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Summary. Let M be a transitive model for ZF(or [see D] Basic Set Theory + the
Collection Scheme). Let (Pui € /) GM be a family of notions of forcing and Q
be the weak product of ω copies of the family. If H is Q-generic over M and N =
U{M[H|s]: s C /xω, s-finite}, then always Nf=BST + the Replacement Scheme but
not necessary N^=the Collection Scheme. If M|=ZF, then the Power Set Axiom does
not hold in N but N|= Va3β(β = N«). If λφWOP (the Well-Ordering Principle),
then N(=WOP. Thus, even in Set Theory with WOP and as many alephs as ordinals,
the principle of collecting sets in a definable manner does not support the principle
of collecting sets in a loose manner.

1. Reconstruction.

I have been inspired by Michael Hallett's "Cantorian Set Theory and Limi-
tation of Size," [see H], to look for justifiable Cantorian set theories different
than ZF or ZFC but equiconsistent with ZF.

According to [3], p.73, Cantor claimed in his letter to Mittag-Leffler of 14
November 1884 that the continuum could not be of the second power, even
more that c . . .it has no power specifiable by a number,'(Cantor changed his
mind next day). In 1904, Jules Kόnig from Budapest presented a paper at
the Third International Congress of Mathematicians which claimed that the
power of Cantor's continuum was not an aleph at all.

Cantor stated a few times that by sets he meant to include only well-
orderable collections that could be joined by some rule into a whole ([3],
p.245). He clearly believed in existence of Nα for every ordinal a.

If every set is well-orderable and the power of the continuum is not an
aleph, then the Power Set Axiom cannot be accepted, so we need another
principle that generates alephs. It is the Hartog's functional.

Let N(z) = {a:3f(f:a ^4 x)}. Then ZFH! = BST + the Replacement

Scheme H- Vz3/?(N(z) C /?) and ZFH = ZFH! + the Collection Scheme are
theories pretty close to ZF that do not exclude WOP and the continuum
being non-well-order able by any class.
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For logical scrutiny it would be better to use a modified GόdeΓs Set
Theory (see [2]) to express clearly the idea that the continuum is not well-
orderable by any class. The modified GόdeΓs Set Theory, GBH!, has the
axioms of groups A, B, and D, the same as in [2] and the axiom 3 of Group C
(the Power Set Axiom) is replaced by Vx3β(tt(x) C β), every set has Hartog's
number.

In practice, we may refrain from using the language of classes since in our

models ^(Continuum) = {α:3/(/:α —i Continuum)} is an ordinal, not
On, even if Continuum is a proper class. Of course, if X is a proper class
and N(X) < On, then X is non-well-orderable. Otherwise, we would have
Burali-Forti's Antinomy.

Kriple-Platek(KP) Set Theory is a subtheory of ZFH. It is not a subthe-
ory of ZFH! but one can analyze [1] or [2] to see that KP! = KP with the
/io-Collection Scheme replaced by the Z\o-Replacement Scheme is strong
enough to define the class L of constructible sets and to prove its abso-
luteness. If we add Vx3β(#(x) C /3), then we can prove the Condensation
Lemma, so ZFHIh [L is an inner model for ZF + V = L]. Thus, ZFC is one
of many extensions of ZFH! equiconsistent with ZFH!

In full ZF there is no difference between the Replacement Scheme,

VzΞ'.yΦ .=» Vα3!6[Vz G a3y G bΦ & Vy G b3x G αΦ],

and the Collection Scheme,

VxByΦ => Vα36[Vx G a3y G bΦ & Vy G b3x G αΦ],

but from a purely logical point of view they should be different—"attached"
sets ought to be more reliable than "loose" sets. The Collection Scheme is a
principle of choice for "sets of classes". If {Xj}jej is a "set of classes", then J
is a set and X = {(j, x): j G J & x G X./} is a class that formally represents the
family. The Collection Scheme says that for each "set of non-empty classes"
there is a family {zj}j& of non-empty sets such that Zj C Xj for j G J. The
Replacement Scheme is a more fundamental principle, so I would like to have
a model for ZFH! + WOP + -«the Collection Scheme + the continuum is not
well-order able by any class. Actually, a uniform way of constructing many
such models with different additional properties.

2. General Description of Models for ZFH! and
Consistency Results.

There is a uniform way to construct models for ZFH!. Start with a set I and
mutually disjoint collections A< of subsets of L for i G I such that the elements
of A = Ui€ι AI are somehow mutually independent and for each i G I the
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elements of A; are alike. Suppose that Θ(x,y) is an absolute formula such
that a G A t => Θ(i, α); j φ i & α G Af => -ιθ(j, α) for i,j G I.

Define Z(A) = U{LM :5 C A,s-finite}. Z(A) is closed on GόdeΓs opera-
tions, so Z(A)|=BST (see [1] p.36). Of course, L[s] \=WOP. Hence, Z(A)f=BST
+ WOP.

The mutual independence of elements of A is the key to the Replacement
Scheme in Z(A). Its exact meaning will be described in §2 in a more technical
fashion. Among many things it means that
L[SI] Π L[$2] = L[SI Π 52] for sι,$2 C A, si , .^-finite; if Φ(χ,d) is a formula
such that parameters
d G L[s] and Z(A)|= 3!a?Φ(x,d), then (3a? G L[s])Z(A) [= Φ(x,d).

If α € Z(A) and Z(A) |= Vz G α3!y!P(x, y,d), then there is a finite s C A
such that α, d G L[s]. Consequently, there is 6 C L[s] such that Vx G α3y G
6Z(A) |= !P(z,y,d), 6 C Lβ[s] for some α and La[s] G L[s] C Z(A). Once
we have the Comprehension Scheme in Z(A), we can prove that Z(A) f= the
Replacement Scheme.

To kill the Collection Scheme we define t(x) = {i G I: 3u G L[x]θ(i,u)}
for x G Z(A).

Of course, x G y => l(x) C ^(y). In many cases
(1) t = {£(x):xe Z(A)} G L even if ( ί ( x ) : x G Z(A)> i L,
(2) U* = I, and

Now, Vu G t3x(£(x) = u) but there is no 6 G Z(A) such that Vu G
G b(ί(x) = u). Otherwise, Vu G t(u C t(b)), so I = \Jt C ί(b) which

contradicts (3). Hence, the Collection Scheme fails for a very simple formula
Φ(x,y) = i(y) = x.

In some cases, especially when I is finite, Z(A) |= the Collection Scheme.
Prior to this paper I constructed Z(A) models (see [4]) and their modifications
for the following theories

(i) ZFH + AC 4- DC + -WOP,
(ii) ZFH + WOP + DC + Continuum is non-well-orderable + every set of

reals has cardinality < NI.

Actually, DC had not been discussed in [4], but the same proof that shows
the Collection Scheme also works for DC=the Principle of Dependent Choices
as a scheme. Also, in both models alephs are exactly constructible alephs.

In this paper, by a suitable choice of A<'s, a model Z(A) is constructed
such that (Z(A),G,A> \=ZFE\ 4- WOP + NI = Nj; + every set of reals is
countable. In the above model the ^lo-Collection Scheme fails, so ZFH! +
WOP \f KP. Therefore, KP has some flavor of non-constructiveness which is
a rather peculiar fact for the Foundations of Abstract Computability.

The last model has also startling consequences for Foundations of Real
Analysis since in the model the Cauchy's definition of continuity is not equiv-
alent to the Heine's definition even at the presence of WOP. Apparently, DC
fails in the model. Notice that at the same time we have WOP & c/(Nι) = NO-
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The new consistency results proven in this paper:
if ZF is consistent, then the following theories are consistent

(iii) ZFH! 4 WOP + -.the Collection Scheme + --DC,
(iv) ZFH! + WOP 4 -.the Collection Scheme 4- DC.

The models Z(A) are not designed to show consistency of ZFH! + WOP
+ the Collection Scheme 4- -.DC, i.e. ZFH -I- WOP + -«DC. The last theory
is equivalent to ZFH -I- WOP + -.the Reflection Principle.

The Reflection Principle is a scheme. For each formula Φ(xι,xι, ...,xn)
the corresponding axiom is the following statement:
Vα3έ(α G t & tis transitive & Vxi,^,. - ,#n £ t[Φ(xι,X2,...,xn)

I believe that ZFH 4 WOP 4 ->the Reflection Principle is consistent with
no clue how to prove it.

3. Mutual Independence.

Let pi = (Pi, <i) be a notion of forcing for i € I. Let (M, G) be a transitive
structure such that (i) if y is a finite subset of M, then y GM; (ii) IcM, and
(iii) Pi, <iC M for everyi Gl.
Let p= {(i,u,υ):u<iv & i G I}. Then p C M.

Definition 3.1. XCM is specifiable in (M,G,ρ) if
X = Dφtin = {x G M: (M, G,p) |= Φ[x,mι,m2,. . . ,rrijt]} /or some m =
(mι,m2, . . . ,mfc) EM and some formula Φ of the language of the structure
5p((M, G, p)) = the collection of all specifiable subsets of M.

Definition 3.2 (partial, finite, choice functions). Let B = (Bi\i G I) be a
family of some collections. Then
pcf(g,B) -Φ=^ Func(g) & g is finite & dom(g) C I x ω & V(i,n) G
dσm(g)(g(i,n) G βt ),
pci(g,B) <£=> pcf(g,B) & ^ {5 one-to-one.

Definition 3.3, FinInj(B) = {g-pd(g,B)} and it is ordered by reverse in-
clusion.

Definition 3.4. Let U be the weakest element of pi and B{ = Pi \ {li} for
i G I. Then Q = Q((^:i G I)) = {g:pcf(g,B)}.

Proposition 3.1. Q is specifiable in (M, G,ρ).

Definition 3.5. / <Q g <=> / , 0 G Q & doπι(f) D dσm(g) & V(i,n) G
dom(g)(f(i,n) <ig(i,n)).

Proposition 3.2. <Q is specifiable in (M,G,ρ).
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Proposition 3.3 (the weak product of ω copies of (p;: ί G I)). (Q, <Q) is a
notion of forcing.

Definition 3.6 (mutual independence). A = (λi'.i G I) is a family of mu-
tually independent generics (MIG) if

(i) a G A< => a is pi-geneήc over Sp((M, G, p)),
(ii) λi 's are mutually disjoint,
(Hi) ifai^nt G λit for ί - 1, 2, . . . , k and αίlιnι , αί2)Tl2, . . . , αίfc,nfc are distinct,

then αίl)Tll x αί2>n2 x . . . x αίfc>nfc is pix x ρί2 x . . . x ρifc -generic over
5p({M,G,p)),

(iv) for every p G Pi there are infinitely many a G A; sucΛ £Λα£ p € α;

Definition 3.7. If f e Q and F £ FinInj(A), then
pc(f,F) Φ=Φ doπι(f) C dσm(F) & V(i,n) € <foro(/)(/(i,n) G F(i,n)).
J/D G 5p((M,G,p)) and $D C Q, then D(Λ) = {F G Fin/nj(,Λ):3/ G

Lemma 3.1. If D is dense in Q, then D(Λ) is dense in FinΙnj(Λ).

Proof. Let F G FinInj(A) and ί = dom(F). t is a finite subset of I xω, so
t G M. D|ί = {0|£: p G D} G Sp((M,G,ρ)) and D\t is dense in Q|t = {/ G
Q:dom(/) C ί}.

By the assumption, f] F(i,ri) is Q|f-generic over 5p((M,G,ρ)), so
<i,n)6t

D|ί Π Π F(^n) ί β Therefore, there is / G D such that /|ί G
<;,n)et

Π F(ί,n), i.e. /|ί is a partial choice function for F.
<i,n)e*

Let {(n,ni),{z2,n 2),...,{ifc,ttfc)} = dom(f) \t. By the assumption (iv),
there are distinct αίljnι,αί2,n2, . . . ,αifc,nfc such that αi/>n/ G A^ for / =
1,2, . . . , f c , f(iι,nι) G α^n, for/ = 1,2,. . . , fc , and {αil)nι,αί2,n2, . . . ,αίfc,nfc}Π

Let G = FU {{{</, n/), α^.n, ): / = 1, 2, . . . , fc}. Then G D F, G G FinJnj(^),
and / is a partial choice function for G, so G G

Definition 3.8. LetΛ= {(Φ,m,F):J? G DΦ,m(A)}. Let H be FinInj(A)-
generic over Sp^M^A^.ΓhenH = {/ G Q:pc(/,(U#) I

i = {ίfί>n:n < α;}.

Theorem 3.1. Let A be a MIG family and H a Finlnj (A) -generic over
5p((M, G, ρM» . Then ~H is Q-geneήc over 5p((M, G, ρ» and Hi = λi for
each i G I.

Thus every MIG family can be reduced to the axes of an appropriate Q-
generic. Whatever we can prove about axes of a Q-generic we may apply it
to MIG families. One can skip the last theorem to obtain all other results of
this paper. It only shows that the mutual independence can be reduced to
the properties of (Q, <Q).
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4. Basics and Homogeneity Arguments.

We assume that M is a transitive model for ZF (for a proof of general prop-
erties ZF can be replaced by BST + the Collection Scheme; the Collection
Scheme is essential even if we want to show only the Replacement Scheme
in M[G]). (pi'.ί E I) EM is a family of notions of forcing and Q is the weak
product of ω copies of the family.

If H is Q-generic over M, and HίjTl = { f ( i , n ) : f E H}, then H;,n is pi-
generic over M (if (i,n) is not in dom(f) and /(i,n) is used, then it stands
for li). In general, if s EM and s C I x ω, and H|s = { f \ s : f E H}, then H|s is
Q|s-generic over M. Of course, Q|s = { f \ s : f E Q} = {/ E Q: dσm(f) C s}.

By the natural isomorphism, if (ί/, n/) E I x α;, / = 1, 2, . . . , fc, are distinct
pairs, then H;1)Tll x H;2,n2 x . . . x H;fc)nfc is p^ x p;2 x . . . x p;fc -generic over M
and M[Hil>nι xΉί2,n2 x. . .xH<fc,nJ = M[H|s] for s = {(ίhm):l = 1,2, .. . , *}.

Let P EM be any notion of forcing. Mp is the class of all P-names, so if
x_ E Mp and υ E x, then there are y_ E Mp and p E P such that v = (y,p).

a = {{&, 1): b E α} is the canonical name for a.
The ground model M is represented by the predicate 5, where
p|K S(x) = 3α(p|K X. = fi), P\\-S(x) = pp ^S(x).
If σ is an automorphism of P and σ EM, then it induces the automorphism
of Mp, denoted also by σ, such that σ(x) = {(σ(y), σ(p)): (y,p) E rr}. If G is

P-generic over M, then valo(cL) = {valo(b):3p E G((6,p) E α)} and M[G] =
{valG(a):aζ Mp}.

Lemma 4.1 (Permutation Lemma). IfΦ(vι,V2,. . . ,vn) is a formula of the
extended language(S may be used) and a\^a^ . . . ,αn E Mp, then for any
automorphism σ of P, σ EM, and any p E P
p\\-Φ(aι , α2, . . . , on) < — )• σ(p)||- Φ(σ(θι), σ(α2), . . . , σ(αn)) .

Lemma 4.2 (Fundamental Lemma). // G is P -generic over M, then M[G]
is the smallest transitive model for ZF (BST + the Collection Scheme, re-
spectively) such that M[G]DM and GeMfGJ. Moreover, (M/G/,E,M) ^=the
Collection Scheme and M is almost universal in M[G], i.e. if x €M[G] and
x CM, then there is y EM such that xCy. If M\=WOP, then M[Gfr= WOP.

Lemma 4.3 (Product Lemma). //Pi, PI EM are notions of forcing and G is
Pι*P2-generic over M, thenGi = {pi E Pι:3p2((pι,p2> € G)} is Pι-geneήc
over M and G2 = {p2'.3pi((pi,p2) E G)} is P2-generic over (M[Gι],E,M).
Also, G = Gi x G2, M[Gι][G2] = M[Gι x G2] = M[G2 x GI] = M[G2][Gι]
and M[Gι] Π M[G2] = M.

Let (σi'.i E I) EM be a family of permutations of ω. If / EQ, then σ(/)
is a finite function such that dom(σ(f)) = {(i,σi(n)): (i,n) E dom(f)} and

σ(/)(i,σi(n)) = /(i,n). Ί f s C I x ω , then σ[s] = {(t,σt-(n)): (i,n) E s}.

Proposition 4.1. If x E M^ls, then σ(x) E
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Proposition 4.2. Let f,g G<?. If s is a finite subset of Ixω and f\s is
compatible with g\s, then there is σ such that σ|MQ's = identity and f is
compatible with σ(g).

Canonical names:

Hz,n = {{A/|{(i,n)}):p = /(ί,n) & / € Q},

f t = { < H i > n , 0 ) : i € l & n < α ; } .

H; n is a name for Hί>n; H^ is a name for H|s, and ft is a name for A =
{H;,n: i G I, n < ω} = the collection of all axes of H.
σ(H,,n) = H^<(n), σ(Hs) = H ,̂, and σ(ή) = ft.

Lemma 4.4 (Restriction Lemma). For each formula Φ of the extended lan-
guage and any #ι,£2) . . . ,2^ 6 MQ'5, where s is a finite subset oflxω

Proo/. Proposition 4.2 and the Permutation Lemma.

Definition 4.1. A finite function, ψ, from a subset of I x ω to I x ω is
acceptable if φ is one-to-one and for each argument,(i,n), there is n' < ω
such that φ(i,n) = (i,n').

Lemma 4.5. Let s and s1 be disjoint, finite subsets of I x ω. Let q G Q
be a condition such that dom(q) = s' . Let Dς>S)S/ = {/ G Q:3φ(φ is
acceptable & dom(q) = 5' & φ[s'] (Ί (β U β') = 0 & dom(/) D (^[s7] &
V(i,n) E 5' f(φ(i,n)) = (?(i,n)}. ΓΛen Dg)S)S/ is α dense section of Q.

Proof. Let /o G Q and 5 = dom(/o) U 5 U 5'. 5 is a finite subset of I x cj, so
for every (i,n) G s' there are infinitely many n1 < ω such that (i^n1) £ 5.
Therefore, there is an acceptable φ such that dom(φ) = s' and <p(ΐ,n) £ s
for (i,n) G dom(φ). Hence, /0 ϋ {{^(i,n),g(i,n)):'(i,n) G 5'} G Q and it is
an extension of /o that belongs to Dς,s,s/ .

Corollary 4.1. ///o,/ 6 H, dom(/0) = 5, dom(f) = s U 5' ands.s1 are
disjoint, then there is σ G M sucΛ £Λα£ σ|MQls = identity, σ[s'] Π (5 U s;) =
0, dom(σ(/)) = s U σ[s7], and σ(/) G H.

Proo/. H Π Dς>s,s/ ^ 0, where q = /|5;. σ is an extension of an appropriate,
acceptable .̂

Theorem 4.1 (Theorem H; H=Homogeneity). If x e M[H], x C M[H|s0]
/or some /irate 50 C I x ω, and x is definable in (M[H],G,M) with the pa-
rameter A = {Hi,n: i € I, n < a;} and parameters from M[H|s] for some finite
s C I x ω, then x G M[H|s].
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Proof. Let -s0 = (Ixω)\5o By the Product Lemma M[H] = M[H|s0][H|-s0],
and by the Fundamental Lemma there is y G M[H|$o] such that x C y. y has
a name y G MQIS°. Let Φ(v,xι,xz,. . . ,zt, A) be a definition of x, where
xι,X2,...,xt G M[H|s], so (M[H],G,M) |= x = v « — > Φ(υ,zι,x2, - - ,&t, A).
Hence, (M[H],€,M> |= x = {w G y:3v[u G v & Φ(v,zι,Z2, ,fft,A)]}. Let
£ι>£2> »£t € MQ|s be names for #ι,Z2, ,#t, respectively. Let #(11) =
u G y &3v(w G υ&Φ(v,£ι,£2,...,£ t,ZO) If (u,0) G y, then u G MQI5° and,
by the Restriction Lemma, for every / G Q f\[~Ψ(u) < — > (f\s U s0)\\-Ψ(u).
Thus, x = {(M, /): / G Q|s U 50 & 30((u,p) G y ) & /||-tP(u)} 6 M^8Us° is a
name for x. Therefore, x G M[H|sUso] We want to show that x G M[H|s]. Let
s1 be disjoint with 5 and s(Js' = sUso By the Restriction Lemma, there is /o G
H|5 such that /0 |hVt;ι,t;2(Φ(t;ι,£1,^,...,^,ΛO&Φ(t^,x1, 22,..., 2t,Λ) =^
V l = V 2 ) .

By the Truth Lemma, there is / G H that extends /o and

By the Restriction Lemma we may assume that / G H|s U 5'.
By Corollary 4.1, there is σ G M such that σ|MQ|s = identity, σ[s'] Π (s U

s') = 0, and σ(f) G H.
Let g = f U σ(/). Then </ G Q and g G H. Of course, g extends /o,/, and

By the Permutation Lemma, ^(/Jll-Φίσίx),^,^* »£*>&) &
SB. x £,(.,)].

By the Extension Lemma,

xH,,], and
fe) G 5[HS x H ,̂,].

By the Truth Lemma, x = υalu(x) = valn(σ(x)) and x G M[H|s x H|s'] Π
x H|σ[β']].

By the Product Lemma (5,5', and σ[s'] are mutually disjoint), M[H|s x
H|5;] = M[H|5][H|57], M[H|sxH|σ[5']] = M[H|5][H|σ[5']], Ulsx^a'xE^s1])
is Q|5U(yUa[V])-generic over M, so Mplslpl^nMpl^iHH^]] = M[H|s].
Therefore, x G M[H|s].

Using Theorem H we can easily show a strong form of the Replacement
Scheme in N, N = (JMH|β]:s C I x ω,5-finite}. Let MFQ = |J{MQ|s: 5 C
I x ω, 5-finite}. Then N = {valH(x): x G MFC>}. N is definable in (M[H], G, M)
with the parameter A. Indeed, x G N ^=^ 3g(g is a finite subset of A &
x G M[#]). A^N, so we add an additional predicate to the language and
denote it also by A.

We want to show that (N, G,M,A) (=the Replacement Scheme. Actu-
ally, we can show even more. Let (M[H],G,M,A) \= Vx,yι,y2[Φ(x,yι,d) &
Φ(rr, 2/2? d) — >• 2/ι = ΪJ2\ , where Φ is a formula of the extended language and
parameters, d GN. Let a G N and b = {y G N: 3x G a Φ(x, y, d)}. There is a
finite 5 C I x ω such that α, d G M[H|s]. If x G α and Φ(x, y, d) & y G N, then
for some finite SQ C Ixω y C M[HJ5o] and y is definable in (M[H], G, M) with
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the parameter A and parameters z,d G M[H|s]. By Theorem H, y G M[H|s].
Thus, b C M[H|s] and its definition is shown. Hence, b G M[H|s]. This proves

Lemma 4.6 (Lemma R; R=Replacement). Let (M[H],G,M,A) (= Vx G N
3!y G N Φ[x,y,d], where d G N. If a G N and, in (M[H], G,M, A), b = {y G
N: 3x G αΦ(x,y,d)}, then b G N.

Theorem 4.2 (Theorem R). Le£ M be a transitive model at least for BST
+ the Collection Scheme. Let (p;:i G I) G M be a family of notions of forcing
and Q be the weak product of ω copies of the family. Let A be the collection
of all axes of H. Then

(i) (N,G,M,A) \=BST + the Replacement Scheme;
(ii) if M\= WOP, then N\= WOP;
(Hi) if M\=ZFH, then N\=ZFH!;
(iυ) M is almost universal in N but N is not almost universal in M[H];
(v) if x G N, tii, ιi2 ••-,"* E M[H|s] and y G x i—>• (N,G,M,A) |=

Φ[y,tiι,ti2, ,tι*], thenx G M[H|s].
(vi) if M[H] [= K is a cardinal, then N ^= K is a cardinal;
(vii) it may happen that K, is a cardinal in N but not in M[H].

For somebody who is not interested in technical details, it is important
to have the following

Corollary 4.2. If A is a MIG family over L, then (Z(A),G,A) \=ZFH! +
WOP.

5. The A- functional and its imitation.

Let Fin(λ) be the collection of all finite subsets of A. By the Product Lemma,
if g,g' G Fin(λ) and a G A, then α G M[g] <=ϊ a G g and M[g] Π M[g'] =
M[# n g']. If x G N, then x G M[#] for some g G Fin(λ) and A Π L[x] C g, so
A Π L[x] is a finite subset of A.

Proposition 5.1. If x G N and x C A, then x is finite.

Definition 5.1. FA(x) = |A Π L[x]| for x G N.

Proposition 5.2. If g G Fin(A), then FA(g) = \g\. If y G x, then FA(y) <

Proposition 5.3. Vn < ω3x C A(|α:| = n) but there is no set b in N such
that Vn < ω
3x eb(FA(x) = n).

Definition 5.2 ( Heine-Cauchy Functional). If x is a real, then

H-CA(x) =x FA(x).
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Proposition 5.4. // x,r are reals, r G M and r φ 0, then
FA(Z) = FA(r - x) = FA(*). //* ?* 0,

If (#n:n < ω) G N, then there is m G ω such that m =
n <ω}. Thus,

Proposition 5.5. // lim xn = 0, Λen lim H-Cp,(xn] = 0 = ff-CΆ(O).
— — >π— >>oo

Suppose that {FA(X):X is a real} is unbounded (as a subset of ω). Let
ra > 0. There is a real, x, such that FA(X) > 2m2. Let E(x) = the integer

part of x. If x = 2̂ 1 + ̂ , then ± < x < ± and H-CA(x) = x FA(x) >
^ - 2m2 > m, so Vm > 03z(0 < x < ~ & H-CA(x) > m). Notice that
FA(x) = FA(X) by Proposition 5.4

To imitate the A-functional FA, without using the class A, we need some
assumptions about (pi'.i 6 I).

Definition 5.3. (pt :i G I) are almost independent if I is infinite and for
every finite s C I there is a finite s1 ~3 s such that for every finite t C ω
Vj 6 I \ s;(P Q|βxt "there is no fa-generic over S").

Definition 5.4. J/ (ρ»:i G I) are almost independent, then
/(#) = {j G 1: 3G G L[x](G is pj -generic over M) } /or rr G N.

If x G N, then x G M[H|s x t] for some finite s and t. Thus /(x) C sf is a
finite subset of I.

Definition 5.5. F(x) = \l(x)\

It is clear that

(i) {F(x)ι x G N} is unbounded(as a subset of ω),
(ii) y G x => F(y) < F(x),
(iii) if (xn: n < ω) G N, then there is m < u> such that m = Max{F(xn): n <

}̂,
(iv) if x and r are reals, r G M and r φ 0, then F(xΐr) = F(x) = F(x - r) =

*X?)
Also, Vn < ω3x(F(x) > n) but there is no 6 such that Vn < ω3x G b(F(x) >
n).

Theorem 5.1 (Theorem -.Coll; -iDC). Let M\=WOP + ZFH.
If (ρ»:i € I) are almost independent, then N\=WOP + ZFH! + ^the Collec-
tion Scheme +

Proof. The Collection Scheme fails for Φ(n,x) = F(x) > n and DC fails
for Ψ(x,y) = 3j G l[(y is pj-generic over M) & Vz G L[x](z is not
pj-generic over M)] .
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Theorem 5.2 (Theorem H-C). // M\=WOP + ZFH and (fc-.i G I> are al-
most independent and, additionally, {F(x):x is a real } is unbounded, then
— in the model N—H-C(x) = x F(x) is continuous at x = 0 according to
Heine's definition of continuity and it is unbounded in any neighborhood of
0.

6. Weakly Independent Forcings and Applications.

To illustrate how the machinery described in §3 works, we will use very simple
forcings. We are working in M, a transitive model for ZFC.

Definition 6.1. P(X,Y;μ) = ( f : F u n c ( f ) & dσm(f) C Y & |/| < μ],
where μ>ω. P(X,Y;μ) is ordered by the reverse inclusion.

Note: If μ = ω and X,Y are sets, then P(X,Y;μ) is a set in BST + the
zio-Collection Scheme. If μ > ω, then we need ZF to prove that P(X, Y; μ)
is a set.

Proposition 6.1. // X = X0 U Xi and X0 Π Xi = 0, then P(X, Y μ) S
P(X 0,Y;μ)xP(Xι,Y;μ).

Proposition 6.2. Let P = P(/c, λ; μ), where ω < μ < K, are regular cardinals
and λ > 2. Let m G M and \Jm = κ . I f G is P -generic over M and g = \J G,
then SQ = {a < K: g(a) = 0} £ M and ra g S0

Proof. If ra C 5o, then m C On, so |m| > K > μ, since AC is regular. Dm =
{/ G P: 3α G m (/(α) Φ 0)} is dense in P.

Suppose that λ > μ and g is P-generic over M. By Proposition 6.1 G =
GI xG2 where G\ is P(μ, λ; μ)-generic over M and G^ is P(/c\μ, λ; μ)-generic.
Let g = \JGι. By transfinite recursion we define aς = min[Vτ/ < ξ(g(aη) <

g ( a ) ) ] for ξ < μ and 50 = {g(<*ξ): ξ < μ}. Let m G M and \Jm = μ, m C On.

Proposition 6.3. Dm = {/ G P(μ,λ;μ):dom(/) G μ & 3α + 1 G dom(f)
[V/3 < α (/(/?) < /(α)) & /(α) < /(α + 1) & m Π [/(α + 1) \ /(α)] ± 0] } i*
dense in P(μ, λ μ).

Lemma 6.1. 5o ^ M and m g 5o

Definition 6.2. A set b C On is generic ^-cofinal over M if 7 is a limit
ordinal, (J 6 = 7 and Vx G M(x C On & U # = 7 ^=^ x 2 &)•

Lemma 6.2. Lei 7 = max(/c,λ). ΓΛen P(/c,λ;μ) adds a seί £Λa£ is generic
Ί- co final over M.
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Lemma 6.3. Let P G M be any notion of forcing such that \P\ = K. Let θ
be a regular cardinal > K. Suppose that polh"£ is a subset of $ co final with
d". Let q <po and Aα = {r < q:r\\-ά G b} for a <θ. Then there is r < q
such that \{a:r G Aα}| = θ.

Proof. Let A = {a G θ:λa ^ 0}. |A| = θ since pQ\\-"b is cofihal with $" .
Let / be a 1-1 function from K onto P and ra = f ( β ( a ) ) for α G A, where
β(a) = min[/(/3) < q & f(β)\\-& € b]. There is r such that |{α G A:rα =

β
r}\ = θ, since \P\ = κ< θ.

Conclusion: {p G P: |{α G 0:p||-ά G 6}| = 0} is dense below po

Corollary 6.1. // M\=ZFC + GCH, P = P(κ,X',μ) and 7 = max(tt,λ),
£Λen P doesn't add any set that is generic θ-cofinal over M for any regular
cardinal θ > 7+ .

Definition 6.3. (pi'.i 6 I) are weakly independent if
Vs G Fin(ΐ)3j G I Vt G P*'™MlhQ|sxt "^ere is no fa-generic over 5".

If (pi'Λ G I) are weakly independent, then N \= Vi G 13G(G is pf-generic
over M) but there is no b G N such that N \= Vz G I3G G δ(G is pi-generic
over M).
If I = α;, then G(i,u) = u is pi-generic over M, GSeq(x) = x is a fi-
nite sequence such that Vi G dσm(x) G(i,u), and Φ(αr,y) = GSeq(x) =>
[G5e^(y) & y D a;]. Let XQ be po-generic over M. Then Vx3yΦ(x, y) and there
is no / such that /(O) = x0 and Vn < ωΦ(f(ri), f(n + 1)). So, N|= -^DC.

Theorem 6.1 (Theorem -iCoU). Lei M^=WOP + ZFH. If (pt-:i G I) are
independent, then N\=WOP + ZFH! + -^the Collection Scheme.

Theorem 6.2 (Theorem -«DC). I f l = ω and M, (pi'.ί G I) are as above,
then

Theorem 6.3. Let M\=ZFC + GCH and I G M. Let PI = P(κi,\i\μi) and
7» = max(/^i,Ai). // {7 :̂ i G 1} doesn't have a maximal element and H is Q-
geneήc over M, thenN\=WOP + ZFH! + ->the Collection Scheme. Ifl = ω,
then also N\= ^DC.

Proof. (Pi: i G I) are weakly independent.

Now, the machinery is ready to produce models with unusual combina-
tions of choice principles.

Notation: CUC = For any countable family of countable sets the union
is countable;

ACα = For any family of α non-empty sets there is a choice function;
ADC = VαVr C α x α[Vx G a3y G a((x,y) G r) =» Vz0 G a3f(Func(f) &

dom(f) =ωk /(O) = *o & Vn < ω((/(n),/(n -f 1)) G r))];
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DCα stands for the Principle of a Dependent Choices:
for each formula Φ(x,y) Vx3yΦ(x,y) => 3f(Func(f) & dσm(f) =α &

DC<on stands for Vx 3y Φ(x,y) =» Vα 3/ (Func(/) & dom(/) = α &

V£<α Φ(/|£, /({)));
DCu, is equivalent to DC.

It is possible to prove (not shown in this paper) that ZFH + VαACα hDC.

Lemma 6.4. ft) BST + WOP\-AC and AC^ VaACa;
(ii) BST + the ΔQ-Replacement Schemed Vα3!6(6 = SFin(a)), where

SFin(a) = the collection of all finite sequences with terms in a;
(Hi) BST + the Δ0-Replacement Scheme + AC\-ADC;
ftv) BST + ACω + ΔQ-Collection\-CUC;
(v) BST + ADC + Δ0-Collection\-CUC;
(vi) BST + DC\-CUC;
(mi) BST + a = K(x) + DCa h x is well-orderable;
(viii) ZFH! + DC<0n H WOP + the Collection Scheme + the Principle of

Reflection.

Notice that ZFH + AC + the Principle of Reflection hDC but in [4] a
model for ZFH + WOP + DC + the Principle of Reflection + ^DC<On is
constructed.

Now, I want to show some applications of Theorem 6.3.

Theorem 6.4. Let M\= WOP + ZFH, I = ω, and Pn = P(N0, Nn; NO). Then
N^=WOP + ZFH! + N! = K™ + -*CUC, so N\= -^DC + -*ΔQ-Collection.
IfF(x) = max(L[x] |= N^ is countable) and Ck(x) = xk-F(x)(k > 1, k fixed)

n

for every real x, then — in N — Ck(x) is unbounded in every neighborhood of
0 and for every sequence (xn: n <ω) of reals lim xn = 0 => lim Ck(xn) =

Π-+00 n-+oo
0.

Notice that N^KP.

Theorem 6.5. Let M = Mκ, where K is On or a regular cardinal in L and
Mκ is the model obtained by adding K Cohen's reals to L.

(i) If K < Kjj, then N^= NI = Nj; -f every set of reals is countable.
(ii) If&^<κ< On, then N\= NI = Nj; + K is a cardinal + there is a set of

reals of cardinality AC + every set of reals has cardinality < K.
(in) If AC = On, then N\= WOP + ZFH! + for every cardinal μ there is a set

of reals of cardinality μ.

Theorem 6.6. Let M\=ZFC. Let Pn = P(/cn,2; Avn), where (κn:n < ω)
is a sequence of regular cardinals such that \Pn\ < κn+ι for n < ω. Then
N\= WOP + ZFH! + ^DC + ^the Collection Scheme and K, G {/cn: n < ω}
< — > N |= AC is a regular cardinal & there is a subset of K that is generic
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κ-cofinal over M.
If λi\=GCH, then cfN = cfM. IfM = L[α], where a is Cohen's generic over
L, and cn = the nth element of a, then we define κn = Nι+Cn for n <ω.
In this case, N \= m G a < — > there is a subset of Nι+m that is generic
#ι+m-cofinal over L.

It is not necessary to destroy CUC or collapse cardinals to get a model
with a Heine-Cauchy functional.

Theorem 6.7. Let M\=ZFC. Let (κn:n < ω) be an increasing sequence of
regular cardinals such that KQ > 2N° . If Pn = P(κn x ω, 2; N0) ί

or n < ω> then
N\=WOP + ZFH! + cf = cfM + CUC + ^DC + ^Collection.
IfF(x) = min(L[z] |= 2*° < κn) and Ck(x) = xk-F(x) for every real x, then

n
Ck is a Heine-Cauchy functional.

Proof. Everything is obvious except CUC. Suppose that (an:n < ω) G N

and N \= Vn < ωlf(f : ω ?̂ on). There are finite s,t C ω such that
(an:n < ω) G M[H|s x t]. M[H] = M[H|s x t]\Ά\ - (s x t)] and M[H] (=
"every an is countable". By c.c.c., M[H|s x t] \= "every αn is countable".
But M[H|s x t] [=ZFC, so Aί[H|s x t] |= U αn is countable. Therefore,

n<α;

N [= U αn is countable.
n<ω

Above theorems show that ZFH! + WOP + cf = cfL + -^DC +
-•Collection is consistent. As already stated, ZFH! + the Collection Scheme +
AC hADC but nothing is known about consistency of ZFH + WOP + -»DC.
So, we may think only about consistency of ZFH! + WOP + cf = cfL + DC
+ -"Collection. The easiest way to obtain a model for the above theory is by
some modification of the construction of N.

Sketch of the modification: M is a transitive model for ZFC, (Pii i G I) G
M is a family of notions of forcing. Q(u>ι) = the set of all functions / such
that dom(f) C I x ωι,|dom(/)| < α i, and f(i,n) G Pi \ {U} for every

If H is Q(ωι)-generic over M, then N(ωι) = (J{M[H|s]: 5 C I x ωι, \s\ < ωι}.
One can modify the proofs to see that N(ωι) (=ZFH! + WOP.

Suppose that every P{ is ωi-closed in M. Then Q(u>ι) is ω\ -closed. If t G M is
a subset of I x ωi, then Q(ωι)|ί = {/ G Q(ωι): dom(f) C t} and Q(α;ι)| - 1 =
{/ 6 Q(ωι):dom(f) Π t = 0}. Of course, Q(u ι) S Q(α;ι)|ί x Q(u>i)\ - t,
M[H] = M[H|f][H| - t] and Q(u;ι)| - t is unclosed in M[H|t].

Let Vx G N(ωι)3y G N(wι)M[H] (= Φ[x,y,oι,α 2,...,α/]. Then there is
F G M[H] such that Vn < ωF(n) G N(ωι) and M[H] (= Vn < α;Φ[F(n), F(n +
1), αi, α2, . . . , α/]. By the definition of N(ωι), for every n there is s G M such
that F(n) G M[H|s] and \s\ < ωλ. M[H](=WOP -f the Collection Scheme, so
there is G G M[H] such that Vn < ω(G(n) G M & |G(n)| < ωι & F(n) G
M[H|G(n)]). Q(CJI) is ωi-closed, so G G M and t = U G(n) also belongs to
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M. In full ZFC, t must be countable and Vn(F(n) G M[H|t]). Q(α;ι)| -tis ωi
closed in M[H|ί], so F G M[H|J] and M[H|£] C N(CJI). Therefore, F G N(u ι)
which shows a strong version of DC in N(ωι).

Up to now, N(ωι) |=ZFH! + WOP + DC.
To destroy the Collection Scheme we need ω\ independent notions of forcing.
So, I = α i, (κa: a < ω\) is a sequence of regular cardinals such that KQ < ω
and I Π Pβ\ < /cα, where Pa = P(κα,2;/cα) for α < ωi. It is clear that

β<a

N(ωι) |=ZFH! + WOP + DC + -.the Collection Scheme. If MkGCH, then
= C/M

Theorem 6.8. ZFH! +• WOP + cf = cfL + -^Collection ί DC are consis-
tent theories.

7. Final Remarks.

More can be done with the machinery and all combinatorial properties of
forcings like Sacks, Laver, Mathias, Grigorieff, Jensen-Solovay (almost dis-
joint), etc. forcings. At least at the first stage of using them. If we want to
use them in N, then many problems arise. For example, Jensen-Solovay Forc-
ing is not necessary c.c.c. or even set-c.c. There is no problem with forcing in
N as long as the notion of forcing is a set in N. Indeed, if (C, <) G N and G
is C-generic over N, then (C, <) G M[H|s0] C N for some s0 G M and N[G] =
U{M[H|s0][H|*][G]:* Π 50 = 0,ί C I x ω,*-finite} = U{M[H|s0][G][H|*]:ί as

above }, but M[H|s0][G] = M[H|s0 x G] ^ZFH, so N[G] |=ZFH!.
Another meaningful discussion could refer to local properties of large car-

dinals. Let M|=ZFC + K is a large cardinal. We may construct two types of
N.

Type 1. Let ^+1 = ^(No5N£+ι;No) for ξ < K and P2ξ is whatever is
needed (ξ < /c), assuming that |P2ξ| < fi
Then N(=WOP + ZFH! + i^ = /ς + -πthe Collection Scheme.

Type 2. Let P = (f:Func(f) & |/| < ω & dom(f) C K x ω & V(α,n) G

dom(/)(/(α,n) < α)} and |I| = 1. Then N|=WOP + ZFH(the Collection
Scheme is included) + NI = K. P may be combined with other useful forcings.

It is interesting to know what original properties of /c are inherited by NI
in N. But that is another story.
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