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32 Σ} equivalence relations

Theorem 32.1 (Burgess [14]) Suppose E is a §} equivalence relation. Then
either E has < ω\ equivalence classes or there exists a perfect set of pairwise
E-inequivalent reals.

proof:
We will need to prove the boundedness theorem for this result. Define

WF = {T C ω<ω : Tis a well-founded tree}.

For a <ωχ define WF<a to the subset of WF of all well-founded trees of rank
< a. WF is a complete Π* set, i.e., for every B Cωω which is Πj there exists a
continuous map / such that f~ι(WF) = B (see Theorem 17.4). Consequently,
WF is not Borel. On the other hand each of the WF<a are Borel.

Lemma 32.2 For each a < ω\ the set WF<a is Borel.

proof:
Define for s G u<ω and a < ω\

WFs

<a = { T C α ; < ω : T i s a tree, sGT, rτ(s) < α}.

The fact that WF<a is Borel is proved by induction on α. The set of trees is
Πf. For λ a limit

For a successor a + 1

T £ WFs

<aJtl iff s e T and Vn (ineT->Te WF&).

Another way to prove this is take a tree T of rank α and note that WF<a =
{f \f <T) and this set is A\ and hence Borel by Theorem 26.1.

Lemma 32.3 (Boundedness) If A C WF is Σ} ; then there exists a < ω\ such
thatACWFQ.

proof:
Suppose no such a exists. Then

T e WF iff there exists TeA such that T <f.

But this would give a Σ | definition of WF, contradiction.
•

There is also a lightface version of the boundedness theorem, i.e., if A is
a Σ\ subset of WF, then there exists a recursive ordinal a < ωfκ such that
AC WF<a. Otherwise,
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{e6w : e is the code of a recursive well-founded tree }

would be Σ{.

Now suppose that E is a Σj equivalence relation. By the Normal Form
Theorem 17.4 we know there exists a continuous mapping (x, y) »-• Txy such
that Txy is always a tree and

xEy iff Txy £ WF.

Define
xEayifίTxy <£WF<a.

By Lemma 32.2 we know that the binary relation Ea is Borel. Note that Ea

refines Eβ for a > β. Clearly,

and for any limit ordinal λ

Ex = f| Ea.

While there is no reason to expect that any of the Ea are equivalence rela-
tions, we use the boundedness theorem to show that many are.

Lemma 32.4 For unboundedly many α < ωi the binary relation Ea is an equiv-
alence relation.

proof:
Note that every EQ must be reflexive, since E is reflexive and E = f]a<ωi Ea.
The following claim will allow us to handle symmetry.

Claim: For every a < ω\ there exists β <ω\ such that for every x, y

if xEQy and y $Qx, then x

proof:
Let

A = {Txy : xEay and y ]βax}.

Then A is a Borel set. Since y lβax implies y fix and hence x fjy, it follows
that A C WF. By the Boundedness Theorem 32.3 there exists β <ω\ such that
ACWF<β.

m
The next claim is to take care of transitivity.

Claim: For every a <ωχ there exists β <ωχ such that for every x, y, z

if xEay and yEaz, and x Jfiaz, then either x $βy or y $βZ.
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proof:
Let

B = {Txy Θ Tyz : xEQy, yEQz, and x f

The operation φ on a pair of trees To and TΊ is defined by

Γ0ΘΓ1 = { ( M ) : « € T 0 , t € ϊ i , and \s\ = \t\}.

Note that the rank of To Θ 7\ is the minimum of the rank of To and the rank
of Ti. (Define the rank function on To φ TΊ by taking the minimum of the rank
functions on the two trees.)

The set B is Borel because the relation Eα is. Note also that since x fiQz
implies x fiz and E is an equivalence relation, then either x fiy or y fiz. It
follows that either Txy G WF or Tyz G WF and so in either case Txy ®Ty2 G WF
and so B C WF. Again, by the Boundedness Theorem there is a β < ω\ such
that B C WF<p and this proves the Claim.
•

Now we use the Claims to prove the Lemma. Using the usual Lowenheim-
Skolem argument we can find arbitrarily large countable ordinals λ such that for
every α < λ there is a β < λ which satisfies both Claims for α. But this means
that E\ is an equivalence relation. For suppose xE\y and y fi\x. Then since
E\ = Πα<λ Eot there must be α < λ such that xEαy and y fiαx. But by the
Claim there exist β < λ such that x fβy and hence x fi\y, a contradiction. A
similar argument using the second Claim works for transitivity.
•

Let G be any generic filter over V with the property that it collapses ω\ but
not ωi. For example, Levy forcing with finite partial functions from ω to ω\
(see Kunen [54] or Jech [43]). Then ωx

 ι J = ω\. By absoluteness, E is still an
equivalence relation and for any α if Eα was an equivalence relation in V, then
it still is one in V[G]. Since

κγ= n ^
α<ω

and the intersection of equivalence relations is an equivalence relation, it follows
that the Borel relation Eωv is an equivalence relation. So now suppose that
E had more than ω2 equivalence classes in V. Let Q be a set of size u>2 in V
of pairwise E-inequivalent reals. Then Q has cardinality ω\ in V[G] and for
every x φ y G Q there exists α < ω\ with x fiαy> Hence it must be that the
elements of Q are in different Eωv equivalence classes. Consequently, by Silver's
Theorem 30.1 there exists a perfect set P of ϋ^v-inequivalent reals. Since in
V[G] the equivalence relation E refines Eωv, it must be that the elements of P
are pairwise ϋMnequivalent also. The following is a Σ\ statement:

V[G] |= 3P perfect VxVy (a?, y G P and x φ y) -+ a? #y.

Hence, by Shoenfield Absoluteness 20.2, V must think that there is a perfect set
of £*-inequivalent reals.
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A way to avoid taking a generic extension of the universe is to suppose
Burgess's Theorem is false. Then let M be the transitive collapse of an elemen-
tary substructure of some sufficiently large Vκ (at least large enough to know
about absoluteness and Silver's Theorem). Let M[G] be obtained as in the above
proof by Levy collapsing ωψ. Then we can conclude as above that M thinks
E has a perfect set of inequivalent elements, which contradicts the assumption
that M thought Burgess's Theorem was false.
•

By Harrington's Theorem 25.1 it is consistent to have Ώ.\ sets of arbitrary
cardinality, e.g it is possible to have c = u>23 and there exists a Π2 set B with
\B\ = ωπ. Hence, if we define

xEy iff x = y or #, y £ B

then we get Σ2 equivalence relation with exactly ωu equivalence classes, but
since the continuum is ω23 there is no perfect set of ϋMnequivalent reals.

See Burgess [15] [16] and Hjorth [41] for more results on analytic equivalence
relations. For further results concerning protective equivalence relations see Har-
rington and Sami [37], Sami [94], Stern [107] [108], Kechris [49], Harrington and
Shelah [38], Shelah [95], and Harrington, Marker, and Shelah [39].




