be a («,λ) pre-exiender over M, where K < p** . Let [α, , /,-]£* be an element
o/Ultn(Λί, E) for each i < k, and let b = \Jk α, . Then

, E) N p[[αo, /o]^, . , [α*f Λ]^]

iff 5B G ̂ Vϋ € B M

for any generalized rΣn(resp. ^Σn) formula φ. Here /t comes from /,- by adding
the appropriate dummy variables.

Remark. Assume Λί, etc., are as in the hypotheses. If n > 0, then

A = {« € M""14 I Λ< |= ¥»[/o(«) ../*(«)]}

is in M as /c < p^ .

If n = 0, then A £ \M\ is possible. However, our proof will show there is a
B G Eb (so B G |Λ4|) such that £ C A o r £ Π A = 0 .

PROOF. We consider only the case that M is a ppm (passive or active type I or
II) as sppm behave exactly like passive ppm here.

Suppose first that φ is rΣo If n > 0 we get the desired conclusion easily as
there are enough functions defined by terms in Skn. So suppose n = 0.
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For any rΣo formula φ = φ(vQ v*) and functions /o •/* G \M\ such that
dom/t = [/c]card6 for all i < k (where 6 C λ is finite), we let

We show by induction on φ that there is a set B G EI> (so B G \M\) such that

J? C Aφj or B Π A^j = 0

and
B C Aφj iff Ulto(Λ<, E) \= φ[[(b, /„)]# ((b, fk)]&] .

For formulas φ which are ΣQ in £, a subinduction on ΣQ in £ formulas (using
amenability) gives the result as usual. For φ = F(VQ, υ\, ̂ 2), the construction of
^uit0(Af,£?) guarantees the desired result. If φ is built from simpler rΣo formulae
by Λ, V, or -i the inductive step is easy. Suppose φ(v$ Vk) = αvo is finite Λ
(Bϋjb+i G VQ) 0(t>o Vfc+ι)w We may assume /o(ΰ) is finite £"5 a.e. as otherwise
5 = {ΰ I /o(ϋ) infinite} does the job. But then we can fix £ G ω such that
card/b(ϋ) = £ for EI a.e. ϋ, and functions gi gt with dom = [/c]card6 such
that /o(ΰ) = {</ι(ΰ) <//(^)} f°Γ ^6 a e ϋ, say for ϋ G C where C G ̂ 6. Let
Bi satisfy the induction hypothesis for Aθ r^ , and let B = CΓ\f}i<tBi. Then
B works for A r.

This completes the proof of 4.1 in the case that φ is rΣo.

We now show by induction on i < n that 4.1 holds when φ is rΣ, . We have done
the case i = 0. The case φ is rΣi and does not involve μ, ι>, or 7 now follows by
the usual argument as there are enough functions defined by terms in Skn. But
then 2.6 (b) implies that P = Ultn(Λί , E) is a ppm of the same type as Λ4, and
that iε(μM) = μτ ', iE(vM) = ^P, i^ίr^) = ΊP This gives 4.1 for arbitrary

formulae φ.

So now let i > I . Notice first that as the relation Th^^α) = 6 is Πi over

rΣ, _ι definable over Q, uniformly over all ppm Q, and as we have 4.1 for Πi
over rΣ, _ι formulae by induction hypothesis and the fact that there are enough
functions given by terms in Skn, we have (for Ult = Ultn(Λί, E).),

(*) ThJ^dα, /]) = [6, g] iff for £αυt a.e. x, Th^^/ί*)) = g(x) .

Let π : M — > Ultn(Λί, E) be the canonical embedding. It follows that

Ou,t
Pi-l — / Λ4 \ xi.otherwise.

We prove the case pV±\ = π(p^). Suppose p^l < ORM. We show first that
*(p£ι) < P™\. For let a = [α,/]^ < π^J, and let q = [a,g]%. We may
assume f(x) < ρ^l for all x. Define

= least 6 such that 7£Ί ({/(*),
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Then h is one of the functions used in forming Ultn(Λ<, E), and as we observed
above in (*)

Thus a < pYl\. Thus π(p^) < pj™.

On the other hand, pick q € |Λί| such that Th^p^ U {«}) g \M\. Then by
(*) Th^OrO^) U Me)}) * Ult. Thus p?l\ <

Putting (*) and (**) together, we have

T?[([a, f], [b, </]) iff for EMb a.e. x, ϊ£ (/(*), g(x)) .

Now suppose

where ^ is rΣi. We check one direction of the conclusion of 4.1. Suppose that for
Eb a.e. ΰ, M \= φ[fa(ΰ) Λ(S)] Let /,- = fTiqt where r, G Skn and gt G |Λί|.
We can translate "ψ(a, 6, v)Λ7i_ι(α, 6)" into an rΣn formula; this gives us terms
σ0 and σ\ in Skn which Skolemize the result, i.e., such that for EI a.e. ΰ

M \= φ(σQ(ΰ, q), σι(ϋ, g), r0(ϋ, go) TA(U, ςfλ)) Λ 7i-ι(σ0(ϋ, g), σι(ΰ, g)) ,

where q = (gi g*}. But then, letting 00 = /<τ0,ί and gι = /σι>ί,

Ultn(M, ίO N Ώ.ι([6, yo], [6, </ι]) Λ V([6, 90], [6, </ι][6, /o] [6, Λ])

as desired.

Finally, we prove 4.1 in the case φ is generalized rΣn with n > 0. Notice first
that if T(VQ Vk) G Skn, then

rϋlt[[α, /o], . . . , [α, /J] = [α, Afi - r^[/0(n) Λ(ϋ)]]^

for any [α, /0] [α, /*] G Ult = Ultn(Λ<, E). To see this, it is enough to consider
the basic terms τ& G Skn. But the graph of such a term is definable by a Boolean
combination of rΣn formulae, uniformly over all ppm, so we can use the term-free
case of 4.1 just proved.

But now if φ(v) is rΣn and τ(v) G Skn then

Ult |= rtr(tO)[[α,/]#] iff Ult f= ^[rult[[α,/]^]]

iff Ult|=V[[α,Atι.rA4[/(ii)]]^]

iff for Ea a.e. ΰ , M \= φ[τm [/(«)]]

iff for Ea a.e. δ ,Λf

as desired. Of course, the case φ or T having more variables involves only more
notation. Q

In the course of proving 4.1 we have shown
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Corollary 4.2. Lei M, etc., be as in the hypotheses 0/4.1, and let π : M
Ultn(Λί , E) be the canonical embedding. Then for i <n

and

(where \nt = \J\tn(M,E)).

We would like to show that under the hypotheses of 4.1, the canonical π :
M — *• Ultn(Λί,£?) is generalized rΣn+ι elementary. For this we seem to need
(essentially) that M be n-sound. Fortunately, we shall never want to form
Vltn(M,E) unless M is n-sound.

Corollary 4.3. Lei M, etc.f be as in the hypotheses of 4.1, and let π: M —>
Vltn(M,E) be the canonical embedding. Suppose that for some p G \M\, M =
Ήrf&n* U {p}) Then π is generalized rΣn+ι (resp. qΣn+ι) elementary; more-

over

PROOF. Let Ult = Ultn(Λί,J£). We show first that supπ"/?^ > p™1; for this it
is enough to show that if K^dftf U {p}) = Λί, then

(For then Th^lt:(sup π"p** U (π(p)}) £ Ult by a diagonal argument.) So let
^(ffi* u {P}} = A<,_and let [α, /] 6 Ult. Then there is a term τ G Skn_(resp.
SKn) and parameters_6 G [p** U {p}]<ω such that for all w, /(ϋ) = τM[ΰ, b]. Let
id(ΰ) = ΰ , cj(ϋ) = 6. By the Los Theorem, [α, f]# = rult[[α, id]^ , [α, crf^] =
rult[α,π(fr)]. Since α G [π(/c)]<α; and /c < />£<, and since π(δ) G [sup π;//>^ U

, we're done.

We claim next that p™ > sup π" p%* . For by the Los Theorem we have easily
that for α, 6 G \M\

Th^(α) = 6 iff Th^(π(α)) = π(6)

[For the "only if direction, let c 6 π(α)<UP and ψ be generalized rΣn. Let
Then (y, c) € Th^(π(α)) iff (for Ed a.e. ΰ (̂ , /(«)) 6 Th^(α)) iff

It follows that Vγ < sup π"(tf, Vp € |Λi|, Th^u(γ U {π(p)» € Ult. Now fix p
such that Ή^(p^ U {p}) = Λί. Let α < sup τt"p^ and r 6 Ult; we must see
that Th^"(α U {r}) e Ult. Fix γ < sup ir" tf? such that α < γ and for some
β G 7<ω, and some τ € Skn, r = rult[/?,π(p)]. Then Th^lt(7U{τr(p)» is in Ult,
and from it we can compute Th""(α U {r}) inside Ult.
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Thus pj^1* = sup π" p*f.

Now let [α, /]£* = (α, q), where a < sup π'Vί^ We claim that for any g

Γn

Ult([α, /], [α, g]) iff for Ea a.e. ΰ , f^(/(ϋ), y(ϋ)) .

<= is easy since Th^(α) = 6 is uniformly Πi over rΣ£, and we have the Los
Theorem for rΣn formulae. So suppose T^lt:([α,/], [α, </]),. Let g = rult[/?,π(p)]
where /? 6 [supπ;V^]<ω and pick J < p** such that /?,α < π(γ). Let 6 =
Th^(τU{p}),sothat

Then we have

(1) (φ,c)€(a,g]iS

φ is generalized rΣn and c e [α U {ί}]<ω and (φ* , c*) G

where ^>*(c*) is the obvious way of rewriting φ(c) so that the parameters c*
come from π(j) U {ίr(p)}. _Thus the map (^>, c) •-* (y?*,c*) is rΔi over Ult in
the parameters α, qy and β. Let /? = [α,Λ]^, where we assume for notational
convenience that the support is α (otherwise enlarge all supports). Then the
fact that (1) holds in Ult is a rΠi fact about [α,/], [α,0], and [α,Λ]. It follows
that for Ea a.e. ϋ,

,

φ is generalized rΣn and c G [c*o U {</o}]<u; and (y?*, c*) G 6 ,

where f ( ΰ ) = (αc,^o) and (^*,c*) comes from rewriting (φ, c) by substituting
r(Λ(ϋ),p) for occurrences of gc. But now

for £ β̂ a.e. ΰ, by the Los Theorem. As 6 = Th^(γ U {p}), we see

for J?α a.e. ή. As αfl < p** a.e., we get

for £"α a.e. ϋ, as desired.

Finally, let
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be an rΣn+ι formulae. If M )p φ[x], then we have α, 6 such that T^(α,6) Λ
φM(a9b9x)9 so Γ™(π(α),τr(6)) and ^Ult(π(α),π(6),x), so Ult μ φ[π(x)]. On
the other hand if Ult (== ^>[π(z)], then we have α, /, g such that [α,/] = (α,g)
for some α < sup π"/>ί̂  , and

Ult |= Tn((a, /], [α, g]) Λ tf([a, /], [α, ,], »(x)) .

By our claim, for JPα a.e. ΰ

Λί (= fn(/(ϋ), ί(«)) Λ

Thus M ^= y>[x], as desired.

We can now show π(τM(x)) = rult(π(a?)) for all r € Skn+ι, since the graphs of
basic terms in Skn+ι are definable by boolean combinations of rΣn+ι formulae.
It follows that π is generalized rΣn+ι elementary.

Relations to Dodd-Jensen.

It is easy to see that if M is n-sound, Ultn(Λ^,^) is exactly what is obtained
by the Dodd-Jensen procedure of coding M onto p£* , taking a ΣQ ultrapower
of the coded structure, and then decoding.

For let M be a ppm or sppm, n > 1, and M = Ή^(p^ U {?}). Let

be the canonical embedding. Now let

AM = Th^(p^ U {g}), coded as a subset of p%* ,

A* = Th^(^ U {»(«)}), similarly coded .

Let

be the master code structures associated to M and M. Then

π:P^Q

cofinally; this is contained in 4.3. Note also that if [α, /]£* € |Q|, then 3β < ρ%*
such that f(u) < β Ea a.e., so since / is given by a term in Skn, in fact / G \M\
and hence / E l^j. So in fact

and π \ \P\ is the canonical embedding for this ΣO ultrapower. Notice finally
that all of λί can be decoded from Q, since λί = Ή*[(f% U

Although we can make sense of Ultn(M,E) in the case M is not n-sound, in
practice we shall never need to form such an ultrapower. Thus our construction
of Ultn(Λf, E) does not go beyond Dodd-Jensen in any important way.

We describe now the preservation of the core parameters pι(Λί), for i < n, in
the case that M is n-sound.
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Lemma 4.4. Let M be n-sound, lei E be an extender over M with cήt(E) <
p**, and let π : M — > Ultn(Λί, E) be the canonical embedding. Then

(a) Ultn(M,E) is n-sound, and

(b) π 15 an n-embedding.

PROOF. Let J\f = Ultn(Λ<, E). It is enough to show that for all i < n

and

P, = τp. .

For then by soundness Pi(λf) = p? for all i < n, and similarly for Λ4, so that π
maps the core projecta properly by 4.2 and 4.3.

We proceed by induction on i < n. For i = 0 there is nothing to prove. Now let
i = 1 and Let r be the first standard parameter of M. Thus as λi is 1-sound,
pι(M) = (r, 0) and r is 1-solid and 1-universal over M.

Let r = (c*o * * *<*/

bj = ThfVj U {αo <*j-ι}) , 0 < j < ί

so that bj E \M\ by solidity. By 4.3, π is at least rΣ2 elementary, so

»φ ) = Thf(»(βj) U {π(α0) »(£»,_!)}) .

It follows that no s <\ex π(r) can serve as the 1st standard parameter of λf. On
the other hand, Thf (>f U {π(r)}) ^ |Λ/"| and in fact Ή$(tf U {π(r)}) = |AΊ.
[If n = 1 this is implicit in the proof of 4.3. Suppose n > 1. Let [α,/] by an
arbitrary element of \Af\. Notice that if we let, for x G |ΛΊ|,

h(x) = 1 st (in order of construction) (r, /?) such that

r e S k x Λ/9e(^)<ωΛrΛ4[^,r] = a:

then Λ(x) = σM[x, r] for some term σ 6 Sk2. So if we let

then y is one of the functions used to form tf, and if [α, g] = (r, /?), then r G Ski
and β 6 (/^)<α; and r^[/?, π(r)] = [α, /], as desired.]

So τr(r) is the 1st standard parameter of Λ/", is 1-solid and 1-universal and N is
1-sound. As tf is 1-sound, p\(N) = {*(**), 0) = π(pι(M))> as desired.

The case i > 1 of the induction involves a bit more notation but no new ideas,
so we omit it. D
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The next question, clearly, is how π moves ρ^l and the n-h 1st standard param-
eter of (Mypn(M)). We answer this under a solidity hypothesis. Our proof is in
essence drawn from Mitchell [M?]; it was recently re-discovered by S. Friedman.

We must also, it seems, impose an additional condition on E.

DEFINITION 4.4.1. Let M be a ppm or an sppm, and E a («, λ) extender over
M. Then E is close to M iff for every α G [\}<ω

(1) Ea is rΣf1 (resp. qΣ?) and
(2) if A G \M\ and M |= card A < K, then Ea ft A G \M\.

The purpose of this restriction on E is explained by the following lemma.

Lemma 4.5. Suppose E is a (K, λ) extender which is close to Λί, and K < p£*.
Then

If, in addition, M = Ή^(ρ^ U {q}) for some q and pf^l < «, then

OM _ UMΛ4.J5)
Pn+l — Aι+1

PROOF. The nontrivial part of the first sentence is the assertion that P(/c) Π
I Ultn(Λ4, E)\ C \M\. So let [α, f]# C *, where / : [*]•' -* P(/c). Since /c < p?
and / is defined from a parameter by a term in Skn, in fact / G |Λf |. For α < AC,
let Aa = {ϋ G [«]' I α G f(ΰ)} From J£β Π {Aα | α < /c} we can compute
[α,/]£*. Since E is close to X, we get [α,/]£* G |-M|.

For the second assertion it is convenient to use the master code structures. Let
λf = Ultn(Af , E) and fix q such that M = W^(p^ U {q}). Set

^ U {q}) , coded as a subset of p

A" = Th^O^ U {»(«)}) , coded as a subset o

so that Q = UltoίP, J5) with canonical embedding π, which is cofinal and ΣI el-
ementary. If n = 0 then we take P = M and Q = N.

By Lemmas 2.10 and 2.11, p^j is the least α such that some ΣI over P set

B C α is such that B £ \P\, and similarly for pff+1 and Q.

To see that /^ < p£l9 let β C ̂  be Σj over P and B £ \P\. Since

#H-ι < « and 7Γ is ΣI elementary, B is ΣI over Q. But P(/c) = ^(/c)^ =
P(κ)^ = P(/c)^ using the first assertion of 4.5 and strong acceptability. Thus

Bί\Q\.
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To see that p^j-j < ptf+l9 let a < pQi and B C a be ΣI over Q. It is enough
to show that B is ΣI over P. Let

where ψ is ΣI in the language of Q. For 6 < OR^ let

Q6 = (J?",^E«\ωδ,A

and similarly define Pδ for δ < ORΛ So

so

,w \= φ[η, [α,

36 < ORP3X E Ea Vϋ

Now as E is close to Λ4, the Ea is an rΣ^ subset of \P\. By Lemma 2.11, Ea

is ΣI over P. Thus 5 is ΣI over P, as desired. D

We now consider preservation of the n + 1st standard parameter.

Lemma 4.6. Let M be a ppm or sppm, n > 0, and M = U^((ρ^{ U {q}) if
n>l. Let E be an extender close to M such that p^ < crit E < p*? . Let

be the canonical embedding. Suppose that r is the n + 1st standard parameter of
) and that r is n + 1-solid over

Then π(r) is the n + 1st standard parameter o/(^, ̂ "(ί)), and π(r) is n-h l-solid

PROOF. We will give the proof for the case n = 0 with a passive premouse of
limit length. The general proof is the same as this, using the fact that rΣn+ι is
equivalent to ΣI over the appropriate master code structure. See lemma 2.11 for
the case of n > 0 and the remark following corollary 2.2 for the case of n = 0 with
an active premouse. For successor ordinals λ = 7 -f 1 write M\ = Un€ω $£y+n»
where (5^λ : i/ < ωλ) is Jensen's S sequence, and use the same proof as below.

Let us consider first the case n = 0, Λ< is passive, and

M = (J?M,£,EM) (λ limit).

Now by 4.5, p^4 = ptf and

U {π(σ), π(q)}) = Th^(p^ U {r, q}) £
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so it is enough to show that π(r) is 1-solid over (Λf, τr(<j)). Let

r = (α0 •••<*/)

bi = ThfVi U {α0 α, _ι, q}) Π {(φ, c)\φ is pure rΣi}

d = Thf (τ(αrj) U {π(c*0) *(α. -ι), »(«)}) Π {(p, c) | ^> is pure rΣi

for 0 < ί < £ By 2.10, it will be enough to show ct G |,Λ/] for 0 < i < L So fix i
such that 0 < i < L

For γ < λ let
Rv = bi

so that 6, = U < λ Ay Similarly, let

so that c, = Uu;7<ORM ^7* ^ ̂ s easy °̂ s66 ^na^ π(^γ) = ̂ (7) > an(l thus

1. 3γ < λ(6, = Λy); i.e. Rγ is eventually constant as 7 — * λ.

PROOF. Let 6f = Ay = UKA^ Then c« = U<A*(^) =
Thus c, G H.

Cα^e 2. Otherwise.

PROOF. For x G 6f, let 7^ = least 7 such that x G Aγ and if y G 6<, x < y
iff Tar < 7y . Thus < is a prewellorder of 6, of limit order type. Notice <
is computable within M from 6, , so that our solidity hypothesis on r means
bi G \M\ and < G \M\. Now clearly, for x G fc.

so

where <* = ττ(<). By case hypothesis

c, = {y € *(bi) I 3x €

so that c, is an <* initial segment of ττ(6t ).

Subcase 2A. «>£**(<) ^ crit(£l). In this case, ran π is <* cofinal in π(6, ), so
that ct = τr(ti), and c, G |Λ/Ί
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Subcase 2B. cofM(<) = crit(£). Let /c = cήt(E), f G \M\, f : /c -» δf such that
ran / is <-cofinal. Then

y G c< O 3α < ιc(y <* π(/(α)))

^ 3α < *(y <* π(/)(α))

so that c» G |Λ/Ί, as desired.

D

Of course, we shall need to know that fine structure "up to level n" is preserved
not just under passage to Ultn, but under iteration of this process. The following
lemma summarizes the important facts.

Lemma 4.7. Lei M =• MQ be n-sound, where n <ω. Suppose that for a < θ,

where EQ is close to ΛΊα; o>nd

M\ — dir lim Me
β<\

for X < θ a limit. (We assume each Ma is wellfounded.) Let KM : M — >• MB be
the canonical embedding. Then

(a) 7Γo0 is an n-embedding.

If, in addition, M is n + 1-sound (so n < ω) and p%\.\ < crit πo^, then

= Pn+l(Mf

(d) Λίί is n + 1-solid, and in fact ίn+ι(Aί«) = M, and letting

be the inverse of the collapse, σ =

PROOF. This is a fairly routine induction on 0, using Lemmas 4.4, 4.5, and 4.6.
The successor case is immediate from these lemmas, so let θ be a limit. Then
(a), (b) are obvious, and (d) follows easily from (c). We sketch a proof of (c):
let pn+ι(M) = (r, ή}, where f = (α0 at). For 7 < θ let

67 = Th£i (πθ7(α, ) U {^7(aO, . . . , πθ7(a, -ι), »o y(δ)}) -

Part of our induction hypothesis should be that b] G \MΊ\ for 0 < ϊ < £ This
follows from 4.6 for successor 0, and for limit θ, our current case, from the proof
of 4.6. For that proof shows that for each fixed i there are most finitely many
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7 < θ such that ττ7+ι(&7) Φ ^7+1> since this can occur only when the ordering </
of that proof has Λ<7-cofinality equal to crit £"7, but when that happens <7+1

also has Λ<7+ι-cofinality cήtEΊ < crit#7+ι. Thus we can find 7 < θ such that
for all i, and all η such that γ < η < θ, ifyη(b^) = δj .

One can now easily check that tf = π70(6?) for all i. This in turn implies that
KQΘ (r) is the n + 1st standard parameter of (Me , KQΘ (^)) The rest of (c) is easy.
D

REMARK. Under the hypotheses of 4.7 (including that M is n 4- 1-sound
and pQt < crit(πo^)), we see that Me is not n + 1-sound. If crit(t'of ) Φ
TM'(a,*oe(pn+i(M))] then Vά € [p^]<ω and r G Skn+1.




