
§2. FINE STRUCTURE

This and the next section explain some basic facts about the fine structure of
definability over potential premice. Most of the notions and results here are
due to Dodd and Jensen ([DJ4]). There is one important difference, however:

because Ea measures only sets in JJ* ^α, the hydras of [DJ4] disappear; moreover,
we never have to iterate in order to extend measures. This simplifies the theory
considerably.

Let M = Jβ . If VM is a successor ordinal, we let JM be the witness to 5(a)

or 5(b) with respect to the trivial completion of Eβ \ VM — 1. That is, let G
be the trivial completion of Eβ \ η, where η < VM — I is the natural length of
Eβ\v".

Remark. If η < ι/M - 1, then G = FM \ VM - 1. The proof uses the fact, which
is not hard to prove, that if η is a limit of generators and is not itself a generator
then η is not in 5.

If 5 (a) of the definition of good at α holds, we set

ΊM = Ih G = the unique ξ E dom EM such that G = E£* .

If 5(b) holds, then η € dom EM and G is on the sequence of Ult(Λί , E*4). We
set

(fr, </) = the first pair (α, /) in order of

construction of M such that G = [α, /]£* , and

DEFINITION 2.0.1. Let M be an active ppm, and /c = crit F, where F is the
new extender introduced by M. Then

(a) M is type I iff VM = (*+)"

(b) M is type II iff VM is a successor ordinal (ι/M — 1 > (κ+)M follows from
the definition of vM)>

(c) M is type III iff VM is a limit ordinal and VM > (κ+)M.

The definability hierarchy we study in this section is not appropriate for active
type III ppm. The reason is explained at the beginning of §3, where we study
a different hierarchy appropriate for such ppm. In this section we restrict our
attention to ppm which are passive or active of types I or II.

DEFINITION 2.0.2. £ is the language of set theory with additional constant
symbols j>, 7, /t, additional 1-ary predicate symbol £", and 3-ary predicate symbol
F.
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If M is a ppm, then we interpret C in M as follows: Suppose that the structure
M = (jf, 6, E \ α, Ea) is active. Then

= E\«,

μM = crit EQ

7 if M is type II

0 if M is type I

Suppose M = (Ja , E, £ f α) is passive. Then

^ = E \ a , F^1 = 0

An active ppm is not amenable with respect to its interpretation of F. For this
reason, the ultrapower of such a ppm via functions belonging to the ppm may
not satisfy Los' theorem for ΣO formulae of £, and we must start our Levy-like
hierarchy at a smaller class of formulae.

DEFINITION 2.0.3. rΣ0 (or restricted Σ0) is the smallest class of £ formulae
containing the atomic formulae of £, all ΣQ formulae of C — {F}, and closed
under Λ, V,-*, and bounded quantification over finite sets. [That is, if 0(x,G, v)
is rΣ0, so are ψ(G,υ) and φ(G,v), where ψ(G,ϋ) = "G is finite Λ 3x ζGΘ"
and φ(G,v) = "G is finite Λ Vx 6 GP]

DEFINITION 2.0.4. Let θ(υ) be an C formula; then θ is rΣi iff θ =
where φ is

We could continue and define rΣn, rΠπ for n > 1 by counting quantifier alter-
nations. However, we shall reserve "rΣn" and αrΠn" for n > 1, for different,
more useful classes of formulae.

For M a ppm, rΣjJ* is the class of relations on the universe of M definable
over M by a rΣn formula (n = 0, 1). If M is passive, then rΣ^1 = Σ^1, the
usual Levy class. The relativised classes rΣ^(X), for X C |Λ<|, and

), are as usual.

Notice that rΣ^1 is closed under 3 , Λ, V, and bounded quantification over finite
sets.

The following normal form theorem makes clearer what an rΣi formulae can
assert of an active ppm.

Lemma 2.1. Ifφ(v) is any rΣi formula then there is a ΣI formula ψ(a,b,δ,υ)
of C — {F} such that for all active ppm M

(*) M N Vΰ (φ(v) o 3α, 6, δ[F(a, 6, 6) Λ φ(a, 6, ί, δ)]) .



12 W. J. MITCHELL AND J. R. STEEL

Remark. That is, an rΣi formula asserts there is a "small chunk" of the new
extender having a ΣI in (C — {F}) property.

PROOF. We show first that if θ(v) is a rΣo formula and φ = θ or φ = -*θ then
there is ψ as in (*). This is by induction on θ. E.g. for φ = -*F(x, j/, z), we have

Λ (z is not an ordinal V y is not a function V

Vdomy φ d o m δ V ( y = bΛz=δΛa^

E. g. for the "Vx G G" step, let ψ(a> 6, δ, x, G, v) be ΣI in C - {F}; then we can
rewrite

G finite ΛVxEG3α,&,δ[F(α,6,δ)ΛV<αΛM,G,t>)]

as

(**) 3α, 6, δ [F(α, 6, δ) Λ 3fc < ω 3 sequences x, ά, 6, δ of length k

where ^* is the formula

Vi < fc(δ, is a function Λ dom&, = domt Λ ran 6, C ran 6

Λ δi < δ Λ α, = α Π ([ίt ]
<ω x ran δt ) Λ ^(α< , 6, , «, , x,, G, v)) .

Then the formula (**) is equivalent to

3α, 6, δ3fc < ω 3 sequences x, α, 6, δ of length k

Thus every rΣo formula φ can be put in the form given by (*). This easily
implies the same is true of rΣi φ. D

As a corollary, rΣi satisfaction is rΣi, uniformly over all active ppm:

Corollary 2.2. There is an rΣi formula 0(t>o, vi) such thai whenever M is an
active ppm

M \= θ[i, (α0 at)] iffi is the Gδdel number of an rΣi formula φ

and M (= φ[α,Q - α*] .

Of course, rΣi = ΣI satisfaction over passive ppm is also uniformly rΣi.

Henceforth we will use the same letter for the Gόdel number of a formula as
we use for the formula, so that the displayed line in the corollary would start

"Λ4N%, {GO •
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Lemmas 2.1 and 2.2 hold also for type III active ppm, setting ΊM = 0 for M
type III, but once again we have no use for this fact.

Remark. Let M = J& be active. We can construct an amenable structure Λ4*
as follows. Define #* to be the set of quadruples (γ,£,α,z) such that

(α > 7 > VM) Λ (μM <ξ<

Λ (Ea Π α ]̂«* x jf ) G jf ) Λ ((α, x) G (Ea Π ([γ]<« x jf ))) .

Our remark on p. 10 shows that M* is amenable; moreover one can easily see
that rΣ^ is the usual ΣI over M*. This fact (which we didn't notice until
we had written much of these notes) doesn't seem to simplify the definability
analysis to follow. It might be used to give the analysis a more conventional
look.

For any ppm M , let < Λ/I be the usual order of construction (so if M. = jj[ and

Jf = J& where α < /?, then <* end-extends <M).

Lemma 2.3. There are ΣI formulae of £ — {F} defining uniformly over all

ppm Ja the functions

PROOF. See Dodd-Jensen [DJ1]. D

The formulae of the lemma are in C — {F} hence rΣi. To apply [DJ1], notice
every ppm is amenable with respect to its interpretation of E (and in fact EM G

Skolem terms and projecta.

Following Magidor and Silver, we shall introduce Skolem terms into our language
as a convenience. The existence of the amenable structure Λ4*, which we de-
scribed following 2.2, shows that rΣf* relations admit rΣi uniformizations, and
this means that we could avoid the Skolem terms if we cared to do so. There
seems to be no great advantage to either approach. We shall also define the
classes rΣ^4 for n > 1, and introduce a predicate 7^ related to rΣn satisfaction.
Like Magidor and Silver, we shall work directly with the classes rΣjJ*, rather
than with ΣI definability over master code structures. However, T*4 is closely
related to the nth master code of M , and its use in constructing ΓΣjJ^ relations
makes this difference more apparent than real.

DEFINITION 2.3.1. £"*" is C together with additional 2-ary predicate symbols
Tn for 1 < n < ω.

The interpretation T^1, for M a ppm, will be defined shortly.



14 W. J. MITCHELL AND J. R. STEEL

DEFINITION 2.3.2. Let θ(ΰ) be a formula of £+.

(a) θ is rΣi iff θ is a formula of C which is rΣi in our former sense.
(b) θ is rΣn+ι (where n > 1) iff there is a rΣi formula ψ(a,b, v) of C such

that

DEFINITION 2.3.3. Let φ = φ(vQ,..., v*, Vjb+i) be a formula of £+. Then
τφ(vQ,.. .vjk) is the iαsi'c Skolem term associated to y>.

Given that we have interpreted φ in a ppm Λ< (which we have not as yet done
in general), we interpret τφ as follows:

^M least 6 such that Λi (= φ[ά, b] if such 6 exists
1 otherwise

DEFINITION 2.3.4. For n > 1, Skn (the class of level n Skolem terms) is the
smallest class which contains rφ for each rΣn formula φ and is closed under
composition.

DEFINITION 2.3.5. A formula φ of £+ is generalized rΣn for n > I iff φ results
from an rΣn formula ψ by substituting terms in Skn for free variables in ψ

(The substitution of r into ψ must be such that no variable free in T becomes
bound in the resulting φ.)

We can now define the predicate T£* for M a ppm; simultaneously, we define
the nth projectum p^ of M.

DEFINITION 2.3.6. Let M be a ppm and n > 1. Then

(a) Th^(X) = {(φ,a) \ a G X<ω and φ is a generalized rΣn formula and

(b) p? is the least ordinal p C \M\ such that Th^(pU {q}) <£ \M\ for some

(c) The predicate T**(a, b) holds if and only if α = (α, q) for some α < p**
and g G Λi, and 6 = Th^(α U {q}).

Of course, Tn is essentially 3-ary. It's present form is a relic of an earlier version
of these notes, where we set T^(α, 6) <Q> b = Th^(α). That earlier version led to
a problem (showing rΣn ultrapowers give rise to rΣn+ι elementary embeddings).

Remark, p** = ORM is possible.

The definition above is by induction on n, as (a) for n depends upon (c) for
1 < m < n.

We define the classes rΣ^, rΠ£*, rΔ^, for M a ppm, in the obvious way. The
relativised and boldface versions of these classes are also defined in the obvious
way.
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Notice that if p** < ω, then in fact p%* = 0, and rΣ^\.l trivializes. We are not
interested in rΣj^ when p^ = 0 (although we are definitely interested in rΣ£*
in this case). We shall tacitly assume henceforth that, in any discussion of a
class of the form rΣ*ly p£* > 0.

It is easy to see that rΣ^ is closed under 5, Λ, and V, and that (rΣ^ U rϋ^) C
rΣ^j, for any ppm M. Moreover, the closure and inclusion are uniform over
all ppm (there is a recursive translation procedure acting on formulae of the
appropriate type). It is clear that -^T*4 is rΣ;̂  in the parameter pft* , uniformly
over all M.

It follows that the class of sets definable by rΣn+ι formulae would be unchanged
if we modified definition 2.3.3 by allowing allowed any formula of the form
Ξα,6(Tn(α,6) Λ ψ(a,b, v)) where ψ is a boolean combination of rΣn formulae.
A similar argument shows that we could also have restricted ψ to be ΣI in
C-{F,E}.

Hulls.

DEFINITION 2.3.7. Let M be a ppm, n > 1, and X C \M\. Then

= (^(δ) I r € Skn Λα 6 X<»} ,

= τr"S^(X) where it is the transitive collapse,

(The last predicate occurs only if M is active).

We shall show n£*(X) is a ppm. To this end, recall the Q formulae of [DJ4].
One virtue of these formulae is that they go down under ΣI embeddings and
up under cofinal ΣQ embeddings. We now define the appropriate analog in our
situation.

DEFINITION 2.3.8. Let M be a ppm, and π : M — > P be an rΣ0 embedding,
with P transitive. We say π is cofinal iff

(a) V ye\P\3x(yCπ(x)), and

(b) *"(£+)" is cofinal in π((μ+)M).

Recall here μM = 0 if M is passive, so that (b) is trivially true then. If M is

active, μM = crit F**.

DEFINITION 2.3.9. An rQ formula is one of the form:

VzV0 < μ+ 5y3ι/ (x C y Λ (θ < v < μ+) Λ φ(y, v, ΰ))

where φ is rΣi and does not have x or θ free.

Interpreted in a ppm Λί, an rQ formula asserts that, in the product order
on (μ*)M x \M\ determined by the inclusion order on the factors, there are
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cofinally many pairs (ί/, y) with an rΣ^ property. (If M is passive, this reduces
to asserting that, under inclusion, there are cofinally many y G \M\ with an

^1 property.) So we have clearly

Lemma 2.4. Let φ(v) be an rQ formula, and π : M — * P. Then

(a) 7/π is an rΣi embedding and P \= φ[π(ά)], then M \= φ[a\.
(b) If π is a cofinal rΣo embedding and M [= [̂α], then P \= ^

The preservation properties given in 2.4 are interesting because one can say with
an rQ sentence: "I am a (passive/active) ppm" .

Lemma 2.5. There are rQ sentences φ\, φi, φ$ such that if M is a transitive
£-structure, then

(a) M ^= φ\ holds if and only if M is passive and (μM , ί / M , jM) =

(b) M \=- φz holds if and only if M is active type I and (μM , VM,JM) =

(μM,vM,ΊM);
(c) M [= φ% holds if and only if M is active type II and (μM , i/M > jM) =

PROOF. We construct ^3, the other constructions being slightly simpler.

We shall use the fact that every rΠi formula can be put in rQ form; we leave it
to the reader to check this.

By Dodd-Jensen [DJ4] there is an rQ sentence θ\ of C — {F} whose transitive

models M are precisely those of the form (jf M ,^EM,FM). We add to 0ι
the rΠi sentence of C — {F} stating that M is strongly acceptable and that

Now we define a rQ sentence #2 asserting that FM codes a pre-extender over
M. The pre-extender coded is U{α | 36, ί FM(a,b,6)}. The formula 02 is the
conjunction of the formulas (i-vi) below:

(i) "there are cofinally many (#,7) in the product order on μ+ x OR such

that 3α 36(F(α, 6, 7) Λ 6 is a function from μ onto P(μ) Π Jf )."
(ii) Vα, 6, 7, αx, 6;, j1 (if F(α, 6, 7) Λ j' < 7 Λ V is a function with dom V = i

and ran ό; C ran 6 Λ α7 = α Π ([7/]<ω x ran όx)> then F(α;, V, 7')).
(iii) F(α, 6, 7) => 7 G OR and b : μ -> P(μ) and α C [7]<ω x ran 6 and, letting

EC = {x I (c, x) G α}, the E '̂s are compatible /i-complete measures on
[/ί]cardc "as far as sets in ran 6 are concerned".

(iv) F(α>6,γ)Λήα'>6,T)=».α = β'.
(v) (Normality) (V/ : \μ}n -> /i)(V6 : /i -» (P([μ]n) U P([A]n+1))) pf 6 «

/-closed then Vα, ί(F(α, 6, δ) =>• α = (Ee \ c € [ί]<ω) is normal with
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respect to /)] (where "6 is /-closed" stands for the formula: V A G
ran δ Π P([/ι]n)Vι < n{{c*ι . . .αt ,/?,αt>1 . . .αn} | (αι...αn) G A Λ β =
/(αι...αn)} G ran 6).

So far, condition (i) is rQ while (ii)-(v) are actually rΠi, and we have asserted
enough to ensure that Ult(Λί,F) makes sense whenever M (= (i)-(v), where
F = Uία I FM(a,b,6) for some δ,ί}. Normality guarantees ORΛ* C ω/p(Ult),
but we must have OR ̂  G wfp(Ult) for pre-extenderhood. From condition 3 of
goodness at a (a = OR^), we know that we want to assert that [{i'}̂ , /]£* = α
where /(/?) = (β+)M for β < μM. The next clauses in Θ2 do this.

(vi) V ordinals 6 > is Vγ >δ Vα, 6 (if F(α, 6, 7) and {(α, 0) | /j? |= card /? <
a] = x is in ran 6, then ({ι>, ί}, x) G α).

We have to say finally that there is no function "between" /(/?) = /?+ on the
z>th coordinate and the projection functions on arbitrary coordinates.

(vii) For cofinally many pairs (θ, 7) in the product order on μ+ x OR there
are α, 6 and 6 such that

F(α, 6, 6) Λ δ > 7 Λ Vn < ω (P([μ]n) Π jf C ran ό)

and for all functions / G Jf such that / : [μ]n — *• /i, and for all c G [τ]<ω

such that c = {r/i r;n} for some ordinals ?/ι < < ηn with ιjt = i>,
and

(c, {(ax... αn) I /(αi ... «„) < (at ) J/ }) e a

there is an ordinal £ such that 7 < ζ < δ and

(cU {£} , {(αi - αn+ι) | /(«ι αn) < «n4-i}) G α .

The formula in (vii) is rQ. To see that if M satisfies (i-vii) then /(/?) = (β+)M,
on the ί/M coordinate, represents OR^ in Ult, notice that as μM is a cardinal

of M, strong acceptability implies ((α+)J* )M = ((*t)M for αf < μM. We leave
to the reader the not entirely trivial fact that any active ppm satisfies (vii).

Let 02 be the conjunction of (i)-(vii). If M satisfies θ\ Λ #2, then M satisfies
conditions 1, 2, and part of 3 of good at α, for α = OR^. We capture the rest
of condition 3 with #3:

#3: There are cofinally many 7 G OR such that 3α, 6, δ(F(ay 6, δ) Λ δ > 7 Λ 3f :
[μ]n -> μ 3c G [i>]n such that ί> - 1 G c and

(cU {7}, {(αi ...*„,/?) I /(αi . . .αn) = £Λ jf |= card(^) < αn}) G α .

Moreover, /> — 1 is a generator of F; that is Vα, 6, δ V/ : [/i]n — >• /i

Vc C z> - 1 (cU {j> - 1}, {(αi . . .αn,/J) | /(ttl ...<*„) = /?}) g α .
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The formula θ$ is the conjunction of an rQ sentence and an rΠi sentence, so #3
in rQ. One can check that if M \= #3, i>M - 1 is the largest generator of FM.
Notice here that if 7 > j> satisfies the displayed clause of #3, then there are no
generators between 7 and ι>.

Recall that we are working with a type II ppm Λί, so that ύM — 1 exists.

We can capture coherence, which is condition 4 of good at α, with an rΠi
sentence 04: θ\ just says Vα,fr,ί (F(α,6, δ) =» "α is coherent as far as sets in 6
go"). We omit further detail.

Condition 5 is a disjunction of two possibilities, (a) and (b), and we accordingly
set 05 = ψι V Vj2 The formula VΊ, asserting that clause 5a holds, is "7 > ι> — 1
and 7 G dom £" and Vα, b(F(a, 6, ι> - 1) =>> a C E^) and Vξ < 7 (ζ a generator

of E*.γ =Φ> £ < ί> — 1)." The formula V>ι is rΠi (its third conjunct is the only one

not Σo in £ - {F}).

The formula ^2, asserting that clause 5b holds, says that 7 = (τy,6,y), where
if we set G = [6, g]f. then 77 is the natural length of G and is in dom(£*), the

conjunction of the following three formulas holds:

g(u) is on E for (Eη)ι> a.e. ύ

< Ih G(ί a generator of G => ζ < v - 1)

and finally G ̂  [α, /]^ whenever (α, /) is constructed before (6, g). We leave it

to the reader to see that the formula V>2 is also

The formula θ$ = ψ\ V V>2 captures (5) for the "last" proper initial segment of
FM. Together with the Π0 in £ - {F} assertion that EM is good at all β < α,
#5 captures (5).

Let φ be the HI assertion that EM is good at all β < QRM. Then φ Λ Λ, <5 ^
is the desired rQ sentence. This completes the proof of 2.5. ~ D

Corollary 2.6. Let M be a ppm which is passive or active of types I or II.
Then

(a) if π : ft — + Λί is an rΣi embedding, then Tϊ is a ppm of the same type
as M and ̂ μ*) = μM, π(i/w) = ι/M, and π(7W) = 7^,

(b) if π : Λ4 —+ P is either a cofinal rΣo embedding or a *Σι over rΣi *
embedding (see the proof of 2.7 for the definition) then P is a ppm of the
same type as M, and π(μM) = μτ , π(ι/M) = vτ , and π(yM) = 7^.

The natural embedding π : Ή^(X) -* M is clearly rΣι, so it follows that
H^(X) is a ppm of the same type as M. The next lemma shows that in certain
circumstances π in fact preserves generalized rΣn formulae.
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Lemma 2.7. Let M be a ppm which is passive or active type I or II. Let
U = Ή**(X\ whcre X C\M\ andn>l. Suppose that if n > 2, then

/tfίi < OR" ^3qεx (Th^o^ u {?}) ί

and i f n > 3, Men

=» /rfia € X Λ 3g € X (Th£2(/£2 U

Let π : 7ί —*• M be the inverse of the collapse. Then

(a) H \= φ[ά] iff M )p φ[π(a)] for φ generalized rΣn and a G H
(b) for 1 < i < n - 2

1 ~~ 1 π(p?) < ORM ifp? < OR*

f the least α such that π(α) > p^l

I OR™ if no such a exists.

PROOF. For i > 0 and k > 1, we say a formula φ is Σ* over (generalized) rΣ, iff

φ =

where φ is a Boolean combination of (generalized) rΣ, formulae and Q* = 3 or
V as appropriate. (Here generalized rΣo =

We show by induction on i that for 0 < i < n — 1

(i) If φ is Σn_, over generalized rΣ*, then for all ά € H

H\=φ(a}<#M\=φ[κ(a)},

(ii) for 1 < i < n - 1 and α, 6 G H

(iii) for 1 < i < n — 2, (b) of the statement of the lemma holds, and for i = n — 1,
(c) holds

(iv) if φ is generalized rΣ, +ι, then for all a E H

Proof of (i). If θ is Σn_, over generalized rΣ, , then the translation procedure
mentioned earlier gives us an rΣn formula θ* which is equivalent to θ over
all ppm. As ranπ is closed under r£*, we see that if 3x(M ^= θ[xy
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then 3x G ranπ(Λί [= 0[z,π(6)]). But now π is elementary with respect to all
generalized rΣ, formulae (trivially if i = 0, or by the induction hypothesis (iv)
if i > 0). So the usual induction on the length of the quantifier prefix in φ gives

(i)

Proof of (ii). First we observe that for any i > I there is a HI over rΣ, formula
0"(vo> vι) such that for any ppm P

To see this, notice first that there is a recursive function associating to each term
τ G Skt a ΣI over rΣ. formula ΘT such that rv[ά] = b iff P |= 0r[ά,6], for all
ppm P. For basic r, say T = τφ, let 0r(u, v) be the formula

(^?(ϋ, v) Λ Vu; < t; -ιy>(ϋ, w)) V (v = 0 Λ Vw -^>(ϋ, u>)) .

In this case θτ is a Boolean combination of rΣ, formulae. The extension of
r ι-> θr to all of Sk, is obvious. Notice second that rΣ, satisfaction is uniformly
rΣ, over all ppm.

It then follows that generalized rΣ, satisfaction is uniformly ΣI over rΣ, , as well
as uniformly Πi over rΣ, , over all ppm. This gives us the desired formula σ.

Clause (ii) follows easily from (i) and the existence of σ.

proof of (Hi). We first prove clause (b) for t < n — 3. Consider for example the
first equivalence. The statement "p^ = ORM" can be expressed

M \= Vα G OR VgΞfr σ(α U {?}, 6)

where σ is the formula asserting that 6 = Thf(α) from part (ii). This sentence
is Πa over rΣ, , so true in M iff true in W as i < n — 3 and we have induction
hypothesis (i) at i. A similar calculation gives the second equivalence.

Clause (b) for i = n — 2 comes from a similar calculation. If pf* = ORM then
as we have just seen this is expressible by a Πa over rΣ, sentence which, since
true in M, must go down to Ή by induction hypothesis (i). If pf* < ORM,
then by hypothesis pf* and a suitable parameter p are in ran(π). We get M ^=
Mb-^σ(ρ^ U {p},fr), which is U2 over rΣ, and thus goes down to ?ί, showing
p? < π~l(ρf*). The second implication comes from a similar calculation.

Finally, in the case i = n — 1 we must prove (c).

Let τr(α) < pftiύ we claim α < p*_lβ For let q€\Ή\. Then

τh£-ι Wα) U {*($)}) = unique c such that 3α, 6(1̂ 1 ̂ α, 6)Λ

α = π(α) U {π(ςf)} Λ b = c)

so we can find b G \H\ such that
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But then Th^.^α U {q}) = 6 by (ii), so Th^α U {q}) G |7ί|, and as q was
arbitrary, a < pjlj.

On the other hand, if π(α) > p^, then by hypothesis we have a p G ran π such
that

Let π(g) = p. Then ThJ.^α U {q}) (g |7ί|, so α > p* .̂

Finally, we prove (iv) at t. Notice first that

6 iff

For suppose T^(a, 6). Then a = (a, q) where a < p?, and 6 = Th*(αU{g}). By
(ii), π(6) = τh?(π(a)U{π(q)}), and by (iii) »(<*) < p? . Thus 7jW(»(a),ir(6)).
The converse is equally easy.

It follows at once that π is rΣn+ι elementary. Suppose for example that M. \=
3α, 6(7i(α, 6) Λ φ(a^ 6, τr(c))). Then applying the proper term in Skn to π(c) we
get α, 6 G ran π such that Tf*(a, 6) Λ ^(α, 6, π(c)), and we're done.

As the graph of any basic r G Sk, +ι is definable by a boolean combination of
rΣt +ι formulae, uniformly over all ppm, we see now that π is generalized rΣ, +ι
elementary.

This completes the proof of lemma 2.7.

Standard parameters and cores.

DEFINITION 2.7.1. A parameter of M is a sequence (αo, . . . , α*) of ordinals of
M such that αo > c*ι > > αjb

DEFINITION 2.7.2. <ιex is the lexicographic wellordering of all parameters (i.e.
of all descending sequences of ordinals).

DEFINITION 2.7.3. Given a ppm M with p%* < ORM and given q G |Λί|, the
kth standard parameter of (Λi, q) is the <ιex least parameter p of M such that

We now define two useful properties a parameter might possess, solidity and
universality. We shall eventually show that the appropriate standard parameters
associated to the levels of the model we shall construct are solid and universal.

Solid parameters.

DEFINITION 2.7.4. Let r = {αo at) be a descending sequence of ordinals, M
a ppm which is passive or active of types I or II, and q G |Λf |, and 1 < k < ω.
We say r is k solid over (Λ4, q) iff for all i < ί
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We are interested in the case that r is the kth standard parameter of (M,q).
Notice that in this case α^ > p£*, and for any finite s C α, , Th£*(p£< U s U
{{αo αt _ι),g}) G |Λ4| simply by the <ιex minimality of r. Solidity is the
uniform version of this closure property of M : (αo . . .07} is Jb-solid over (M,q)
iff π G M, where π(s, i) = Th^(/?^ U 5 U {(α0 . . .α, _ι}, ?}), for all i < ί and
finite s C αf .

Solidity is useful because it is easier to show solidity is preserved by the appro-
priate embeddings than to show standardness is.

Universal parameters.

DEFINITION 2.7.5. Let M be a ppm, q G \M\, r a parameter of M, and
1 < k < ω. We say that r is k-universal over (M,q) iff whenever A G \M\ and
A C ρ%* , there is some term τ G Sk* and a G p% ω such that

Again, we are interested in the case r is the kth standard parameter of (Λ4, q).
The Jk-universality of r will be used to show r remains the standard parameter
in a certain hull of ΛΊ the argument is given in the next lemma.

Lemma 2.8. Let π : Ή, —> M be generalized rE* elementary , where M is a
ppm and I < k < ω. Suppose p%* C OR7* and π \ p^4 = identity. Suppose
also that π(r) is the kth standard parameter (Λί,π(ςr)), and π(r) is k- solid and
k-universal over (M, tf(tf)). Then ρ£ = pήf , r is the kth standard parameter of
(W, q), and r is k-universal over (W, q).

PROOF. For a < p£* we have Th£(α U {s}) = Th^(α U MS)}), moreover
the theory in question can be regarded as a subset of α. If α < />£*, then

as p%* is a cardinal of M and Λί is strongly acceptable, Th£*(α U {^(«)})

belongs to U. This shows that p? < p% But Th^(/?^ U {(r,q)}) £ |W|, as
otherwise, letting A C pζ* code it, we have A = π(A) Π p%* G |ΛΊ|, and so

U {^(r),π(ς)}) G |Λ1|, a contradiction. Thus p? = p% .

We have Th^(p^ U {r, q}) £ |7ί|, so to see that r is the kih standard parameter
of (W,ςr), suppose s <ιex r. So π(s) <ιex π(r), and we have A C p^, A G |Λ<|,

such that A codes Th^(p^ U {π(s),π(ί)}). The k universality of π(r) over

(M, π(q)) easily implies A G W, and so Th^(/# U {s, q}) G |W|, as desired.

It is routine to check that r is fc-universal over (Ή,,q). D

We now define by induction on k > 0

<tk(M) = the fcth core of M ,

= the fcth core projectum of M ,
= the Jbth core parameter of M .
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We shall assume that certain parameters we encounter in the course of the defi-
nition are solid and universal; otherwise we stop the induction. This assumption
may not be necessary for a sensible definition, but it is true of the ppm we are
interested in, as we shall show later.

DEFINITION 2.8.1. Let Λ4 be a ppm which is passive or active of types I or
II. We define <£t(.M), pt(Af), and pk(M) by induction on k.

k = 0: Let Po(M) = ORM, <to(M) = Λί, and Po(M) = 0.

k = 1: Let r = first standard parameter of (Λ4,0). Suppose r is 1-universal
over (Λί, 0); otherwise stop the induction. Let

be the inverse of the collapse. If ̂ -1(r) is not 1-solid over (Hi*(p\* u M)> 0)
then stop the induction, and otherwise set

Notice that pι(Λί) = τr((s,g}), where s is the first standard parameter of
(<£ι(Λ4),g), and s is 1-solid and 1-universal over (<tι(M),q). (This follows from
Lemma 2.8.)

k > 1: Suppose we are given

= (s,q)

where s is the Jfe-lst standard parameter of (£fc-ι(Λ<), q) and s is k - 1 solid and
k — 1 universal over (ίjk-ι(Λί),g). Let

«= (α0 •••£*/)

and
bt = T h ^ ' α . U {α0, .... α,-ι, «})

for 0<i<t,ao that 6, e |ίjt_ι(Λί)| by solidity. Set

r <.,,.*» 6/> if />t

eϊ.-2

ι(Λ<)

= u = < . .
I (*,9Λ W£l-2

l( ̂ ) otherwise.

Let r be the Hh standard parameter of (Cjfc-ι(Λί),u). If r is not Jb-solid and
Jfc-universal over (£*-ι(Λ4),u), then stop the induction. If it is, consider

* : K?-l(M) (p£k-l(m) U {r,ιι}) - Ck-
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the inverse of the collapse. Suppose that π~l(r) is fc-solid over

if not then we stop the induction. Set then

and
<tk(M) = 7f J'-'W^-iί") U {r, u}) .

DEFINITION 2.8.2. A ppm M is k-solidiff <tk(M) is defined.

DEFINITION 2.8.3. M is k-sound iff M is Jb-solid and (C, (Λ<) = M for all
i < k. M is a core ppm or: completely sound, or u -sound, iff M is k sound for
all k < ω such that p£^l / 0.

All levels of the model we eventually construct will be ω sound (for active type III
levels this will be given a meaning in the next section). Nevertheless, one must
consider ppm which are not α -sound, as iteration of a core ppm can produce
them.

Notice that if Λί is Jk-sound, then pi(M) = pf4 for f < k + 1. If M is not i — 1
sound, then pi(M) φ pf4 is possible.

We record in a definition some properties of the natural embedding π mapping
<tk+ι(M) into <tk (M).

DEFINITION 2.8.4. Let π : M — > ΛO and k < ω. We call π a k-embedding iff

(a) M and M are fc-sound, (b) π is rΣjb+i elementary, (c) *(pi(M)) = pί(W) for
all i < Jb, (d) π(pi(M)) = Pi(tf) for all i < k - 1, and ̂ (jV) = sup *"ph(M).

(We adopt the convention that π(ORM) = OR ̂  in the previous definition.)

Lemma 2.9. Let M be a k + 1 so/id ppm, αnrf π : <£jb+ι(Λ<) — *• <£fc(Λ<) 6e <Ae
inverse of the collapse. Then π is a k-embedding moreover <£*+ι(Λf) is k + 1

sound and π(pk+ι(£k+i(M)) = Pk+ι(£k(M).

Remark. It is easy to see that if π : M — > λί is a i-embedding, then ?r(iίt(Λί)) =

Appendix to §2
We close this section by relating the rΣn hierarchy to the more traditional hier-
archy involving master codes and iterated ΣI definability.

First, the use of generalized rΣn+ι formulae rather than just pure rΣn+ι for-
mulae in defining Th^pQ does not affect the value of />£+χ, at least if M is
n sound.
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Lemma 2.10. Lei M be a ppm and n > 0. Let q £ \M\, and suppose in the
case that n > 1 that M = ̂ (p*? U {q}). Suppose that

α U {q}) Π {(φ, a) \ φ is pure rΣn+ι}

is a member of\M\. Then in fact ThJ^α U {q}) G |Λί |.

PROOF. We give the proof in full only for n = 0 and M passive and ORM = ωλ,
for λ a limit. So let us make those assumptions. Let

Λ4 = (jf,G,£) (A limit)

and

for β < λ. For τ G Ski, β < λ, and ΰ G |Λ^ί/?|<w, we say that r(u) changes value
at /J i f f

Notice that if τφ G Ski is a basic term, then τφ(u) changes value finitely often,
since the new value precedes the old in the order of construction (unless the old
is 0). It follows that for any T G Ski, τ(ΰ) changes value finitely often. Notice
also that there is a recursive map (r, n) ι— * θT)n associating to each r G Ski and
n < ω an rΣi formula 0r>n such that M [= 0τ,n[ΰ, α] if and only if τ(u) changes
value at least n times and a is the nth value of τ(ΰ). Now, letting

P = Th^(α U {q}) Π {(φ, ά> | φ is pure rΣn+ι}

we can compute Th^(α U {q}) from P inside M as follows: Given a potential
member (y>, a) of Thf*(α U {q}), which we write as ψ(τι(ΰ) τjb(ϋ)) where ψ is
pure rΣi and τ\ r* G Ski and ΰ G (<*U{</})<u;, find first numbers n\ n* < α;
such that

*<*

and

*<*

Then (^>, ά) G Thf^α U {?} iff

aαι '

«<*

is a member of P.

If M = (jf+ 1, G, ϊ?), then we can use the Sua+n, for n < ω, as we used the Mβ's
of the previous argument.
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If M is active, then we can use the fact that rΣ™ = ΣI over M*, where M*
is the amenable structure associated to M (cf. the remark following Corollary
2.2.) We can then ramify ΣI over M* as above to carry out the proof.

This finishes the case n = 0. Now let n > 1. If r G Skn and β G (ftf)<ω , then
we call the triple (r, β, q) a name of τM[β, q]. We are assuming every member of
\M\ has a name. If θ is rΣn+ι and αi α* are names and β < p%* , then we let
"Th^βU {q}) witnesses that θ(a\ α*)" have the obvious meaning. Namely,
if

θ = 3α, 6(Tn(α, 6) Λ ψ(a, 6, υi - - υk))

and

then Th£*(/? U {q}) witnesses θ(ctι αt) iff there is a 7 < β and there are
names (σι,ήι,q) and (0"2,rJ2»i) such that, first, the following sentences are in

(a) σ\(ήι , q) = (7, x) for some x such that σϊ(ή 2} q) is a complete generalized
rΣn theory of parameters in 7 U {x}.

(b) ψ(σι(ηι,q), σ2(τ?2, ̂ ), n(Λ, ί) Tk(fa, q)).

(implicit here is that βi,ήi € /?<ω), and second, if we let σj [ήι,q] = second co-

ordinate of σ^1 [ήi , q] , and we let f(φ, 6) =_a canonical name for (φ, 6* σ{ [ήι , q])
for each generalized rΣn formula ^> and ί G 7<ω , then

) € σ2(ij2> β)» € TC(0 U {«})iίr V(ϊ, σ*(ή!, ϊ))" € Th^(^3 U

Remark. We have taken some liberties above, as Th£*(/? U {g}) is not literally
speaking a set of sentences.

Now for T G Skn+ι and αi α*, 6 names and β < p** let

τβ(aι α fc) = 6 iff Th^(/?U {q}) witnesses τ(aλ - -α k) = 6

where the right hand side is interpreted in the spirit above. We can use the r^'s
to carry out the argument given in the case n = 0. D

The calculations just indicated also give

Lemma 2.11. Lei M be a ppm, q G \M\9 and M = Ή*?{ρ*? U {q}) where
n>l. Lei

A = Th^(p^ U {«}) Π {(φ, c) I φ is pure rΣn} ,

coded in a natural way as a subsei of ρ£*. Then, leiiing
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λf is amenable, and for all B C p%* , B is rE^ iffB is ΣI overλf.

PROOF. From A Π a we can compute Th^(α U {q}) in a simple way, as in the
preceding lemma. Thus we may as well assume A = Th^(p^ U {q}). Now
suppose

η G B & M |= φ[η, x]

and let x = σ[β, q], σ G Skn, β 6 (p^ί)<α>, where ^> is rΣn4.ι. Then

iϊ€B«»3/?</ ιA 4 (Th^(/?U{ί}) witnesses <p(η , σ(β , q)))

where ;;* is a canonical name for η. This shows B is ΣI over .ΛΛ The converse
is easy. D




