107

32 X} equivalence relations

Theorem 32.1 (Burgess [14]) Suppose E is a £} equivalence relation. Then
either E has < w; equivalence classes or there ezists a perfect set of pairwise
E-inequivalent reals.

proof:
We will need to prove the boundedness theorem for this result. Define

WF = {T Cw<“ : Tis a well-founded tree}.

For a < w; define W F, to the subset of WF of all well-founded trees of rank
< a. WF is a complete II} set, i.e., for every B C w* which is II} there exists a
continuous map f such that f~!(WF) = B (see Theorem 17.4). Consequently,
W is not Borel. On the other hand each of the WF.,, are Borel.

Lemma 32.2 For each a < w; the set WF<, is Borel.

proof:
Define for s € w<¥ and a < w;

WF., ={T Cw<“:Tisatree, s€T, rr(s) < a}.

The fact that WFZ, is Borel is proved by induction on a. The set of trees is
Y. For A a limit
WF, = | wrz,.
a<A

For a successor o + 1

TeWF,,,, iff s€T and Vn (SﬁnET-*TeWFz;" .

]
_ Another way to prove this is take a tree T of rank a and note that WF¢, =
{T : T < T} and this set is Al and hence Borel by Theorem 26.1.

Lemma 32.3 (Boundedness) If A C WF is £1, then there ezists a < wy such
that AC WF,.

proof:
Suppose no such «a exists. Then

T € WF iff there exists T' € A such that T < 7.

But this would give a ¥} definition of W F, contradiction.

|
There is also a lightface version of the boundedness theorem, i.e., if A is

a ! subset of WF, then there exists a recursive ordinal a < w{¥ such that
A C WF¢,. Otherwise,
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{e € w : e is the code of a recursive well-founded tree }

would be 1.

Now suppose that E is a ¥} equivalence relation. By the Normal Form
Theorem 17.4 we know there exists a continuous mapping (z,y) — T, such
that Ty, is always a tree and

cEyiff T,, ¢ WF.

Define
zEyiff Ty ¢ WF¢,.

By Lemma 32.2 we know that the binary relation E, is Borel. Note that E,
refines Ej for a > B. Clearly,

E:ﬂE,,

alwi

and for any limit ordinal A
E), = n E,.
a<A
While there is no reason to expect that any of the F, are equivalence rela-
tions, we use the boundedness theorem to show that many are.

Lemma 32.4 For unboundedly many a < wy the binary relation E, is an equiv-
alence relation.

proof:
Note that every E, must be reflexive, since E is reflexive and £ = )
The following claim will allow us to handle symmetry.

Ea.

alwy

Claim: For every a < w; there exists # < w; such that for every z,y
if zE,y and y Foz, then = Fgy.

proof:
Let
A={T;y : zEqay and y Foz}.

Then A is a Borel set. Since y Foz implies y Fz and hence z Fy, it follows
that A C WF. By the Boundedness Theorem 32.3 there exists # < w; such that
ACWF¢g.

|

The next claim is to take care of transitivity.

Claim: For every a < w; there exists § < w; such that for every z,y, 2

if Eqy and yE, z, and z Fqz, then either ¢ Fgy or y Fjs2.
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proof:
Let

B ={Tzy ® Ty, : tEoy, yEqz, and = F,z2}.
The operation @ on a pair of trees Ty and T3 is defined by

TodTh ={(s,t):s €Ty, t€Ti, and |s| = [t]}.

Note that the rank of Ty @ T is the minimum of the rank of 7y and the rank
of Ty. (Define the rank function on Tp @ T3 by taking the minimum of the rank
functions on the two trees.)

The set B is Borel because the relation E, is. Note also that since z Eoz
implies z Fz and E is an equivalence relation, then either z Ey or y Fz. It
follows that either Tzy € WF or T,, € WF and so in either case Ty ®Ty, € WF
and so B C WF. Again, by the Boundedness Theorem there is a 8 < w; such
that B C W F¢p and this proves the Claim.
|

Now we use the Claims to prove the Lemma. Using the usual Lowenheim-
Skolem argument we can find arbitrarily large countable ordinals A such that for
every a < A there is a # < A which satisfies both Claims for a. But this means
that E) is an equivalence relation. For suppose zE)y and y Fxz. Then since
Ex = (\a<x Eo there must be a < A such that zE,y and y Faz. But by the
Claim there exist 3 < A such that £ Fsy and hence z £y, a contradiction. A
similar argument using the second Claim works for transitivity.

]

Let G be any generic filter over V with the property that it collapses w; but
not wy. For example, Levy forcing with finite partial functions from w to w;
(see Kunen [54] or Jech [43]). Then wY[G] = wY. By absoluteness, E is still an
equivalence relation and for any « if E, was an equivalence relation in V, then
it still is one in V[G]. Since

Ey= () Ea

a<wy

and the intersection of equivalence relations is an equivalence relation, it follows
that the Borel relation E'w}' is an equivalence relation. So now suppose that
E had more than ws equivalence classes in V. Let @ be a set of size wy in V
of pairwise E-inequivalent reals. Then Q has cardinality w, in V[G] and for
every ¢ # y € Q there exists @ < w] with z F,y. Hence it must be that the
elements of Q are in different E, v equivalence classes. Consequently, by Silver’s
Theorem 30.1 there exists a perfect set P of E,v-inequivalent reals. Since in
V[G] the equivalence relation E refines E, v, it must be that the elements of P

are pairwise E-inequivalent also. The following is a ¥} statement:
V[G] £ 3P perfect VaVy (z,y € P and z # y) — z Fy.

Hence, by Shoenfield Absoluteness 20.2, V must think that there is a perfect set
of E-inequivalent reals.
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A way to avoid taking a generic extension of the universe is to suppose
Burgess’s Theorem is false. Then let M be the transitive collapse of an elemen-
tary substructure of some sufficiently large V, (at least large enough to know
about absoluteness and Silver’s Theorem). Let M[G] be obtained as in the above
proof by Levy collapsing w?. Then we can conclude as above that M thinks
E has a perfect set of inequivalent elements, which contradicts the assumption
that M thought Burgess’s Theorem was false.
|

By Harrington’s Theorem 25.1 it is consistent to have II1 sets of arbitrary
cardinality, e.g it is possible to have ¢ = w3 and there exists a II1 set B with
|B| = wi7. Hence, if we define

zEyiffz=yorz,y¢ B

then we get ¥} equivalence relation with exactly w;7 equivalence classes, but
since the continuum is wag there is no perfect set of F-inequivalent reals.

See Burgess [15] [16] and Hjorth [41] for more results on analytic equivalence
relations. For further results concerning projective equivalence relations see Har-
rington and Sami [37], Sami [94], Stern [107] [108], Kechris [49], Harrington and
Shelah [38], Shelah [95], and Harrington, Marker, and Shelah [39].





