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Summary. Inspired by Buchholz' technique of operator controlled derivations
(which were introduced for simplifying Pohlers' method of local predicativity) a
straightforward, perspicuous and conceptually simple method for characterizing
the provably recursive functions of Peano arithmetic in terms of KreisePs ordinal
recursive functions is given. Since only amazingly little proof and hierarchy theory
is used, the paper is intended to make the field of ordinally informative proof theory
accessible even to non-prooftheorists whose knowledge in mathematical logic does
not exceed a first graduate level course.

1. Introduction and Motivation

A fascinating result of ordinally informative proof theory due to Kreisel
(1952) is as follows:

Theorem: (*)
The provably recursive functions of Peano arithmetic are exactly the ordinal
recursive functions.

Folklore (proof-theoretic) proofs for (*) [cf., for example, Schwichtenberg
(1977), Takeuti (1987), Buchholz (1991) or Friedman and Sheard (1995) for
such proofs] rely on non trivial metamathematical evaluations of the Gentzen-
or Schϋtte-style proof-theoretic analyses of Peano arithmetic. Alternatively
a proof- and recursion-theoretic analysis of GόdeΓs 1958 functional interpre-
tation of Hey ting arithmetic can be employed for proving (*), cf. for example
[Tait (1965), Buchholz (1980), Weiermann (1995)]. A proof of (*) which does
not rely on metamathematical considerations - like primitive recursive stip-
ulations of codes of infinite proof-trees - has been given in [Buchholz (1987),
Buchholz and Wainer (1987)]. A proof of (*) using the slow growing hierarchy
is given in [Arai (1991)]. A local predicativity style proof- which generalizes
uniformly to theories of proof-theoretic strength less than or equal to KPM,
cf. [Rathjen (1991)] - of (*) has been given in [Weiermann (1993), Blankertz
and Weiermann (1995)]. Other proofs for (*) which are based on model theory
can be found, for example, in [Hajek and Pudlak (1993)]. Buchholz (1992)
introduced the technique of operator controlled derivations which allows a

* This paper is in its final form and no similar paper has been or is being submitted
elsewhere.
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simplified and conceptually improved exposition of Pohlers' local predicativ-
ity. One aim of the present paper is to give a contribution to the following
question (Buchholz, private communication, 1993): Is it possible to use op-
erator controlled derivations to give a proof for (*) - and generalizations
of (*) - which is technically smooth? In this paper appropriate operators
on subsets of the natural numbers are introduced via the Buchholz-Cichon-
Weiermann (1994) approach to subrecursive hierarchies. It turns out that
these operators work smoothly - i.e. virtually no auxiliary computations are
needed - during the embedding and collapsing procedure. In the critical step
of the argument (Reduction lemma and Cut-elimination) it is shown up how
cut reduction directly corresponds to composition and diagonalization of the
majorization functions involved. Only here an operator analysis is needed but
nevertheless the critical arguments can be carried out in some few lines, cf.
lemma 2.1 (vi) and (viii). Another aim of this paper is to present a method
which can presumably be employed for giving as a direct corollary from Rath-
jen's proof-theoretic analyses - in which adaptations of operator controlled
derivations are used - a classification of the provably recursive functions
of KP + 77£ - Reflection, Π\ - (CA) and related systems, cf. [Rathjen
(1994),(1995)] and also [Arai (1995)].
The paper is self-contained. It only requires knowledge of basic facts about
the ordinals up to εo and elementary level facts about cut elimination in
Tait's calculus for predicate logic.

2. Proof of the main Theorem

The set of non logical constants of PA includes the set of function symbols
for primitive recursive functions and the relation symbol =.
(In the sequel 0 denotes the constant symbol for zero and S denotes the
successor function symbol.) The logical operations include Λ, V, V, 3. We have
an infinite list of variables #o> χι-> - The set of PA-terms (which are denoted
in the sequel by r, s, t...) is the smallest set which contains the variables
and constants and is closed under function application, i.e. if / is a fc-ary
function symbol and £ι, . . . ,£* are terms, so is ft\... tk If t(x) is a PA-teτm
with FV(t) C {x} then £N denotes the represented function in the standard
structure N. The set of PA-formulas (which are in the sequel denoted by
A,B,F) is the smallest set which includes s = £, ->s = t (prime formulas)
and is closed under conjunction, disjunction and quantification. The notation
-iA, for A arbitrary, is an abbreviation for the formula obtained via the de
Morgan laws; A -* B abbreviates -*A V B. We denote finite sets of PA-
formulas by Γ, Δ,... As usual Γ, A stands for Γ U {A} and Γ, Δ stands for
Γ U A
The formal system PA is presented in a Tait calculus. PA includes the logical
axioms Γ,^A,A, the equality axioms Γ,t = t and Γ,t φ s,->A(t),A(s), the
successor function axioms jΓ,V:r(-ιO = Sx) and Γ,VxVy(Sx = Sy -» x = i/),
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the defining equations for primitive recursive function symbols (cf. [Pohlers
(1989)]) and the induction scheme Γ, A(Q) ΛVx(A(x) -> A(Sx)) -» VxA(x).
The derivation relation h for PA is defined as follows:

(Ax) h Γ if Γ is an axiom of PA.
(Λ) h Γ, Ai for all i G {0, 1} imply h Γ, A0 Λ AI .
(V) h Γ, Ai for some i G {0, 1} implies h Γ, A0 V AI.
(V) h Γ, A(y) implies h Γ,MxA(x) if y does not occur in Γ,VxA(x).
(3) h Γ,A(t) implies h Γ,3xA(x).
(cut) h Γ, A and h Γ, ̂ A imply h Γ.

Definition 2.1 (Rank of a formula).

• rk(A) := 0, if A is a prime formula
• τk(A V B) := τk(A Λ B) := max {rk(A), rk(£)} -h 1
• rk(VxΛ(x)) := rk(3xA(α:)) := rk(A) + 1

We consider only ordinals less than εo These ordinals are denoted by
<*,β,7,£,τ7. Finite ordinals are denoted by fc,m,n, ... # denotes the nat-
ural sum of ordinals (cf. [Schύtte 1977] or [Pohlers 1989]). For each α < ε0

let N(α) be the number of occurences of ω in the Cantor normal form rep-
resentation of a. Thus N(0) = 0, and N(α) = n + N(αι) + + N(αn) if
a = ωaι H ----- h α;αn > a\ > . . . > an. N satisfies the following conditions:

(Nl) N(0) = 0
(N2) N(α#/?)=N(α)+N(/?)
(N3) N(α;α) = N(α) + 1
(N4) card {α < εo : N(α) < A:} < ω for every fc G N

Furthermore we see that N(α -f n) = N(α) + n for n < ω.
Abbreviation: Nα := N(α).

Definition 2.2. Let Φ(x) ~ 3X+1 and f ( 2 ) ( x ) := /(/(x)) denote iteration.

Fα(z) :=max ({2X} U {F7

(2)(x) (7 < α & N7 < Φ(Nα -f x)})

z5 expression is well defined due to (N4).

Remark: It follows immediately from [Wainer (1970)] and [Buchholz, Cichon
et Weiermann (1994)] that this hierarchy is equivalent to the ordinal recursive
functions.

Definition 2.3. Throughout the whole article we assume F : INί — >• N to be a
monotone function. Given Θ € N we denote by F[θ] the function defined by

F[θ] : N -> N; x H> F(max {x,θ})

We write F[fcι, . . . , kn] instead of F[max {fci, . . . , kn}] and use the abbrevia-
tion F < F' :& Vx G N F(x) < F;(a:).
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Remark: F[n,m] = F[n][m] and F[n][n] = F[n].

Lemma 2.1. (i) x < Fa(x) < Fa(x + 1)
(ii) Nα < F«(z) < Fα

(2)(x) < Fα+ι(x), in particular n < Fn(x)
(iii) o < 7 & Nα < Φ(N7 + θ) =» Fβ[θ] < F7[θ]
fit;,) For eveτι/ ra-αry primitive recursive function f there exists a p £ N

Vk € Nn /(k) < Fw.p(max k).

M ft < F7(<9) => F7[θ][fc] < F7+1[θ]
(v«; Nα, N/J < F7(<9) =» N(α + /3), Nωα < F7+ι(θ)
ί«; α0 < α & Nα0 < F7(θ) => F7^αo+2[θ] < F7^α+ι[θ]

Proof, (i)-(vii) are simple. In (vi) for example k < F7(<9) implies for

all a € N FΊ[θ][k](x) = F7(max {θ,fe,x}) < F7

(2)(max {<9,z}) <
F7+ι(max{θ,a:}).

(viii) If OL = CKQ 4- n for some n > 1 the claim follows from (v). So we can
assume

(1) 7#α0 + 2

and the premise Nαo < F7(θ) implies

(2) N(7#α0 + 2) < N7-HF7(Θ) +

For all rr G IN we obtain from (1) and (2) by part (iii) and (ii)

Definition 2.4 (F-controlled derivations).

F| — Γ holds ijff Nα < F(0) ond one of the following is true:

(Ax) Γ Π 4(N) ?ί 0

(V) AO V A! e Γ & 3» e {0, 1} 3α0 < α Ff^S. Γ, Ai

(Λ) >10 Λ Λ! e Γ & Vi € {0, 1} 3a0 < a F^- Γ,At

(3) 3xA(x)<=Γ &3n<F(0) 3α0 < α F^.Γ(^(rι)

(V) VxA(x) 6 Γ & Vn € K 3αn < α F[n][̂ - Γ, A(n)

(cut) rk(A) < r & 3α0 < α F^2. Γ, (-.)̂

ΓΛe abbreviations used in (Ax) and (cut) are the following:

• /i(N) := {A I A is prime formula and N
)j4 & Ff£o.

So the F-controlled derivations are just like usual PA-derivations but with
α -rule and some information about the 3- witnesses and the derivation length.
The first one is the essential aid for collapsing (lemma 2.6) while the latter
is used to apply lemma 2.1 (viii) in the cut-elimination procedure 2.5.
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Lemma 2.2 (Monotonicity ) .
For r < s & α < β & N/3 < F'(0) & F < F' the following holds

r s

Lemma 2.3 (Inversion).

. Λ o Λ A ! => V i e {0,1}

ft «; Ff^ Γ, VxA(x) => Vn 6 N F[n] £ Γ, Λ(n)

Lemma 2.4 (Reduction). Let A be a formula AQ V AI or3xB(x) of rank

Proof by induction on β. The interesting case is that A = 3xB(x) is the
main formula of the last deduction step. For some k < F7(θ) and βo < β we
have the premise

The induction hypothesis yields

By the inversion lemma 2.3 (iii) and the fact F7[θ][fc] < F7+ι[θ] (lemma 2.1
(vi)) we can transform the first derivation into

N(α + β) < F7+ι(θ) is true by lemma 2.1 (vii). Furthermore τk(B(k)) <
τk(VxB(x)), so the claim can be obtained by a cut (using monotonicity be-
fore).

Lemma 2.5 (Cut-elimination). F7[β]|^ χ Γ =» F7 # α+ι [θ] [y- Γ

Proof by induction on α. In the interesting case of a cut we have for some
<*o <α „

PTlβl^pTΓ.HΛ

for some A of rank < r. The induction hypothesis yields

By reduction 2.4 (or lemma 2.3 (i) for prime formulas (~«)-A) we obtain

and the claim follows from lemma 2.1 (vii), (viii), ωα° 2 < ωa and mono-
tonicity.
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Lemma 2.6 (Collapsing).

3yA(y) & τk(A) =0 ^ 3n < F(0) N \= A(n)

Proof by induction on α. Since we have a cut-free derivation the last deduc-
tion step was (3) so there is an n < F(0) and an QQ < a such that

A(n),3yA(y)

If N |= A(n) we are done otherwise we can use lemma 2.3 (i) and the induction
hypothesis to proof the claim.

Definition 2.5. A ~ A1 :<& There are a PA-formula B, pairwise
distinct variables x\,...,xn and closed PA-terms £ι,sι, . . . ,tn,sn such that
t? = sf (i = l,...,n) and A = -Bxι,...,χn(tι,...,*n), A1 = BXίt...ίXn(sι, ...,sn)

Lemma 2.7 (Tautology and embedding of mathematical axioms).

ft) A~A' => Ffc [£• A, -.A' uΛere Jb := 2 rk(A)

(ϊi^ For even/ formula A with FV(A) C {x} ^Λere is a k € N s^cΛ that

Λ

(̂ m^ For eve?Ί/ oίΛer math, axiom of PA A there is a k < ω such that Fk\-fr A

Proof, (i) as usual using Nfc < Ffc(O). (iii) If Γ contains only //"-formulas
fc

and \-zr Γ denotes a usual cut-free PA-deriviation (without F-controlling) we

can easily conclude Fk\-fr Γ by induction on k. Since the result kr A for

mathematical axioms A except induction is folklore the claim follows.
(ii) Let k := rk(A(0)). We show by induction on n

-> A(Sx)),A(n)

n = 0: The tautology lemma 2.7 (i) yields F2*|-Q- -Ά(Q),Λ(Q). So the claim

follows by monotonicity.

n »->- n + 1: By tautology lemma we have F2fc |-7p -Ά(Sn), A(n -f 1). Connect-

ing this with the derivation given by induction hypothesis by (Λ) yields

So (*) follows by an application of (3). The claim follows from (*) by an ap-
plication of (V) and three applications of (V).

Lemma 2.8 (Embedding). For every Γ satisfying FV(Γ) C {χ l 5... ,xm}
and PA h Γ there exist 7 < α;2, α < ω - 2, and r <ω such that

Vn € Km F^
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Proof by induction on the derivation of Γ.
1. A, -i A € Γ is an axiom. The tautology lemma yields the claim.
2. VxA(x,x) G Γ(x) and Γ results from Γ(x), A(t/,x) and y £ {zi, . . . ,xm}
holds true. By induction hypothesis there are /y<ω2,a<ω-2,r<ω such
that

Vn € N Vn G N™ F7[n, n] Γ(n), A(n, n)

We obtain the claim by an application of (V) since F7[n, n] = F7[n][n].
3. 3xA(x, x) G Γ(x) and Γ results from Γ(x), A(t(x.), x). We can assume that
x £ {xi, — Xm} and FV(t) C {x1? — xm}. By induction hypothesis there
are 7 < u;2, c*o < ω 2 and ΓQ < u; such that

(3) V n € N

The tautology lemma 2.7 (i) yields a k < ω such that

(4) V n e N m

Since λx.ίN(x) is a primitive recursive function due to lemma 2.1 (iv) there
is a p < ω satisfying Vx G IN™ £N(x) < Fα,.p(max x). Choosing p > k implies
Fjk < Ffc[n] < F^.pfn] with aid of lemma 2.1 (iii). Letting α := max {α0, fc}
and r > max (ro,rk(A)} we obtain

Vn e

from (3) and (4) by monotonicity 2.2. Applying a cut we get

and (3) proves the claim since £N(n) < F7#u,.p(n).
4. Γ results from Γ, A and Γ, ->A by a cut. By induction hypothesis there are
7 < u;2, α < ω 2 and r < u; such that

Vn G !Nm F7

By choosing r > τk(A) we obtain the claim by an application of (cut).
5. The missing cases are covered by lemma 2.7 or easy (rules for V and Λ).

Theorem 2.1. Let A be a prime formula such that PA h Vx3y A(x,y) and
FV(A) C {x,y}. Then there is a 7 < ε0 such that

Vz G N 3y < FΊ(x) K |= A(x,y)
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Proof by embedding 2.8, iterated cut-elimination 2.5, inversion 2.3 (iii) and
collapsing 2.6.

Remark: The methods of this paper yield also classifications of the provable
recursive functions of the fragments (IΣn+ι) of PA and of PA-f TI(x f).
The extension to KPω has recently been carried out in full detail by the au-
thors.
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