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Forcing method on Bounded Arithmetic was first introduced by J. B. Paris
and A. Wilkie in [10]. Then M. Ajtai started in [1], [2] and [3] elaborate use
of the method to get excellent results on the pigeon hole principle and the
module p counting principles. Ajtai's work were followed by many works by
Beame et als, Krajίδek and Riis in [4], [5], [8], [9], [11].

In this paper, we develop a Boolean valued version of forcing on Bounded
Arithmetic using big Boolean algebra, and discuss its relation with NP —
co — NP problem and P = NP problem.

As is well known, Gόdel raised the problem closely related to P = NP
problem in his letter to von Neumann in 1956. We believe that Gόdel would
greatly contribute to it if the complexity theory would have started at the
time.

We also would like to mention about GόdeΓs close felling to Boolean
valued models. Forcing and Boolean valued model theory are equivalent. But
Godel was much more impressed by Boolean valued models than forcing in
the following reason. Gόdel did have a systematic reinterpretation of the
logical operations with a view to a formal independence proof, but it was
too messy for his taste. He realized that the Boolean valued models are a
straightforward model-theoretic variant of his earlier reinterpretation.

When one of the authors started Boolean valued analysis by using Boolean
algebras of projections in Hubert space, he received a strong encouragement
from Professor Gόdel. We feel that our work is in the line of GόdeΓs vision.

1. The generic models

Let TV be a countable nonstandard model of the true arithmetic Tft(N) where
N is the standard model of arithmetic. Let n be a nonstandard element in N
and M = {x € N \ there exists some n# #n such that x < n# #n}.

* This is the final version of the paper which will not be published elsewhere.
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Obviously M is a model of Buss' theory 52. Let no = |n| and M0 = {|x| |
x G M}. MO is an initial part of M and x G M0 iff there exists a polynomial
p such that x < P(ΠO).

M can be considered as a first order structure as described above but also
can be considered a second order structure over MQ as follows. Let a second
order object X be a pair of (α, b) where a G M and b G M0. Then by X we
express the set defined by

In this case 6 is denoted by \X\. The second order structure thus obtained is
denoted by (Mo, M).

In (Mo, M), the first order variables denote the member of M0. The second
order variables X, Y , Z, . . . denote sets of members of MQ. For X, F, Z, |X|,
|Y|, |Z|, . . . denote members of MQ.

The language of (Mo, M) is described as follows.
First order variables α, 6, c, . . . , z, y, 2, —
Second order variables X, F, Z, —
First order constants 0,1,
First order function constants +, , |_| J » I I
Second order function constants | |
First order predicate <, =
Second order predicate G.

Terms.

1. 0, 1, the first order free variables α, 6, c, . . . and \X\, \Y\, ... are terms
where X, F, . . . are second order free variables.

2. If ίi, . . . , tn are terms and / is a function constant, then f(t\ - - - , tn) is a
term.

3. All terms are obtained by (1) and (2). In the structure (Mo,M), every
term expresses a member of MQ.

Formulas.

1. Ifti and 1% and terms and X is a second order free variable, then tι < t%,
t± = t2 and tι G X is a formula.

2. If φ and *φ are formula, then -«<£, ψ Λ V>, and ψ V φ are formulas.
3. If ψ(a) is a formula and t is a term and X is a second order free variable,

then
Vxφ(x),3xφ(x),Vx < tφ(x),3x < tφ(x),Vx G Xφ(x)

and 3x G Xφ(x) are formulas, where x is a bound variable not occurring
in φ(a).

4. If φ(X) is a formula and Ms a term, then

< tφ(x),3X < tφ(x)

are formulas.
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5. Every formula is obtained by (l)-(4).
The meaning of VX < t and 3X(< t are VX(\X\ < t -> •••) and
3X(\X\<tΛ ) respectively.

Definition 1.1. In the second order language of (M0,M), Vx < t, 3x < t,
Vx G X, 3x G X are called first order bounded quantifiers. These correspond
to sharply bounded quantifiers in the first order language of M.

Corresponding to hierachies of bounded formulas Σ\, Π1? on M, we define
hierachies of second order bounded formulas on (Mo,M) as follows.

ΣQ(BD) = ΠQ(BD) is the class of formulas in which every quantifier is
a first order bounded quantifier.

For i > 0, Σ\(BD) and Π}(BD) are defined to be the smallest class of
formulas satisfying the following conditions.

a) Both Σ\(BD) and Π}(BD] are subclass of Σl+1(BD)Γ\Π}+1(BD).
b)Ifφ G Σl+l(BD), then 3X < tφ(X), Vx < tφ(x) and 3x < tφ(x) belong

toΣ^(BD).
c)Ifφ G Πl+l(BD), then VX < tφ(X), 3X < tφ(X) and Vz < tφ(x) belong

toΠ^(BD).
d)If φ and ψ belong to Σl+l(BD) then both φ Λ Ψ and φ V ψ belong to

Σ\+l(BD). If φ and ψ belong to Πl+^BD), then both φ Λ ψ and φ V ψ
belong to Πl+l(BD).

, then ^φ £ Σ^BD) then ^φ G Σ}+l(BD}.

A formula is said to be a bounded formula if it belongs to (J Σ}(BD) =
i

\JΠl(BD) A bounded formula in the second order language of (M0,M)
i

corresponds to a bounded formula in the first order language of M.
(Mo,M) satisfies the following axioms.

1. Basic axioms on the first order function constants and the first order
predicate constants.

2. Axiom on \X\ VxVX(x eXDx< \X\)
3. Comprehension Axioms

Vα3X < a(\x\ = a Λ Vrr < a(x G X <-» φ(x)))

where φ is a bounded formula.
4. The least number principleLTVP

VX(X φ 0 D 3x <Ξ XVy G X(x < y ) ) .

This axiom is equivalent to the Induction Axiom

φ(Q) Λ Vx(φ(x) D φ(x 4- 1)) D Vxφ(x)

where φ is a bounded formula.
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Now we are going to define a Boolean algebra. First we introduce Boolean

variables po,Pι,p2, -Pn0-ι and its negation ft, ft, ft, . . . ,pno-ι More Pre-
cisely we define some coding of these literals. Now we generate free Boolean
algebra from these literals.

In [6], S. Buss developed the theory of sequence in S£. By RSUV-
Isomorphisms in [13], the second order theory of sequences hold in (M0, M)
and "X is a sequence" is a Λ\(BD] predicate where Δ\(BD) = Π\(BD) Π
Σ\(BD).

The Boolean algebra B is the set of b which is a sequence (Xo» Xι, ,Xr)
with r E MO satisfying one of the following conditions.

1. X{ is PJ with j < ΠQ.
2. Xi is PJ with j <ΠQ.
3. ̂  is (Λ,y0,yι, ,yβ) or (V,y0, ,yβ) where Yj(j < s) is one of

(Xo,Xι, •••, Xi-i, where the intended meaning of (Λ,ϊb,Yί,yβ) and
(V,y0,yι, ,yβ) arey 0 ΛyιΛ Λy s andy0vyι V vy, respectively.

It is easily seen that there exists a Δ\(BD) formula φ such that

beB iff φ(b).

B is not definable in N since M is not definable in N. However b € B implies
b£N.

Let 6 = (X0, Xi, •• ,X8)eB. Then -16 is defined to be (X0, X i j -,X8)
where Xi is defined by the following rules.

1. If Xi is PJ, then Xi is pj. If Xi is βj, then Xi is PJ.
2. if ^ = (v,y0, ,y£), thenXi = (Λ,y0, ,£) if Xi = (Λ,y0, ,

yt), then Xi = (A,y0i . - . , yt). if x4 = (Λ,y0, •• ,yί), then x< =
(v,y0, ,yt).

Let for t < t b{ = (XJ, , X*.) € B. Then Vi<t fci is defined to be

Q ° l . . . l t t

In the same way /\ί<t bi is defined to be

where Z1 = (Λ,Jfθ , .. ,X*t).
Now let A G M be a subset of {0, , no — 1}. Then A gives a truth value

to po> ?Pn0-ι in the following way.
If i G -A, then it assigns 1 to p». If i ^ ^4, then it assigns 0 to p». So we

call A an atom evaluation. Therefore for each b £ B, A makes an evaluation
of b denoted by eval(-A, 6). eval(A, 6) satisfies the following rules.

1. eval(A,6) is either 0 or 1.
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2. eval(A,pi) = 1 i&i G A.
3. eval(Λ -16) = 1 iff eval(A, 6) = 0.
4. eval(A,A;6;) = Λi
5.

For 61, 62 € 5, we define 61 = 62 to be VA atom evaluation (eval(A, ί>ι) =

Then
61 = 62 is #ί (££>) in (Mo, M) and /7ί in M.

D

The Boolean algebra we use is J3/ = though we use B in the place of
D

β/ = for simplicity.
Now we define MB as follows. MB = {X G M|3y G M0(X : y -> B)}.

Now let x, y, z, - G MQ and X G Mβ. We define the truth value of formulas
on (Mo,Mβ) by the following rules.

z]] = l iff

[ [ χ . y = z]] = l iff x 7/ = z

In the same way for every atomic formula φ

[[φ]] = 1 iff Mo |= φ and

[[¥>]] =0 iff Mo^^.

x) : if X : y -» B and x < y
0 : otherwise

= (Ml v [[</>]]

x<t

[[Vx < \X\(χ € X D V(x)

= l(3x<\X\(xeXΛφ(x)}]

= V ([[*€X]]



Forcing on Bounded Arithmetic 125

The following lemma is obvious from the definition.

Lemma 1.1. Let φ G Σ%(BD). Then

([φ]} € B

For φ i Σ%(BD), [[φ]] is not defined.

v
Definition 1.2. For X £ M, X is defined by the equation

X = {<x,l>\x<\X\Λx€X}

U {<z,0> \x<\X\/\x£X}

where < α, b > expresses the ordered pair of a and b.

Definition 1.3. A subset I C B is said to be an ideal ifQ G /, 1 ^ /, and I
is closed under V and satisfies V6 G /V6' G B(b' < b D b' E /).

A subset D C B is said to be dense over I if the following condition is
satisfied.

VX G B - I3Y <Ξ D - I(Y < X).

D is said to be definable if there exist a formula φ(b) such that

D = {be M\N \= φ(b)}

where φ may contain members of N as parameters.
Let M be defined by the equation

M = {DC B\D is definable}.

Since N is countable, M is also countable and enumerated as

Definition 1.4. Let G C B. G is said to beM-generic over I if the following
condition is satisfied.

For every D £ M if D is dense over /, then

Let I D B is an ideal of B. I is said to be MQ- complete if the following
condition is satisfied.

MX € M(3x G M0(X : x -+ I) D
y<χ

"I is MQ-complete" belongs to Π\(BD}.
Let K C 2n° and be definable in N. Then for b G B we define mκ(b) by

the equation
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mκ(b) = \{a<ΞK\eval(a,b) = l}\

where \{a G K\ - - }| is the cardinality of {a G K\ •} calculated in N .
Let \K\ £ MO hold, then Ik is defined by the equation

IK = {b£B\mK(b)£M0}.

When k = 2n°, Ik is denoted by 70.

Theorem 1.1. Ik is MQ complete.

Proof. This is immediately implied by the following obvious property.

Example 1.1. Let ΠQ = a b and define < rr,y > such that for every z < no
there exists unique x < a and y < b such that z =< x,τ/ > and Vx < αVy <
b(< x,y >< no). Define K by

: α -> 6}

where the meaning of the function is defined by < x,y >. Then \K\ £ MQ.

Definition 1.5. Let F C B. F is said to be a filter over I if F C B - I,

V6ι, 62 € F(6ι Λ 62 € F), and V6 G FV6' G B(6 < b1 -> b1 G F).

F is said to be a maximal filter over I if F is maximal among filters over I.

Theorem 1.2. Let I be a Mo-complete ideal of B. Then there exists and
M-generic maximal filter over I,

Proof. Let D0, DI, D2, be an enumeration of all dense sets of M over /
and &o> &ι> &2> be an enumeration of all members of B. We define &J> &ι»
&2ί , as follows.

1. If 60 ^ 7) then define b'0 = fro- Otherwise define 60 = 1.
2. Let 60 > 6Ί > > b'2i £ I have been defined. Since Dί is dense over /,

there exists b'2i+l < 6'2ί such that b'2i+l G DI — I.
3. Let VQ > b{ > - - > 67>ί+1 £ / have been defined. If 6'2ί+1 Λ 6< g /, then

define 6^+2 = ^2ί+ι A 6Z . Otherwise define 6^+2 = 6^+1-

After all b( are defined, define G by the equation

G = {6 G B\3i(b'i < b)}.

Then G is obviously an .M-generic maximal filter over /.
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Theorem 1.3. Let I be an Mo-complete ideal of B, X 6 M satisfy X : y -»•
B Λ V X(%) = 1> αnc^ ̂  be an M- generic maximal filter over I. Then the

χ<y
following holds.

3x < y(X(x) € G).

Proof. Let D = {b G B\3x < y(b < X(x))}. We claim that D is dense over
/. For this, let b' EB-I. Then

V X(x)Λb' = b'ΪI.
χ<y

Since 7 is M0-complete, 3x < y ( X ( x ) Λ b' G D - I). Since X(x) Λ b' < b',
we have proved our claim. Since G is Λ4-generic, 3br £ G Π Zλ Therefore
3z < y(b' < X ( x ) ) and X(x) G G.

Let G be an .M-generic maximal filter over / and X : y -> B. Then we
define io(X) by the equation

iG(X) = {x< y\X(x) € G}.

Then we define M[G] as follows.

M[G] - {iG(X)\1y G M0(X : y -> B)}.

The following theorem is obvious.

Theorem 1.4. io(X) = -X" /or even/ X € M.

Corollary 1.1. M C M[G]

Theorem 1.5. Let xι, , G Af0, -XΊ, ••• 6 Mβ, φ E Σjj(BD), I Mo-
complete, and G be an M- generic maximal over I. Then we have the following
equivalence.

Proof. We prove this by the induction on the number of logical symbols in
φ(x\,- , -Xi, •). We treat only the nontrivial cases.

Remark 1.1 (Case 1). φ is of the form x € X. Let X : y -» B. Then we have

[[x G X]] G G <-> Jf(x) G G

4-> x e
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Remark 1.2 (Case 2). φ is of the form 3x < tφ(x).

x<tφ(x)eG iff
x<t

iff 3x < t([[φ(x)]] € G)

iff 3x<t(M0,M[G\)\=φ(x)

iff (M0,M[G]) \=3x<tφ(x).

Let / be Mo-complete, G an M-generic maximal filter over /, X = ^
and X : y — )• B. Then we define \X\ to be y.

Theorem 1.6. Let X G M[G\. Then the following LNP holds on
(M0,M[G]).

3x < t(x G X) -> 3x < t(x G X Λ Vy < χ-^y € X).

Proof. Let X = iG(X) where X : y -+ B Then Y : y ->• # is defined by the
equation

Z<X

Then we have V X(x) Since the following two equations hold
x<t

x < t(x G X)]] = V X(*)
x<t

([3x <t(xeXΛVy< x^y € X)}} =\/(X(x)-
x<ί

the following holds.

[[3x < t(x € X)]] € G -> [[3x < ί(ar € X Λ Vy < x^y G X)]] G G.

Theorem 1.7. ΣQ(BD)- Comprehension Axioms hold in (Mo,M[G]).

Proof. Let φ(x) G ΣQ(BD). If sufiices to show that for every a G M0 the
following holds.

{x < α|(M0,M[G]) (= φ(x)} G M[G].

Define F G M by the conditions Y : a -> B and

x < α -»• F(x)

Then the proof follows from the following equivalencies

x G iσPO iff x < α Λ [[̂ (α:)]] G G

iff x < α Λ (Mo, M[G]) \= φ(x).
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So far we have considered the second order version (Mo,M) of the first
order structure M. In the same way, we will consider the first order version
M[G] of the second order structure (Mo, M[G]).

For MB, we can add every polynomial time computable function since
every polynomial time computable function can be expressed by a polynomial
size circuit and the Boolean algebra B is closed by any polynomial size circuit.

^From this follows that we can introduce all polynomial time computable
functions in the structure of M[G]. Therefore from now on we always assume
that all polynomial time computable functions are defined on the first order
structure M[G].

Theorem 1.8. Let φ(x) be sharply bounded. Then if M (= Vxψ(x), then

Proof. Let α be an atom evaluation. (Previously an atom evaluation was
denoted by A since we consider it in the second order structure (Mo,Mβ).
We are now considering it in the first order structure MB. Therefore it is
now denoted by α.) Let x be expressed by X : y -¥ B arid Xa : y -» {0, 1}
be defined by

x < y -> Xa(x) = eval(a,X(x)).

We also denote the first order expression of Xa by xa. Then eval(α, [[<£>(#)]]) =
1 iff M |= φ(xa). Therefore M (= Vxφ(x) implies Vα(eval(α, [[<p(x)]]) = 1).

Therefore [[φ(x)]] = 1. Therefore for every x G M[G], M[G] |= φ(x) and we
haveM[G]

Every polynomial time computable function / can be defined by successive
function equations from basic functions. This defining equation is called the
defining axiom of /.

Theorem 1.9. Every polynomial time computable function f satisfies the
defining axiom of f in M[G].

Proof. The defining axiom of / can be expressed by a form Vx^(x), where
φ(x) is sharply bounded. Therefore the theorem is immediately implied by
Theorem 1.8.

Corollary 1.2. Let f be a polynomial time computable function and a 6 MQ.
Let /(α) = binM. Then /(α) = b in M[G].

Proof. This is immediate from Theorem 1.8.

Definition 1.6. A sequent Γ -> Δ is said to be Σ± if every formula in Γ or
Δ is Σl

Theorem 1.10. Let Γ -> Δ be Σ\ and provable in S\. Then M[G] \= Γ ->
Δ.

Proof. This is immediately implied by Buss' Witness Theorem in [6].
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It is very difficult to prove that M[G] is a model of Bounded Arithmetic
stronger than Γf-part of S% . One reason is that [[φ]] has no reasonable def-
inition when φ is not sharply bounded. In this situation the development of
forcing in set theory suggests us that M[G] is probably not a model of 52 .

Let K C 2n° satisfy \K\ £ MQ. In order to investigate Ik, first we prove
the following lemma.

Lemma 1.2. Let G be an m-generίc maximal filter over /&, A = {i <
no\pi € G}, C € M, and D defined by the following equation

D = {be B\3i < n0(i € C Λ b < pi) V 3i < nQ(i i C Λ 6 < pi)}.

Then D is dense over Ik

Proof. Let b E B — Ik. Then πiκ(b) £ MQ. Define 6t for i < HQ as follows.

f b^pi :
bi = I mboxif i £ C :

[ b/\pi : otherwise

Then we have

mκ(\J bi)=mκ(bΛ(\l fcV \J Pi))
i<n0 i£C i£C

= mκ(b Λ -,( Pί Λ pi)) > mκ(b) - 1 i MQ.

Therefore V bi £ Ik* Hence follows 3i < nQ(bi £ Ik). Since 6; < b Λ bi €
t<n0

D — Ik, the proof is completed.

Theorem 1.11. Let G be an M-generίc maximal filter over Ik. Then
M[G] i M.

Proof. Let A and D be defined in Lemma 1.2. By Lemma 1.2 D is dense over
Ik . Therefore we have

Let b e G Π D

Remark 1.3 (Case 1). 3i < nQ(i e C Λb < pi). In this case Pi e G. Therefore
i φ A and AΦC.

Remark 1.4 (Case 2). 3i < nQ(i £ C Λ b < pi)
In this case pi G G. Therefore i G A and A Φ C.
Since b € D, either Case 1) or Case 2) holds. Therefore A Φ C. Since

C G M is arbitrary, we can conclude that A £ M and M φ M[G].
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Remark 1.5. So far we have assumed the definability of K. For general (non
definable) X C 2n° and α € N, we define |Λ"| as follows.

I X \< a iff Vy C X(Yis definable inN -> \Y\ < a)

Then we define IK by the equation

Iκ = {b<ΞB\\{aeK\eva\(a,b) = l}\<a for all α G N - MQ}.

We can generalize our theory for this generalized case.
Let 22/l+1 be in MQ. We consider the set {1,2, , 22'1+1 -1} to be a tree

with the height 2/ι i.e. we stipulate that 1 is the root and 22\ 22/l +1 - 1 are
leaves. In this tree, we call 1, , 22/l — 1 nodes and if α is a node, then 2α
and 2α + 1 are called its successors. We also define the height of 2*,2* + 1,
•• , 2ί+1-l to bet.

A function

/ : {1,2, , 22/l+1 - 1} -> {V, Λ,0,1,p0, ,Pn0-ι,Po, ,Pn0-ι}

is said to be a formula if the following conditions are satisfied.

1. If α is a node with an even height, then /(α) = V.
2. If α is a node with an odd height, then /(α) = Λ.
3. If α is a leaf, then /(α) is one of 0,1,p0, >Pn0-ι,Po, ,Pn0-ι

Obviously / can be interpreted as a Boolean formula of po> * * >Pn0-i ύi
the usual sense. E.g. let / be defined on {1,2, , 6,7} and /(4) = p3, /(5) =
p4ϊ /(6) = p5 and /(7) = PQ. then / represents (p3 Λ p4) V (p5 Λ p6).

For a theory of the thus formalized formulas see the discussion on complete
normal (V,Λ)— formulas in [15].

Let BQ be the set of all formulas. We make BQ a Boolean algebra by
defining the operations ->, V and Λ on BQ as in [15].

Then we embed BQ into B in the natural way and consider BQ to be
subalgebra of B.

Now we assume NC1 φ P, where NC1 and P are non uniform NC1 and
P respectively. Then we have BQ ̂  B. Let x E B - BQ. Define Ix by the
equation

Iχ = O/ € £ I 3z € #0(2 <x/\y< z)}.

Then Jx is an Mo-complete ideal of £. We define ϊx = Ix V 7-^χ = {zi V z2 I
zι e Ix and z2 € /-,x}. Then /x is again M0-complete and 1 ̂  ϊx.

Lemma 1.3. Let C G M and bo = /\ pi Λ /\ pT-.
t€C i£C

ThenbQ € /x.

Proo/. Since 60 is a minimal nonzero element of B, 60 Λ x = 60 or 60 Λ x = 0.

Remark 1.6 (Case, 1). bQ/\x = bQ.Iπ this case we have 60 < x and 60 G /*.
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Remark 1.7 (Case 2). bo /\x = 0. In this case we have 60 < "̂  and &o € /-,x.

Lemma 1.4. Lei C E M and 60 = Λ P* Λ Λ P»
ΐ€C i^C

If b £. B — In, then b Λ ~~>&o £ B — Ix.

Proof. Since 6 < (6 Λ -160) V 60 we have

(6Λ-*o)€/χ ->• (6Λ-.60) Vί>o € L

Lemma 1.5. Let D = {b G B \ 3i <n0(i E C Λ b <pi)v3i <n0(i $ CΛ& <
Pi)}. TΛen D is dense over ϊx

Proof. Define bi by the following equation

, __ Γ b/\pi : if i E C
1 "~ \ b Λ pi : otherwise

Then we have
Y b{ = b Λ -160 ^ ^x

i<no

Therefore we have 3i < no(&; ^ ϊx).
Now let G be an ΛΊ-generic maximal filter over ϊx. Then we have G £ M

in the same way as in Theorem 1.11.

2. M[G] and NP = co - ΛΓP.

In this section we consider M and M[G] as first order structures. Let Ψ be a
set of formulas with parameters from M.

Let / be an Mo-complete ideal of B and G be an M- generic maximal
filter over /.

Definition 2.1. M[G] is said to be a Φ -extension of M if for every formula
φ(a) in Φ the following property holds.

Va E M(M |= φ(a) -> M[G] (= φ(a)).

When Ψ is the set of all sharply bounded formulas, we denote Φ-extension
by sb-extension. When Ψ is the set of all bounded formulas, we denote Φ-
extension by bounded-extension. The following theorem is immediate from
Theorem 1.8 in 1.



Forcing on Bounded Arithmetic 133

Theorem 2.1. M[G] is a sb-extension of M.
As we discussed in 1., we can hardly expect that M[G] is a model of 82 and

we conjecture that M[G] is not a model of 82- In the same way, we conjecture
that M[G] is not a bounded-extension of M.

In the following we shall show that our conjectures imply NP φ co — NP
therefore P / NP.

Theorem 2.2. If M[G] is not a model of S2, then NP φ co - NP and
therefore P ̂  NP.

Proof. Suppose that NP = co-NP holds. Then there exists an ΛΓP-complete
predicate 3rr < t(a)A(x,a) with sharply bounded A(x,ά) and a sharply
bounded B(y,a) such that 3x < t(ά)A(x,ά) <-> Vy < s(ά)B(y,a). Then there
exists polynomial time computable functions / and g such that the following
two sequents hold.

b < t(a),c< s(a),A(b,ά) -+ B(c,ά)

f(ά) < s(ά) D £(/(α),α) -> g(a) < t(a) Λ A(g(ά),a).

It follows from Theorem 1.8 in 1. that these sequents also hold on M[G].
Therefore every bounded formula on M[G] is equivalent to Σ\ formula on
M [G]. This implies that M[G] is a model of S2, since M[G] is a model of
Γf-part of S%.

Theorem 2.3. // M[G] is not a bounded- extension of M, then NP ^ co —
NP.

Proof. Suppose NP = co — NP. Then every bounded formula is equivalent
to Πl formula. Prom the proof of Theorem 2.2 it follows that NP = co -
NP also holds on M [G]. Prom Theorem 1.8 in 1. it follows that M[G] is
an ίlf -extension of M. Therefore M[G] is a bounded-extension which is a
contradiction.

Definition 2.2. A predicate A(x) is said to be sparse, if there exists a term
t(ά) satisfying the following condition.

I {x I A(x) Λ x < a} \< \t(a) \

where \ {x \ φ(x}} \ is the number of all x satisfying φ(x). In this definition
we are considering some structure e.g. M or M[G] and notions defined on
them.

Let A(x) be a formula of 52. We say that "A(x) is sparse" is provable in
S2, if there exists a term in 52 and the following formula is provable in 52.
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3w < BdSq(a,t(a))(Seq(w)Λβ(l,w) = μx < aA(x)

Men(w) = |ί(α)|

ΛVz <| t(a) I (0 < i D β(i + 1, w) = μx < a(β(i, w) < x Λ A(x))

MX < a(A(x) D 3i <\ t(a) \ (0 < i Λ x = β(i, w)))

where BdSq, Seq, /?(i,tι;), Len are notations in [6] and the intended meaning
of Seq(w), β(i, w), Len(w) and BdSq(α, t(a)) are "w is a number expressing a
sequence", "i-th member of the sequence w", "the length of the sequence w",
and an upperbound of all sequences whose members < α and whose length

< |*(α)|.
The meaning of the above formula is that one can emunerate all x satis-

fying x < a Λ A(x) according to its order. We denote the formula by

3w < BdSq(a,t(a))B(w,a).

If A is a bounded formula, then B is also a bounded formula.

Theorem 2.4. Let a bounded formula A(a) be sparse and "A(a) is sparse"
be provable in S2 // a G M[G\ - M and M[G] \= A(a), the NP φco- NP.

Proof. Take b G M such that a < b. If NP = co - NP then M[G] (= 52.
Therefore we have

M[G\ \=3w< BdSq(M(6))(B(tι;,δ) A 3fc < \t(b)\(a = β(k,w)).

Therefore there exists k < \t(b)\ satisfying

M[G] ^=3w< BdSq(b,t(b))(B(w,b) Λ α = β(k,w))

Since M is a model of 52, there exists c € M satisfying

M ( = c < 6 Λ 3 ^ < BdSq(b,t(b))(B(w,b) /\c = β(k,w)).

Therefore there exists w € M satisfying

M f= w < BdSq(6,t(b)) Λ B ( w , b } f \ c = β(k,w),

If NP -Co- NP, then M[G] is a bounded extension of M. Therefore the
following holds

M[G] ^=w< BdSq(6, t(b)) Λ B(w, b) Λ c = β(k, w).

This implies that c = α holds on M[G] which is a contradiction.
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3. Proper class forcing.

Now we shall consider a bigger Boolean algebra. The Boolean algebra B is
the set of b which is a sequence (X0, ΛΊ, , Xυ) with r G M0 satisfying one
of the following conditions.

1. Xi is PJ with j G MQ.
2. Xi is ft with j G M0.
3 . ̂  is ( Λ , YO , . . . , n ) or ( v, y0 , . . . , n ) .

where Yj(j < s) is one of X Q , X I , . . . , Xi-\. The difference between B
and f? is that PJ or p; are restricted to j < HQ in B but there are no such
restriction in B. Even for B. b G B is ^ί(BZJ) and be B implies be N.

We can define -»&, V δ* and Λ h as before for members 6, 6; in #.
i<ί t<ί

For every 6 G £?, there exists J G MQ such that if pi or pi occurs in 6, then
i < δ. Such 5 is called a bound for b. Let 5 be a bound for b and A € M be a
subset of {0, . . . , δ — 1}. Then Λ gives a truth value to po, >P($-ι as before
and is called an atom evaluation of b.

D ~

As before we define 61 = 62 for 61} &2 € B by V-A atom evaluation
(eval(A, Z>ι) = eval(^4, 62))- We can take only A which is a subset of {0, 1, . . . ,

δ — 1} and δ is a bound for both fri and 62- Therefore 61 = 62 is Π\(BD] in
(M0,M).

We define [[<ρ]] for Σ\(BD) formula φ, X for X € M, an ideal / of β, a
dense definable set over /, Mo-completeness of an ideal /, and M in the same
way as before.

Now we are going to define MO complete ideals /o and Ik of B.
For δ G MO, BS be the subset of B which consists of the element b whose

bound is δ. Then B = \J BS. Now for b G BS, we define m(b) by

= |{α<2Val(α,b) =
v /

2*

Then the value m(6) does not depend on δ if J is bound for 6.
We define /o by

/o = {6 G B I Vα G M0(αm(6) < 1)} and I* = /0

We are going to show that ΪQ = (J Is is Mo-complete.

Let X : y -> 70. Then Vrr < y(X(a?) G J0). Then for every x < y, define
a(x) to be the minimum α such that am(X(x)) > 1. Then a(y) £ MQ. Define
αo = min{α(α;) | x < y} — 1. Then αo ^ M0 and Vx < y(aQm(X(x)) < I).

For any a G MO we have

αm( y X(χ)) < α ̂  m(X(x)) < αy —
χ<3/
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Therefore V X(x) € ΪQ
χ<y

Now we are going to generalize /o to /*. Let K be definable in N.
Let μ £ N — M be fixed. We define

Kμ = {α G K I α < 2"}.

For 6 6 5, we define ra/<:(&) by the equation

= | { αeM

and /x by the equation

ϊκ = {b €

For K = N, ϊk coincides with 70. Now we are going to show that Ik is
Mo-complete.

Let X : y -» B and Vx < y ( X ( x ) € 4).
Consider the following value for x < y

\{aeKμ\ewl(a,X(x)) = l}\.

Let m be the maximum of them. Then there exists αo ^ MQ such that

m

Therefore there exists α ^ MO such that

ay < α0.

then we have fhk( \J X ( x ) ) < ^
x<y

Remark 3.1. As before the definability of K is not necessary. For general
K C JV, we define

/K = {& G S I VF, W C 2^3α £ Mβ(V CKμCW

/\(V,W are definable inTV) D

Everything goes in the same way as in the definable case.

We define M^, [[φ]],X,M,G etc. in the same way as before. Then the
theorems in 1. and 2. can be proved in the same way by just changing B to
B and M to M.

Let J0, #ι € MO and ί0 < ίi We define
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where qι is p^or pi]

The following lemma is obvious.

Lemma 3.1. If2δl~δ° E Λf0, then

Theorem 3.1. Let G be an M generic maximal filter over /&. Then we have

V6 G Ω(δ0jδι)(b G Λ) -> A = {i | ί0 < « < <*ι Λpi G G} £ M

Pnw/. Let C G M an C C [i0,*i).
We define

D = {Y G B I 3i G C(y < ^Pi) V 3i ^ G(y < Pi)}.

We claim that D is dense over /*. Let 6 G B — I*;. Then we have

1
3α G MQ(rhκ(b) > —).

α

Define bi by the equation

fe f δΛ-πpi : if i G C
1 \ b/\pi : otherwise

Define C'= [δ0 ,ίι)-C.

DΪ Λ y\ Pi))

ι€cftΛΔ f t)

Since Λ Pi Λ Λ ft € Λ » we have

r ( / \ P i Λ / \ f t ) < l /

Therefore we have V h $ ϊκ Since Λ is Mo-complete, we have 3i
<50<i<<5ι

[δo,δι)(bi £ Ik). Since bι <b and bι £ D, D is dense over /#.
Since G is ra-generic, G Π D ̂  0. Let α € G Π D.
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Remark 3.2 (Case 1). 3i G C(a < pi). Then pi 6 G. Therefore i £ A and
AφC.

Remark 3.3 (Case 2). 3i 6 C'(a < p{). In this case p{ e G and i G A.
Therefore A φ C. Therefore A ^ C for any C € M. Therefore A £ M.
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