§3. SQUASHED MICE

Let M be an active type III ppm. Let E be an extender over M with x =
crit E < v™. Even if wellfounded, Ult(M, E) may not be a ppm. The trouble
is in the initial segment condition: if #,»* is not cofinal in ig(v*), then this
condition will fail in Ult(M, E). The problem seems to be that we are using too
many functions in forming Ult(M, E'); we’d like to use only functions in Jf:
in order to get continuity of ig at ¥. Lemma 9.1 and the remarks following it
give a fuller explanation. This leads to

DEFINITION 3.0.1. (M—squash) Let M be an active type III ppm. Let F be
the extender coded by F™ and v = v™. Then

quz(JFMveiE.'M ry,F[l/)

The symbol M?®? stands for “M-squash”. The term “squashed mouse” was
invented by Dodd for use in a similar, but more complicated, context.

Recall that ¥™ is a cardinal of M in the type III case, so that M®? includes
all sets which have hereditarily cardinality < ¥ in M. Our next lemma shows
that M®¢ is amenable.

Lemma 3.1. Let M be an active type IIl ppm. Then there are cofinally many
v < vM such that ET = F [ v where F is the extender coded by FM,

PROOF. Let s = crit F', and let 7—1 be a generator of F'. By the initial segment
condition, there is a v < ORM such that E‘:’,‘4 exists and is the trivial completion
of F | n. (Alternative (b) of the initial segment condition cannot hold as n is a
successor ordinal.) Now the natural map = from Ult(M, F [ n) into Ult(M, F)
has critical point > 7, and hence crit(r) > v since vy = (y+)VIM.FIn)  This
implies that F' [ v is the trivial completion of F | 5, which is E/,“

To see this let G be the trivial completion of F' [ . We have

M —£, UM, F)

N

Ult(M, F | 9)

and for a € [y]<“, z appropriate,

(a,z) e G&ac€ig(z)
& (a) € n(ic(2))
> acip(z)
& (a,z) €EF.
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Since there are arbitrarily large 7 < ¥™ such that n— 1 is a generator of F, this
completes the proof. a

So M?*? is amenable. Moreover, the definition of ¥* guarantees that the rest of
M can be recovered from M®! by taking an ultrapower.

If E is an extender over M with crit E < v™, we’ll have

M —— UM, E)

] I

M —— Ul (M4, E)
and Ult(M®, E) = N* for some N C Ult(M,E). But N # Ult(M, E) is
possible, and this is what leads us to iterate on the squashed level.

As we shall iterate M®¢ and not M, the appropriate definability hierarchy is
based on M®, not M as in §2. Note every M-definable subset of ¥ is definable
over M?®,

DEFINITION 3.1.1. A is an sppm iff N = M®? for some active type III ppm
M.

We now introduce a language appropriate for sppm.

DEFINITION 3.1.2. L* is the language of set theory with additional 1- place
predicate symbol E 2-place predicate symbol F, and constant symbol j.

We interpret £* in an sppm
N=(E € EF)

by setting EN = E,FN = F, and gV = crit F.

As sppm are amenable with respect to their predicates, we can work with the
usual notions of ¥y and X;.

DEFINITION 3.1.3. (a) A formula of £* is Lo iff it is built up from atomic
formulae using A,V,—, 3z € y, and Vz € y.

(b) The £, and [],, formulae of £L* are also as usual.

We want now to say “I am an sppm” with a simple formula.

DEFINITION 3.1.4. A P-formulais a formula of £* of the form
0(v) = VzIy(z C yA¢(y) AVa € z3b € yp(a,b,v),

where ¢ is ¥; without z free in it, and ¢ is £y without z or y free in it.
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Thus a P formula can say a little more than that there are cofinally many y
(under C) with a X, property. We aren’t sure how necessary the little more is,
but as the preservation lemma still goes through, there’s no harm in it.

Lemma 3.2. Let M and N be transitive L* structures, and 7 : M — N, and
¥ be a P formula.
(a) If ® is a £, embedding and N |= ¢[x(a)], then M | ¢[a].
(b) If v is a cofinal (i.e. |[N| =U ranw) Xy embedding and M = y[a), then
N E ¥[x(a)].

One can’t quite say “I am an sppm” with a P sentence, since the decoding of M
from M?®? requires taking an ultrapower, and we can’t capture the wellfounded-
ness of this ultrapower. We do get

Lemma 3.3. There is a P sentence ¥ of L* such that
(a) If N is an sppm, then N | 9.

(b) If N is transitive and N |= 4, then FV is a pre-eztender over N'; moreover,
if Ult(N FN) is wellfounded then N is an sppm or N is “of superstrong type”,
that is i (crit F) = length F = ORY).

PROOF (Sketch). By Dodd-Jensen we have a P sentence §; whose transitive
models A’ are those of the form A = (JE,...), v a limit ordinal.

Let 07 be the II; sentence of £* asserting that E/ is good at all < ORY.
Let 03 be the II; sentence: Va¥z(F(a,z) => a € [OR]<¥ A z C [i]card o)

Let 94. be the P sentence: There are cofinally many ordinals 4 such that ¥ €
dom E and JENE, = F [ ynJE,

It may seem that “4t exists” is £, but we can say with 0s:
J ordinal « such that 4 < a and {(6o, 51) | J}f Ef=8})e 1;"{,-,,0,} .
We claim ¢ = A; 5 0; is as desired. Clearly, if A is an sppm, then N |= Aigs bi.

Now suppose N is a transitive £* structure such that N' = A;¢5 6i. As N =64,

we see that FV = F is a pre-extender over . Suppose that Ult(V, F) is
wellfounded, and that ¢ (crit F) > ORV. Let

v=ORY
a= (V+)Ult(JV,F)

G = the (4, a) extender derived from i¥ : N’ — Ult(N, F)
M= (Jr®), €,ip(EV) [ o,G) .
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Note that « exists since ip(iV) > v.

We claim M is an active type IIl ppm, and v = vM. For this, note ip(EN )l a
is good at all # < a, since EN is good at all 8 < ;'1” . So it is enough to check
ir(EV) | a™G is good at a.

Clearly M is strongly acceptable. G is a pre-extender over M as G is a pre-
extender over N and

PEM)YNN = PGN) N U, F) = PGV )N M .

The ordinal v satisfies condition 3 of good at a since P(sV) N |M| C J;F ()
as N |= 05. Since G is derived from ¥, Ult(N,G) = Ult(N, F); on the other
hand N and M agree up to v (i.e. J.’;F(EN) = Jf”) as N | 04 so Ult(M, G)
agrees with Ult(V, G) up to i¥ (v) = iM(v), so that a = v+ in Ult(M, G). This
verifies 3(a). For 3(b), note G | v = F, and that if # < « then for some a C v
and f: [gN]arde _ 4N such that f € N we have

la, 1¥ =,
SO

o, f1¥ =8,
SO

[‘I’f]g1 = ﬂ

This is enough to give 3(b). Finally, v is the least ordinals satisfying clause 3
since if y < v, then G [ y = F | ¥ € M by the fact that N |= 4.

It is easy to see the coherence condition 4 is satisfied. The initial segment
condition (only 5(a) is relevant) is satisfied as N |= 04 and i¥ (EV) | v = EN.

Thus M is an active type III ppm with v = v™. Clearly N' = M*. a

Remark. It is annoying that we must include the possibility that A |= 4 be “of
superstrong type”, but our attempts to strengthen 1 so as to exclude this have
not succeeded. Notice that if N |= ¢ is of superstrong type, then a standard
argument gives

(JFN, €, EY) £ ZFC + i is a Shelah limit of Shelah cardinals.

(v = ORV ). So N is far above any mice our theory can handle anyway.

The rest of this section is an obvious parallel to §2. Because sppm are amenable,
we could adopt a very literal version of the Dodd-Jensen approach here (in
particular, we could stick to the usual X, hierarchy); however, for the sake of
internal consistency, we shall adopt the approach of §2.
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Skolem terms and projecta.

DEFINITION 3.3.1. L** is L£* together with binary relation symbols T, for
1<n<w.

We define the quasi-X, formulae for n > 1.

DEFINITION 3.3.2.

(a) The ¢X; formulae of £** are precisely the X; formulae of £L*.
(b) A formula 6(%) of L** is ¢Ep41, where n > 1, iff

8() = 3a3b(Tn(a, b) A (a, b, 7))

where ¢ is ¢X;.

DEFINITION 3.3.3. For ¢(vg - - - vg41) an £** formulae, 7,(vo - - - v ) is the basic
Skolem term associated to ¢. Having interpreted ¢ in an sppm N, we set

N =
<7 least b such that N a,b
‘r’ff[(m"'ak]={ F la, 8]

0 if no such b exists.

DEFINITION 3.3.4. SK, (for n > 1) is the smallest class of terms containing
all 7, for ¢ ¢X, and closed under composition.

DEFINITION 3.3.5. A L** formula is generalized ¢X, iff it results from substi-
tuting terms in SK,, for free variables of a ¢X,, formula. (The substitution must
be such that no free variable of a term becomes bound in the result.)
DEFINITION 3.3.6. Let M be an sppm. Then for n > 1

(a) ThM(X) = {(¢,a) | p is generalized ¢X, and a € X<“ and M = ¢[a]}.

(b) pp* = least @ < ORM such that for some p € | M|, ThM(aU{p}) ¢ IM|.

(¢) TM(a,d) iff a = (a, q) for some a < p™ such that b = ThA*(a U {¢}).
We define the classes of relations ¢=M, etc., in the obvious way. It is easy to
see that ¢TM is closed under 3, A, and V, and that (¢M U anM) - qEﬁl,

uniformly over all sppm. One can also show ~T™ is a qX, 1 relation (uniformly)
in parameter pM.

Hulls.
For M a sppm and X C |/M| and n > 1 let

HM(X) = the transitive collapse of {r*[a] | @ € X<“ and 7 € SK,,}
M (X) = (HY(X), €, 7" (EM), x"(FM))

where 7 is the collapse map.
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Lemma 3.4. Let M be an sppm such that Yv € ORM (Jf"M = there are no
Shelah cardinals). Then for any X C |M| and n > 1, HM(X) is an sppm.

ProoF. By Lemmas 3.2 and 3.3. Strictly speaking, we haven’t packed enough
wellfoundedness of ultrapowers into being an sppm to be able just to quote
3.3(b), but the proof of 3.3(b) requires only the wellfoundedness we have.

Lemma 2.7 carries over verbatim.

Lemma 3.5. Lemma 2.7 remains true if one replaces “ppm which is passive or
active of types I or II” by “sppm” and 4X,” by 4X,”.

Standard parameters, solid parameters, and Cores.

The definitions and results of §2 carry over verbatim. (The only “results” here
are Lemmas 2.8, 2.9.) We shall say no more.

Premice.

DEFINITION 3.5.1. Let M.= Jf be a ppm. We say M is a premouse iff for
all < a,

(1) Jf is passive or active of types I or Il = JpE is w-sound, and

(2) Jf is active type III = (JﬂE )* is w-sound.
Notice that a premouse need not itself be w-sound.

We shall eventually build an E such that every Jf is a premouse.





